Extremal Depth for Functional Data and Applications

We propose a new notion called "extremal depth" (ED) for functional data, discuss its properties, and compare its performance with existing concepts. The proposed notion is based on a measure of extreme "outlyingness." ED has several desirable properties that are not shared by ot...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of the American Statistical Association Ročník 111; číslo 516; s. 1705 - 1714
Hlavní autoři: Narisetty, Naveen N., Nair, Vijayan N.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Alexandria Taylor & Francis 01.12.2016
Taylor & Francis Group,LLC
Taylor & Francis Ltd
Témata:
ISSN:0162-1459, 1537-274X, 1537-274X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We propose a new notion called "extremal depth" (ED) for functional data, discuss its properties, and compare its performance with existing concepts. The proposed notion is based on a measure of extreme "outlyingness." ED has several desirable properties that are not shared by other notions and is especially well suited for obtaining central regions of functional data and function spaces. In particular: (a) the central region achieves the nominal (desired) simultaneous coverage probability; (b) there is a correspondence between ED-based (simultaneous) central regions and appropriate pointwise central regions; and (c) the method is resistant to certain classes of functional outliers. The article examines the performance of ED and compares it with other depth notions. Its usefulness is demonstrated through applications to constructing central regions, functional boxplots, outlier detection, and simultaneous confidence bands in regression problems. Supplementary materials for this article are available online.
AbstractList We propose a new notion called "extremal depth" (ED) for functional data, discuss its properties, and compare its performance with existing concepts. The proposed notion is based on a measure of extreme "outlyingness." ED has several desirable properties that are not shared by other notions and is especially well suited for obtaining central regions of functional data and function spaces. In particular: (a) the central region achieves the nominal (desired) simultaneous coverage probability; (b) there is a correspondence between ED-based (simultaneous) central regions and appropriate pointwise central regions; and (c) the method is resistant to certain classes of functional outliers. The article examines the performance of ED and compares it with other depth notions. Its usefulness is demonstrated through applications to constructing central regions, functional boxplots, outlier detection, and simultaneous confidence bands in regression problems. Supplementary materials for this article are available online.
We propose a new notion called "extremal depth" (ED) for functional data, discuss its properties, and compare its performance with existing concepts. The proposed notion is based on a measure of extreme "outlyingness." ED has several desirable properties that are not shared by other notions and is especially well suited for obtaining central regions of functional data and function spaces. In particular: (a) the central region achieves the nominal (desired) simultaneous coverage probability; (b) there is a correspondence between ED-based (simultaneous) central regions and appropriate pointwise central regions; and (c) the method is resistant to certain classes of functional outliers. The article examines the performance of ED and compares it with other depth notions. Its usefulness is demonstrated through applications to constructing central regions, functional boxplots, outlier detection, and simultaneous confidence bands in regression problems.
Author Narisetty, Naveen N.
Nair, Vijayan N.
Author_xml – sequence: 1
  givenname: Naveen N.
  surname: Narisetty
  fullname: Narisetty, Naveen N.
  email: naveennn@umich.edu
  organization: Department of Statistics, University of Michigan
– sequence: 2
  givenname: Vijayan N.
  surname: Nair
  fullname: Nair, Vijayan N.
