Times series forecasting for urban building energy consumption based on graph convolutional network

•Develop a Spatiotemporal graph convolutional network for hourly energy predictions.•Inter-building impacts are considered in graph-based method for prediction.•Test ST-GCN on campus buildings and validate its improved performance.•Discuss the interpretability of the ST-GCN modelling results. The wo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied energy Ročník 307; s. 118231
Hlavní autoři: Hu, Yuqing, Cheng, Xiaoyuan, Wang, Suhang, Chen, Jianli, Zhao, Tianxiang, Dai, Enyan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.02.2022
Témata:
ISSN:0306-2619, 1872-9118
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Develop a Spatiotemporal graph convolutional network for hourly energy predictions.•Inter-building impacts are considered in graph-based method for prediction.•Test ST-GCN on campus buildings and validate its improved performance.•Discuss the interpretability of the ST-GCN modelling results. The world is increasingly urbanizing, and to improve urban sustainability, many cities adopt ambitious energy-saving strategies through retrofitting existing buildings and constructing new communities. In this situation, an accurate urban building energy model (UBEM) is the foundation to support the design of energy-efficient communities. However, current UBEM are ineffective to capture the inter-building interdependency due to their dynamic and non-linear characteristics. Those conventional models either ignored or oversimplified these building interdependencies, which can substantially affect the accuracy of urban energy modeling. To fill the research gap, this study proposes a novel data-driven UBEN synthesizing the solar-based building interdependency and spatio-temporal graph convolutional network (ST-GCN) algorithm. Especially, we took a university campus located in the downtown area of Atlanta as an example to predict the hourly energy consumption. Furthermore, we tested the feasibility of the ST-GCN model by comparing the performance of the ST-GCN model with other common time-series machine learning models. The results indicate that the ST-GCN model overall outperforms in different scenarios, the mean absolute percentage error of ST-GCN is around 5%. More importantly, the accuracy of ST-GCN is enhanced when simulating buildings with higher edge weight and in-degrees, this phenomenon is magnified in summer daytime and winter daytime, which validated the interpretability of the ST-GCN models. After discussion, it is found that data-driven models integrated with engineering or physics knowledge can significantly improve urban building energy use prediction.
AbstractList •Develop a Spatiotemporal graph convolutional network for hourly energy predictions.•Inter-building impacts are considered in graph-based method for prediction.•Test ST-GCN on campus buildings and validate its improved performance.•Discuss the interpretability of the ST-GCN modelling results. The world is increasingly urbanizing, and to improve urban sustainability, many cities adopt ambitious energy-saving strategies through retrofitting existing buildings and constructing new communities. In this situation, an accurate urban building energy model (UBEM) is the foundation to support the design of energy-efficient communities. However, current UBEM are ineffective to capture the inter-building interdependency due to their dynamic and non-linear characteristics. Those conventional models either ignored or oversimplified these building interdependencies, which can substantially affect the accuracy of urban energy modeling. To fill the research gap, this study proposes a novel data-driven UBEN synthesizing the solar-based building interdependency and spatio-temporal graph convolutional network (ST-GCN) algorithm. Especially, we took a university campus located in the downtown area of Atlanta as an example to predict the hourly energy consumption. Furthermore, we tested the feasibility of the ST-GCN model by comparing the performance of the ST-GCN model with other common time-series machine learning models. The results indicate that the ST-GCN model overall outperforms in different scenarios, the mean absolute percentage error of ST-GCN is around 5%. More importantly, the accuracy of ST-GCN is enhanced when simulating buildings with higher edge weight and in-degrees, this phenomenon is magnified in summer daytime and winter daytime, which validated the interpretability of the ST-GCN models. After discussion, it is found that data-driven models integrated with engineering or physics knowledge can significantly improve urban building energy use prediction.
The world is increasingly urbanizing, and to improve urban sustainability, many cities adopt ambitious energy-saving strategies through retrofitting existing buildings and constructing new communities. In this situation, an accurate urban building energy model (UBEM) is the foundation to support the design of energy-efficient communities. However, current UBEM are ineffective to capture the inter-building interdependency due to their dynamic and non-linear characteristics. Those conventional models either ignored or oversimplified these building interdependencies, which can substantially affect the accuracy of urban energy modeling. To fill the research gap, this study proposes a novel data-driven UBEN synthesizing the solar-based building interdependency and spatio-temporal graph convolutional network (ST-GCN) algorithm. Especially, we took a university campus located in the downtown area of Atlanta as an example to predict the hourly energy consumption. Furthermore, we tested the feasibility of the ST-GCN model by comparing the performance of the ST-GCN model with other common time-series machine learning models. The results indicate that the ST-GCN model overall outperforms in different scenarios, the mean absolute percentage error of ST-GCN is around 5%. More importantly, the accuracy of ST-GCN is enhanced when simulating buildings with higher edge weight and in-degrees, this phenomenon is magnified in summer daytime and winter daytime, which validated the interpretability of the ST-GCN models. After discussion, it is found that data-driven models integrated with engineering or physics knowledge can significantly improve urban building energy use prediction.
