Distribution-based detection of radiographic changes in pneumonia patterns: A COVID-19 case study

Although the classification of chest radiographs has long been an extensively researched topic, interest increased significantly with the onset of the COVID-19 pandemic. Existing results are promising; however, the radiological similarities between COVID-19 and other types of respiratory diseases li...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Heliyon Ročník 10; číslo 16; s. e35677
Hlavní autori: C. Pereira, Sofia, Rocha, Joana, Campilho, Aurélio, Mendonça, Ana Maria
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England Elsevier Ltd 30.08.2024
Elsevier
Predmet:
ISSN:2405-8440, 2405-8440
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Although the classification of chest radiographs has long been an extensively researched topic, interest increased significantly with the onset of the COVID-19 pandemic. Existing results are promising; however, the radiological similarities between COVID-19 and other types of respiratory diseases limit the success of conventional image classification approaches that focus on single instances. This study proposes a novel perspective that conceptualizes COVID-19 pneumonia as a deviation from a normative distribution of typical pneumonia patterns. Using a population-based approach, our approach utilizes distributional anomaly detection. This method diverges from traditional instance-wise approaches by focusing on sets of scans instead of individual images. Using an autoencoder to extract feature representations, we present instance-based and distribution-based assessments of the separability between COVID-positive and COVID-negative pneumonia radiographs. The results demonstrate that the proposed distribution-based methodology outperforms conventional instance-based techniques in identifying radiographic changes associated with COVID-positive cases. This underscores its potential as an early warning system capable of detecting significant distributional shifts in radiographic data. By continuously monitoring these changes, this approach offers a mechanism for early identification of emerging health trends, potentially signaling the onset of new pandemics and enabling prompt public health responses.
AbstractList Although the classification of chest radiographs has long been an extensively researched topic, interest increased significantly with the onset of the COVID-19 pandemic. Existing results are promising; however, the radiological similarities between COVID-19 and other types of respiratory diseases limit the success of conventional image classification approaches that focus on single instances. This study proposes a novel perspective that conceptualizes COVID-19 pneumonia as a deviation from a normative distribution of typical pneumonia patterns. Using a population-based approach, our approach utilizes distributional anomaly detection. This method diverges from traditional instance-wise approaches by focusing on sets of scans instead of individual images. Using an autoencoder to extract feature representations, we present instance-based and distribution-based assessments of the separability between COVID-positive and COVID-negative pneumonia radiographs. The results demonstrate that the proposed distribution-based methodology outperforms conventional instance-based techniques in identifying radiographic changes associated with COVID-positive cases. This underscores its potential as an early warning system capable of detecting significant distributional shifts in radiographic data. By continuously monitoring these changes, this approach offers a mechanism for early identification of emerging health trends, potentially signaling the onset of new pandemics and enabling prompt public health responses.Although the classification of chest radiographs has long been an extensively researched topic, interest increased significantly with the onset of the COVID-19 pandemic. Existing results are promising; however, the radiological similarities between COVID-19 and other types of respiratory diseases limit the success of conventional image classification approaches that focus on single instances. This study proposes a novel perspective that conceptualizes COVID-19 pneumonia as a deviation from a normative distribution of typical pneumonia patterns. Using a population-based approach, our approach utilizes distributional anomaly detection. This method diverges from traditional instance-wise approaches by focusing on sets of scans instead of individual images. Using an autoencoder to extract feature representations, we present instance-based and distribution-based assessments of the separability between COVID-positive and COVID-negative pneumonia radiographs. The results demonstrate that the proposed distribution-based methodology outperforms conventional instance-based techniques in identifying radiographic changes associated with COVID-positive cases. This underscores its potential as an early warning system capable of detecting significant distributional shifts in radiographic data. By continuously monitoring these changes, this approach offers a mechanism for early identification of emerging health trends, potentially signaling the onset of new pandemics and enabling prompt public health responses.
Although the classification of chest radiographs has long been an extensively researched topic, interest increased significantly with the onset of the COVID-19 pandemic. Existing results are promising; however, the radiological similarities between COVID-19 and other types of respiratory diseases limit the success of conventional image classification approaches that focus on single instances. This study proposes a novel perspective that conceptualizes COVID-19 pneumonia as a deviation from a normative distribution of typical pneumonia patterns. Using a population-based approach, our approach utilizes distributional anomaly detection. This method diverges from traditional instance-wise approaches by focusing on sets of scans instead of individual images. Using an autoencoder to extract feature representations, we present instance-based and distribution-based assessments of the separability between COVID-positive and COVID-negative pneumonia radiographs. The results demonstrate that the proposed distribution-based methodology outperforms conventional instance-based techniques in identifying radiographic changes associated with COVID-positive cases. This underscores its potential as an early warning system capable of detecting significant distributional shifts in radiographic data. By continuously monitoring these changes, this approach offers a mechanism for early identification of emerging health trends, potentially signaling the onset of new pandemics and enabling prompt public health responses.