  organization: Department of Statistics, University of Michigan
BookMark eNqFkU9r3DAQxUXYQDZ_PkLA0Esv3owky7LppSHdNIVALgnkJmbHMvHitVxJS7PfvnI3ySGH7lwEM783w3s6ZbPBDZaxSw4LDhVcAS8FL1S9EMDVgnMOIOURm3MldS508Txj84nJJ-iEnYawhlS6quZMLl-jtxvssx92jC9Z63x2ux0odm6Ymhgxw6HJrsex7windjhnxy32wV68vWfs6Xb5eHOX3z_8_HVzfZ9TuhNzWmlOoJuKsCBppSKUNYHUpViVqBGo4qW1bWFb2ay4boBKQF2LVtVkW5Jn7Ot-7-jd760N0Wy6QLbvcbBuG4xIJkSZTImDKK-qAupSiSKhXz6ha7f1yexEaTVxSifq254i70LwtjXUxX_2o8euNxzMlL15z95M2Zu37JNafVKPvtug3x3UXe516xCd_xAVCoRWAtL8-37eDemjNvjH-b4xEXe9863Hgbpg5P9P_AXmOKRN
CODEN JSTNAL
CitedBy_id crossref_primary_10_1007_s11749_025_00968_8
crossref_primary_10_1007_s11009_019_09738_0
crossref_primary_10_1080_03610918_2019_1699570
crossref_primary_10_1080_08982112_2022_2135009
crossref_primary_10_1080_10485252_2023_2226262
crossref_primary_10_1007_s11749_020_00734_y
crossref_primary_10_1016_j_spasta_2020_100436
crossref_primary_10_1016_j_csda_2020_106960
crossref_primary_10_1002_sta4_174
crossref_primary_10_1016_j_csda_2023_107813
crossref_primary_10_1002_wics_70038
crossref_primary_10_1007_s00180_021_01134_y
crossref_primary_10_1080_00401706_2019_1574241
crossref_primary_10_1002_env_2851
crossref_primary_10_1016_j_jmva_2018_11_003
crossref_primary_10_1002_sta4_190
crossref_primary_10_1016_j_apenergy_2021_117465
crossref_primary_10_1080_01621459_2021_1902817
crossref_primary_10_1016_j_spasta_2017_11_004
crossref_primary_10_1016_j_csda_2018_03_017
crossref_primary_10_1080_10618600_2022_2070171
crossref_primary_10_1016_j_chemolab_2021_104420
crossref_primary_10_1016_j_jmva_2021_104879
crossref_primary_10_1371_journal_pone_0207073
crossref_primary_10_1080_00949655_2021_1991926
crossref_primary_10_1007_s11222_023_10275_7
crossref_primary_10_1007_s11634_021_00460_9
crossref_primary_10_1093_jrsssb_qkaf030
crossref_primary_10_3389_fbloc_2024_1342956
crossref_primary_10_1016_j_jmva_2021_104890
crossref_primary_10_1080_01621459_2020_1799810
crossref_primary_10_1080_02664763_2024_2420223
crossref_primary_10_1002_asmb_2844
crossref_primary_10_1002_sim_8861
crossref_primary_10_1002_sim_9851
crossref_primary_10_1016_j_apenergy_2025_125747
crossref_primary_10_1002_sim_9236
crossref_primary_10_1002_sta4_168
crossref_primary_10_1007_s00180_024_01569_z
crossref_primary_10_1080_01621459_2020_1745815
crossref_primary_10_1080_10618600_2022_2066680
crossref_primary_10_1080_10618600_2024_2374578
crossref_primary_10_1016_j_csda_2021_107245
crossref_primary_10_1007_s11749_024_00952_8
crossref_primary_10_1080_00949655_2024_2396992
Cites_doi 10.1007/978-3-0348-8201-9_3
10.1073/pnas.97.4.1423
10.1016/j.csda.2005.10.012
10.1214/14-AOS1226
10.3150/bj/1110228239
10.1080/00401706.1986.10488131
10.1198/jasa.2009.0108
10.1080/01621459.2012.688462
10.1007/BF02595706
10.1016/j.csda.2010.10.024
10.1214/aos/1176347507
10.1111/j.2517-6161.1983.tb01226.x
10.1080/03610919608813349
10.1214/aos/1018031259
10.1016/j.jmva.2004.02.013
10.1016/j.stamet.2013.04.004
10.1007/978-1-4613-0045-8
10.1111/1467-9868.00088
10.1214/aos/1176344552
10.1214/aos/1065705115
10.1007/s10463-013-0416-y
10.1093/biomet/71.2.375
10.1214/aos/1176345638
10.1198/jcgs.2011.09224
10.1016/S0021-9290(02)00176-8
10.1111/anzs.12048
10.1080/01621459.1997.10473624
10.1080/01621459.1996.10476954
10.1090/dimacs/072/08
10.1214/aos/1016218226
ContentType Journal Article
Copyright 2016 American Statistical Association 2016
Copyright © 2016 American Statistical Association
2016 American Statistical Association
Copyright_xml – notice: 2016 American Statistical Association 2016
– notice: Copyright © 2016 American Statistical Association
– notice: 2016 American Statistical Association
DBID AAYXX
CITATION
8BJ
FQK
JBE
K9.
