Immune Response to Mycobacterium tuberculosis: A Narrative Review

The encounter between (Mtb) and the host leads to a complex and multifaceted immune response possibly resulting in latent infection, tubercular disease or to the complete clearance of the pathogen. Macrophages and CD4 T lymphocytes, together with granuloma formation, are traditionally considered the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Frontiers in pediatrics Ročník 7; s. 350
Hlavní autori: de Martino, Maurizio, Lodi, Lorenzo, Galli, Luisa, Chiappini, Elena
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland Frontiers Media S.A 27.08.2019
Predmet:
ISSN:2296-2360, 2296-2360
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The encounter between (Mtb) and the host leads to a complex and multifaceted immune response possibly resulting in latent infection, tubercular disease or to the complete clearance of the pathogen. Macrophages and CD4 T lymphocytes, together with granuloma formation, are traditionally considered the pillars of immune defense against Mtb and their role stands out clearly. However, there is no component of the immune system that does not take part in the response to this pathogen. On the other side, Mtb displays a complex artillery of immune-escaping mechanisms capable of responding in an equally varied manner. In addition, the role of each cellular line has become discussed and uncertain further than ever before. Each defense mechanism is based on a subtle balance that, if altered, can lean to one side to favor Mtb proliferation, resulting in disease progression and on the other to the host tissue damage by the immune system itself. Through a brief and complete overview of the role of each cell type involved in the Mtb response, we aimed to highlight the main literature reviews and the most relevant studies in order to facilitate the approach to such a complex and changeable topic. In conclusion, this narrative mini-review summarizes the various immunologic mechanisms which modulate the individual ability to fight Mtb infection taking in account the major host and pathogen determinants in the susceptibility to tuberculosis.
AbstractList The encounter between Mycobacterium tuberculosis (Mtb) and the host leads to a complex and multifaceted immune response possibly resulting in latent infection, tubercular disease or to the complete clearance of the pathogen. Macrophages and CD4+ T lymphocytes, together with granuloma formation, are traditionally considered the pillars of immune defense against Mtb and their role stands out clearly. However, there is no component of the immune system that does not take part in the response to this pathogen. On the other side, Mtb displays a complex artillery of immune-escaping mechanisms capable of responding in an equally varied manner. In addition, the role of each cellular line has become discussed and uncertain further than ever before. Each defense mechanism is based on a subtle balance that, if altered, can lean to one side to favor Mtb proliferation, resulting in disease progression and on the other to the host tissue damage by the immune system itself. Through a brief and complete overview of the role of each cell type involved in the Mtb response, we aimed to highlight the main literature reviews and the most relevant studies in order to facilitate the approach to such a complex and changeable topic. In conclusion, this narrative mini-review summarizes the various immunologic mechanisms which modulate the individual ability to fight Mtb infection taking in account the major host and pathogen determinants in the susceptibility to tuberculosis.The encounter between Mycobacterium tuberculosis (Mtb) and the host leads to a complex and multifaceted immune response possibly resulting in latent infection, tubercular disease or to the complete clearance of the pathogen. Macrophages and CD4+ T lymphocytes, together with granuloma formation, are traditionally considered the pillars of immune defense against Mtb and their role stands out clearly. However, there is no component of the immune system that does not take part in the response to this pathogen. On the other side, Mtb displays a complex artillery of immune-escaping mechanisms capable of responding in an equally varied manner. In addition, the role of each cellular line has become discussed and uncertain further than ever before. Each defense mechanism is based on a subtle balance that, if altered, can lean to one side to favor Mtb proliferation, resulting in disease progression and on the other to the host tissue damage by the immune system itself. Through a brief and complete overview of the role of each cell type involved in the Mtb response, we aimed to highlight the main literature reviews and the most relevant studies in order to facilitate the approach to such a complex and changeable topic. In conclusion, this narrative mini-review summarizes the various immunologic mechanisms which modulate the individual ability to fight Mtb infection taking in account the major host and pathogen determinants in the susceptibility to tuberculosis.
The encounter between Mycobacterium tuberculosis (Mtb) and the host leads to a complex and multifaceted immune response possibly resulting in latent infection, tubercular disease or to the complete clearance of the pathogen. Macrophages and CD4+ T lymphocytes, together with granuloma formation, are traditionally considered the pillars of immune defense against Mtb and their role stands out clearly. However, there is no component of the immune system that does not take part in the response to this pathogen. On the other side, Mtb displays a complex artillery of immune-escaping mechanisms capable of responding in an equally varied manner. In addition, the role of each cellular line has become discussed and uncertain further than ever before. Each defense mechanism is based on a subtle balance that, if altered, can lean to one side to favor Mtb proliferation, resulting in disease progression and on the other to the host tissue damage by the immune system itself. Through a brief and complete overview of the role of each cell type involved in the Mtb response, we aimed to highlight the main literature reviews and the most relevant studies in order to facilitate the approach to such a complex and changeable topic. In conclusion, this narrative mini-review summarizes the various immunologic mechanisms which modulate the individual ability to fight Mtb infection taking in account the major host and pathogen determinants in the susceptibility to tuberculosis.
The encounter between (Mtb) and the host leads to a complex and multifaceted immune response possibly resulting in latent infection, tubercular disease or to the complete clearance of the pathogen. Macrophages and CD4 T lymphocytes, together with granuloma formation, are traditionally considered the pillars of immune defense against Mtb and their role stands out clearly. However, there is no component of the immune system that does not take part in the response to this pathogen. On the other side, Mtb displays a complex artillery of immune-escaping mechanisms capable of responding in an equally varied manner. In addition, the role of each cellular line has become discussed and uncertain further than ever before. Each defense mechanism is based on a subtle balance that, if altered, can lean to one side to favor Mtb proliferation, resulting in disease progression and on the other to the host tissue damage by the immune system itself. Through a brief and complete overview of the role of each cell type involved in the Mtb response, we aimed to highlight the main literature reviews and the most relevant studies in order to facilitate the approach to such a complex and changeable topic. In conclusion, this narrative mini-review summarizes the various immunologic mechanisms which modulate the individual ability to fight Mtb infection taking in account the major host and pathogen determinants in the susceptibility to tuberculosis.