ArticleNumber 118231
Author Hu, Yuqing
Cheng, Xiaoyuan
Chen, Jianli
Zhao, Tianxiang
Dai, Enyan
Wang, Suhang
Author_xml – sequence: 1
  givenname: Yuqing
  surname: Hu
  fullname: Hu, Yuqing
  organization: Department of Architectural Engineering, The Pennsylvania State University, University Park, PA 16802, USA
– sequence: 2
  givenname: Xiaoyuan
  surname: Cheng
  fullname: Cheng, Xiaoyuan
  organization: Department of Architectural Engineering, The Pennsylvania State University, University Park, PA 16802, USA
– sequence: 3
  givenname: Suhang
  surname: Wang
  fullname: Wang, Suhang
  organization: College of Information Science and Technology, The Pennsylvania State University, University Park, PA 16802, USA
– sequence: 4
  givenname: Jianli
  surname: Chen
  fullname: Chen, Jianli
  email: jianli.chen@utah.edu
  organization: Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT 84112, USA
– sequence: 5
  givenname: Tianxiang
  surname: Zhao
  fullname: Zhao, Tianxiang
  organization: College of Information Science and Technology, The Pennsylvania State University, University Park, PA 16802, USA
– sequence: 6
  givenname: Enyan
  surname: Dai
  fullname: Dai, Enyan
  organization: College of Information Science and Technology, The Pennsylvania State University, University Park, PA 16802, USA
BookMark eNqFkMtOwzAQRS0EEuXxCyhLNikeu3EaiQUI8ZKQ2MDamjqT4pLawU5A_XscBTZsWM2M773j0Tli-847YuwM-Bw4qIvNHDtyFNa7ueAC5gBLIWGPzWBZirxK4z6bcclVLhRUh-woxg3nySn4jJkXu6WYRQo2lcYHMhh769Zjnw1hhS5bDbatx6fpl8x4F4dt11ufNIxUZ6lZB-zeRunTt8MoYZs56r98eD9hBw22kU5_6jF7vbt9uXnIn57vH2-un3KzKKo-N0s0tFpwKWXFEahAQajqEmFRAJaAnHglhCpKUWINjWmMaqTiTVECCBLymJ1Pe7vgPwaKvd7aaKht0ZEfohZKqqUsK14l6-VkNcHHGKjRxvY4nt0HtK0Grke2eqN_2eqRrZ7Yprj6E--C3WLY_R-8moKUOHxaCjoaS85QbRP5Xtfe_rfiG6nInC0
CitedBy_id crossref_primary_10_1016_j_isprsjprs_2024_10_011
crossref_primary_10_1016_j_energy_2024_133964
crossref_primary_10_1007_s12273_024_1212_8
crossref_primary_10_1007_s12273_025_1237_7
crossref_primary_10_3390_buildings13020312
crossref_primary_10_1016_j_jenvman_2025_126077
crossref_primary_10_1016_j_apenergy_2024_123156
crossref_primary_10_1016_j_energy_2023_127911
crossref_primary_10_1016_j_scs_2024_106078
crossref_primary_10_1016_j_engappai_2025_110781
crossref_primary_10_3390_app15168944
crossref_primary_10_1016_j_eswa_2023_121313
crossref_primary_10_3390_buildings14113405
crossref_primary_10_1016_j_jobe_2022_104323
crossref_primary_10_1016_j_egyai_2025_100504
crossref_primary_10_3390_buildings14051241
crossref_primary_10_3390_en18185007
crossref_primary_10_1016_j_rser_2023_113405
crossref_primary_10_1016_j_buildenv_2025_112688
crossref_primary_10_1016_j_enggeo_2025_107917
crossref_primary_10_1186_s42162_023_00299_8
crossref_primary_10_1016_j_rser_2024_114874
crossref_primary_10_1016_j_compchemeng_2024_108982
crossref_primary_10_1016_j_enbuild_2025_115522
crossref_primary_10_3390_su16177805
crossref_primary_10_1016_j_apenergy_2024_125169
crossref_primary_10_1109_TNSE_2025_3558193
crossref_primary_10_1016_j_jobe_2025_112295
crossref_primary_10_1016_j_apenergy_2024_122896
crossref_primary_10_1016_j_enbuild_2025_115886
crossref_primary_10_1016_j_engappai_2025_110153
crossref_primary_10_1016_j_rser_2025_115471
crossref_primary_10_1016_j_enbuild_2025_116255
crossref_primary_10_1016_j_jobe_2024_110836
crossref_primary_10_1016_j_apenergy_2022_120098
crossref_primary_10_1016_j_autcon_2025_106530
crossref_primary_10_1016_j_epsr_2024_110265
crossref_primary_10_3390_su142214848
crossref_primary_10_1016_j_egyai_2025_100486
crossref_primary_10_1016_j_aei_2024_102379
crossref_primary_10_1016_j_procir_2025_01_060
crossref_primary_10_1016_j_scs_2025_106133
crossref_primary_10_3390_buildings15050808
crossref_primary_10_3390_forecast6030042
crossref_primary_10_1016_j_scs_2024_105284
crossref_primary_10_1016_j_enbuild_2025_116400
crossref_primary_10_1016_j_autcon_2023_104902
crossref_primary_10_1016_j_engappai_2025_111330
crossref_primary_10_3390_en15197231
crossref_primary_10_1016_j_buildenv_2024_111780
crossref_primary_10_1016_j_rser_2024_115161
crossref_primary_10_1016_j_enbuild_2025_116365
crossref_primary_10_1109_ACCESS_2024_3522563
crossref_primary_10_3390_en17225797
crossref_primary_10_1016_j_buildenv_2025_113113
crossref_primary_10_1016_j_autcon_2023_104984
crossref_primary_10_1109_TPWRS_2024_3431952
crossref_primary_10_1007_s12599_025_00957_z
crossref_primary_10_1016_j_apenergy_2022_120144
crossref_primary_10_1007_s12273_024_1206_6
crossref_primary_10_1016_j_aei_2024_102868
crossref_primary_10_1016_j_rser_2024_114855
crossref_primary_10_1016_j_autcon_2022_104445
crossref_primary_10_1109_TAI_2024_3379968
crossref_primary_10_1007_s12273_024_1136_3
crossref_primary_10_1016_j_buildenv_2023_110600
crossref_primary_10_1016_j_ins_2024_120150
crossref_primary_10_3390_buildings12030289
crossref_primary_10_1016_j_enbuild_2023_112992
crossref_primary_10_1109_TPWRS_2025_3548891
crossref_primary_10_3390_en18061468
crossref_primary_10_1007_s00521_023_08583_0
crossref_primary_10_1016_j_energy_2023_129866
crossref_primary_10_3390_app15168854
crossref_primary_10_1016_j_enbuild_2024_115085
Cites_doi 10.1016/j.eiar.2020.106487
10.1016/j.apenergy.2020.115584
10.14778/3430915.3430924
10.3390/buildings8030037
10.1109/TNN.2008.2005605
10.1016/j.aiopen.2021.01.001
10.1016/j.apenergy.2016.08.079
10.1016/j.enbuild.2008.06.013
10.1016/j.rser.2020.110591
10.1016/j.enbuild.2019.109580