7S9
L.6
DOI 10.1080/01621459.2015.1110033
DatabaseName CrossRef
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Health & Medical Complete (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
ProQuest Health & Medical Complete (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences (IBSS)
AGRICOLA


DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1537-274X
EndPage 1714
ExternalDocumentID 4319966331
10_1080_01621459_2015_1110033
45027520
1110033
Genre Article
Feature
GroupedDBID -DZ
-~X
..I
.7F
.QJ
0BK
0R~
29L
2AX
30N
4.4
5GY
5RE
692
7WY
85S
8FL
AAAVZ
AABCJ
AAENE
AAGDL
AAHBH
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
AAWIL
ABAWQ
ABBHK
ABCCY
ABEHJ
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABPFR
ABPPZ
ABPQH
ABRLO
ABTAI
ABUFD
ABXSQ
ABXUL
ABXYU
ABYWD
ACGFO
ACGFS
ACGOD
ACHJO
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ACUBG
ADCVX
ADGTB
ADLSF
ADMHG
ADODI
ADULT
ADXHL
AEISY
AENEX
AEOZL
AEPSL
AEUPB
AEYOC
AFFNX
AFRVT
AFVYC
AFXHP
AGDLA
AGLNM
AGMYJ
AHDZW
AIHAF
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRMG
AMVHM
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CJ0
CS3
D0L
DGEBU
DKSSO
DQDLB
DSRWC
DU5
EBS
ECEWR
EJD
E~A
E~B
F5P
FJW
GTTXZ
H13
HF~
HQ6
HZ~
H~9
H~P
IPNFZ
IPSME
J.P
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K60
K6~
KYCEM
LJTGL
LU7
M4Z
MS~
MW2
NA5
NY~
O9-
OFU
OK1
P2P
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SA0
SNACF
TAE
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
U5U
UPT
UT5
UU3
WH7
WZA
YQT
YYM
ZGOLN
ZUP
~S~
ADYSH
AFSUE
ALIPV
AMPGV
AAYXX
CITATION
8BJ
FQK
JBE
K9.
7S9
L.6
ID FETCH-LOGICAL-c459t-cb71c07d8ca4c3e35ca39c03762b6a7a0c816eef4ef3db17d0c60a792f59cefc3
IEDL.DBID TFW
ISICitedReferencesCount 56
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000391900700038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-1459
1537-274X
IngestDate Fri Oct 03 00:01:22 EDT 2025
Sat Sep 27 20:30:44 EDT 2025
Mon Nov 10 00:58:52 EST 2025
Tue Nov 18 22:22:06 EST 2025
Sat Nov 29 03:56:41 EST 2025
Thu May 29 13:21:24 EDT 2025
Mon Oct 20 23:44:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 516
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-cb71c07d8ca4c3e35ca39c03762b6a7a0c816eef4ef3db17d0c60a792f59cefc3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1875840957
PQPubID 41715
PageCount 10
ParticipantIDs proquest_miscellaneous_1884096524
crossref_citationtrail_10_1080_01621459_2015_1110033
crossref_primary_10_1080_01621459_2015_1110033
proquest_miscellaneous_2000261452
informaworld_taylorfrancis_310_1080_01621459_2015_1110033
proquest_journals_1875840957
jstor_primary_45027520
PublicationCentury 2000
PublicationDate 2016-12-01
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Alexandria
PublicationPlace_xml – name: Alexandria
PublicationTitle Journal of the American Statistical Association
PublicationYear 2016
Publisher Taylor & Francis
Taylor & Francis Group,LLC
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Group,LLC
– name: Taylor & Francis Ltd
References cit0011
cit0033
cit0012
cit0010
Mosler K. (cit0028) 2012
cit0032
Mahalanobis P. (cit0026) 1936; 2
Tukey J. (cit0034) 1975
cit0019
cit0017
cit0039
cit0018
cit0037
cit0016
Liu R. Y. (cit0020) 1993; 88
cit0038
cit0013
cit0035
cit0014
cit0036
cit0022
Brown B. M. (cit0001) 1983; 45
cit0021
cit0040