Author Chiappini, Elena
de Martino, Maurizio
Lodi, Lorenzo
Galli, Luisa
AuthorAffiliation Department of Health Sciences, University of Florence , Florence , Italy
AuthorAffiliation_xml – name: Department of Health Sciences, University of Florence , Florence , Italy
Author_xml – sequence: 1
  givenname: Maurizio
  surname: de Martino
  fullname: de Martino, Maurizio
– sequence: 2
  givenname: Lorenzo
  surname: Lodi
  fullname: Lodi, Lorenzo
– sequence: 3
  givenname: Luisa
  surname: Galli
  fullname: Galli, Luisa
– sequence: 4
  givenname: Elena
  surname: Chiappini
  fullname: Chiappini, Elena
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31508399$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtr3DAUhUVJadI06-6Kl93MRK9rS10UhtDHQNpCyV5I8nWqYFtTSZ6Qf187k5SkUG0krs75DtzzmhyNcURC3jK6FkLp826H7ZpTpteUCqAvyAnnul5xUdOjJ-9jcpbzDZ2PbigweEWOBQOqhNYnZLMdhmnE6ifmXRwzViVW3-58dNYXTGEaqjI5TH7qYw75Q7WpvtuUbAn7xbMPePuGvOxsn_Hs4T4lV58_XV18XV3--LK92FyuvARdVr6mDhzXSguAuum8A0lFo3nnpetaANq1ylOLnUbHwNYCtBWqlcrxzjlxSrYHbBvtjdmlMNh0Z6IN5n4Q07WxqQTfowHwrAHGxJwnqUPVapBCaqcFa1vkM-vjgbWb3ICtx7Ek2z-DPv8Zwy9zHfembpiadzgD3j8AUvw9YS5mCNlj39sR45QN50o1ILiUs_Td06y_IY8VzAI4CHyKOSfsjA9lXnBcokNvGDVL22Zp2yxtm_u2Z9_5P75H9P8cfwDv1KzJ
CitedBy_id crossref_primary_10_1016_j_tube_2020_101900
crossref_primary_10_1016_S1473_3099_20_30148_1
crossref_primary_10_1080_14787210_2025_2468331
crossref_primary_10_3390_cells12020317
crossref_primary_10_3389_fimmu_2019_03103
crossref_primary_10_3389_fimmu_2021_685237
crossref_primary_10_1007_s00203_025_04463_4
crossref_primary_10_2147_AABC_S366431
crossref_primary_10_3390_ijms24087267
crossref_primary_10_1038_s42003_024_06620_9
crossref_primary_10_3389_fimmu_2023_1205449
crossref_primary_10_3390_biomedicines11092568
crossref_primary_10_3389_fimmu_2023_1091352
crossref_primary_10_3389_fimmu_2022_840610
crossref_primary_10_1016_j_ijid_2021_02_094
crossref_primary_10_1111_cpr_13698
crossref_primary_10_14309_ctg_0000000000000493
crossref_primary_10_3389_fimmu_2025_1442101
crossref_primary_10_3390_cells12222610
crossref_primary_10_3390_jcm14082782
crossref_primary_10_1177_11772719241312776
crossref_primary_10_3390_diseases12090202
crossref_primary_10_1002_admt_202200056
crossref_primary_10_1016_j_micres_2023_127400
crossref_primary_10_3389_fcimb_2021_763591
crossref_primary_10_1016_j_ebiom_2020_102965
crossref_primary_10_3390_v16030321
crossref_primary_10_2147_IJGM_S483185
crossref_primary_10_2147_CCID_S343351
crossref_primary_10_3389_fimmu_2025_1586789
crossref_primary_10_1111_tmi_13454
crossref_primary_10_3389_fimmu_2024_1437901
crossref_primary_10_3390_jcm14072154
crossref_primary_10_1093_cid_ciad401
crossref_primary_10_1016_j_bmc_2021_116506
crossref_primary_10_1159_000512531
crossref_primary_10_3390_pathogens12091149
crossref_primary_10_1016_j_imbio_2022_152321
crossref_primary_10_1016_j_micpath_2020_104456
crossref_primary_10_1038_s41598_020_79407_7
crossref_primary_10_1097_MD_0000000000030737
crossref_primary_10_4103_ijmy_ijmy_6_25
crossref_primary_10_1111_tid_14294
crossref_primary_10_1016_j_tube_2025_102616
crossref_primary_10_3389_fmed_2022_890609
crossref_primary_10_3389_fmicb_2022_993897
crossref_primary_10_1038_s41598_021_89659_6
crossref_primary_10_1016_j_dci_2021_104111
crossref_primary_10_1128_iai_00063_25
crossref_primary_10_1002_jbt_70119
crossref_primary_10_1016_j_trim_2023_101798
crossref_primary_10_4103_ijmy_ijmy_190_22
crossref_primary_10_7554_eLife_64834
crossref_primary_10_3390_cells9122673
crossref_primary_10_1016_j_ijbiomac_2024_132332
crossref_primary_10_3390_microorganisms11081988
crossref_primary_10_1016_j_tube_2021_102078
crossref_primary_10_7759_cureus_69588
crossref_primary_10_3389_fcimb_2023_1196904
crossref_primary_10_1186_s12890_022_02088_7
crossref_primary_10_3390_ijms26104522
crossref_primary_10_1186_s12889_020_09051_3
crossref_primary_10_3389_fimmu_2024_1474346
crossref_primary_10_3390_jcm13030756
crossref_primary_10_3389_fimmu_2022_923492
crossref_primary_10_3389_fphar_2022_879729
crossref_primary_10_3390_vaccines8010067
crossref_primary_10_1134_S1068162024010151
crossref_primary_10_3390_vaccines11081304
crossref_primary_10_1016_j_cyto_2024_156708
crossref_primary_10_3389_fimmu_2020_587617
crossref_primary_10_1080_21505594_2023_2180230
crossref_primary_10_3389_fimmu_2022_944183
crossref_primary_10_1007_s10989_022_10406_0
crossref_primary_10_3390_jpm13010116
crossref_primary_10_1016_j_bbrc_2022_06_021
crossref_primary_10_22207_JPAM_19_1_52
crossref_primary_10_22207_JPAM_19_2_20
crossref_primary_10_3390_vaccines13030305
crossref_primary_10_3390_microorganisms12122649