10.1016/j.apenergy.2021.116452
10.1016/j.autcon.2018.05.002
10.1016/j.buildenv.2019.106508
10.1109/INTLEC.2018.8612398
10.1016/j.rser.2020.109902
10.1016/j.scs.2020.102408
10.1016/j.autcon.2020.103231
10.1016/j.apenergy.2020.115834
10.1016/j.apenergy.2018.05.023
10.1016/j.autcon.2017.12.017
10.1016/j.autcon.2010.07.006
10.1016/j.apenergy.2020.115656
10.1016/j.energy.2017.11.071
10.24963/ijcai.2018/505
10.1016/j.buildenv.2015.12.001
10.1016/j.enbuild.2021.110786
10.1016/j.ijproman.2016.08.001
10.1038/s41598-018-24271-9
10.3390/en13092382
10.3390/en12030433
10.1016/j.enbuild.2012.03.010
10.1115/1.4036545
10.1016/j.enbuild.2017.08.029
10.1016/j.enbuild.2004.09.009
10.1016/j.enbuild.2018.09.034
10.1177/0008125616683703
10.1109/YAC.2016.7804912
10.1016/j.apenergy.2014.02.057
10.1016/j.enbuild.2020.110590
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2021.118231
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
ExternalDocumentID 10_1016_j_apenergy_2021_118231
S0306261921014963
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c459t-c8aceb4033390a1e5a2ea6d7a1451a71a0e092265727ad1fcfc6f360f57112e23
ISICitedReferencesCount 85
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000807274400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Sat Sep 27 19:49:30 EDT 2025
Sat Nov 29 07:25:16 EST 2025
Tue Nov 18 20:46:02 EST 2025
Fri Feb 23 02:40:59 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Time-series prediction
Building interdependency
Graph neural network
Urban-scale building simulation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c459t-c8aceb4033390a1e5a2ea6d7a1451a71a0e092265727ad1fcfc6f360f57112e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://scholarsphere.psu.edu/resources/fed6e895-d65a-4e55-a76c-e2e73750b519
PQID 2636837909
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2636837909
crossref_citationtrail_10_1016_j_apenergy_2021_118231
crossref_primary_10_1016_j_apenergy_2021_118231
elsevier_sciencedirect_doi_10_1016_j_apenergy_2021_118231
PublicationCentury 2000
PublicationDate 2022-02-01
2022-02-00
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhang (b0205) 2021; 285
Ahmed, Ortiz, González (b0125) 2017; 139
Mutani G, Casalengo M, Ramassotto MA. The effect of roof-integrated solar technologies on the energy performance of public buildings: The case study of the City of Turin (IT). In: 2018 IEEE international telecommunications energy conference (INTELEC). IEEE; 2018. p. 1–8.
Kim, Stumpf, Kim (b0180) 2011; 20
Erell, Pearlmutter, Williamson (b0255) 2012
Huo, Ma, Cai, Liu, Mu (b0005) 2021; 232
Johari, Peronato, Sadeghian, Zhao, Widén (b0055) 2020; 128
Jin, Ma, Liu, Tang, Wang, Tang (b0260) 2020
Huang, Zheng (b0290) 2018; 8
Fu R, Zhang Z, Li L. Using LSTM and GRU neural network methods for traffic flow prediction. In
Huo, Ma, Yu, Cai, Liu, Ren (b0110) 2021; 86
Wang, Hong, Li, Piette (b0080) 2021
Cerezo, Sokol, AlKhaled, Reinhart, Al-Mumin, Hajiah (b0120) 2017; 154
Scarselli, Gori, Tsoi, Hagenbuchner, Monfardini (b0210) 2008; 20
Somu, Mr, Ramamritham (b0200) 2021; 137
Wu, Tang, Zhu, Wang, Xie, Tan (b0230) 2019; 33
Government C.
Koskela T, Lehtokangas M, Saarinen J, Kaski K. Time series prediction with multilayer perceptron, FIR and Elman neural networks. In
Che, Purushotham, Cho, Sontag, Liu (b0285) 2018; 8
Ferrando, Causone, Hong, Chen (b0100) 2020
Wu, Lian, Xu, Wu, Chen (b0220) 2020; 34
[accessed April 4, 2021].
Grindvoll, Vermesan, Crosbie, Bahr, Dawood, Revel (b0170) 2012; 17
Yu B, Yin H, Zhu Z. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875; 2017.
.
Zhou (b0215) 2020; 1
Jain, Smith, Culligan, Taylor (b0085) 2014; 123
Chao MA, Tian Y, Kulkarni C, Goebel K, Fink O. Real-time model calibration with deep reinforcement learning. arXiv preprint arXiv:2006.04001; 2020.
Neto, Fiorelli (b0195) 2008; 40
U. S. D. O. Energy. In
Dong, Cao, Lee (b0190) 2005; 37
2018. International Building Performance Simulation Association; 2018.
Chen, Deng, Hong (b0165) 2020; 277
Ying, He, Chen, Eksombatchai, Hamilton, Leskovec (b0235) 2018
Luo, Tang, Hong (b0090) 2020
Montgomery, Peck, Vining (b0265) 2021
[accessed January 20, 2021].
Ma, Cheng (b0075) 2016; 183
Liu, Han, Fu, Zhou, Lu, Xiong (b0225) 2020; 14
Pareja (b0240) 2020; 34
Hong, Chen, Luo, Luo, Lee (b0025) 2020; 168
Quan, Li, Augenbroe, Brown, Yang (b0050) 2015
Dino (b0155) 2020; 116
Nutkiewicz, Yang, Jain (b0040) 2018; 225
Wu (b0250) 2020; 278
Edwards, New, Parker (b0185) 2012; 49
Li (b0045) 2017; 141
Zhuravchak, Pedrero, del Granado, Nord, Brattebø (b0105) 2021; 238
Berrone, Ricart, Carrasco (b0175) 2016; 59
Amir Roth PP, Sawyer Karma, Lee David. Emerging Technologies Research and Development: DRAFT Research and Development Opportunities for Building Energy Modeling. U.S. Department of Energy; 2019. [Online]. Available
Nageler, Koch, Mauthner, Leusbrock, Mach, Hochenauer (b0140) 2018; 179
Citeseer; 1996. p. 491–6.
Ali U, Shamsi MH, Hoare C, O'Donnell J. GIS-based residential building energy modeling at district scale. In
IEEE; 2016. p. 324–8.
He, Wang, Luo, Shi, Xie, Meng (b0070) 2017; 35
Martín-Garín, Millán-García, Baïri, Millán-Medel, Sala-Lizarraga (b0160) 2018; 87
Kim, Song, Sung, Seo (b0145) 2019; 12
Reinhart, Cerezo Davila (b0095) 2016; 97
Ali (b0135) 2020; 279
Luo, Hong, Tang (b0035) 2020; 13
Wang, Shi, Lyu, Deng (b0275) 2017
2015, ch. Chapter 5: Increasing Efficiency of Building Systems and Technologies September 2015; 2015.