Scheffé H. (cit0031) 1959
Lopéz-Pintado S. (cit0023) 2006; 72
Donoho D. L. (cit0008) 1992
Hubert M. (cit0015) 2015
Lopéz-Pintado S. (cit0024) 2009; 104
cit0006
cit0007
cit0029
cit0004
cit0005
cit0027
cit0002
cit0003
cit0025
References_xml – volume-title: The Analysis of Variance
  year: 1959
  ident: cit0031
– ident: cit0032
  doi: 10.1007/978-3-0348-8201-9_3
– ident: cit0035
  doi: 10.1073/pnas.97.4.1423
– ident: cit0007
  doi: 10.1016/j.csda.2005.10.012
– ident: cit0005
  doi: 10.1214/14-AOS1226
– ident: cit0014
  doi: 10.3150/bj/1110228239
– ident: cit0029
  doi: 10.1080/00401706.1986.10488131
– volume: 104
  start-page: 718
  year: 2009
  ident: cit0024
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/jasa.2009.0108
– ident: cit0017
  doi: 10.1080/01621459.2012.688462
– ident: cit0011
  doi: 10.1007/BF02595706
– ident: cit0025
  doi: 10.1016/j.csda.2010.10.024
– volume: 2
  start-page: 49
  year: 1936
  ident: cit0026
  publication-title: Proceedings of the National Institute of Sciences of India
– ident: cit0018
  doi: 10.1214/aos/1176347507
– volume: 45
  start-page: 25
  year: 1983
  ident: cit0001
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/j.2517-6161.1983.tb01226.x
– start-page: 20
  year: 1992
  ident: cit0008
  publication-title: Annals of Statistics
– ident: cit0037
  doi: 10.1080/03610919608813349
– year: 2012
  ident: cit0028
  publication-title: Discussion Papers in Statistics and Econometrics 2/2012, University of Cambridge
– ident: cit0019
  doi: 10.1214/aos/1018031259
– year: 2015
  ident: cit0015
  publication-title: Statistical Methods and Applications
– ident: cit0016
  doi: 10.1016/j.jmva.2004.02.013
– ident: cit0003
  doi: 10.1016/j.stamet.2013.04.004
– ident: cit0027
  doi: 10.1007/978-1-4613-0045-8
– ident: cit0012
– ident: cit0038
  doi: 10.1111/1467-9868.00088
– ident: cit0010
  doi: 10.1214/aos/1176344552
– ident: cit0039
  doi: 10.1214/aos/1065705115
– ident: cit0004
  doi: 10.1007/s10463-013-0416-y
– ident: cit0036
  doi: 10.1093/biomet/71.2.375
– ident: cit0013
  doi: 10.1214/aos/1176345638
– ident: cit0033
  doi: 10.1198/jcgs.2011.09224
– ident: cit0002
  doi: 10.1016/S0021-9290(02)00176-8
– ident: cit0022
  doi: 10.1111/anzs.12048
– start-page: 523
  year: 1975
  ident: cit0034
  publication-title: in Proceedings of the 1975 International Congress of Mathematicians, Vancouver, Montreal, Canada
– volume: 88
  start-page: 257
  year: 1993
  ident: cit0020
  publication-title: Journal of the American Statistical Association
– ident: cit0021
  doi: 10.1080/01621459.1997.10473624
– ident: cit0006
  doi: 10.1080/01621459.1996.10476954
– volume: 72
  start-page: 103
  year: 2006
  ident: cit0023
  publication-title: DIMACS Series in Discrete Mathematics and Theoretical Computer Science. Data Depth: Robust Multivariate Analysis, Computational Geometry and Applications. American Mathematical Society
  doi: 10.1090/dimacs/072/08
– ident: cit0040
  doi: 10.1214/aos/1016218226
SSID ssj0000788
Score 2.4939141
Snippet We propose a new notion called "extremal depth" (ED) for functional data, discuss its properties, and compare its performance with existing concepts. The...
We propose a new notion called “extremal depth” (ED) for functional data, discuss its properties, and compare its performance with existing concepts. The...