crossref_primary_10_1016_j_jiph_2021_11_019
crossref_primary_10_2147_RRTM_S252550
crossref_primary_10_1177_1759720X20930116
crossref_primary_10_3390_microorganisms9112291
crossref_primary_10_3390_microorganisms13051040
crossref_primary_10_1371_journal_ppat_1013474
crossref_primary_10_1016_j_heliyon_2024_e35670
crossref_primary_10_3389_fimmu_2021_740117
crossref_primary_10_1093_infdis_jiaa596
crossref_primary_10_3390_diagnostics12112676
crossref_primary_10_4103_lungindia_lungindia_552_24
crossref_primary_10_3389_fimmu_2021_657261
crossref_primary_10_4167_jbv_2020_50_4_203
crossref_primary_10_3390_ijms241713261
crossref_primary_10_51867_ajernet_5_4_80
crossref_primary_10_3892_etm_2022_11165
crossref_primary_10_1021_acsinfecdis_4c00790
crossref_primary_10_2147_JIR_S517034
crossref_primary_10_3389_fgene_2022_883810
crossref_primary_10_12998_wjcc_v9_i25_7311
crossref_primary_10_7717_peerj_11565
crossref_primary_10_3389_fmed_2021_729229
crossref_primary_10_1186_s13568_024_01691_7
crossref_primary_10_3389_fimmu_2023_1278947
crossref_primary_10_1007_s42770_021_00520_4
crossref_primary_10_1038_s41598_025_87160_y
crossref_primary_10_1007_s11274_023_03735_9
crossref_primary_10_1186_s12967_022_03835_4
crossref_primary_10_3390_jpm12040569
crossref_primary_10_1371_journal_pone_0313306
crossref_primary_10_1093_rheumatology_keae185
crossref_primary_10_1111_imm_13781
crossref_primary_10_2147_ITT_S455744
crossref_primary_10_1155_2021_7925903
crossref_primary_10_3390_vaccines10101740
crossref_primary_10_58838_2075_1230_2024_102_2_6_19
crossref_primary_10_1002_adbi_202400174
crossref_primary_10_1002_adhm_202304299
crossref_primary_10_3389_fnins_2023_1157652
crossref_primary_10_3390_ph17050559
crossref_primary_10_1016_j_vaccine_2024_07_010
crossref_primary_10_4103_ijmy_ijmy_101_22
crossref_primary_10_1073_pnas_2318003121
crossref_primary_10_1016_j_micpath_2021_105083
crossref_primary_10_1007_s12275_023_00101_0
crossref_primary_10_3389_fcimb_2022_956607
crossref_primary_10_1016_S1473_3099_24_00143_9
crossref_primary_10_3390_jcm10010164
crossref_primary_10_3390_vaccines11101604
crossref_primary_10_1134_S2079086425600146
crossref_primary_10_3389_fimmu_2021_640168
crossref_primary_10_1038_s41559_025_02837_x
crossref_primary_10_1002_mco2_82
crossref_primary_10_3390_clinpract12050082
crossref_primary_10_21292_2075_1230_2022_100_10_50_56
crossref_primary_10_3389_fimmu_2021_660916
crossref_primary_10_3389_fimmu_2022_992743
crossref_primary_10_1016_j_it_2022_06_004
crossref_primary_10_1098_rsif_2025_0138
crossref_primary_10_1016_j_intimp_2025_115455
crossref_primary_10_1016_j_micres_2020_126674
crossref_primary_10_3389_fcimb_2025_1548238
crossref_primary_10_1016_j_meegid_2024_105703
crossref_primary_10_1016_j_ijid_2020_09_1056
crossref_primary_10_1042_CS20230307
crossref_primary_10_1016_j_heliyon_2024_e37536
crossref_primary_10_1128_spectrum_00412_24
crossref_primary_10_1007_s11274_023_03636_x
crossref_primary_10_1021_acscentsci_3c00040
crossref_primary_10_1016_j_ajpath_2020_09_013
crossref_primary_10_1007_s12291_022_01110_3
crossref_primary_10_1371_journal_ppat_1008632
crossref_primary_10_7759_cureus_38875
crossref_primary_10_1016_j_bbrc_2025_151575
crossref_primary_10_7759_cureus_76397
crossref_primary_10_3390_vaccines12080901
crossref_primary_10_1016_j_micres_2023_127466
crossref_primary_10_1093_jambio_lxad104
crossref_primary_10_4103_apjtm_apjtm_116_24
crossref_primary_10_3390_pathogens13121078
crossref_primary_10_1016_j_jiac_2023_09_011
crossref_primary_10_3390_pathogens11090981
crossref_primary_10_3390_pharmaceutics13050592
crossref_primary_10_1038_s41598_022_20409_y
crossref_primary_10_1080_08820139_2023_2298398
crossref_primary_10_3389_fimmu_2025_1561459
crossref_primary_10_3389_fimmu_2023_1104828
crossref_primary_10_1155_2022_7526501
crossref_primary_10_1016_j_bbrep_2025_101952
crossref_primary_10_1016_j_tips_2021_06_004
crossref_primary_10_1007_s13258_023_01469_4
crossref_primary_10_1016_j_ijtb_2025_07_004
crossref_primary_10_52692_1857_0011_2024_3_80_35
crossref_primary_10_1016_j_micres_2024_127664
crossref_primary_10_3389_fimmu_2021_635985
crossref_primary_10_3389_fimmu_2022_829355
crossref_primary_10_3389_fimmu_2021_662218
crossref_primary_10_3390_microorganisms11071722
crossref_primary_10_1186_s42522_025_00144_w
crossref_primary_10_1093_jleuko_qiae246
crossref_primary_10_3389_fimmu_2022_861931
crossref_primary_10_3389_fphar_2021_746496
crossref_primary_10_7717_peerj_19576
crossref_primary_10_3390_pharmaceutics15051521
crossref_primary_10_3389_fcimb_2025_1567592
crossref_primary_10_3389_fimmu_2021_776913
crossref_primary_10_3390_ijms24087439
crossref_primary_10_3390_ph16101475
crossref_primary_10_58838_2075_1230_2025_103_1_60_67
crossref_primary_10_1007_s11033_021_06846_4
crossref_primary_10_1186_s12879_022_07895_1
crossref_primary_10_3389_fmed_2022_970408
crossref_primary_10_3389_fimmu_2022_1025931
crossref_primary_10_3390_microorganisms13010021
crossref_primary_10_1016_j_ijtb_2023_03_012
crossref_primary_10_3389_fped_2022_908963
crossref_primary_10_1073_pnas_2423349122
crossref_primary_10_3390_ijms23042235
crossref_primary_10_1016_j_arr_2021_101396
crossref_primary_10_1590_1806_9282_20230725
crossref_primary_10_1093_oxfimm_iqad008
crossref_primary_10_3389_fmicb_2021_719531
crossref_primary_10_2217_imt_2021_0197
crossref_primary_10_1093_imammb_dqac001
Cites_doi 10.3390/pathogens7040088
10.1054/tube.2002.0324
10.1186/1471-2334-14-S1-S1
10.1371/journal.pone.0162220
10.1371/journal.ppat.1006530
10.1016/j.celrep.2017.03.007
10.3389/fmicb.2017.02284
10.1038/ni.1781
10.1186/s12879-019-3707-y
10.4161/viru.22329
10.1016/j.cell.2016.08.072
10.1146/annurev.immunol.021908.132703
10.1111/imcb.12210
10.1038/nature09247
10.1007/978-1-4614-6111-1_12
10.1007/978-1-4614-6111-1_11
10.1146/annurev-immunol-032712-095939
10.1155/2015/747543
10.1016/j.chom.2009.08.004
10.1371/journal.pone.0097515
10.1111/cmi.12480
10.1038/nri3211
10.1038/mi.2014.136
10.4049/jimmunol.176.4.2610
10.1177/0300985817705177
10.1128/CMR.11.3.514
10.4049/jimmunol.162.9.5407
10.1186/cc9354
10.1371/journal.pone.0004094
10.4161/viru.22586
10.1146/annurev.immunol.20.081501.125851
10.1016/j.tube.2016.08.001
10.1007/s12026-015-8654-0
10.4049/jimmunol.177.3.1864
10.1038/icb.2010.22
10.1371/journal.ppat.1003499
10.1016/j.ejcb.2009.10.004
10.1097/MD.0000000000012179
10.1016/j.chom.2011.08.006
10.1038/nrmicro1538
10.1038/ni.1992
10.1111/imr.12265
10.1177/2058738419840241
10.3389/fimmu.2018.02637
10.1016/j.cellimm.2011.09.001
10.3389/fimmu.2017.01290
10.1128/IAI.00387-17
10.3389/fmed.2018.00213
10.3389/fcimb.2018.00327
10.1159/000363321
10.1016/S1874-5326(07)80027-5
10.1128/microbiolspec.TBTB2-0018-2016
10.1084/jem.20090892
10.1371/journal.pone.0092340
10.1016/j.mib.2011.10.006
10.3109/08830185.2015.1015718
10.1186/1471-2334-10-220
10.1128/IAI.01497-08
10.1155/2012/929743
10.1007/s00281-015-0490-8
10.1038/nrmicro.2016.131
10.4049/jimmunol.167.5.2734
10.1111/tmi.12923
10.1155/2012/791392
10.3389/fimmu.2018.02427
10.4049/jimmunol.160.11.5448
10.3389/fimmu.2018.00903
10.3389/fimmu.2018.00471
ContentType Journal Article
Copyright Copyright © 2019 de Martino, Lodi, Galli and Chiappini. 2019 de Martino, Lodi, Galli and Chiappini
Copyright_xml – notice: Copyright © 2019 de Martino, Lodi, Galli and Chiappini. 2019 de Martino, Lodi, Galli and Chiappini
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fped.2019.00350
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2296-2360
ExternalDocumentID oai_doaj_org_article_55c1751135b240be8d954349b931dde2
PMC6718705
31508399
10_3389_fped_2019_00350
Genre Journal Article
Review
GroupedDBID 53G
5VS
9T4
AAFWJ
AAYXX
ACGFO
ACGFS
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
ACXDI
EMOBN
IAO
IEA
IHR
IHW
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c459t-c60b5b298935567fcb5403792fc4bfd550fd8c0aef9eb15a6359a38d48b2fbb3
IEDL.DBID DOA
ISICitedReferencesCount 228
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000482826200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2296-2360
IngestDate Fri Oct 03 12:53:49 EDT 2025
Tue Sep 30 16:59:11 EDT 2025
Fri Sep 05 13:03:21 EDT 2025
Thu Jan 02 23:04:39 EST 2025
Tue Nov 18 22:24:24 EST 2025
Sat Nov 29 02:51:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Mycobacterium tuberculosis
children
immune response
granuloma
tuberculosis
macrophage
immunity
adaptive immunity
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-c60b5b298935567fcb5403792fc4bfd550fd8c0aef9eb15a6359a38d48b2fbb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Edited by: Gian Luigi Marseglia, Policlinico San Matteo Fondazione (IRCCS), Italy
This article was submitted to Pediatric Immunology, a section of the journal Frontiers in Pediatrics
Reviewed by: Silvia Garazzino, University Hospital of the City of Health and Science of Turin, Italy; Sara Manti, University of Catania, Italy
OpenAccessLink https://doaj.org/article/55c1751135b240be8d954349b931dde2
PMID 31508399
PQID 2288753244
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_55c1751135b240be8d954349b931dde2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6718705
proquest_miscellaneous_2288753244
pubmed_primary_31508399
crossref_citationtrail_10_3389_fped_2019_00350
crossref_primary_10_3389_fped_2019_00350
PublicationCentury 2000
PublicationDate 2019-08-27
PublicationDateYYYYMMDD 2019-08-27
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-27
  day: 27
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in pediatrics
PublicationTitleAlternate Front Pediatr
PublicationYear 2019
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Arora (B39) 2013; 783
Domingo-Gonzalez (B47) 2016
Garcia-Rodriguez (B41) 2017; 8
Lubbers (B43) 2018; 9
Caruso (B68) 1999; 162
O'Garra (B4) 2013; 31
Li (B16) 2012; 2012
Georgieva (B35) 2018; 86
Wayne (B69) 1976; 114
Zhang (B30) 2010; 14
Kozakiewicz (B53) 2013; 783
van Tong (B11) 2017; 22
McKinney (B66) 1998
Mihret (B31) 2012; 3
Lu (B56) 2016; 167
Ramakrishnan (B57) 2012; 12
Kroon (B27) 2018; 9
Ringshausen (B6) 2010; 10
Velasquez (B36) 2018; 9
Martinot (B61) 2018; 55
Russell (B62) 2009; 10
Lin (B50) 2015; 37
B1
Sun (B24) 2013; 9
Venturini (B65) 2019; 33
Blankley (B14) 2016; 11
Queval (B18) 2017; 8
Gröschel (B21) 2016; 14
Botella (B26) 2011; 10
Sia (B23) 2015; 2015
Middleton (B3) 2002; 82
Harishankar (B10) 2018; 5
Gou (B63) 2018; 97
Balboa (B34) 2010; 88
Wu (B33) 2011; 272
Parkash (B48) 2015; 62
Cooper (B45) 2009; 27
Rosain (B12) 2019; 97
Casanova (B7) 2002; 20
Canaday (B51) 2001; 167
Esin (B38) 2015; 7
Cai (B44) 2014; 9
Lowe (B28) 2018; 9
Monin (B67) 2015; 8
Tan (B29) 2006; 177
Harriff (B17) 2014; 9
Khan (B32) 2016; 35
Glatman-Freedman (B55) 1998; 11
Stein (B9) 2008; 3
de Martino (B5) 2014; 14
Jacobs (B54) 2016; 101
Refai (B60) 2018; 8
Oddo (B52) 1998; 160
Tellier (B2) 2019; 19
Lerner (B19) 2015; 17
Cobat (B8) 2009; 206
Bustamante (B22) 2011; 12
Ehlers (B37) 2010; 89
Sia (B46) 2017; 13
Russell (B58) 2007; 5
Carlos (B42) 2009; 77
Neyrolles (B25) 2015; 264
Reece (B59) 2012; 15
Berry (B13) 2010; 466
Gibson (B70) 2018; 7
Sallin (B49) 2017; 18
Zhang (B40) 2006; 176
Guimarães-Costa (B64) 2012; 2012
Forrellad (B15) 2013; 4
Yuk (B20) 2009; 6
References_xml – volume: 7
  start-page: E88
  year: 2018
  ident: B70
  article-title: Modelling a silent epidemic: a review of the in vitro models of latent tuberculosis
  publication-title: Pathogens.
  doi: 10.3390/pathogens7040088
– volume: 82
  start-page: 69
  year: 2002
  ident: B3
  article-title: Interaction of Mycobacterium tuberculosis with human respiratory mucosa
  publication-title: Tuberculosis.
  doi: 10.1054/tube.2002.0324
– volume: 14
  year: 2014
  ident: B5
  article-title: Reflections on the immunology of tuberculosis: will we ever unravel the skein?
  publication-title: BMC Infect Dis.
  doi: 10.1186/1471-2334-14-S1-S1
– volume: 114
  start-page: 807
  year: 1976
  ident: B69
  article-title: Dynamics of submerged growth of Mycobacterium tuberculosis under aerobic and microaerophilic conditions
  publication-title: Am Rev Respir Dis.
– volume: 11
  start-page: e0162220
  year: 2016
  ident: B14
  article-title: The transcriptional signature of active tuberculosis reflects symptom status in extra-pulmonary and pulmonary tuberculosis
  publication-title: PLoS ONE.
  doi: 10.1371/journal.pone.0162220
– volume: 13
  start-page: e1006530
  year: 2017
  ident: B46
  article-title: Engaging the CD40-CD40L pathway augments T-helper cell responses and improves control of Mycobacterium tuberculosis infection
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1006530
– volume: 18
  start-page: 3091
  year: 2017
  ident: B49
  article-title: Th1 differentiation drives the accumulation of intravascular, non-protective CD4 T cells during tuberculosis
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.03.007
– volume: 8
  start-page: 2284
  year: 2017
  ident: B18
  article-title: The macrophage: a disputed fortress in the battle against Mycobacterium tuberculosis
  publication-title: Front Microbiol.
  doi: 10.3389/fmicb.2017.02284
– volume: 10
  start-page: 943
  year: 2009
  ident: B62
  article-title: Foamy macrophages and the progression of the human tuberculosis granuloma
  publication-title: Nat Immunol.
  doi: 10.1038/ni.1781
– volume: 19
  start-page: 101
  year: 2019
  ident: B2
  article-title: Recognition of aerosol transmission of infectious agents: a commentary
  publication-title: BMC Infect Dis.
  doi: 10.1186/s12879-019-3707-y
– volume: 4
  start-page: 3
  year: 2013
  ident: B15
  article-title: Virulence factors of the Mycobacterium tuberculosis complex
  publication-title: Virulence.
  doi: 10.4161/viru.22329
– volume: 167
  start-page: 433
  year: 2016
  ident: B56
  article-title: A functional role for antibodies in tuberculosis
  publication-title: Cell.
  doi: 10.1016/j.cell.2016.08.072
– volume: 27
  start-page: 393
  year: 2009
  ident: B45
  article-title: Cell-mediated immune responses in tuberculosis
  publication-title: Annu Rev Immunol.
  doi: 10.1146/annurev.immunol.021908.132703
– volume: 97
  start-page: 360
  year: 2019
  ident: B12
  article-title: Mendelian susceptibility to mycobacterial disease: 2014–2018 update
  publication-title: Immunol Cell Biol.
  doi: 10.1111/imcb.12210
– volume: 466
  start-page: 973
  year: 2010
  ident: B13
  article-title: An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis
  publication-title: Nature.
  doi: 10.1038/nature09247
– volume: 783
  start-page: 225
  year: 2013
  ident: B53
  article-title: The role of B cells and humoral immunity in Mycobacterium tuberculosis infection
  publication-title: Adv Exp Med Biol.
  doi: 10.1007/978-1-4614-6111-1_12
– volume: 783
  start-page: 199
  year: 2013
  ident: B39
  article-title: CD1d and natural killer T cells in immunity to Mycobacterium tuberculosis
  publication-title: Adv Exp Med Biol.
  doi: 10.1007/978-1-4614-6111-1_11
– volume: 31
  start-page: 475
  year: 2013
  ident: B4
  article-title: The immune response in tuberculosis
  publication-title: Annu Rev Immunol.
  doi: 10.1146/annurev-immunol-032712-095939
– volume: 2015
  start-page: 747543
  year: 2015
  ident: B23
  article-title: Innate immune defenses in human tuberculosis: an overview of the interactions between Mycobacterium tuberculosis and innate immune cells
  publication-title: J Immunol Res.
  doi: 10.1155/2015/747543
– volume: 6
  start-page: 231
  year: 2009
  ident: B20
  article-title: Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin
  publication-title: Cell Host Microbe.
  doi: 10.1016/j.chom.2009.08.004
– volume: 9
  start-page: e97515
  year: 2014
  ident: B17
  article-title: Human lung epithelial cells contain Mycobacterium tuberculosis in a late endosomal vacuole and are efficiently recognized by CD8+ T cells
  publication-title: PLoS ONE.
  doi: 10.1371/journal.pone.0097515
– volume: 17
  start-page: 1277
  year: 2015
  ident: B19
  article-title: The innate immune response in human tuberculosis
  publication-title: Cell Microbiol.
  doi: 10.1111/cmi.12480
– volume: 12
  start-page: 352
  year: 2012
  ident: B57
  article-title: Revisiting the role of the granuloma in tuberculosis
  publication-title: Nat Rev Immunol.
  doi: 10.1038/nri3211
– volume: 8
  start-page: 1099
  year: 2015
  ident: B67
  article-title: Immune requirements for protective Th17 recall responses to Mycobacterium tuberculosis challenge
  publication-title: Mucosal Immunol.
  doi: 10.1038/mi.2014.136
– volume: 176
  start-page: 2610
  year: 2006
  ident: B40
  article-title: Human NK cells positively regulate gammadelta T cells in response to Mycobacterium tuberculosis
  publication-title: J Immunol.
  doi: 10.4049/jimmunol.176.4.2610
– volume: 55
  start-page: 14
  year: 2018
  ident: B61
  article-title: Microbial offense vs host defense: who controls the TB granuloma?
  publication-title: Vet Pathol.
  doi: 10.1177/0300985817705177
– volume: 11
  start-page: 514
  year: 1998
  ident: B55
  article-title: Serum therapy for tuberculosis revisited: reappraisal of the role of antibody-mediated immunity against Mycobacterium tuberculosis
  publication-title: Clin Microbiol Rev.
  doi: 10.1128/CMR.11.3.514
– volume: 162
  start-page: 5407
  year: 1999
  ident: B68
  article-title: Mice deficient in CD4 T cells have only transiently diminished levels of IFN-gamma, yet succumb to tuberculosis
  publication-title: J Immunol.
  doi: 10.4049/jimmunol.162.9.5407
– volume: 14
  start-page: R220
  year: 2010
  ident: B30
  article-title: PD-L1 blockade improves survival in experimental sepsis by inhibiting lymphocyte apoptosis and reversing monocyte dysfunction
  publication-title: Crit Care.
  doi: 10.1186/cc9354
– volume: 3
  start-page: e4094
  year: 2008
  ident: B9
  article-title: Genome scan of M. tuberculosis infection and disease in Ugandans
  publication-title: PLoS ONE.
  doi: 10.1371/journal.pone.0004094
– volume: 3
  start-page: 654
  year: 2012
  ident: B31
  article-title: The role of dendritic cells in Mycobacterium tuberculosis infection
  publication-title: Virulence.
  doi: 10.4161/viru.22586
– volume: 20
  start-page: 581
  year: 2002
  ident: B7
  article-title: Genetic dissection of immunity to mycobacteria: the human model
  publication-title: Annu Rev Immunol.
  doi: 10.1146/annurev.immunol.20.081501.125851
– volume: 101
  start-page: 102
  year: 2016
  ident: B54
  article-title: Antibodies and tuberculosis
  publication-title: Tuberculosis.
  doi: 10.1016/j.tube.2016.08.001
– volume: 62
  start-page: 386
  year: 2015
  ident: B48
  article-title: T regulatory cells: Achilles' heel of Mycobacterium tuberculosis infection?
  publication-title: Immunol Res.
  doi: 10.1007/s12026-015-8654-0
– volume: 177
  start-page: 1864
  year: 2006
  ident: B29
  article-title: Macrophages acquire neutrophil granules for antimicrobial activity against intracellular pathogens
  publication-title: J Immunol.
  doi: 10.4049/jimmunol.177.3.1864
– volume: 88
  start-page: 716
  year: 2010
  ident: B34
  article-title: Mycobacterium tuberculosis impairs dendritic cell response by altering CD1b, DC-SIGN and MR profile
  publication-title: Immunol Cell Biol.
  doi: 10.1038/icb.2010.22
– volume: 9
  start-page: e1003499
  year: 2013
  ident: B24
  article-title: Mycobacterium tuberculosis nucleoside diphosphate kinase inactivates small GTPases leading to evasion of innate immunity
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1003499
– volume: 89
  start-page: 95
  year: 2010
  ident: B37
  article-title: DC-SIGN and mannosylated surface structures of Mycobacterium tuberculosis: a deceptive liaison
  publication-title: Eur J Cell Biol.
  doi: 10.1016/j.ejcb.2009.10.004
– volume: 97
  start-page: e12179
  year: 2018
  ident: B63
  article-title: The association between vitamin D status and tuberculosis in children: a meta-analysis
  publication-title: Medicine.
  doi: 10.1097/MD.0000000000012179
– volume: 10
  start-page: 248
  year: 2011
  ident: B26
  article-title: Mycobacterial p(1)-type ATPases mediate resistance to zinc poisoning in human macrophages
  publication-title: Cell Host Microbe.
  doi: 10.1016/j.chom.2011.08.006
– ident: B1
– volume: 5
  start-page: 39
  year: 2007
  ident: B58
  article-title: Who puts the tubercle in tuberculosis?
  publication-title: Nat Rev Microbiol.
  doi: 10.1038/nrmicro1538
– volume: 12
  start-page: 213
  year: 2011
  ident: B22
  article-title: Germline CYBB mutations that selectively affect macrophages in kindreds with X-linked predisposition to tuberculous mycobacterial disease
  publication-title: Nat Immunol.
  doi: 10.1038/ni.1992
– volume: 264
  start-page: 249
  year: 2015
  ident: B25
  article-title: Mycobacteria, metals, and the macrophage
  publication-title: Immunol Rev.
  doi: 10.1111/imr.12265
– volume: 33
  start-page: 2058738419840241
  year: 2019
  ident: B65
  article-title: CD3, CD4, CD8, CD19 and CD16/CD56 positive cells in tuberculosis infection and disease: peculiar features in children
  publication-title: Int J Immunopathol Pharmacol.
  doi: 10.1177/2058738419840241
– volume: 9
  start-page: 2637
  year: 2018
  ident: B27
  article-title: Neutrophils: innate effectors of TB resistance?
  publication-title: Front Immunol.
  doi: 10.3389/fimmu.2018.02637
– volume: 272
  start-page: 94
  year: 2011
  ident: B33
  article-title: Interaction between mannosylated lipoarabinomannan and dendritic cell-specific intercellular adhesion molecule-3 grabbing nonintegrin influences dendritic cells maturation and T cell immunity
  publication-title: Cell Immunol.
  doi: 10.1016/j.cellimm.2011.09.001
– volume: 8
  start-page: 1290
  year: 2017
  ident: B41
  article-title: The role of mast cells in tuberculosis: orchestrating innate immune crosstalk?
  publication-title: Front Immunol.
  doi: 10.3389/fimmu.2017.01290
– volume: 86
  start-page: e00387
  year: 2018
  ident: B35
  article-title: Mycobacterium tuberculosis GroEL2 modulates dendritic cell responses
  publication-title: Infect Immun.
  doi: 10.1128/IAI.00387-17
– volume: 5
  start-page: 213
  year: 2018
  ident: B10
  article-title: Influence of genetic polymorphism towards pulmonary tuberculosis susceptibility
  publication-title: Front Med.
  doi: 10.3389/fmed.2018.00213
– volume: 8
  start-page: 327
  year: 2018
  ident: B60
  article-title: Mycobacterium tuberculosis virulent factor ESAT-6 drives macrophage differentiation toward the pro-inflammatory M1 phenotype and subsequently switches it to the anti-inflammatory M2 phenotype
  publication-title: Front Cell Infect Microbiol.
  doi: 10.3389/fcimb.2018.00327
– volume: 7
  start-page: 11
  year: 2015
  ident: B38
  article-title: Natural killer cells: a coherent model for their functional role in Mycobacterium tuberculosis infection
  publication-title: J Innate Immun.
  doi: 10.1159/000363321
– start-page: 51
  volume-title: Emerging Infections
  year: 1998
  ident: B66
  article-title: Persisting problems in tuberculosis
  doi: 10.1016/S1874-5326(07)80027-5
– year: 2016
  ident: B47
  article-title: Cytokines and chemokines in Mycobacterium tuberculosis infection
  publication-title: Microbiol Spectr.
  doi: 10.1128/microbiolspec.TBTB2-0018-2016
– volume: 206
  start-page: 2583
  year: 2009
  ident: B8
  article-title: Two loci control tuberculin skin test reactivity in an area hyperendemic for tuberculosis
  publication-title: J Exp Med.
  doi: 10.1084/jem.20090892
– volume: 9
  start-page: e92340
  year: 2014
  ident: B44
  article-title: Increased complement C1q level marks active disease in human tuberculosis
  publication-title: PLoS ONE.
  doi: 10.1371/journal.pone.0092340
– volume: 15
  start-page: 63
  year: 2012
  ident: B59
  article-title: Floating between the poles of pathology and protection: can we pin down the granuloma in tuberculosis?
  publication-title: Curr Opin Microbiol.
  doi: 10.1016/j.mib.2011.10.006
– volume: 35
  start-page: 386
  year: 2016
  ident: B32
  article-title: Distinct strategies employed by dendritic cells and macrophages in restricting Mycobacterium tuberculosis infection: different philosophies but same desire
  publication-title: Int Rev Immunol.
  doi: 10.3109/08830185.2015.1015718
– volume: 10
  start-page: 220
  year: 2010
  ident: B6
  article-title: Predictors of persistently positive Mycobacterium-tuberculosis-specific interferon-gamma responses in the serial testing of health care workers
  publication-title: BMC Infect Dis.
  doi: 10.1186/1471-2334-10-220
– volume: 77
  start-page: 5359
  year: 2009
  ident: B42
  article-title: Histamine plays an essential regulatory role in lung inflammation and protective immunity in the acute phase of Mycobacterium tuberculosis infection
  publication-title: Infect Immun.
  doi: 10.1128/IAI.01497-08
– volume: 2012
  start-page: 929743
  year: 2012
  ident: B64
  article-title: ETosis: a microbicidal mechanism beyond cell death
  publication-title: J Parasitol Res.
  doi: 10.1155/2012/929743
– volume: 37
  start-page: 239
  year: 2015
  ident: B50
  article-title: CD8 T cells and Mycobacterium tuberculosis infection
  publication-title: Semin Immunopathol.
  doi: 10.1007/s00281-015-0490-8
– volume: 14
  start-page: 677
  year: 2016
  ident: B21
  article-title: ESX secretion systems: mycobacterial evolution to counter host immunity
  publication-title: Nat Rev Microbiol.
  doi: 10.1038/nrmicro.2016.131
– volume: 167
  start-page: 2734
  year: 2001
  ident: B51
  article-title: CD4+ and CD8+ T cells kill intracellular Mycobacterium tuberculosis by a perforin and Fas/Fas ligand-independent mechanism
  publication-title: J Immunol.
  doi: 10.4049/jimmunol.167.5.2734
– volume: 22
  start-page: 1063
  year: 2017
  ident: B11
  article-title: Human genetic factors in tuberculosis: an update
  publication-title: Trop Med Int Health.
  doi: 10.1111/tmi.12923
– volume: 2012
  start-page: 791392
  year: 2012
  ident: B16
  article-title: The role of airway epithelial cells in response to mycobacteria infection
  publication-title: Clin Dev Immunol.
  doi: 10.1155/2012/791392
– volume: 9
  start-page: 2427
  year: 2018
  ident: B43
  article-title: Complement component C1q as serum biomarker to detect active tuberculosis
  publication-title: Front Immunol.
  doi: 10.3389/fimmu.2018.02427
– volume: 160
  start-page: 5448
  year: 1998
  ident: B52
  article-title: Fas ligand-induced apoptosis of infected human macrophages reduces the viability of intracellular Mycobacterium tuberculosis
  publication-title: J Immunol.
  doi: 10.4049/jimmunol.160.11.5448
– volume: 9
  start-page: 903
  year: 2018
  ident: B28
  article-title: Differential effect of viable versus necrotic neutrophils on Mycobacterium tuberculosis growth and cytokine induction in whole blood
  publication-title: Front Immunol.
  doi: 10.3389/fimmu.2018.00903
– volume: 9
  start-page: 471
  year: 2018
  ident: B36
  article-title: Targeting Mycobacterium tuberculosis antigens to dendritic cells via the DC-specific-ICAM3-grabbing-nonintegrin receptor induces strong T-helper 1 immune responses
  publication-title: Front Immunol.
  doi: 10.3389/fimmu.2018.00471
SSID ssj0000970515
Score 2.538479
SecondaryResourceType review_article
Snippet The encounter between (Mtb) and the host leads to a complex and multifaceted immune response possibly resulting in latent infection, tubercular disease or to...
The encounter between Mycobacterium tuberculosis (Mtb) and the host leads to a complex and multifaceted immune response possibly resulting in latent infection,...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 350
SubjectTerms children
immune response
immunity
macrophage
Mycobacterium tuberculosis
Pediatrics
tuberculosis
Title Immune Response to Mycobacterium tuberculosis: A Narrative Review
URI https://www.ncbi.nlm.nih.gov/pubmed/31508399
https://www.proquest.com/docview/2288753244
https://pubmed.ncbi.nlm.nih.gov/PMC6718705
https://doaj.org/article/55c1751135b240be8d954349b931dde2
Volume 7
WOSCitedRecordID wos000482826200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2296-2360
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000970515
  issn: 2296-2360
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2296-2360
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000970515
  issn: 2296-2360
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ba9swFH5sZZRdRre2m9euaNBDL15jy46k3rLRsh0SSukhN2HJEgt0TkjsQS_97XtPckNSVnbZxQdbxuLTe3rvs6TvAZx6PsyktT7NbWbTwiLdqVxhUu8HPsOQP_DWh2ITYjKR06m63ij1RXvCojxwBO68LC1GuCzjpcHgY5ysFZ2GVEbxDF0zzL6Y9WyQqTAHK0HFS6KWD7Iwde4XjoRBM5Kn5HTKfiMMBbX-v6WYT3dKboSeqz140-eMbBT7-hZeuOYd7I77VfF9GP2gQx6O3cT9ro61cza-t-ipQYm5-8Xazril7e7mq9nqgo3YpFpGxW8W1wYO4Pbq8vbb97QvjZDaolRtaocDg4AoSfLoQ-GtwcyLC5V7WxhfI-3wtbSDynmFk3FZYVqhKi7rQprcG8MPYaeZN-4DMOFKaTjNcpVCamhkUaPfV7UoiLk5nsCXR6C07WXDqXrFnUb6QMhqQlYTsjogm8DZ-oVFVMx4vulXQn7djKSuww00AN0bgP6XASTw-XHcNLoGrXdUjZt3K53nktgYJjAJvI_juP4UDzr4SiUgtkZ4qy_bT5rZzyC_PcRwjtb18X90_gheExz0kzoXx7DTLjv3CV7Z3-1stTyBl2IqT4Jl43X8cPkHxOn9_g
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Immune+Response+to+Mycobacterium+tuberculosis%3A+A+Narrative+Review&rft.jtitle=Frontiers+in+pediatrics&rft.au=de+Martino%2C+Maurizio&rft.au=Lodi%2C+Lorenzo&rft.au=Galli%2C+Luisa&rft.au=Chiappini%2C+Elena&rft.date=2019-08-27&rft.issn=2296-2360&rft.eissn=2296-2360&rft.volume=7&rft.spage=350&rft_id=info:doi/10.3389%2Ffped.2019.00350&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-2360&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-2360&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-2360&client=summon