Rakha, Gorodetsky (b0150) 2018; 93
Center A.
Huang, Jones, Zhang, Peng, Li, Chan (b0030) 2020; 207
Nutkiewicz (10.1016/j.apenergy.2021.118231_b0040) 2018; 225
10.1016/j.apenergy.2021.118231_b0060
Martín-Garín (10.1016/j.apenergy.2021.118231_b0160) 2018; 87
Luo (10.1016/j.apenergy.2021.118231_b0035) 2020; 13
Wu (10.1016/j.apenergy.2021.118231_b0250) 2020; 278
Ma (10.1016/j.apenergy.2021.118231_b0075) 2016; 183
Dino (10.1016/j.apenergy.2021.118231_b0155) 2020; 116
Montgomery (10.1016/j.apenergy.2021.118231_b0265) 2021
Huang (10.1016/j.apenergy.2021.118231_b0290) 2018; 8
Jain (10.1016/j.apenergy.2021.118231_b0085) 2014; 123
10.1016/j.apenergy.2021.118231_b0020
Huang (10.1016/j.apenergy.2021.118231_b0030) 2020; 207
Dong (10.1016/j.apenergy.2021.118231_b0190) 2005; 37
Neto (10.1016/j.apenergy.2021.118231_b0195) 2008; 40
10.1016/j.apenergy.2021.118231_b0065
Kim (10.1016/j.apenergy.2021.118231_b0180) 2011; 20
He (10.1016/j.apenergy.2021.118231_b0070) 2017; 35
Edwards (10.1016/j.apenergy.2021.118231_b0185) 2012; 49
Pareja (10.1016/j.apenergy.2021.118231_b0240) 2020; 34
Wu (10.1016/j.apenergy.2021.118231_b0220) 2020; 34
Ali (10.1016/j.apenergy.2021.118231_b0135) 2020; 279
Reinhart (10.1016/j.apenergy.2021.118231_b0095) 2016; 97
Wang (10.1016/j.apenergy.2021.118231_b0275) 2017
10.1016/j.apenergy.2021.118231_b0115
Nageler (10.1016/j.apenergy.2021.118231_b0140) 2018; 179
Zhuravchak (10.1016/j.apenergy.2021.118231_b0105) 2021; 238
Li (10.1016/j.apenergy.2021.118231_b0045) 2017; 141
Kim (10.1016/j.apenergy.2021.118231_b0145) 2019; 12
Chen (10.1016/j.apenergy.2021.118231_b0165) 2020; 277
Ferrando (10.1016/j.apenergy.2021.118231_b0100) 2020
Hong (10.1016/j.apenergy.2021.118231_b0025) 2020; 168
Luo (10.1016/j.apenergy.2021.118231_b0090) 2020
10.1016/j.apenergy.2021.118231_b0270
Che (10.1016/j.apenergy.2021.118231_b0285) 2018; 8
Wang (10.1016/j.apenergy.2021.118231_b0080) 2021
10.1016/j.apenergy.2021.118231_b0280
10.1016/j.apenergy.2021.118231_b0245
Huo (10.1016/j.apenergy.2021.118231_b0110) 2021; 86
Jin (10.1016/j.apenergy.2021.118231_b0260) 2020
Ahmed (10.1016/j.apenergy.2021.118231_b0125) 2017; 139
Zhou (10.1016/j.apenergy.2021.118231_b0215) 2020; 1
Rakha (10.1016/j.apenergy.2021.118231_b0150) 2018; 93
Liu (10.1016/j.apenergy.2021.118231_b0225) 2020; 14
Wu (10.1016/j.apenergy.2021.118231_b0230) 2019; 33
Grindvoll (10.1016/j.apenergy.2021.118231_b0170) 2012; 17
Erell (10.1016/j.apenergy.2021.118231_b0255) 2012
Quan (10.1016/j.apenergy.2021.118231_b0050) 2015
Somu (10.1016/j.apenergy.2021.118231_b0200) 2021; 137
Cerezo (10.1016/j.apenergy.2021.118231_b0120) 2017; 154
10.1016/j.apenergy.2021.118231_b0015
Zhang (10.1016/j.apenergy.2021.118231_b0205) 2021; 285
Berrone (10.1016/j.apenergy.2021.118231_b0175) 2016; 59
Ying (10.1016/j.apenergy.2021.118231_b0235) 2018
Scarselli (10.1016/j.apenergy.2021.118231_b0210) 2008; 20
10.1016/j.apenergy.2021.118231_b0130
Johari (10.1016/j.apenergy.2021.118231_b0055) 2020; 128
Huo (10.1016/j.apenergy.2021.118231_b0005) 2021; 232
10.1016/j.apenergy.2021.118231_b0010
References_xml – volume: 285
  year: 2021
  ident: b0205
  article-title: A review of machine learning in building load prediction
  publication-title: Appl Energy
– volume: 183
  start-page: 182
  year: 2016
  end-page: 192
  ident: b0075
  article-title: Estimation of the building energy use intensity in the urban scale by integrating GIS and big data technology
  publication-title: Appl Energy
– volume: 35
  start-page: 670
  year: 2017
  end-page: 685
  ident: b0070
  article-title: Mapping the managerial areas of Building Information Modeling (BIM) using scientometric analysis
  publication-title: Int J Project Manage
– volume: 20
  start-page: 37
  year: 2011
  end-page: 43
  ident: b0180
  article-title: Analysis of an energy efficient building design through data mining approach
  publication-title: Autom Constr
– volume: 93
  start-page: 252
  year: 2018
  end-page: 264
  ident: b0150
  article-title: Review of Unmanned Aerial System (UAS) applications in the built environment: Towards automated building inspection procedures using drones
  publication-title: Autom Constr
– reference: Center A.
– reference: Yu B, Yin H, Zhu Z. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875; 2017.
– reference: U. S. D. O. Energy. In:
– volume: 141
  start-page: 2445
  year: 2017
  end-page: 2457
  ident: b0045
  article-title: Modeling urban building energy use: A review of modeling approaches and procedures
  publication-title: Energy
– volume: 123
  start-page: 168
  year: 2014
  end-page: 178
  ident: b0085
  article-title: Forecasting energy consumption of multi-family residential buildings using support vector regression: Investigating the impact of temporal and spatial monitoring granularity on performance accuracy
  publication-title: Appl Energy
– start-page: 447
  year: 2015
  end-page: 469
  ident: b0050
  article-title: Urban data and building energy modeling: A GIS-based urban building energy modeling system using the urban-EPC engine
  publication-title: Planning support systems and smart cities
– volume: 40
  start-page: 2169
  year: 2008
  end-page: 2176
  ident: b0195
  article-title: Comparison between detailed model simulation and artificial neural network for forecasting building energy consumption
  publication-title: Energy Build
– reference: Government C.
– reference: Mutani G, Casalengo M, Ramassotto MA. The effect of roof-integrated solar technologies on the energy performance of public buildings: The case study of the City of Turin (IT). In: 2018 IEEE international telecommunications energy conference (INTELEC). IEEE; 2018. p. 1–8.
– volume: 97
  start-page: 196
  year: 2016
  end-page: 202
  ident: b0095
  article-title: Urban building energy modeling – a review of a nascent field
  publication-title: Build Environ
– volume: 179
  start-page: 333
  year: 2018
  end-page: 343
  ident: b0140
  article-title: Comparison of dynamic urban building energy models (UBEM): Sigmoid energy signature and physical modelling approach
  publication-title: Energy Build
– reference: Amir Roth PP, Sawyer Karma, Lee David. Emerging Technologies Research and Development: DRAFT Research and Development Opportunities for Building Energy Modeling. U.S. Department of Energy; 2019. [Online]. Available:
– year: 2012
  ident: b0255
  article-title: Urban microclimate: designing the spaces between buildings
– volume: 34
  start-page: 5363
  year: 2020
  end-page: 5370
  ident: b0240
  article-title: Evolvegcn: Evolving graph convolutional networks for dynamic graphs
  publication-title: Proc AAAI Conf Artificial Intel
– volume: 20
  start-page: 61
  year: 2008
  end-page: 80
  ident: b0210
  article-title: The graph neural network model
  publication-title: IEEE Trans Neural Networks
– start-page: 66
  year: 2020
  end-page: 74
  ident: b0260
  article-title: Graph structure learning for robust graph neural networks
  publication-title: In:
– volume: 13
  start-page: 2382
  year: 2020
  ident: b0035
  article-title: Modeling thermal interactions between buildings in an urban context
  publication-title: Energies
– volume: 232
  year: 2021
  ident: b0005
  article-title: Will the urbanization process influence the peak of carbon emissions in the building sector? A dynamic scenario simulation
  publication-title: Energy Build
– volume: 207
  year: 2020
  ident: b0030
  article-title: Urban Building Energy and Climate (UrBEC) simulation: Example application and field evaluation in Sai Ying Pun, Hong Kong
  publication-title: Energy Build
– reference: Fu R, Zhang Z, Li L. Using LSTM and GRU neural network methods for traffic flow prediction. In:
– reference: . IEEE; 2016. p. 324–8.
– year: 2021
  ident: b0080
  article-title: Predicting City-Scale Daily Electricity Consumption Using Data-Driven Models
  publication-title: Adv Appl Energy
– volume: 59
  start-page: 39
  year: 2016
  end-page: 70
  ident: b0175
  article-title: The open kimono: Toward a general framework for open data initiatives in cities
  publication-title: California Manage Rev
– volume: 128
  year: 2020
  ident: b0055
  article-title: Urban building energy modeling: State of the art and future prospects
  publication-title: Renew Sustain Energy Rev
– reference: [accessed April 4, 2021].
– reference: , 2015, ch. Chapter 5: Increasing Efficiency of Building Systems and Technologies September 2015; 2015.
– volume: 34
  start-page: 1054
  year: 2020
  end-page: 1061
  ident: b0220
  article-title: Graph convolutional networks with markov random field reasoning for social spammer detection
  publication-title: Proc AAAI Conf Artificial Intell
– reference: . Citeseer; 1996. p. 491–6.
– year: 2021
  ident: b0265
  article-title: Introduction to linear regression analysis
– reference: , 2018. International Building Performance Simulation Association; 2018.
– volume: 225
  start-page: 1176
  year: 2018
  end-page: 1189
  ident: b0040
  article-title: Data-driven Urban Energy Simulation (DUE-S): A framework for integrating engineering simulation and machine learning methods in a multi-scale urban energy modeling workflow
  publication-title: Appl Energy
– volume: 87
  start-page: 201
  year: 2018
  end-page: 214
  ident: b0160
  article-title: Environmental monitoring system based on an Open Source Platform and the Internet of Things for a building energy retrofit
  publication-title: Autom Constr
– year: 2020
  ident: b0100
  article-title: Urban building energy modeling (UBEM) tools: A state-of-the-art review of bottom-up physics-based approaches
  publication-title: Sustainable Cities Soc
– volume: 8
  start-page: 37
  year: 2018
  ident: b0290
  article-title: Energy and economic performance of solar cooling systems in the hot-summer and cold-winter zone
  publication-title: Buildings
– volume: 17
  start-page: 43
  year: 2012
  end-page: 61
  ident: b0170
  article-title: A wireless sensor network for intelligent building energy management based on multi communication standards-A case study
  publication-title: J Inform Technol Construct
– volume: 137
  year: 2021
  ident: b0200
  article-title: A deep learning framework for building energy consumption forecast
  publication-title: Renew Sustainable Energy Rev
– volume: 14
  start-page: 342
  year: 2020
  end-page: 350
  ident: b0225
  article-title: Multi-modal transportation recommendation with unified route representation learning
  publication-title: Proc VLDB Endowment
– volume: 238
  year: 2021
  ident: b0105
  article-title: Top-down spatially-explicit probabilistic estimation of building energy performance at a scale
  publication-title: Energy Build
– volume: 279
  year: 2020
  ident: b0135
  article-title: A data-driven approach for multi-scale GIS-based building energy modeling for analysis, planning and support decision making
  publication-title: Appl Energy
– volume: 116
  year: 2020
  ident: b0155
  article-title: Image-based construction of building energy models using computer vision
  publication-title: Autom Constr
– start-page: 974
  year: 2018
  end-page: 983
  ident: b0235
  article-title: Graph convolutional neural networks for web-scale recommender systems
  publication-title: In:
– reference: [accessed January 20, 2021].
– volume: 8
  start-page: 1
  year: 2018
  end-page: 12
  ident: b0285
  article-title: Recurrent neural networks for multivariate time series with missing values
  publication-title: Sci Rep
– volume: 49
  start-page: 591
  year: 2012
  end-page: 603
  ident: b0185
  article-title: Predicting future hourly residential electrical consumption: A machine learning case study
  publication-title: Energy Build
– volume: 278
  year: 2020
  ident: b0250
  article-title: A novel mobility-based approach to derive urban-scale building occupant profiles and analyze impacts on building energy consumption
  publication-title: Appl Energy
– reference: Chao MA, Tian Y, Kulkarni C, Goebel K, Fink O. Real-time model calibration with deep reinforcement learning. arXiv preprint arXiv:2006.04001; 2020.
– volume: 86
  year: 2021
  ident: b0110
  article-title: Decoupling and decomposition analysis of residential building carbon emissions from residential income: Evidence from the provincial level in China
  publication-title: Environ Impact Assess Rev
– reference: Ali U, Shamsi MH, Hoare C, O'Donnell J. GIS-based residential building energy modeling at district scale. In:
– volume: 33
  start-page: 346
  year: 2019
  end-page: 353
  ident: b0230
  article-title: Session-based recommendation with graph neural networks
  publication-title: Proc AAAI Conf Artificial Intell
– volume: 37
  start-page: 545
  year: 2005
  end-page: 553
  ident: b0190
  article-title: Applying support vector machines to predict building energy consumption in tropical region
  publication-title: Energy Build
– volume: 139
  year: 2017
  ident: b0125
  article-title: On the spatio-temporal end-user energy demands of a dense urban environment
  publication-title: J Sol Energy Eng
– volume: 12
  start-page: 433
  year: 2019
  ident: b0145
  article-title: Development of a consecutive occupancy estimation framework for improving the energy demand prediction performance of building energy modeling tools
  publication-title: Energies
– start-page: 238
  year: 2020
  end-page: 243
  ident: b0090
  article-title: Efficient computation of surface sunlit fractions in urban-scale building modeling using ray-tracing techniques
  publication-title: ASHRAE topical conference proceedings
– reference: .
– year: 2017
  ident: b0275
  article-title: Electricity consumption prediction using XGBoost based on discrete wavelet transform
  publication-title: DEStech Trans Comput Sci Eng
– volume: 168
  year: 2020
  ident: b0025
  article-title: Ten questions on urban building energy modeling
  publication-title: Build Environ
– volume: 1
  start-page: 57
  year: 2020
  end-page: 81
  ident: b0215
  article-title: Graph neural networks: A review of methods and applications
  publication-title: AI Open
– volume: 154
  start-page: 321
  year: 2017
  end-page: 334
  ident: b0120
  article-title: Comparison of four building archetype characterization methods in urban building energy modeling (UBEM): A residential case study in Kuwait City
  publication-title: Energy Build
– volume: 277
  year: 2020
  ident: b0165
  article-title: Automatic and rapid calibration of urban building energy models by learning from energy performance database
  publication-title: Appl Energy
– reference: Koskela T, Lehtokangas M, Saarinen J, Kaski K. Time series prediction with multilayer perceptron, FIR and Elman neural networks. In:
– ident: 10.1016/j.apenergy.2021.118231_b0060
– volume: 86
  year: 2021
  ident: 10.1016/j.apenergy.2021.118231_b0110
  article-title: Decoupling and decomposition analysis of residential building carbon emissions from residential income: Evidence from the provincial level in China
  publication-title: Environ Impact Assess Rev
  doi: 10.1016/j.eiar.2020.106487
– ident: 10.1016/j.apenergy.2021.118231_b0115
– volume: 277
  year: 2020
  ident: 10.1016/j.apenergy.2021.118231_b0165
  article-title: Automatic and rapid calibration of urban building energy models by learning from energy performance database
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115584
– volume: 14
  start-page: 342
  issue: 3
  year: 2020
  ident: 10.1016/j.apenergy.2021.118231_b0225
  article-title: Multi-modal transportation recommendation with unified route representation learning
  publication-title: Proc VLDB Endowment
  doi: 10.14778/3430915.3430924
– volume: 8
  start-page: 37
  issue: 3
  year: 2018
  ident: 10.1016/j.apenergy.2021.118231_b0290
  article-title: Energy and economic performance of solar cooling systems in the hot-summer and cold-winter zone
  publication-title: Buildings
  doi: 10.3390/buildings8030037
– volume: 20
  start-page: 61
  issue: 1
  year: 2008
  ident: 10.1016/j.apenergy.2021.118231_b0210
  article-title: The graph neural network model
  publication-title: IEEE Trans Neural Networks
  doi: 10.1109/TNN.2008.2005605
– volume: 1
  start-page: 57
  year: 2020
  ident: 10.1016/j.apenergy.2021.118231_b0215
  article-title: Graph neural networks: A review of methods and applications
  publication-title: AI Open
  doi: 10.1016/j.aiopen.2021.01.001
– volume: 183
  start-page: 182
  year: 2016
  ident: 10.1016/j.apenergy.2021.118231_b0075
  article-title: Estimation of the building energy use intensity in the urban scale by integrating GIS and big data technology
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.08.079
– volume: 40
  start-page: 2169
  issue: 12
  year: 2008
  ident: 10.1016/j.apenergy.2021.118231_b0195
  article-title: Comparison between detailed model simulation and artificial neural network for forecasting building energy consumption
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2008.06.013
– volume: 137
  year: 2021
  ident: 10.1016/j.apenergy.2021.118231_b0200
  article-title: A deep learning framework for building energy consumption forecast
  publication-title: Renew Sustainable Energy Rev
  doi: 10.1016/j.rser.2020.110591
– volume: 207
  year: 2020
  ident: 10.1016/j.apenergy.2021.118231_b0030
  article-title: Urban Building Energy and Climate (UrBEC) simulation: Example application and field evaluation in Sai Ying Pun, Hong Kong
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2019.109580
– year: 2012
  ident: 10.1016/j.apenergy.2021.118231_b0255
– volume: 285
  year: 2021
  ident: 10.1016/j.apenergy.2021.118231_b0205
  article-title: A review of machine learning in building load prediction
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.116452
– start-page: 447
  year: 2015
  ident: 10.1016/j.apenergy.2021.118231_b0050
  article-title: Urban data and building energy modeling: A GIS-based urban building energy modeling system using the urban-EPC engine
– volume: 93
  start-page: 252
  year: 2018
  ident: 10.1016/j.apenergy.2021.118231_b0150
  article-title: Review of Unmanned Aerial System (UAS) applications in the built environment: Towards automated building inspection procedures using drones
  publication-title: Autom Constr
  doi: 10.1016/j.autcon.2018.05.002
– volume: 168
  year: 2020
  ident: 10.1016/j.apenergy.2021.118231_b0025
  article-title: Ten questions on urban building energy modeling
  publication-title: Build Environ
  doi: 10.1016/j.buildenv.2019.106508
– start-page: 238
  year: 2020
  ident: 10.1016/j.apenergy.2021.118231_b0090
  article-title: Efficient computation of surface sunlit fractions in urban-scale building modeling using ray-tracing techniques
– year: 2021
  ident: 10.1016/j.apenergy.2021.118231_b0080
  article-title: Predicting City-Scale Daily Electricity Consumption Using Data-Driven Models
  publication-title: Adv Appl Energy
– ident: 10.1016/j.apenergy.2021.118231_b0130
  doi: 10.1109/INTLEC.2018.8612398
– start-page: 66
  year: 2020
  ident: 10.1016/j.apenergy.2021.118231_b0260
  article-title: Graph structure learning for robust graph neural networks
– volume: 128
  year: 2020
  ident: 10.1016/j.apenergy.2021.118231_b0055
  article-title: Urban building energy modeling: State of the art and future prospects
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2020.109902
– year: 2020
  ident: 10.1016/j.apenergy.2021.118231_b0100
  article-title: Urban building energy modeling (UBEM) tools: A state-of-the-art review of bottom-up physics-based approaches
  publication-title: Sustainable Cities Soc
  doi: 10.1016/j.scs.2020.102408
– volume: 116
  year: 2020
  ident: 10.1016/j.apenergy.2021.118231_b0155
  article-title: Image-based construction of building energy models using computer vision
  publication-title: Autom Constr
  doi: 10.1016/j.autcon.2020.103231
– volume: 17
  start-page: 43
  year: 2012
  ident: 10.1016/j.apenergy.2021.118231_b0170
  article-title: A wireless sensor network for intelligent building energy management based on multi communication standards-A case study
  publication-title: J Inform Technol Construct
– volume: 279
  year: 2020
  ident: 10.1016/j.apenergy.2021.118231_b0135
  article-title: A data-driven approach for multi-scale GIS-based building energy modeling for analysis, planning and support decision making
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115834
– volume: 33
  start-page: 346
  issue: 01
  year: 2019
  ident: 10.1016/j.apenergy.2021.118231_b0230
  article-title: Session-based recommendation with graph neural networks
  publication-title: Proc AAAI Conf Artificial Intell
– volume: 225
  start-page: 1176
  year: 2018
  ident: 10.1016/j.apenergy.2021.118231_b0040
  article-title: Data-driven Urban Energy Simulation (DUE-S): A framework for integrating engineering simulation and machine learning methods in a multi-scale urban energy modeling workflow
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.05.023
– start-page: 974
  year: 2018
  ident: 10.1016/j.apenergy.2021.118231_b0235
  article-title: Graph convolutional neural networks for web-scale recommender systems
– volume: 87
  start-page: 201
  year: 2018
  ident: 10.1016/j.apenergy.2021.118231_b0160
  article-title: Environmental monitoring system based on an Open Source Platform and the Internet of Things for a building energy retrofit
  publication-title: Autom Constr
  doi: 10.1016/j.autcon.2017.12.017
– volume: 20
  start-page: 37
  issue: 1
  year: 2011
  ident: 10.1016/j.apenergy.2021.118231_b0180
  article-title: Analysis of an energy efficient building design through data mining approach
  publication-title: Autom Constr
  doi: 10.1016/j.autcon.2010.07.006
– ident: 10.1016/j.apenergy.2021.118231_b0020
– ident: 10.1016/j.apenergy.2021.118231_b0010
– volume: 278
  year: 2020
  ident: 10.1016/j.apenergy.2021.118231_b0250
  article-title: A novel mobility-based approach to derive urban-scale building occupant profiles and analyze impacts on building energy consumption
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115656
– volume: 141
  start-page: 2445
  year: 2017
  ident: 10.1016/j.apenergy.2021.118231_b0045
  article-title: Modeling urban building energy use: A review of modeling approaches and procedures
  publication-title: Energy
  doi: 10.1016/j.energy.2017.11.071
– ident: 10.1016/j.apenergy.2021.118231_b0270
– ident: 10.1016/j.apenergy.2021.118231_b0245
  doi: 10.24963/ijcai.2018/505
– volume: 97
  start-page: 196
  year: 2016
  ident: 10.1016/j.apenergy.2021.118231_b0095
  article-title: Urban building energy modeling – a review of a nascent field
  publication-title: Build Environ
  doi: 10.1016/j.buildenv.2015.12.001
– volume: 238
  year: 2021
  ident: 10.1016/j.apenergy.2021.118231_b0105
  article-title: Top-down spatially-explicit probabilistic estimation of building energy performance at a scale
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2021.110786
– volume: 35
  start-page: 670
  issue: 4
  year: 2017
  ident: 10.1016/j.apenergy.2021.118231_b0070
  article-title: Mapping the managerial areas of Building Information Modeling (BIM) using scientometric analysis
  publication-title: Int J Project Manage
  doi: 10.1016/j.ijproman.2016.08.001
– volume: 34
  start-page: 1054
  issue: 01
  year: 2020
  ident: 10.1016/j.apenergy.2021.118231_b0220
  article-title: Graph convolutional networks with markov random field reasoning for social spammer detection