SourceID proquest
crossref
jstor
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1705
SubjectTerms Central regions
Data
Data depth
equations
Functional boxplots
Outlier detection
probability
Property
Regions
Regression analysis
Simultaneous inference
Statistics
Theory and Methods
Usefulness
Title Extremal Depth for Functional Data and Applications
URI https://www.tandfonline.com/doi/abs/10.1080/01621459.2015.1110033
https://www.jstor.org/stable/45027520
https://www.proquest.com/docview/1875840957
https://www.proquest.com/docview/1884096524
https://www.proquest.com/docview/2000261452
Volume 111
WOSCitedRecordID wos000391900700038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1537-274X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000788
  issn: 0162-1459
  databaseCode: TFW
  dateStart: 19220301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR3LTsMwLEITh114TwwGKhLXQts0TXOcYBWnicMQu1V5igNs09YhPh-7j7EJTTvAsardpHZsx7FjE3JrWUrBYaM-rA7px0pQXyXc-WBsuHUKTFJqymYTfDhMx2PxXGcTLuq0SvShXVUootTVKNxSLZqMuHvYpWB9bbxmEjKUeWxIBloYTD-K5ih7_dHFvOw8iRg-ojR3eLZ9ZcM6bdQubfIVf-ns0hBlh__wC0fkoN6Fev1q2RyTPTs5IW3ceFZ1m08JHXwVc_sBQI92Vrx5MEUvAxtYHR16j7KQHozu9dcC4GfkJRuMHp78usGCr2HswteKhzrgJtUy1tRSpiUVOgCdE6lEchnoNEysdbF11KiQm0AngeQickxo6zTtkNZkOrHnxBOhAW4bYTR4aC4VijJlRWBSww3TxnZJ3BA213X1cWyC8Z6HTZHSmiQ5kiSvSdIldyu0WVV-YxeCWOdaXpTnHq5qUpLTHbidksWrkWKGQd0o6JJew_O8FvFFHoKnh94x411ys3oNwokRFzmx0yXCIETCong7DN6VAjc2ZtHFH-Z-SdrwmFSJNj3SKuZLe0X29Sesm_l1KRTfzrcEcw
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR3LTsMwzOIlwYX3xHgWiWuhbZqmOSJgAgE7DcEtSvMQBxhoFMTnY_cxhhDiAOfYTWrHdpz4AXDgeM7QYWMh7g4dpoVkYZEJH6KxEc4XaJJyWzWbEP1-fncnJ3NhKKySfGhfF4qodDUJN11GtyFxR3hMoQLblGcScxJ66kg2DbMcbS3Vzx_0bj-1sah6TxJKSDhtFs9Pn_lin75UL20jFr9p7coU9Zb-4yeWYbE5iAbH9c5ZgSk3XIUFOnvWpZvXgJ29lyP3iECn7rm8D3CNQQ_NYH17GJzqUgc4fXA88Qa-Dje9s8HJedj0WAgNzl2GphCxiYTNjU4Nc4wbzaSJUO0kRaaFjkweZ8751Hlmi1jYyGSRFjLxXBrnDevAzPBp6DYgkLFFhltpDTppPpcF44WTkc2tsNxY14W0pawyTQFy6oPxoOK2TmlDEkUkUQ1JunA4RnuuK3D8hiAn2abK6urD131KFPsFt1PxeDxTyuldN4m6sN0yXTVS_qJidPbIQeaiC_vjYZRPenTRQ_f0SjAEkfEk_RmG0qXQk015svmHte_B_Png-kpdXfQvt2ABh7I67mYbZsrRq9uBOfOGe2i0W0nIB1igCJ0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR1dT9sw8AQdQrywsVGto0Am7TUsieM4fqxoIxCo4gE03izHH-KBtVUbpv383eWjgCbEAzz7Lnbu02ef7wB-OJ4zDNhYiNKhw7SULCwz4UN0NsL5El1SbutmE2I6zW9v5VWbTbhq0yophvZNoYjaVpNyL6zvMuJ-4i6F6mvTM5OYk85TQ7JN-IBb54yE_Lr49WiMRd16klBCwuke8bz0mWfu6Vnx0i5h8T-jXXui4uM7_MMn2G23ocGokZs92HCzz7BDO8-mcPMXYJO_1dL9RqCxW1R3AS4xKNAJNmeHwVhXOsDZg9GTG_B9uCkm16dnYdthITQ4dxWaUsQmEjY3OjXMMW40kyZCo5OUmRY6MnmcOedT55ktY2Ejk0VayMRzaZw3rA-92XzmvkIgY4vsttIaDNF8LkvGSycjm1thubFuAGlHWGXa8uPUBeNexV2V0pYkikiiWpIM4GSNtmjqb7yGIJ9yTVX1wYdvupQo9gpuv2bxeqaU061uEg1g2PFctTq-UjGGehQeczGA7-th1E66ctEzN38gGILIeJK-DEOPpTCOTXny7Q1rP4btq3GhLs-nFwewgyNZk3QzhF61fHCHsGX-oAgtj2r9-AclZQdP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extremal+Depth+for+Functional+Data+and+Applications&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Narisetty%2C+Naveen+N.&rft.au=Nair%2C+Vijayan+N.&rft.date=2016-12-01&rft.pub=Taylor+%26+Francis&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=111&rft.issue=516&rft.spage=1705&rft.epage=1714&rft_id=info:doi/10.1080%2F01621459.2015.1110033&rft.externalDocID=1110033
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon