Coupling deep learning and multi-objective genetic algorithms to achieve high performance and durability of direct internal reforming solid oxide fuel cell

[Display omitted] •A novel framework is proposed for DIR-SOFC optimization.•A comprehensive parameter study is performed by developing a multi-physics model.•The surrogate model for fast prediction is built using a deep learning algorithm.•The Pareto fronts are obtained by the multi-objective geneti...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied energy Ročník 315; s. 119046
Hlavní autoři: Wang, Yang, Wu, Chengru, Zhao, Siyuan, Wang, Jian, Zu, Bingfeng, Han, Minfang, Du, Qing, Ni, Meng, Jiao, Kui
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.06.2022
Témata:
ISSN:0306-2619, 1872-9118
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract [Display omitted] •A novel framework is proposed for DIR-SOFC optimization.•A comprehensive parameter study is performed by developing a multi-physics model.•The surrogate model for fast prediction is built using a deep learning algorithm.•The Pareto fronts are obtained by the multi-objective genetic algorithms.•A significant reduction of carbon deposition is achieved. Direct internal reforming (DIR) operation of solid oxide fuel cell (SOFC) reduces system complexity, improves system efficiency but increases the risk of carbon deposition which can reduce the system performance and durability. In this study, a novel framework that combines a multi-physics model, deep learning, and multi-objective optimization algorithms is proposed for improving SOFC performance and minimizing carbon deposition. The sensitive operating parameters are identified by performing a global sensitivity analysis. The results of parameter analysis highlight the effects of overall temperature distribution and methane flux on carbon deposition. It is also found that the reduction of carbon deposition is accompanied by a decrease in cell performance. Besides, it is found that the coupling effects of electrochemical and chemical reactions cause a higher temperature gradient. Based on the parametric simulations, multi-objective optimization is conducted by applying a deep learning-based surrogate model as the fitness function. The optimization results are presented by the Pareto fronts under different temperature gradient constraints. The Pareto optimal solution set of operating points allows a significant reduction in carbon deposition while maintaining a high power density and a safe maximum temperature gradient, increasing cell durability. This novel approach is demonstrated to be powerful for the optimization of SOFC and other energy conversion devices.
AbstractList [Display omitted] •A novel framework is proposed for DIR-SOFC optimization.•A comprehensive parameter study is performed by developing a multi-physics model.•The surrogate model for fast prediction is built using a deep learning algorithm.•The Pareto fronts are obtained by the multi-objective genetic algorithms.•A significant reduction of carbon deposition is achieved. Direct internal reforming (DIR) operation of solid oxide fuel cell (SOFC) reduces system complexity, improves system efficiency but increases the risk of carbon deposition which can reduce the system performance and durability. In this study, a novel framework that combines a multi-physics model, deep learning, and multi-objective optimization algorithms is proposed for improving SOFC performance and minimizing carbon deposition. The sensitive operating parameters are identified by performing a global sensitivity analysis. The results of parameter analysis highlight the effects of overall temperature distribution and methane flux on carbon deposition. It is also found that the reduction of carbon deposition is accompanied by a decrease in cell performance. Besides, it is found that the coupling effects of electrochemical and chemical reactions cause a higher temperature gradient. Based on the parametric simulations, multi-objective optimization is conducted by applying a deep learning-based surrogate model as the fitness function. The optimization results are presented by the Pareto fronts under different temperature gradient constraints. The Pareto optimal solution set of operating points allows a significant reduction in carbon deposition while maintaining a high power density and a safe maximum temperature gradient, increasing cell durability. This novel approach is demonstrated to be powerful for the optimization of SOFC and other energy conversion devices.
Direct internal reforming (DIR) operation of solid oxide fuel cell (SOFC) reduces system complexity, improves system efficiency but increases the risk of carbon deposition which can reduce the system performance and durability. In this study, a novel framework that combines a multi-physics model, deep learning, and multi-objective optimization algorithms is proposed for improving SOFC performance and minimizing carbon deposition. The sensitive operating parameters are identified by performing a global sensitivity analysis. The results of parameter analysis highlight the effects of overall temperature distribution and methane flux on carbon deposition. It is also found that the reduction of carbon deposition is accompanied by a decrease in cell performance. Besides, it is found that the coupling effects of electrochemical and chemical reactions cause a higher temperature gradient. Based on the parametric simulations, multi-objective optimization is conducted by applying a deep learning-based surrogate model as the fitness function. The optimization results are presented by the Pareto fronts under different temperature gradient constraints. The Pareto optimal solution set of operating points allows a significant reduction in carbon deposition while maintaining a high power density and a safe maximum temperature gradient, increasing cell durability. This novel approach is demonstrated to be powerful for the optimization of SOFC and other energy conversion devices.
ArticleNumber 119046
Author Wang, Yang
Wang, Jian
Du, Qing
Wu, Chengru
Zu, Bingfeng
Zhao, Siyuan
Ni, Meng
Jiao, Kui
Han, Minfang
Author_xml – sequence: 1
  givenname: Yang
  surname: Wang
  fullname: Wang, Yang
  organization: State Key Laboratory of Engines, Tianjin University, 135 Yaguan Road, Tianjin, China
– sequence: 2
  givenname: Chengru
  surname: Wu
  fullname: Wu, Chengru
  organization: State Key Laboratory of Engines, Tianjin University, 135 Yaguan Road, Tianjin, China
– sequence: 3
  givenname: Siyuan
  surname: Zhao
  fullname: Zhao, Siyuan
  organization: Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD) & Research Institute for Smart Energy (RISE), Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
– sequence: 4
  givenname: Jian
  surname: Wang
  fullname: Wang, Jian
  organization: Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD) & Research Institute for Smart Energy (RISE), Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
– sequence: 5
  givenname: Bingfeng
  surname: Zu
  fullname: Zu, Bingfeng
  organization: Internal Combustion Engine Research Institute, Tianjin University, 92 Weijin Road, Tianjin, China
– sequence: 6
  givenname: Minfang
  surname: Han
  fullname: Han, Minfang
  organization: Department of Energy and Power Engineering, Tsinghua University, Beijing, Beijing 100084, China
– sequence: 7
  givenname: Qing
  surname: Du
  fullname: Du, Qing
  organization: State Key Laboratory of Engines, Tianjin University, 135 Yaguan Road, Tianjin, China
– sequence: 8
  givenname: Meng
  surname: Ni
  fullname: Ni, Meng
  organization: Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD) & Research Institute for Smart Energy (RISE), Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
– sequence: 9
  givenname: Kui
  surname: Jiao
  fullname: Jiao, Kui
  organization: State Key Laboratory of Engines, Tianjin University, 135 Yaguan Road, Tianjin, China
BookMark eNqFUcuO1DAQtNAiMbvwC8hHLhlsz8RJJA6gEQtIK3GBs-VHJ9Mjxw62s2K-hZ8lIXDhsqdWq6uqS1W35CbEAIS85mzPGZdvL3s9QYA0XPeCCbHnvGNH-YzseNuIquO8vSE7dmCyEpJ3L8htzhfGmOCC7civU5wnj2GgDmCiHnQK66aDo-PsC1bRXMAWfAQ6LF8KWqr9EBOW85hpiVTbM8JyPeNwphOkPqZRBwt_JNyctEGP5UpjTx2mRYpiKJCC9jTBCl7f5ejR0fgTHdB-Bk8teP-SPO-1z_Dq77wj3-8_fjt9rh6-fvpy-vBQ2WPdlQratjm4g6mN41YbDr2xHdjG1V3nTGMZM1LIZrmJlgnmWl3XVh5NY2pZ98AOd-TNpjul-GOGXNSIeTWgA8Q5KyEl67q6ls0CfbdBbYo5L_6VxaILxlCSRq84U2sn6qL-daLWTtTWyUKX_9GnhKNO16eJ7zciLDk8IiSVLcKS8hapchGfkvgNhjuxnQ
CitedBy_id crossref_primary_10_1016_j_cej_2023_141680
crossref_primary_10_1016_j_jenvman_2024_122724
crossref_primary_10_1016_j_nucengdes_2024_113759
crossref_primary_10_1021_acs_chemrev_4c00614
crossref_primary_10_1016_j_jpowsour_2025_237312
crossref_primary_10_1016_j_enconman_2025_119926
crossref_primary_10_1016_j_rser_2025_116000
crossref_primary_10_1016_j_apenergy_2023_122287
crossref_primary_10_3390_en17102413
crossref_primary_10_1016_j_apenergy_2024_123236
crossref_primary_10_1016_j_jpowsour_2024_234555
crossref_primary_10_1016_j_biortech_2024_131362
crossref_primary_10_1016_j_energy_2023_129997
crossref_primary_10_1007_s11581_023_04972_6
crossref_primary_10_1016_j_dche_2024_100144
crossref_primary_10_1007_s12206_025_0852_7
crossref_primary_10_1016_j_jwpe_2023_104502
crossref_primary_10_1039_D5TA03711E
crossref_primary_10_1016_j_apenergy_2022_120364
crossref_primary_10_1016_j_enconman_2024_118864
crossref_primary_10_1016_j_apenergy_2023_122030
crossref_primary_10_1016_j_fuel_2023_129314
crossref_primary_10_1016_j_heliyon_2024_e40996
crossref_primary_10_1016_j_est_2023_108170
crossref_primary_10_1016_j_jclepro_2025_145371
crossref_primary_10_1016_j_seta_2022_102947
crossref_primary_10_1016_j_ijhydene_2025_151108
crossref_primary_10_3390_en16237773
crossref_primary_10_1002_advs_202304074
crossref_primary_10_1016_j_jpowsour_2025_237877
crossref_primary_10_1063_5_0181123
crossref_primary_10_1016_j_apenergy_2022_119776
Cites_doi 10.1016/j.ijheatmasstransfer.2019.119217
10.1007/s00158-003-0368-6
10.1016/j.apenergy.2018.06.114
10.1016/j.apenergy.2019.114197
10.1016/j.cej.2013.01.003
10.1016/j.ijheatmasstransfer.2018.11.113
10.1016/j.enconman.2017.10.011
10.1002/fuce.201500038
10.1016/j.rser.2014.04.043
10.1007/s10494-015-9693-2
10.1016/j.ijhydene.2011.01.056
10.1016/j.jpowsour.2011.12.005
10.1016/j.jpowsour.2003.10.018
10.1016/j.enconman.2013.02.008
10.1016/j.egyai.2021.100060
10.1149/1.3156637
10.1016/j.ijhydene.2015.06.024
10.1016/j.enconman.2019.111916
10.1016/j.enconman.2020.112826
10.1016/j.jaecs.2020.100016
10.1016/j.apenergy.2020.115899
10.1016/j.pecs.2015.10.004
10.1016/j.ijhydene.2018.09.025
10.1016/S0378-4754(00)00270-6
10.1016/j.ijhydene.2017.10.122
10.1016/j.enconman.2017.09.020
10.1016/j.pecs.2017.12.002
10.1016/j.enconman.2017.05.071
10.1016/j.egyai.2020.100036
10.1109/4235.996017
10.1016/j.apenergy.2019.04.053
10.1016/j.jpowsour.2009.10.051
10.1016/j.ijhydene.2009.02.073
10.1016/j.ijhydene.2019.11.221
10.1016/j.eswa.2012.05.056
10.1126/science.1204090
10.1016/j.icheatmasstransfer.2017.11.014
10.1016/j.ijhydene.2020.12.092
10.1016/j.applthermaleng.2020.114959
10.1016/j.apenergy.2019.113904
10.1016/j.jpowsour.2014.03.097
10.1016/j.cpc.2015.10.007
10.1016/j.ijhydene.2020.02.228
10.1039/C3TA12766D
10.1016/S0167-2738(00)00714-1
10.1016/j.apenergy.2018.09.092
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2022.119046
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
ExternalDocumentID 10_1016_j_apenergy_2022_119046
S0306261922004470
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c459t-e8873d3b5bd1cab1efbc9ec7d599db7c00b62671ca28020d8a55c64b7b565fe03
ISICitedReferencesCount 36
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000793707300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Sat Sep 27 21:49:22 EDT 2025
Tue Nov 18 22:18:54 EST 2025
Sat Nov 29 07:16:30 EST 2025
Fri Feb 23 02:37:49 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Global sensitivity analysis
Carbon deposition
Multi-objective optimization
Solid oxide fuel cell
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c459t-e8873d3b5bd1cab1efbc9ec7d599db7c00b62671ca28020d8a55c64b7b565fe03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0306261922004470
PQID 2660995567
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2660995567
crossref_citationtrail_10_1016_j_apenergy_2022_119046
crossref_primary_10_1016_j_apenergy_2022_119046
elsevier_sciencedirect_doi_10_1016_j_apenergy_2022_119046
PublicationCentury 2000
PublicationDate 2022-06-01
2022-06-00
20220601
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Schluckner, Subotić, Lawlor (b0085) 2015; 40
Yan, He, Hara, Shikazono (b0215) 2019; 198
Wang, Yoshiba, Kawase, Watanabe (b0080) 2009; 34
Brus, Raczkowski, Kishimoto, Iwai, Szmyd (b0140) 2020; 213
Kupecki, Papurello, Lanzini, Naumovich, Motylinski, Blesznowski (b0025) 2018; 230
Alkhayat, Mehmood (b0195) 2021; 4
Marler, Arora (b0210) 2004; 26
Bao, Wang, Feng, Jiang, Zhang (b0005) 2018; 66
Xie, Zhai, Chen, Liu, Zhang, Ni (b0040) 2020; 260
Li, Shi, Cai (b0190) 2010; 195
Gholaminezhad, Jafarpur, Paydar, Karimi (b0220) 2017; 153
Behzadian, Khanmohammadi Otaghsara, Yazdani, Ignatius (b0230) 2012; 39
Gholaminezhad, Paydar, Jafarpur, Paydar (b0060) 2017; 148
Sobol (b0205) 2001; 55
Gür (b0065) 2016; 54
Tai, Zhang, Niu, Christie, Xuan (b0145) 2020; 2
Grzegorz, Komatsu, Kimijima (b0125) 2012; 15
Subotić, Baldinelli, Barelli, Scharler, Pongratz, Hochenauer (b0075) 2019; 256
Koncewicz, Moździerz, Brus (b0160) 2021
Muramoto, Kikuchi, Tachikawa, Lyth, Shiratori, Taniguchi (b0070) 2017; 42
Guo, Xiao, Wang, Lin (b0100) 2021; 46
Hua, Li, Chi, Jian (b0050) 2014; 2
Wu, Xu, Xue, Zhao, Jiang, Deng (b0115) 2019; 248
Sciazko, Komatsu, Brus, Kimijima, Szmyd (b0130) 2014; 262
Zhan, Wang, Ni, Zhang, Du, Jiao (b0165) 2020; 45
Al Moussawi, Fardoun, Louahlia (b0110) 2017; 151
LeCun, Bengio, Hinton (b0200) 2015; 521
Horita, Yamaji, Kato, Sakai, Yokokawa (b0045) 2004; 131
Wang, Wu, Du, Ni, Jiao, Zu (b0090) 2021; 5
Mozdzierz, Brus, Sciazko, Komatsu, Kimijima, Szmyd (b0120) 2016; 97
Wang, Zhan, Qin, Zhang, Du, Jiao (b0170) 2018; 43
Wang, Wu, Meng, Yan (b0235) 2020; 149
Prakash, Kumar, Aruna (b0020) 2014; 36
Ni (b0175) 2013; 70
Fan, Zhang, Hua, Li (b0180) 2016; 16
Beale, Choi, Pharoah, Roth, Jasak, Jeon (b0105) 2016; 200
Hua, Li, Lu, Zhang, Fan (b0185) 2018; 91
Lanzini, Leone, Guerra, Smeacetto, Brandon, Santarelli (b0030) 2013; 220
Lyu, Shi, Han (b0240) 2018; 228
Atkinson, Selcuk (b0250) 2000; 134
Zeng, Qian, Zhang, Hao, Dan, Zhuge (b0245) 2020; 280
Deb, Pratap, Agarwal (b0225) 2002; 6
Cottrell, Grasman, Thomas, Martin, Sheffield (b0015) 2011; 36
Wang, Du, Ni, Zhan, Du, Jiao (b0095) 2020; 172
Girona, Laurencin, Fouletier, Lefebvre-Joud (b0055) 2012; 210
Pajak, Buchaniec, Kimijima, Szmyd, Brus (b0150) 2021; 46
Pajak, Brus, Szmyd (b0155) 2021
Wachsman, Lee (b0010) 2011; 334
Chalusiak, Wrobel, Mozdzierz, Berent, Szmyd, Kimijima (b0135) 2019; 131
Babaei, Jiang, Li (b0035) 2009; 156
Wachsman (10.1016/j.apenergy.2022.119046_b0010) 2011; 334
Lyu (10.1016/j.apenergy.2022.119046_b0240) 2018; 228
LeCun (10.1016/j.apenergy.2022.119046_b0200) 2015; 521
Atkinson (10.1016/j.apenergy.2022.119046_b0250) 2000; 134
Yan (10.1016/j.apenergy.2022.119046_b0215) 2019; 198
Girona (10.1016/j.apenergy.2022.119046_b0055) 2012; 210
Prakash (10.1016/j.apenergy.2022.119046_b0020) 2014; 36
Muramoto (10.1016/j.apenergy.2022.119046_b0070) 2017; 42
Kupecki (10.1016/j.apenergy.2022.119046_b0025) 2018; 230
Wang (10.1016/j.apenergy.2022.119046_b0235) 2020; 149
Lanzini (10.1016/j.apenergy.2022.119046_b0030) 2013; 220
Ni (10.1016/j.apenergy.2022.119046_b0175) 2013; 70
Pajak (10.1016/j.apenergy.2022.119046_b0155) 2021
Wang (10.1016/j.apenergy.2022.119046_b0080) 2009; 34
Guo (10.1016/j.apenergy.2022.119046_b0100) 2021; 46
Beale (10.1016/j.apenergy.2022.119046_b0105) 2016; 200
Sobol (10.1016/j.apenergy.2022.119046_b0205) 2001; 55
Bao (10.1016/j.apenergy.2022.119046_b0005) 2018; 66
Sciazko (10.1016/j.apenergy.2022.119046_b0130) 2014; 262
Marler (10.1016/j.apenergy.2022.119046_b0210) 2004; 26
Grzegorz (10.1016/j.apenergy.2022.119046_b0125) 2012; 15
Behzadian (10.1016/j.apenergy.2022.119046_b0230) 2012; 39
Hua (10.1016/j.apenergy.2022.119046_b0050) 2014; 2
Wu (10.1016/j.apenergy.2022.119046_b0115) 2019; 248
Pajak (10.1016/j.apenergy.2022.119046_b0150) 2021; 46
Chalusiak (10.1016/j.apenergy.2022.119046_b0135) 2019; 131
Gür (10.1016/j.apenergy.2022.119046_b0065) 2016; 54
Gholaminezhad (10.1016/j.apenergy.2022.119046_b0220) 2017; 153
Fan (10.1016/j.apenergy.2022.119046_b0180) 2016; 16
Mozdzierz (10.1016/j.apenergy.2022.119046_b0120) 2016; 97
Koncewicz (10.1016/j.apenergy.2022.119046_b0160) 2021
Tai (10.1016/j.apenergy.2022.119046_b0145) 2020; 2
Wang (10.1016/j.apenergy.2022.119046_b0170) 2018; 43
Schluckner (10.1016/j.apenergy.2022.119046_b0085) 2015; 40
Zeng (10.1016/j.apenergy.2022.119046_b0245) 2020; 280
Wang (10.1016/j.apenergy.2022.119046_b0095) 2020; 172
Deb (10.1016/j.apenergy.2022.119046_b0225) 2002; 6
Al Moussawi (10.1016/j.apenergy.2022.119046_b0110) 2017; 151
Gholaminezhad (10.1016/j.apenergy.2022.119046_b0060) 2017; 148
Zhan (10.1016/j.apenergy.2022.119046_b0165) 2020; 45
Hua (10.1016/j.apenergy.2022.119046_b0185) 2018; 91
Subotić (10.1016/j.apenergy.2022.119046_b0075) 2019; 256
Wang (10.1016/j.apenergy.2022.119046_b0090) 2021; 5
Li (10.1016/j.apenergy.2022.119046_b0190) 2010; 195
Cottrell (10.1016/j.apenergy.2022.119046_b0015) 2011; 36
Xie (10.1016/j.apenergy.2022.119046_b0040) 2020; 260
Alkhayat (10.1016/j.apenergy.2022.119046_b0195) 2021; 4
Brus (10.1016/j.apenergy.2022.119046_b0140) 2020; 213
Horita (10.1016/j.apenergy.2022.119046_b0045) 2004; 131
Babaei (10.1016/j.apenergy.2022.119046_b0035) 2009; 156
References_xml – volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b0200
  publication-title: Deep learning. nature
– volume: 36
  start-page: 7969
  year: 2011
  end-page: 7975
  ident: b0015
  article-title: Strategies for stationary and portable fuel cell markets
  publication-title: Int J Hydrogen Energy
– volume: 131
  start-page: 1032
  year: 2019
  end-page: 1051
  ident: b0135
  article-title: A numerical analysis of unsteady transport phenomena in a Direct Internal Reforming Solid Oxide Fuel Cell
  publication-title: Int J Heat Mass Transf
– volume: 2
  start-page: 1150
  year: 2014
  end-page: 1158
  ident: b0050
  article-title: Enhanced electrochemical performance and carbon deposition resistance of Ni–YSZ anode of solid oxide fuel cells by in situ formed Ni–MnO layer for CH
  publication-title: J Mater Chem A
– volume: 280
  year: 2020
  ident: b0245
  article-title: A review of heat transfer and thermal management methods for temperature gradient reduction in solid oxide fuel cell (SOFC) stacks
  publication-title: Appl Energy
– volume: 55
  start-page: 271
  year: 2001
  end-page: 280
  ident: b0205
  article-title: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates
  publication-title: Math Comput Simul
– volume: 153
  start-page: 175
  year: 2017
  end-page: 187
  ident: b0220
  article-title: Multi-scale multi-objective optimization and uncertainty analysis of methane-fed solid oxide fuel cells using Monte Carlo simulations
  publication-title: Energy Convers Manage
– volume: 230
  start-page: 1573
  year: 2018
  end-page: 1584
  ident: b0025
  article-title: Numerical model of planar anode supported solid oxide fuel cell fed with fuel containing H
  publication-title: Appl Energy
– volume: 262
  start-page: 245
  year: 2014
  end-page: 254
  ident: b0130
  article-title: A novel approach to the experimental study on methane/steam reforming kinetics using the Orthogonal Least Squares method
  publication-title: J Power Sources
– volume: 45
  start-page: 6897
  year: 2020
  end-page: 6911
  ident: b0165
  article-title: Three-dimensional simulation of solid oxide fuel cell with metal foam as cathode flow distributor
  publication-title: Int J Hydrogen Energy
– volume: 16
  start-page: 235
  year: 2016
  end-page: 243
  ident: b0180
  article-title: Experimental study of the carbon deposition from CH
  publication-title: Fuel Cells
– volume: 210
  start-page: 381
  year: 2012
  end-page: 391
  ident: b0055
  article-title: Carbon deposition in CH
  publication-title: J Power Sources
– volume: 46
  start-page: 20183
  year: 2021
  end-page: 20197
  ident: b0150
  article-title: A multiobjective optimization of a catalyst distribution in a methane/steam reforming reactor using a genetic algorithm
  publication-title: Int J Hydrogen Energy
– volume: 36
  start-page: 149
  year: 2014
  end-page: 179
  ident: b0020
  article-title: Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell: a review
  publication-title: Renew Sustain Energy Rev
– year: 2021
  ident: b0155
  article-title: Genetic algorithm-based strategy for the steam reformer optimization
  publication-title: Int J Hydrogen Energy
– volume: 97
  start-page: 171
  year: 2016
  end-page: 189
  ident: b0120
  article-title: Towards a thermal optimization of a methane/steam reforming reactor
  publication-title: Flow, Turbulence and Combustion
– volume: 134
  start-page: 59
  year: 2000
  end-page: 66
  ident: b0250
  article-title: Mechanical behaviour of ceramic oxygen ion-conducting membranes
  publication-title: Solid State Ionics
– volume: 40
  start-page: 10943
  year: 2015
  end-page: 10959
  ident: b0085
  article-title: Three-dimensional numerical and experimental investigation of an industrial-sized SOFC fueled by diesel reformat–Part II: Detailed reforming chemistry and carbon deposition analysis
  publication-title: Int J Hydrogen Energy
– volume: 54
  start-page: 1
  year: 2016
  end-page: 64
  ident: b0065
  article-title: Comprehensive review of methane conversion in solid oxide fuel cells: prospects for efficient electricity generation from natural gas
  publication-title: Prog Energy Combust Sci
– volume: 66
  start-page: 83
  year: 2018
  end-page: 140
  ident: b0005
  article-title: Macroscopic modeling of solid oxide fuel cell (SOFC) and model-based control of SOFC and gas turbine hybrid system
  publication-title: Prog Energy Combust Sci
– volume: 228
  start-page: 556
  year: 2018
  end-page: 567
  ident: b0240
  article-title: Electrochemical characteristics and carbon tolerance of solid oxide 40fuel cells with direct internal dry reforming of methane
  publication-title: Appl Energy
– year: 2021
  ident: b0160
  article-title: A fast Gaussian process-based method to evaluate carbon deposition during hydrocarbons reforming
  publication-title: Int J Hydrogen Energy
– volume: 2
  year: 2020
  ident: b0145
  article-title: The future of sustainable chemistry and process: convergence of artificial intelligence, data and hardware
  publication-title: Energy and AI
– volume: 42
  start-page: 30769
  year: 2017
  end-page: 30786
  ident: b0070
  article-title: High-pressure CHO diagrams: fuel composition, carbon deposition, and open circuit voltage of pressurized SOFCs
  publication-title: Int J Hydrogen Energy
– volume: 198
  year: 2019
  ident: b0215
  article-title: Modeling of solid oxide fuel cell (SOFC) electrodes from fabrication to operation: Microstructure optimization via artificial neural networks and multi-objective genetic algorithms
  publication-title: Energy Convers Manage
– volume: 26
  start-page: 369
  year: 2004
  end-page: 395
  ident: b0210
  article-title: Survey of multi-objective optimization methods for engineering
  publication-title: Struct Multidiscip Optim
– volume: 334
  start-page: 935
  year: 2011
  end-page: 939
  ident: b0010
  article-title: Lowering the temperature of solid oxide fuel cells
  publication-title: Science
– volume: 195
  start-page: 2266
  year: 2010
  end-page: 2282
  ident: b0190
  article-title: Elementary reaction kinetic model of an anode-supported solid oxide fuel cell fueled with syngas
  publication-title: J Power Sources
– volume: 220
  start-page: 254
  year: 2013
  end-page: 263
  ident: b0030
  article-title: Durability of anode supported Solid Oxides Fuel Cells (SOFC) under direct dry-reforming of methane
  publication-title: Chem Eng J
– volume: 34
  start-page: 3885
  year: 2009
  end-page: 3893
  ident: b0080
  article-title: Performance and effective kinetic models of methane steam reforming over Ni/YSZ anode of planar SOFC
  publication-title: Int J Hydrogen Energy
– volume: 46
  start-page: 9488
  year: 2021
  end-page: 9502
  ident: b0100
  article-title: Parametric study of kW-class solid oxide fuel cell stacks fueled by hydrogen and methane with fully multiphysical coupling model
  publication-title: Int J Hydrogen Energy
– volume: 248
  start-page: 126
  year: 2019
  end-page: 140
  ident: b0115
  article-title: Health state prediction and analysis of SOFC system based on the data-driven entire stage experiment
  publication-title: Appl Energy
– volume: 4
  start-page: 100060
  year: 2021
  ident: b0195
  article-title: A review and taxonomy of wind and solar energy forecasting methods based on deep learning
  publication-title: Energy and AI
– volume: 148
  start-page: 222
  year: 2017
  end-page: 237
  ident: b0060
  article-title: Multi-scale mathematical modeling of methane-fueled SOFCs: predicting limiting current density using a modified Fick’s model
  publication-title: Energy Convers Manage
– volume: 15
  start-page: 43
  year: 2012
  end-page: 51
  ident: b0125
  article-title: An analysis of biogas reforming process on Ni/YSZ and Ni/SDC catalysts
  publication-title: Int J Thermodyn
– volume: 156
  year: 2009
  ident: b0035
  article-title: Electrocatalytic promotion of palladium nanoparticles on hydrogen oxidation on Ni/GDC anodes of SOFCs via spillover
  publication-title: J Electrochem Soc
– volume: 256
  year: 2019
  ident: b0075
  article-title: Applicability of the SOFC technology for coupling with biomass-gasifier systems: short-and long-term experimental study on SOFC performance and degradation behaviour
  publication-title: Appl Energy
– volume: 151
  start-page: 607
  year: 2017
  end-page: 629
  ident: b0110
  article-title: 4-E based optimal management of a SOFC-CCHP system model for residential applications
  publication-title: Energy Convers Manage
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b0225
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans Evol Comput
– volume: 5
  year: 2021
  ident: b0090
  article-title: Morphology and performance evolution of anode microstructure in solid oxide fuel cell: a model-based quantitative analysis
  publication-title: Applications in Energy and Combustion Science
– volume: 70
  start-page: 116
  year: 2013
  end-page: 129
  ident: b0175
  article-title: Modeling and parametric simulations of solid oxide fuel cells with methane carbon dioxide reforming
  publication-title: Energy Convers Manage
– volume: 91
  start-page: 23
  year: 2018
  end-page: 29
  ident: b0185
  article-title: Investigation of carbon formation on Ni/YSZ anode of solid oxide fuel cell from CO disproportionation reaction
  publication-title: Int Commun Heat Mass Transfer
– volume: 131
  start-page: 299
  year: 2004
  end-page: 303
  ident: b0045
  article-title: Design of metal/oxide interfaces for the direct introduction of hydrocarbons into SOFCs
  publication-title: J Power Sources
– volume: 43
  start-page: 20059
  year: 2018
  end-page: 20076
  ident: b0170
  article-title: Three-dimensional modeling of pressure effect on operating characteristics and performance of solid oxide fuel cell
  publication-title: Int J Hydrogen Energy
– volume: 200
  start-page: 15
  year: 2016
  end-page: 26
  ident: b0105
  article-title: Open-source computational model of a solid oxide fuel cell
  publication-title: Comput Phys Commun
– volume: 172
  year: 2020
  ident: b0095
  article-title: Three-dimensional modeling of flow field optimization for co-electrolysis solid oxide electrolysis cell
  publication-title: Appl Therm Eng
– volume: 39
  start-page: 13051
  year: 2012
  end-page: 13069
  ident: b0230
  article-title: A state-of the-art survey of TOPSIS applications
  publication-title: Expert Syst Appl
– volume: 213
  year: 2020
  ident: b0140
  article-title: A microstructure-oriented mathematical model of a direct internal reforming solid oxide fuel cell
  publication-title: Energy Convers Manage
– volume: 149
  year: 2020
  ident: b0235
  article-title: Optimization of a double-layered microchannel heat sink with semi-porous-ribs by multi-objective genetic algorithm
  publication-title: Int J Heat Mass Transf
– volume: 260
  year: 2020
  ident: b0040
  article-title: Coal pretreatment and Ag-infiltrated anode for high-performance hybrid direct coal fuel cell
  publication-title: Appl Energy
– volume: 149
  year: 2020
  ident: 10.1016/j.apenergy.2022.119046_b0235
  article-title: Optimization of a double-layered microchannel heat sink with semi-porous-ribs by multi-objective genetic algorithm
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2019.119217
– volume: 26
  start-page: 369
  issue: 6
  year: 2004
  ident: 10.1016/j.apenergy.2022.119046_b0210
  article-title: Survey of multi-objective optimization methods for engineering
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-003-0368-6
– volume: 228
  start-page: 556
  year: 2018
  ident: 10.1016/j.apenergy.2022.119046_b0240
  article-title: Electrochemical characteristics and carbon tolerance of solid oxide 40fuel cells with direct internal dry reforming of methane
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.06.114
– volume: 260
  year: 2020
  ident: 10.1016/j.apenergy.2022.119046_b0040
  article-title: Coal pretreatment and Ag-infiltrated anode for high-performance hybrid direct coal fuel cell
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.114197
– volume: 220
  start-page: 254
  year: 2013
  ident: 10.1016/j.apenergy.2022.119046_b0030
  article-title: Durability of anode supported Solid Oxides Fuel Cells (SOFC) under direct dry-reforming of methane
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2013.01.003
– volume: 131
  start-page: 1032
  year: 2019
  ident: 10.1016/j.apenergy.2022.119046_b0135
  article-title: A numerical analysis of unsteady transport phenomena in a Direct Internal Reforming Solid Oxide Fuel Cell
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2018.11.113
– volume: 153
  start-page: 175
  year: 2017
  ident: 10.1016/j.apenergy.2022.119046_b0220
  article-title: Multi-scale multi-objective optimization and uncertainty analysis of methane-fed solid oxide fuel cells using Monte Carlo simulations
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.10.011
– volume: 16
  start-page: 235
  issue: 2
  year: 2016
  ident: 10.1016/j.apenergy.2022.119046_b0180
  article-title: Experimental study of the carbon deposition from CH4 onto the Ni/YSZ anode of SOFCs
  publication-title: Fuel Cells
  doi: 10.1002/fuce.201500038
– volume: 36
  start-page: 149
  year: 2014
  ident: 10.1016/j.apenergy.2022.119046_b0020
  article-title: Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell: a review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2014.04.043
– volume: 97
  start-page: 171
  issue: 1
  year: 2016
  ident: 10.1016/j.apenergy.2022.119046_b0120
  article-title: Towards a thermal optimization of a methane/steam reforming reactor
  publication-title: Flow, Turbulence and Combustion
  doi: 10.1007/s10494-015-9693-2
– volume: 36
  start-page: 7969
  issue: 13
  year: 2011
  ident: 10.1016/j.apenergy.2022.119046_b0015
  article-title: Strategies for stationary and portable fuel cell markets
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.01.056
– volume: 210
  start-page: 381
  year: 2012
  ident: 10.1016/j.apenergy.2022.119046_b0055
  article-title: Carbon deposition in CH4/CO2 operated SOFC: Simulation and experimentation studies
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2011.12.005
– volume: 131
  start-page: 299
  issue: 1-2
  year: 2004
  ident: 10.1016/j.apenergy.2022.119046_b0045
  article-title: Design of metal/oxide interfaces for the direct introduction of hydrocarbons into SOFCs
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2003.10.018
– volume: 70
  start-page: 116
  year: 2013
  ident: 10.1016/j.apenergy.2022.119046_b0175
  article-title: Modeling and parametric simulations of solid oxide fuel cells with methane carbon dioxide reforming
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2013.02.008
– volume: 4
  start-page: 100060
  year: 2021
  ident: 10.1016/j.apenergy.2022.119046_b0195
  article-title: A review and taxonomy of wind and solar energy forecasting methods based on deep learning
  publication-title: Energy and AI
  doi: 10.1016/j.egyai.2021.100060
– volume: 15
  start-page: 43
  issue: 1
  year: 2012
  ident: 10.1016/j.apenergy.2022.119046_b0125
  article-title: An analysis of biogas reforming process on Ni/YSZ and Ni/SDC catalysts
  publication-title: Int J Thermodyn
– volume: 156
  issue: 9
  year: 2009
  ident: 10.1016/j.apenergy.2022.119046_b0035
  article-title: Electrocatalytic promotion of palladium nanoparticles on hydrogen oxidation on Ni/GDC anodes of SOFCs via spillover
  publication-title: J Electrochem Soc
  doi: 10.1149/1.3156637
– volume: 40
  start-page: 10943
  issue: 34
  year: 2015
  ident: 10.1016/j.apenergy.2022.119046_b0085
  article-title: Three-dimensional numerical and experimental investigation of an industrial-sized SOFC fueled by diesel reformat–Part II: Detailed reforming chemistry and carbon deposition analysis
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.06.024
– volume: 198
  year: 2019
  ident: 10.1016/j.apenergy.2022.119046_b0215
  article-title: Modeling of solid oxide fuel cell (SOFC) electrodes from fabrication to operation: Microstructure optimization via artificial neural networks and multi-objective genetic algorithms
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2019.111916
– volume: 213
  year: 2020
  ident: 10.1016/j.apenergy.2022.119046_b0140
  article-title: A microstructure-oriented mathematical model of a direct internal reforming solid oxide fuel cell
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2020.112826
– volume: 5
  year: 2021
  ident: 10.1016/j.apenergy.2022.119046_b0090
  article-title: Morphology and performance evolution of anode microstructure in solid oxide fuel cell: a model-based quantitative analysis
  publication-title: Applications in Energy and Combustion Science
  doi: 10.1016/j.jaecs.2020.100016
– volume: 280
  year: 2020
  ident: 10.1016/j.apenergy.2022.119046_b0245
  article-title: A review of heat transfer and thermal management methods for temperature gradient reduction in solid oxide fuel cell (SOFC) stacks
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115899
– volume: 54
  start-page: 1
  year: 2016
  ident: 10.1016/j.apenergy.2022.119046_b0065
  article-title: Comprehensive review of methane conversion in solid oxide fuel cells: prospects for efficient electricity generation from natural gas
  publication-title: Prog Energy Combust Sci
  doi: 10.1016/j.pecs.2015.10.004
– volume: 43
  start-page: 20059
  issue: 43
  year: 2018
  ident: 10.1016/j.apenergy.2022.119046_b0170
  article-title: Three-dimensional modeling of pressure effect on operating characteristics and performance of solid oxide fuel cell
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.09.025
– volume: 55
  start-page: 271
  issue: 1–3
  year: 2001
  ident: 10.1016/j.apenergy.2022.119046_b0205
  article-title: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates
  publication-title: Math Comput Simul
  doi: 10.1016/S0378-4754(00)00270-6
– volume: 42
  start-page: 30769
  issue: 52
  year: 2017
  ident: 10.1016/j.apenergy.2022.119046_b0070
  article-title: High-pressure CHO diagrams: fuel composition, carbon deposition, and open circuit voltage of pressurized SOFCs
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.10.122
– volume: 151
  start-page: 607
  year: 2017
  ident: 10.1016/j.apenergy.2022.119046_b0110
  article-title: 4-E based optimal management of a SOFC-CCHP system model for residential applications
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.09.020
– volume: 66
  start-page: 83
  year: 2018
  ident: 10.1016/j.apenergy.2022.119046_b0005
  article-title: Macroscopic modeling of solid oxide fuel cell (SOFC) and model-based control of SOFC and gas turbine hybrid system
  publication-title: Prog Energy Combust Sci
  doi: 10.1016/j.pecs.2017.12.002
– volume: 148
  start-page: 222
  year: 2017
  ident: 10.1016/j.apenergy.2022.119046_b0060
  article-title: Multi-scale mathematical modeling of methane-fueled SOFCs: predicting limiting current density using a modified Fick’s model
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.05.071
– volume: 2
  year: 2020
  ident: 10.1016/j.apenergy.2022.119046_b0145
  article-title: The future of sustainable chemistry and process: convergence of artificial intelligence, data and hardware
  publication-title: Energy and AI
  doi: 10.1016/j.egyai.2020.100036
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.apenergy.2022.119046_b0225
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.996017
– volume: 248
  start-page: 126
  year: 2019
  ident: 10.1016/j.apenergy.2022.119046_b0115
  article-title: Health state prediction and analysis of SOFC system based on the data-driven entire stage experiment
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.04.053
– volume: 195
  start-page: 2266
  issue: 8
  year: 2010
  ident: 10.1016/j.apenergy.2022.119046_b0190
  article-title: Elementary reaction kinetic model of an anode-supported solid oxide fuel cell fueled with syngas
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2009.10.051
– volume: 34
  start-page: 3885
  issue: 9
  year: 2009
  ident: 10.1016/j.apenergy.2022.119046_b0080
  article-title: Performance and effective kinetic models of methane steam reforming over Ni/YSZ anode of planar SOFC
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.02.073
– volume: 45
  start-page: 6897
  issue: 11
  year: 2020
  ident: 10.1016/j.apenergy.2022.119046_b0165
  article-title: Three-dimensional simulation of solid oxide fuel cell with metal foam as cathode flow distributor
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.11.221
– volume: 39
  start-page: 13051
  issue: 17
  year: 2012
  ident: 10.1016/j.apenergy.2022.119046_b0230
  article-title: A state-of the-art survey of TOPSIS applications
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2012.05.056
– volume: 334
  start-page: 935
  issue: 6058
  year: 2011
  ident: 10.1016/j.apenergy.2022.119046_b0010
  article-title: Lowering the temperature of solid oxide fuel cells
  publication-title: Science
  doi: 10.1126/science.1204090
– volume: 91
  start-page: 23
  year: 2018
  ident: 10.1016/j.apenergy.2022.119046_b0185
  article-title: Investigation of carbon formation on Ni/YSZ anode of solid oxide fuel cell from CO disproportionation reaction
  publication-title: Int Commun Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2017.11.014
– volume: 46
  start-page: 9488
  issue: 14
  year: 2021
  ident: 10.1016/j.apenergy.2022.119046_b0100
  article-title: Parametric study of kW-class solid oxide fuel cell stacks fueled by hydrogen and methane with fully multiphysical coupling model
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.12.092
– volume: 172
  year: 2020
  ident: 10.1016/j.apenergy.2022.119046_b0095
  article-title: Three-dimensional modeling of flow field optimization for co-electrolysis solid oxide electrolysis cell
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2020.114959
– volume: 256
  year: 2019
  ident: 10.1016/j.apenergy.2022.119046_b0075
  article-title: Applicability of the SOFC technology for coupling with biomass-gasifier systems: short-and long-term experimental study on SOFC performance and degradation behaviour
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.113904
– volume: 262
  start-page: 245
  year: 2014
  ident: 10.1016/j.apenergy.2022.119046_b0130
  article-title: A novel approach to the experimental study on methane/steam reforming kinetics using the Orthogonal Least Squares method
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2014.03.097
– volume: 200
  start-page: 15
  year: 2016
  ident: 10.1016/j.apenergy.2022.119046_b0105
  article-title: Open-source computational model of a solid oxide fuel cell
  publication-title: Comput Phys Commun
  doi: 10.1016/j.cpc.2015.10.007
– year: 2021
  ident: 10.1016/j.apenergy.2022.119046_b0155
  article-title: Genetic algorithm-based strategy for the steam reformer optimization
  publication-title: Int J Hydrogen Energy
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.apenergy.2022.119046_b0200
  publication-title: Deep learning. nature
– year: 2021
  ident: 10.1016/j.apenergy.2022.119046_b0160
  article-title: A fast Gaussian process-based method to evaluate carbon deposition during hydrocarbons reforming
  publication-title: Int J Hydrogen Energy
– volume: 46
  start-page: 20183
  issue: 38
  year: 2021
  ident: 10.1016/j.apenergy.2022.119046_b0150
  article-title: A multiobjective optimization of a catalyst distribution in a methane/steam reforming reactor using a genetic algorithm
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.02.228
– volume: 2
  start-page: 1150
  issue: 4
  year: 2014
  ident: 10.1016/j.apenergy.2022.119046_b0050
  article-title: Enhanced electrochemical performance and carbon deposition resistance of Ni–YSZ anode of solid oxide fuel cells by in situ formed Ni–MnO layer for CH4 on-cell reforming
  publication-title: J Mater Chem A
  doi: 10.1039/C3TA12766D
– volume: 134
  start-page: 59
  issue: 1–2
  year: 2000
  ident: 10.1016/j.apenergy.2022.119046_b0250
  article-title: Mechanical behaviour of ceramic oxygen ion-conducting membranes
  publication-title: Solid State Ionics
  doi: 10.1016/S0167-2738(00)00714-1
– volume: 230
  start-page: 1573
  year: 2018
  ident: 10.1016/j.apenergy.2022.119046_b0025
  article-title: Numerical model of planar anode supported solid oxide fuel cell fed with fuel containing H2S operated in direct internal reforming mode (DIR-SOFC)
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.09.092
SSID ssj0002120
Score 2.5316298
Snippet [Display omitted] •A novel framework is proposed for DIR-SOFC optimization.•A comprehensive parameter study is performed by developing a multi-physics...
Direct internal reforming (DIR) operation of solid oxide fuel cell (SOFC) reduces system complexity, improves system efficiency but increases the risk of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 119046
SubjectTerms carbon
Carbon deposition
Deep learning
durability
electrochemistry
energy conversion
fuel cells
Global sensitivity analysis
methane production
Multi-objective optimization
risk
Solid oxide fuel cell
temperature
Title Coupling deep learning and multi-objective genetic algorithms to achieve high performance and durability of direct internal reforming solid oxide fuel cell
URI https://dx.doi.org/10.1016/j.apenergy.2022.119046
https://www.proquest.com/docview/2660995567
Volume 315
WOSCitedRecordID wos000793707300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3db9MwEMCt0vEADwgG08aXjIR4qTKaD9fx4zR1gmkqSHRSeYpix-lalSS0TVX-Cf4B_lnOX02YhjYeeIkqN07S3K--O9t3h9BbSXOacj_yQBkEXsT82ANumCdiwv08JaGITLEJOhrFkwn73On8dLEwmwUtini7ZdV_FTW0gbBV6Ow_iHt3UWiAzyB0OILY4XgnwZ-WdaVjzDMpK1cVwgQi6t2DXsnnZpRT5ZOlTti6mJbL2frqm073oLZXyo1KRTy9UmmN_wgsyOqlyeytV-aNQtQ5J7RZC-q2VJtrpj34jbOsV25nmezltVz01ApB2xJ25q_UwYfNvL4Ze76mVqOqttrsC5DFdFm3Jrr1JO-X2Y-6Adx1P3fQ2_kMcIV3-65cHBc0KL-uPUaHPulVMLwzcOe9G0d-MwkxP04r89zH6tq2R6Pr3Pr-6FNydnlxkYyHk_G76runqpCp1XpbkuUe2gsoYXEX7Z18HE7Od7o9sIk-3TO2Ys5vvvXfzJ1ril9bM-PH6JF1Q_CJwecJ6shiHz1sJafcRwfDJgYSTrVKYPUU_XKEYUUYdoRhwANfIwxbwnBDGF6X2BKGFWG4RZi-REMYLnNsCMOOMLwjDGvCsCYMK8KwIuwZujwbjk8_eLbGhyciwtaeBCUXZiEnPPMFDBoy54JJQTPCWMap6Pc5uNwUvgti8GyyOCVEDCJOOXgiueyHB6hblIU8RDjwM8pYnvMg9yMe-pxTH84OBB8QmQ3EESJOFImwCfBVHZZF4nY6zhMnwkSJMDEiPELvd_0qkwLm1h7MSTqxhqx5WwnQemvfNw6NBEZ69erSQpb1KgFTGtw5Qgb0-R3OeYEeNP-ul6i7XtbyFbovNuvZavnacv0bXdLU1w
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coupling+deep+learning+and+multi-objective+genetic+algorithms+to+achieve+high+performance+and+durability+of+direct+internal+reforming+solid+oxide+fuel+cell&rft.jtitle=Applied+energy&rft.au=Wang%2C+Yang&rft.au=Wu%2C+Chengru&rft.au=Zhao%2C+Siyuan&rft.au=Wang%2C+Jian&rft.date=2022-06-01&rft.issn=0306-2619&rft.volume=315+p.119046-&rft_id=info:doi/10.1016%2Fj.apenergy.2022.119046&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon