A simple and robust three-dimensional cracking-particle method without enrichment

A new robust and efficient approach for modeling discrete cracks in meshfree methods is described. The method is motivated by the cracking-particle method (Rabczuk T., Belytschko T., International Journal for Numerical Methods in Engineering, 2004) where the crack is modeled by a set of cracked segm...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computer methods in applied mechanics and engineering Ročník 199; číslo 37; s. 2437 - 2455
Hlavní autori: Rabczuk, Timon, Zi, Goangseup, Bordas, Stephane, Nguyen-Xuan, Hung
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Kidlington Elsevier B.V 01.08.2010
Elsevier
Predmet:
ISSN:0045-7825, 1879-2138
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:A new robust and efficient approach for modeling discrete cracks in meshfree methods is described. The method is motivated by the cracking-particle method (Rabczuk T., Belytschko T., International Journal for Numerical Methods in Engineering, 2004) where the crack is modeled by a set of cracked segments. However, in contrast to the above mentioned paper, we do not introduce additional unknowns in the variational formulation to capture the displacement discontinuity. Instead, the crack is modeled by splitting particles located on opposite sides of the associated crack segments and we make use of the visibility method in order to describe the crack kinematics. We apply this method to several two- and three-dimensional problems in statics and dynamics and show through several numerical examples that the method does not show any “mesh” orientation bias.
Bibliografia:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0045-7825
1879-2138
DOI:10.1016/j.cma.2010.03.031