ArticleNumber e35677
Author Campilho, Aurélio
Rocha, Joana
C. Pereira, Sofia
Mendonça, Ana Maria
Author_xml – sequence: 1
  givenname: Sofia
  orcidid: 0000-0001-6754-6495
  surname: C. Pereira
  fullname: C. Pereira, Sofia
  email: sofia.c.pereira@inesctec.pt
  organization: Institute for Systems and Computer Engineering, Technology and Science (INESC-TEC), Portugal
– sequence: 2
  givenname: Joana
  orcidid: 0000-0002-4856-138X
  surname: Rocha
  fullname: Rocha, Joana
  organization: Institute for Systems and Computer Engineering, Technology and Science (INESC-TEC), Portugal
– sequence: 3
  givenname: Aurélio
  surname: Campilho
  fullname: Campilho, Aurélio
  organization: Institute for Systems and Computer Engineering, Technology and Science (INESC-TEC), Portugal
– sequence: 4
  givenname: Ana Maria
  orcidid: 0000-0002-4319-738X
  surname: Mendonça
  fullname: Mendonça, Ana Maria
  organization: Institute for Systems and Computer Engineering, Technology and Science (INESC-TEC), Portugal
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39677970$$D View this record in MEDLINE/PubMed
BookMark eNqNkUuP0zAURi00iHkwPwHkJZsUO7HjmA0adRioNNJsgK3lx03rKrWDnSD13-OSMmIHKz907qer71yjixADIPSGkhUltH2_X-1g8McYVjWp2Qoa3grxAl3VjPCqY4xc_HW_RLc57wkhlHetFM0rdNnIwktBrpC-93lK3syTj6EyOoPDDiawpzeOPU7a-bhNetx5i-1Ohy1k7AMeA8yHGLzGo54mSCF_wHd4_fR9c19RiW1Jwnma3fE1etnrIcPt-bxB3x4-fV1_qR6fPm_Wd4-VZVxOlWNOkNbpRjvCLRDZG87KzmCNZCCcbRjIrtG0obYWpgNqpeAaDNEdt4Y3N2iz5Lqo92pM_qDTUUXt1e-PmLZKp8nbARSj1lgmqDa6ZbV1kvZSGlvTlpu-9FKy3i1ZY4o_ZsiTOvhsYRh0gDhn1VDOKG-JIP-BsrbjomllQd-e0dkcwD3v-MdGAfgC2BRzTtA_I5Sok3i1V2fx6iReLeLL3MdlDkq_Pz0kla2HYMH5VEyWAvw_En4BJ-y4Wg
Cites_doi 10.1016/j.rxeng.2020.11.001
10.1016/j.eswa.2019.112821
10.1016/j.bspc.2023.105408
10.1016/j.compbiomed.2022.105233
10.1038/s41598-023-44818-9
10.1186/s12920-019-0630-4
10.1016/j.media.2020.101797
10.1109/ACCESS.2020.3022366
10.1038/s41598-021-87994-2
10.3390/s22114232
10.1038/s42256-021-00307-0
10.1109/TMI.2022.3221898
10.1038/s41597-019-0322-0
10.1038/s41551-020-00640-6
10.1016/j.bspc.2023.105653
10.1109/MIS.2020.2972791
10.1016/j.asoc.2022.109319
10.1109/TMI.2015.2495246
10.1016/j.engappai.2023.106130
10.1109/JBHI.2023.3275104
10.1016/j.bspc.2023.105132
ContentType Journal Article
Copyright 2024 The Authors
2024 The Authors.
Copyright_xml – notice: 2024 The Authors
– notice: 2024 The Authors.
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
7S9
L.6
DOA
DOI 10.1016/j.heliyon.2024.e35677
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 2405-8440
ExternalDocumentID oai_doaj_org_article_41cbc471aba642cd91f99bc2165bf797
39677970
10_1016_j_heliyon_2024_e35677
S2405844024117082
Genre Journal Article
GroupedDBID 0R~
457
53G
5VS
6I.
AAEDW
AAFTH
AAFWJ
AALRI
AAYWO
ABMAC
ACGFS
ACLIJ
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPKN
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BAWUL
BCNDV
DIK
EBS
FDB
GROUPED_DOAJ
HYE
KQ8
M~E
O9-
OK1
ROL
RPM
SSZ
AAYXX
CITATION
EJD
IPNFZ
RIG
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c459t-d4d706da3ad05ce09fb54001ecb94e7dc34e983a131c27b8e1c975aeb0a85cb53
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001294245000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2405-8440
IngestDate Tue Oct 14 19:04:14 EDT 2025
Fri Aug 22 20:40:01 EDT 2025
Fri Jul 11 09:49:47 EDT 2025
Mon Jul 21 05:35:09 EDT 2025
Sat Nov 29 07:32:43 EST 2025
Sat Oct 11 16:51:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords Deep learning
Coronavirus
X-ray
Autoencoder
Distribution shift
Anomaly detection
Language English
License This is an open access article under the CC BY-NC license.
2024 The Authors.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-d4d706da3ad05ce09fb54001ecb94e7dc34e983a131c27b8e1c975aeb0a85cb53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4319-738X
0000-0002-4856-138X
0000-0001-6754-6495
OpenAccessLink https://doaj.org/article/41cbc471aba642cd91f99bc2165bf797
PMID 39677970
PQID 3146857369
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_41cbc471aba642cd91f99bc2165bf797
proquest_miscellaneous_3154156070
proquest_miscellaneous_3146857369
pubmed_primary_39677970
crossref_primary_10_1016_j_heliyon_2024_e35677
elsevier_sciencedirect_doi_10_1016_j_heliyon_2024_e35677
PublicationCentury 2000
PublicationDate 2024-08-30
PublicationDateYYYYMMDD 2024-08-30
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-30
  day: 30
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Heliyon
PublicationTitleAlternate Heliyon
PublicationYear 2024
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Karadayi, Aydin, Öǧrencí (br0210) 2020; 8
Mishra, Wang, Metwally, Bogu, Brooks, Bahmani, Alavi, Celli, Higgs, Dagan-Rosenfeld, Fay, Kirkpatrick, Kellogg, Gibson, Wang, Hunting, Mamic, Ganz, Rolnik, Li, Snyder (br0270) 2020; 2020
Soin, Merkow, Long, Cohen, Saligrama, Kaiser, Borg, Tarapov, Lungren (br0330) 2022
Abir, Chowdhury, Tapotee, Mushtak, Khandakar, Mahmud, Hasan (br0010) 2023; 122
Jahan, Hasan (br0190) 2022
Miyazaki, Ikejima, Nishio, Yabuta, Matsuo, Onoue, Matsunaga, Nishioka, Kono, Yamada, Oba, Ishikura, Murakami (br0280) 2023; 13
Versaci, Angiulli, Crucitti, De Carlo, Laganà, Pellicanò, Palumbo (br0360) 2022; 22
Irvin, Rajpurkar, Ko, Yu, Ciurea-Ilcus, Chute, Marklund, Haghgoo, Ball, Shpanskaya, Seekins, Mong, Halabi, Sandberg, Jones, Larson, Langlotz, Patel, Lungren, Ng (br0180) 2019
Mahalanobis (br0240) 1936; 2
Chetoui, Akhloufi (br0080) 2021; vol. 12798 LNAI
Rabanser, Günnemann, Lipton (br0310) 2019
Wei, Wang (br0400) 2023
Koch, Schürch, Gretton, Berens (br0230) 2022
Zhao, Peng, Zhang, Zheng, Chen, Fang, Li (br0430) 2019; 12
Cohen, Viviano, Bertin, Morrison, Torabian, Guarrera, Lungren, Chaudhari, Brooks, Hashir, Bertrand (br0100) 2022
Surya Bhupal Rao, Mallikarjuna Rao, Venkataiah, Murthy, Dharani, Jayamma (br0350) 2024; 88
lah Yassaanah Issahaku, Liu, Lu, Fang, Danwana, Asimeng (br0420) 2024; 91
Bustos, Pertusa, Salinas, de la Iglesia-Vayá (br0050) 2020; 66
Bhatele, Jha, Tiwari, Bhatele, Sharma, Mithora, Singhal (br0040) 2022; 1
Kingma, Ba (br0220) 2015
Wang, Peng, Lu, Lu, Bagheri, Summers (br0390) 2017
Cleverley, Piper, Jones (br0090) 2020; 370
Gretton, Borgwardt, Rasch, Schölkopf, Smola (br0130) 2012; 13
Roberts, Driggs, Thorpe, Gilbey, Yeung, Ursprung, Aviles-Rivero, Etmann, McCague, Beer, Weir-McCall, Teng, Gkrania-Klotsas, Ruggiero, Korhonen, Jefferson, Ako, Langs, Gozaliasl, Yang, Prosch, Preller, Stanczuk, Tang, Hofmanninger, Babar, Sánchez, Thillai, Gonzalez, Teare, Zhu, Patel, Cafolla, Azadbakht, Jacob, Lowe, Zhang, Bradley, Wassin, Holzer, Ji, Ortet, Ai, Walton, Lio, Stranks, Shadbahr, Lin, Zha, Niu, Rudd, Sala, Schönlieb (br0320) 2021
Meedeniya, Kumarasinghe, Kolonne, Fernando, la Torre Díez, Marques (br0260) 2022; 126
Motamed, Rogalla, Khalvati (br0290) 2021; 11
Yanase, Triantaphyllou (br0410) 2019; 138
Calli, Van Ginneken, Sogancioglu, Murphy (br0060) 2023; 42
Subramanian, Elharrouss, Al-Maadeed, Chowdhury (br0340) 2022; 143
Wang, Xu, Gao, Lu, Han, Wu, Tan (br0380) 2020; 323
Gangeh, Tadayyon, Sannachi, Sadeghi-Naini, Tran, Czarnota (br0120) 2016; 35
de la Iglesia Vayá, Saborit-Torres, Montell Serrano, Oliver-Garcia, Pertusa, Bustos, Cazorla, Galant, Barber, Orozco-Beltrán, García-García, Caparrós, González, Salinas (br0160) 2021
de la Iglesia Vayá, Saborit-Torres, Montell Serrano, Oliver-Garcia, Pertusa, Bustos, Cazorla, Galant, Barber, Orozco-Beltrán, García-García, Caparrós, González, Salinas (br0170) 2021
Guo, Gichoya, Trivedi, Purkayastha, Banerjee (br0140) 2023; 27
Chen, Li, Guo (br0070) 2020; 35
Hu, Gu, Wang, Gu (br0150) 2023; 86
Albiol, Albiol, Paredes, Plasencia-Martínez, Barrio, Santos, Tortajada, Montaño, Godoy, Gómez, Oliver-Garcia, de la Iglesia Vayá, Pérez, Madrid (br0020) 2022; 13
Johnson, Pollard, Berkowitz, Greenbaum, Lungren, Deng, Mark, Horng (br0200) 2019; 6
Amin, Taj, Hussain, Seo (br0030) 2024; 87
Cruz, Bossa, Sölter, Husch (br0110) 2021; 74
Pedrosa, Aresta, Ferreira, Carvalho, Silva, Sousa, Ribeiro, Mendonça, Campilho (br0300) 2022; 2022
Viehmann, Antiga, Cortinovis, Lozza (br0370) 2020
Martínez Chamorro, Díez Tascón, Ibáñez Sanz, Ossaba Vélez, Borruel Nacenta (br0250) 2021; 63
Versaci (10.1016/j.heliyon.2024.e35677_br0360) 2022; 22
Chen (10.1016/j.heliyon.2024.e35677_br0070) 2020; 35
de la Iglesia Vayá (10.1016/j.heliyon.2024.e35677_br0160) 2021
Irvin (10.1016/j.heliyon.2024.e35677_br0180) 2019
Wang (10.1016/j.heliyon.2024.e35677_br0380) 2020; 323
Motamed (10.1016/j.heliyon.2024.e35677_br0290) 2021; 11
Hu (10.1016/j.heliyon.2024.e35677_br0150) 2023; 86
Surya Bhupal Rao (10.1016/j.heliyon.2024.e35677_br0350) 2024; 88
de la Iglesia Vayá (10.1016/j.heliyon.2024.e35677_br0170) 2021
Bhatele (10.1016/j.heliyon.2024.e35677_br0040) 2022; 1
Gretton (10.1016/j.heliyon.2024.e35677_br0130) 2012; 13
Albiol (10.1016/j.heliyon.2024.e35677_br0020) 2022; 13
Miyazaki (10.1016/j.heliyon.2024.e35677_br0280) 2023; 13
lah Yassaanah Issahaku (10.1016/j.heliyon.2024.e35677_br0420) 2024; 91
Subramanian (10.1016/j.heliyon.2024.e35677_br0340) 2022; 143
Amin (10.1016/j.heliyon.2024.e35677_br0030) 2024; 87
Martínez Chamorro (10.1016/j.heliyon.2024.e35677_br0250) 2021; 63
Chetoui (10.1016/j.heliyon.2024.e35677_br0080) 2021; vol. 12798 LNAI
Rabanser (10.1016/j.heliyon.2024.e35677_br0310) 2019
Roberts (10.1016/j.heliyon.2024.e35677_br0320) 2021
Cohen (10.1016/j.heliyon.2024.e35677_br0100) 2022
Calli (10.1016/j.heliyon.2024.e35677_br0060) 2023; 42
Jahan (10.1016/j.heliyon.2024.e35677_br0190) 2022
Wang (10.1016/j.heliyon.2024.e35677_br0390) 2017
Viehmann (10.1016/j.heliyon.2024.e35677_br0370)
Johnson (10.1016/j.heliyon.2024.e35677_br0200) 2019; 6
Koch (10.1016/j.heliyon.2024.e35677_br0230) 2022
Gangeh (10.1016/j.heliyon.2024.e35677_br0120) 2016; 35
Guo (10.1016/j.heliyon.2024.e35677_br0140) 2023; 27
Yanase (10.1016/j.heliyon.2024.e35677_br0410) 2019; 138
Cleverley (10.1016/j.heliyon.2024.e35677_br0090) 2020; 370
Wei (10.1016/j.heliyon.2024.e35677_br0400) 2023
Soin (10.1016/j.heliyon.2024.e35677_br0330)
Meedeniya (10.1016/j.heliyon.2024.e35677_br0260) 2022; 126
Bustos (10.1016/j.heliyon.2024.e35677_br0050) 2020; 66
Mahalanobis (10.1016/j.heliyon.2024.e35677_br0240) 1936; 2
Cruz (10.1016/j.heliyon.2024.e35677_br0110) 2021; 74
Kingma (10.1016/j.heliyon.2024.e35677_br0220) 2015
Pedrosa (10.1016/j.heliyon.2024.e35677_br0300) 2022; 2022
Karadayi (10.1016/j.heliyon.2024.e35677_br0210) 2020; 8
Mishra (10.1016/j.heliyon.2024.e35677_br0270) 2020; 2020
Zhao (10.1016/j.heliyon.2024.e35677_br0430) 2019; 12
Abir (10.1016/j.heliyon.2024.e35677_br0010) 2023; 122
References_xml – volume: 2022
  start-page: 1
  year: 2022
  end-page: 17
  ident: br0300
  article-title: Assessing clinical applicability of COVID-19 detection in chest radiography with deep learning
  publication-title: Sci. Rep.
– volume: 91
  year: 2024
  ident: br0420
  article-title: Multimodal deep learning model for covid-19 detection
  publication-title: Biomed. Signal Process. Control
– volume: 323
  start-page: 1843
  year: 2020
  end-page: 1844
  ident: br0380
  article-title: Detection of SARS-CoV-2 in different types of clinical specimens
  publication-title: JAMA J. Am. Med. Assoc.
– volume: 35
  start-page: 41
  year: 2020
  end-page: 51
  ident: br0070
  article-title: Domain adaptation learning based on structural similarity weighted mean discrepancy for credit risk classification
  publication-title: IEEE Intell. Syst.
– volume: 27
  start-page: 3936
  year: 2023
  end-page: 3947
  ident: br0140
  article-title: Medshift: automated identification of shift data for medical image dataset curation
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 122
  year: 2023
  ident: br0010
  article-title: PCovNet+: a CNN-VAE anomaly detection framework with LSTM embeddings for smartwatch-based COVID-19 detection
  publication-title: Eng. Appl. Artif. Intell.
– volume: 13
  year: 2023
  ident: br0280
  article-title: Computer-aided diagnosis of chest X-ray for COVID-19 diagnosis in external validation study by radiologists with and without deep learning system
  publication-title: Sci. Rep.
– year: 2019
  ident: br0310
  article-title: Failing Loudly: An Empirical Study of Methods for Detecting Dataset Shift
– start-page: 231
  year: 2022
  end-page: 249
  ident: br0100
  article-title: Torchxrayvision: a library of chest X-ray datasets and models
  publication-title: Proceedings of the 5th International Conference on Medical Imaging with Deep Learning
– volume: 13
  start-page: 723
  year: 2012
  end-page: 773
  ident: br0130
  article-title: A kernel two-sample test
  publication-title: J. Mach. Learn. Res.
– volume: 8
  start-page: 164155
  year: 2020
  end-page: 164177
  ident: br0210
  article-title: Unsupervised anomaly detection in multivariate spatio-temporal data using deep learning: early detection of COVID-19 outbreak in Italy
  publication-title: IEEE Access
– volume: 74
  year: 2021
  ident: br0110
  article-title: Public Covid-19 X-ray datasets and their impact on model bias – a systematic review of a significant problem
  publication-title: Med. Image Anal.
– start-page: 726
  year: 2022
  end-page: 740
  ident: br0230
  article-title: Hidden in plain sight: subgroup shifts escape OOD detection
  publication-title: Proceedings of the 5th International Conference on Medical Imaging with Deep Learning
– volume: 143
  year: 2022
  ident: br0340
  article-title: A review of deep learning-based detection methods for covid-19
  publication-title: Comput. Biol. Med.
– volume: 1
  start-page: 1
  year: 2022
  end-page: 38
  ident: br0040
  article-title: Covid-19 detection: a systematic review of machine and deep learning-based approaches utilizing chest X-rays and ct scans
  publication-title: Cogn. Comput.
– start-page: 1
  year: 2022
  end-page: 6
  ident: br0190
  article-title: Autoencoder-based unsupervised anomaly detection for Covid-19 screening on chest X-ray images
  publication-title: 2022 19th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)
– volume: 2020
  start-page: 1208
  year: 2020
  end-page: 1220
  ident: br0270
  article-title: Pre-symptomatic detection of COVID-19 from smartwatch data
  publication-title: Nat. Biomed. Eng.
– volume: 13
  start-page: 1
  year: 2022
  end-page: 12
  ident: br0020
  article-title: A comparison of Covid-19 early detection between convolutional neural networks and radiologists
  publication-title: Insights Imaging
– volume: 35
  start-page: 778
  year: 2016
  end-page: 790
  ident: br0120
  article-title: Computer aided theragnosis using quantitative ultrasound spectroscopy and maximum mean discrepancy in locally advanced breast cancer
  publication-title: IEEE Trans. Med. Imaging
– year: 2021
  ident: br0170
  article-title: BIMCV COVID-19+: a large annotated dataset of RX and CT images from COVID-19 patients
  publication-title: IEEE Dataport
– volume: 2
  start-page: 49
  year: 1936
  end-page: 55
  ident: br0240
  article-title: On the generalized distance in statistics
  publication-title: Proc. Natl. Inst. Sci. (Calcutta)
– volume: 63
  start-page: 56
  year: 2021
  end-page: 73
  ident: br0250
  article-title: Radiologic diagnosis of patients with covid-19
  publication-title: Radiología (English Edition)
– volume: 11
  year: 2021
  ident: br0290
  article-title: RANDGAN: randomized generative adversarial network for detection of COVID-19 in chest X-ray
  publication-title: Sci. Rep.
– start-page: 1
  year: 2023
  end-page: 5
  ident: br0400
  article-title: Fine-grained out-of-distribution detection of medical images using combination of feature uncertainty and Mahalanobis distance
  publication-title: 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI)
– volume: 88
  year: 2024
  ident: br0350
  article-title: Deep learning based classification of covid-19 severity using hierarchical deep maxout model
  publication-title: Biomed. Signal Process. Control
– volume: 42
  start-page: 971
  year: 2023
  end-page: 981
  ident: br0060
  article-title: Frodo: an in-depth analysis of a system to reject outlier samples from a trained neural network
  publication-title: IEEE Trans. Med. Imaging
– start-page: 3462
  year: 2017
  end-page: 3471
  ident: br0390
  article-title: ChestX-ray8: hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases
  publication-title: Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition
– year: 2020
  ident: br0370
  article-title: TorchDrift: drift detection for PyTorch
– year: 2021
  ident: br0320
  article-title: Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans
  publication-title: Nat. Mach. Intell.
– volume: 138
  year: 2019
  ident: br0410
  article-title: A systematic survey of computer-aided diagnosis in medicine: past and present developments
  publication-title: Expert Syst. Appl.
– volume: 86
  year: 2023
  ident: br0150
  article-title: Active consistency network for multi-source domain generalization in brain tumor segmentation
  publication-title: Biomed. Signal Process. Control
– volume: 6
  start-page: 1
  year: 2019
  end-page: 8
  ident: br0200
  article-title: MIMIC-CXR, a de-identified publicly available database of chest radiographs with free-text reports
  publication-title: Sci. Data
– volume: 12
  start-page: 1
  year: 2019
  end-page: 10
  ident: br0430
  article-title: Identification of lung cancer gene markers through kernel maximum mean discrepancy and information entropy
  publication-title: BMC Med. Genom.
– volume: 87
  year: 2024
  ident: br0030
  article-title: An automated chest X-ray analysis for covid-19, tuberculosis, and pneumonia employing ensemble learning approach
  publication-title: Biomed. Signal Process. Control
– year: 2021
  ident: br0160
  article-title: BIMCV COVID-19-: a large annotated dataset of RX and CT images from COVID-19 patients
  publication-title: IEEE Dataport
– start-page: 590
  year: 2019
  end-page: 597
  ident: br0180
  article-title: CheXpert: a large chest radiograph dataset with uncertainty labels and expert comparison
  publication-title: 33rd AAAI Conference on Artificial Intelligence
– volume: 22
  year: 2022
  ident: br0360
  article-title: A fuzzy similarity-based approach to classify numerically simulated and experimentally detected carbon fiber-reinforced polymer plate defects
  publication-title: Sensors
– year: 2022
  ident: br0330
  article-title: CheXstray: real-time multi-modal data concordance for drift detection in medical imaging AI
– year: 2015
  ident: br0220
  article-title: Adam: a method for stochastic optimization
  publication-title: International Conference on Learning Representations
– volume: 370
  year: 2020
  ident: br0090
  article-title: The role of chest radiography in confirming covid-19 pneumonia
  publication-title: BMJ
– volume: 66
  year: 2020
  ident: br0050
  article-title: PadChest: a large chest X-ray image dataset with multi-label annotated reports
  publication-title: Med. Image Anal.
– volume: 126
  year: 2022
  ident: br0260
  article-title: Chest X-ray analysis empowered with deep learning: a systematic review
  publication-title: Appl. Soft Comput.
– volume: vol. 12798 LNAI
  start-page: 329
  year: 2021
  end-page: 340
  ident: br0080
  article-title: Deep efficient neural networks for explainable COVID-19 detection on CXR images
  publication-title: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
– volume: 13
  start-page: 723
  year: 2012
  ident: 10.1016/j.heliyon.2024.e35677_br0130
  article-title: A kernel two-sample test
  publication-title: J. Mach. Learn. Res.
– volume: 63
  start-page: 56
  year: 2021
  ident: 10.1016/j.heliyon.2024.e35677_br0250
  article-title: Radiologic diagnosis of patients with covid-19
  publication-title: Radiología (English Edition)
  doi: 10.1016/j.rxeng.2020.11.001
– start-page: 1
  year: 2023
  ident: 10.1016/j.heliyon.2024.e35677_br0400
  article-title: Fine-grained out-of-distribution detection of medical images using combination of feature uncertainty and Mahalanobis distance
– start-page: 231
  year: 2022
  ident: 10.1016/j.heliyon.2024.e35677_br0100
  article-title: Torchxrayvision: a library of chest X-ray datasets and models
– start-page: 1
  year: 2022
  ident: 10.1016/j.heliyon.2024.e35677_br0190
  article-title: Autoencoder-based unsupervised anomaly detection for Covid-19 screening on chest X-ray images
– ident: 10.1016/j.heliyon.2024.e35677_br0370
– volume: 138
  year: 2019
  ident: 10.1016/j.heliyon.2024.e35677_br0410
  article-title: A systematic survey of computer-aided diagnosis in medicine: past and present developments
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.112821
– volume: vol. 12798 LNAI
  start-page: 329
  year: 2021
  ident: 10.1016/j.heliyon.2024.e35677_br0080
  article-title: Deep efficient neural networks for explainable COVID-19 detection on CXR images
– volume: 87
  year: 2024
  ident: 10.1016/j.heliyon.2024.e35677_br0030
  article-title: An automated chest X-ray analysis for covid-19, tuberculosis, and pneumonia employing ensemble learning approach
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2023.105408
– volume: 143
  year: 2022
  ident: 10.1016/j.heliyon.2024.e35677_br0340
  article-title: A review of deep learning-based detection methods for covid-19
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105233
– volume: 13
  year: 2023
  ident: 10.1016/j.heliyon.2024.e35677_br0280
  article-title: Computer-aided diagnosis of chest X-ray for COVID-19 diagnosis in external validation study by radiologists with and without deep learning system
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-44818-9
– volume: 74
  year: 2021
  ident: 10.1016/j.heliyon.2024.e35677_br0110
  article-title: Public Covid-19 X-ray datasets and their impact on model bias – a systematic review of a significant problem
  publication-title: Med. Image Anal.
– volume: 12
  start-page: 1
  year: 2019
  ident: 10.1016/j.heliyon.2024.e35677_br0430
  article-title: Identification of lung cancer gene markers through kernel maximum mean discrepancy and information entropy
  publication-title: BMC Med. Genom.
  doi: 10.1186/s12920-019-0630-4
– volume: 66
  year: 2020
  ident: 10.1016/j.heliyon.2024.e35677_br0050
  article-title: PadChest: a large chest X-ray image dataset with multi-label annotated reports
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101797
– ident: 10.1016/j.heliyon.2024.e35677_br0330
– volume: 323
  start-page: 1843
  year: 2020
  ident: 10.1016/j.heliyon.2024.e35677_br0380
  article-title: Detection of SARS-CoV-2 in different types of clinical specimens
  publication-title: JAMA J. Am. Med. Assoc.
– volume: 8
  start-page: 164155
  year: 2020
  ident: 10.1016/j.heliyon.2024.e35677_br0210
  article-title: Unsupervised anomaly detection in multivariate spatio-temporal data using deep learning: early detection of COVID-19 outbreak in Italy
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3022366
– year: 2019
  ident: 10.1016/j.heliyon.2024.e35677_br0310
– volume: 11
  year: 2021
  ident: 10.1016/j.heliyon.2024.e35677_br0290
  article-title: RANDGAN: randomized generative adversarial network for detection of COVID-19 in chest X-ray
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-87994-2
– volume: 1
  start-page: 1
  year: 2022
  ident: 10.1016/j.heliyon.2024.e35677_br0040
  article-title: Covid-19 detection: a systematic review of machine and deep learning-based approaches utilizing chest X-rays and ct scans
  publication-title: Cogn. Comput.
– volume: 22
  year: 2022
  ident: 10.1016/j.heliyon.2024.e35677_br0360
  article-title: A fuzzy similarity-based approach to classify numerically simulated and experimentally detected carbon fiber-reinforced polymer plate defects
  publication-title: Sensors
  doi: 10.3390/s22114232
– start-page: 3462
  year: 2017
  ident: 10.1016/j.heliyon.2024.e35677_br0390
  article-title: ChestX-ray8: hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases
– start-page: 726
  year: 2022
  ident: 10.1016/j.heliyon.2024.e35677_br0230
  article-title: Hidden in plain sight: subgroup shifts escape OOD detection
– year: 2021
  ident: 10.1016/j.heliyon.2024.e35677_br0320
  article-title: Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-021-00307-0
– volume: 13
  start-page: 1
  year: 2022
  ident: 10.1016/j.heliyon.2024.e35677_br0020
  article-title: A comparison of Covid-19 early detection between convolutional neural networks and radiologists
  publication-title: Insights Imaging
– volume: 42
  start-page: 971
  year: 2023
  ident: 10.1016/j.heliyon.2024.e35677_br0060
  article-title: Frodo: an in-depth analysis of a system to reject outlier samples from a trained neural network
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2022.3221898
– volume: 6
  start-page: 1
  year: 2019
  ident: 10.1016/j.heliyon.2024.e35677_br0200
  article-title: MIMIC-CXR, a de-identified publicly available database of chest radiographs with free-text reports
  publication-title: Sci. Data
  doi: 10.1038/s41597-019-0322-0
– volume: 2020
  start-page: 1208
  year: 2020
  ident: 10.1016/j.heliyon.2024.e35677_br0270
  article-title: Pre-symptomatic detection of COVID-19 from smartwatch data
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-020-00640-6
– volume: 88
  year: 2024
  ident: 10.1016/j.heliyon.2024.e35677_br0350
  article-title: Deep learning based classification of covid-19 severity using hierarchical deep maxout model
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2023.105653
– volume: 35
  start-page: 41
  year: 2020
  ident: 10.1016/j.heliyon.2024.e35677_br0070
  article-title: Domain adaptation learning based on structural similarity weighted mean discrepancy for credit risk classification
  publication-title: IEEE Intell. Syst.
  doi: 10.1109/MIS.2020.2972791
– year: 2021
  ident: 10.1016/j.heliyon.2024.e35677_br0170
  article-title: BIMCV COVID-19+: a large annotated dataset of RX and CT images from COVID-19 patients
  publication-title: IEEE Dataport
– year: 2021
  ident: 10.1016/j.heliyon.2024.e35677_br0160
  article-title: BIMCV COVID-19-: a large annotated dataset of RX and CT images from COVID-19 patients
  publication-title: IEEE Dataport
– volume: 126
  year: 2022
  ident: 10.1016/j.heliyon.2024.e35677_br0260
  article-title: Chest X-ray analysis empowered with deep learning: a systematic review
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2022.109319
– volume: 2
  start-page: 49
  year: 1936
  ident: 10.1016/j.heliyon.2024.e35677_br0240
  article-title: On the generalized distance in statistics
  publication-title: Proc. Natl. Inst. Sci. (Calcutta)
– volume: 35
  start-page: 778
  year: 2016
  ident: 10.1016/j.heliyon.2024.e35677_br0120
  article-title: Computer aided theragnosis using quantitative ultrasound spectroscopy and maximum mean discrepancy in locally advanced breast cancer
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2015.2495246
– year: 2015
  ident: 10.1016/j.heliyon.2024.e35677_br0220
  article-title: Adam: a method for stochastic optimization
– volume: 122
  year: 2023
  ident: 10.1016/j.heliyon.2024.e35677_br0010
  article-title: PCovNet+: a CNN-VAE anomaly detection framework with LSTM embeddings for smartwatch-based COVID-19 detection
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.106130
– volume: 91
  year: 2024
  ident: 10.1016/j.heliyon.2024.e35677_br0420
  article-title: Multimodal deep learning model for covid-19 detection
  publication-title: Biomed. Signal Process. Control
– volume: 27
  start-page: 3936
  year: 2023
  ident: 10.1016/j.heliyon.2024.e35677_br0140
  article-title: Medshift: automated identification of shift data for medical image dataset curation
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2023.3275104
– volume: 2022
  start-page: 1
  year: 2022
  ident: 10.1016/j.heliyon.2024.e35677_br0300
  article-title: Assessing clinical applicability of COVID-19 detection in chest radiography with deep learning
  publication-title: Sci. Rep.
– volume: 370
  year: 2020
  ident: 10.1016/j.heliyon.2024.e35677_br0090
  article-title: The role of chest radiography in confirming covid-19 pneumonia
  publication-title: BMJ
– volume: 86
  year: 2023
  ident: 10.1016/j.heliyon.2024.e35677_br0150
  article-title: Active consistency network for multi-source domain generalization in brain tumor segmentation
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2023.105132
– start-page: 590
  year: 2019
  ident: 10.1016/j.heliyon.2024.e35677_br0180
  article-title: CheXpert: a large chest radiograph dataset with uncertainty labels and expert comparison
SSID ssj0001586973
Score 2.2736316
Snippet Although the classification of chest radiographs has long been an extensively researched topic, interest increased significantly with the onset of the COVID-19...
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage e35677
SubjectTerms Anomaly detection
Autoencoder
case studies
chest
Coronavirus
COVID-19 infection
Deep learning
Distribution shift
image analysis
pneumonia
public health
radiography
X-ray
Title Distribution-based detection of radiographic changes in pneumonia patterns: A COVID-19 case study
URI https://dx.doi.org/10.1016/j.heliyon.2024.e35677
https://www.ncbi.nlm.nih.gov/pubmed/39677970
https://www.proquest.com/docview/3146857369
https://www.proquest.com/docview/3154156070
https://doaj.org/article/41cbc471aba642cd91f99bc2165bf797
Volume 10
WOSCitedRecordID wos001294245000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2405-8440
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001586973
  issn: 2405-8440
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2405-8440
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001586973
  issn: 2405-8440
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbxUhECfamMaLqdrqs9pg4nVflwWWpbd-RhNbPdjm3QgMbLqN2ffyPky8-Lc7wL7aHrQXL3vYJSzMAPMDZn5DyAc0Il6DcDjFWShEbaFwlXSF8Bw_cAs-5Qa8-qwuLprJRH-9k-or-oRleuAsuH3BwAGuoNZZhMrgNWu1dlCxWrpW6RRHXip9ZzOV44ObWiv-J2Rn_2Z8Hb53P6eR87QS48BlrdQ9Y5Q4--_ZpL9hzmR7zrbIswE00sPc2OfkUehfkM3z4Vr8JbEnkf52yFxVRMPkqQ_L5GXV02lL59Z3mZu6A5pjfRe06-msDysch52ls8Sz2S8O6CE9_nL16aRgmgLWRBMB7Ta5PDv9dvyxGHInFCCkXhZeeFXW3nLrSwmh1K1DbIb6AKdFUB64CLrhlnEGlXJNYKCVtMGVtpHgJN8hG_20D68JhRZajkipitQuHkIjvGSI26Ilg7KCERmvhWhmmSLDrH3HbswgdROlbrLUR-Qoivq2cGS4Ti9Q72bQu3lI7yPSrBVlBrCQQQBW1T30__drxRqcTPGGxPZhuloYHgPRpOK1_lcZGTe9uFSOyKs8Km57wjVWr1X55n_0cJc8jY1OB9jlW7KxnK_CO_IEfiy7xXyPPFaTZi-Nenye_zr9DTwnCA8
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distribution-Based+Detection+of+Radiographic+Changes+in+Pneumonia+Patterns%3A+A+COVID-19+Case+Study&rft.jtitle=Heliyon&rft.au=Pereira%2C+Sofia+C&rft.au=Rocha%2C+Joana&rft.au=Campilho%2C+A&rft.au=Mendon%C3%A7a%2C+Ana+Maria&rft.date=2024-08-30&rft.issn=2405-8440&rft.eissn=2405-8440&rft_id=info:doi/10.1016%2Fj.heliyon.2024.e35677&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-8440&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-8440&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-8440&client=summon