  publication-title: Proc AAAI Conf Artificial Intell
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.apenergy.2021.118231_b0285
  article-title: Recurrent neural networks for multivariate time series with missing values
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-24271-9
– volume: 13
  start-page: 2382
  issue: 9
  year: 2020
  ident: 10.1016/j.apenergy.2021.118231_b0035
  article-title: Modeling thermal interactions between buildings in an urban context
  publication-title: Energies
  doi: 10.3390/en13092382
– volume: 12
  start-page: 433
  issue: 3
  year: 2019
  ident: 10.1016/j.apenergy.2021.118231_b0145
  article-title: Development of a consecutive occupancy estimation framework for improving the energy demand prediction performance of building energy modeling tools
  publication-title: Energies
  doi: 10.3390/en12030433
– ident: 10.1016/j.apenergy.2021.118231_b0065
– volume: 49
  start-page: 591
  year: 2012
  ident: 10.1016/j.apenergy.2021.118231_b0185
  article-title: Predicting future hourly residential electrical consumption: A machine learning case study
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2012.03.010
– volume: 139
  issue: 4
  year: 2017
  ident: 10.1016/j.apenergy.2021.118231_b0125
  article-title: On the spatio-temporal end-user energy demands of a dense urban environment
  publication-title: J Sol Energy Eng
  doi: 10.1115/1.4036545
– volume: 154
  start-page: 321
  year: 2017
  ident: 10.1016/j.apenergy.2021.118231_b0120
  article-title: Comparison of four building archetype characterization methods in urban building energy modeling (UBEM): A residential case study in Kuwait City
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2017.08.029
– volume: 37
  start-page: 545
  issue: 5
  year: 2005
  ident: 10.1016/j.apenergy.2021.118231_b0190
  article-title: Applying support vector machines to predict building energy consumption in tropical region
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2004.09.009
– year: 2017
  ident: 10.1016/j.apenergy.2021.118231_b0275
  article-title: Electricity consumption prediction using XGBoost based on discrete wavelet transform
  publication-title: DEStech Trans Comput Sci Eng
– volume: 179
  start-page: 333
  year: 2018
  ident: 10.1016/j.apenergy.2021.118231_b0140
  article-title: Comparison of dynamic urban building energy models (UBEM): Sigmoid energy signature and physical modelling approach
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2018.09.034
– volume: 59
  start-page: 39
  issue: 1
  year: 2016
  ident: 10.1016/j.apenergy.2021.118231_b0175
  article-title: The open kimono: Toward a general framework for open data initiatives in cities
  publication-title: California Manage Rev
  doi: 10.1177/0008125616683703
– ident: 10.1016/j.apenergy.2021.118231_b0280
  doi: 10.1109/YAC.2016.7804912
– ident: 10.1016/j.apenergy.2021.118231_b0015
– year: 2021
  ident: 10.1016/j.apenergy.2021.118231_b0265
– volume: 123
  start-page: 168
  year: 2014
  ident: 10.1016/j.apenergy.2021.118231_b0085
  article-title: Forecasting energy consumption of multi-family residential buildings using support vector regression: Investigating the impact of temporal and spatial monitoring granularity on performance accuracy
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.02.057
– volume: 34
  start-page: 5363
  issue: 04
  year: 2020
  ident: 10.1016/j.apenergy.2021.118231_b0240
  article-title: Evolvegcn: Evolving graph convolutional networks for dynamic graphs
  publication-title: Proc AAAI Conf Artificial Intel
– volume: 232
  year: 2021
  ident: 10.1016/j.apenergy.2021.118231_b0005
  article-title: Will the urbanization process influence the peak of carbon emissions in the building sector? A dynamic scenario simulation
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2020.110590
SSID ssj0002120
Score 2.6360366
Snippet •Develop a Spatiotemporal graph convolutional network for hourly energy predictions.•Inter-building impacts are considered in graph-based method for...
The world is increasingly urbanizing, and to improve urban sustainability, many cities adopt ambitious energy-saving strategies through retrofitting existing...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 118231
SubjectTerms algorithms
Building interdependency
energy conservation
energy efficiency
Graph neural network
prediction
summer
time series analysis
Time-series prediction
Urban-scale building simulation
winter
Title Times series forecasting for urban building energy consumption based on graph convolutional network
URI https://dx.doi.org/10.1016/j.apenergy.2021.118231
https://www.proquest.com/docview/2636837909
Volume 307
WOSCitedRecordID wos000807274400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLQc4oFKoWijISNxQiuM4cXysqkUFoYpDgb1FjuNIW62yy-6mKv31Hb-StDxKD1wiK4odJ_Nl5htnZozQW05lTrUwGcuSRSymVSQBWVFFidQZq-vK1i349pmfnubTqfgyGl2FXJiLOW-a_PJSLP-rqOEcCNukzt5D3N2gcALaIHQ4gtjh-G-Ct_WXzK20rbWglVxvQrxkuyrhgy79XtjvtMv8UzYP0ykPY9Yq8wvBlrK2Uel-uiDMxgWNDxltoLFuqB4lVre3P4JltBEE2imW6UwufrY9LL-HNevWrF4PL7cYAwDPZ8PVCXBsSRfp4bOySBYZL22ocRO30a3XmcbFcZbgF3XuVhbOD-XSPQT48zQ-7DvcrJ99y6510YYhkO28COMUZpzCjfMAbVGeinyMto4-TqafOjtOfVHP8ASD_PLfz-hP1OaWkbfM5WwbPfEuBz5yUHmKRrrZQY8HhSh30O6kz3eES73CXz9DyqIJOzThAZpMG1s04YAm7OaKB2jCFk0YGhZN-AaasEfTc_T1w-Ts-CTy-3JEiqViE6lcKl0ykiSJIDLWqaRaZhWXZtdnyWNJNBFA61PgxrKKa1WrrE4yUqcc2L2myS4aN4tG7yFMyrzSKstUabhiTmRecyDoSZkyRjRj-ygNr7RQvmi92TtlXvxdqPvofddv6cq23NlDBIkVnnw6UlkAGO_s-yaIuADtbH65yUYv2nVBsyTLEy6IeHHvGb1Ej_ov6gCNN6tWv0IP1cVmtl699mi9BoRAuXA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Times+series+forecasting+for+urban+building+energy+consumption+based+on+graph+convolutional+network&rft.jtitle=Applied+energy&rft.au=Hu%2C+Yuqing&rft.au=Cheng%2C+Xiaoyuan&rft.au=Wang%2C+Suhang&rft.au=Chen%2C+Jianli&rft.date=2022-02-01&rft.issn=0306-2619&rft.volume=307&rft.spage=118231&rft_id=info:doi/10.1016%2Fj.apenergy.2021.118231&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2021_118231
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon