Immune Response to Mycobacterium tuberculosis: A Narrative Review
The encounter between (Mtb) and the host leads to a complex and multifaceted immune response possibly resulting in latent infection, tubercular disease or to the complete clearance of the pathogen. Macrophages and CD4 T lymphocytes, together with granuloma formation, are traditionally considered the...
Uložené v:
| Vydané v: | Frontiers in pediatrics Ročník 7; s. 350 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Switzerland
Frontiers Media S.A
27.08.2019
|
| Predmet: | |
| ISSN: | 2296-2360, 2296-2360 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The encounter between
(Mtb) and the host leads to a complex and multifaceted immune response possibly resulting in latent infection, tubercular disease or to the complete clearance of the pathogen. Macrophages and CD4
T lymphocytes, together with granuloma formation, are traditionally considered the pillars of immune defense against Mtb and their role stands out clearly. However, there is no component of the immune system that does not take part in the response to this pathogen. On the other side, Mtb displays a complex artillery of immune-escaping mechanisms capable of responding in an equally varied manner. In addition, the role of each cellular line has become discussed and uncertain further than ever before. Each defense mechanism is based on a subtle balance that, if altered, can lean to one side to favor Mtb proliferation, resulting in disease progression and on the other to the host tissue damage by the immune system itself. Through a brief and complete overview of the role of each cell type involved in the Mtb response, we aimed to highlight the main literature reviews and the most relevant studies in order to facilitate the approach to such a complex and changeable topic. In conclusion, this narrative mini-review summarizes the various immunologic mechanisms which modulate the individual ability to fight Mtb infection taking in account the major host and pathogen determinants in the susceptibility to tuberculosis. |
|---|---|
| AbstractList | The encounter between Mycobacterium tuberculosis (Mtb) and the host leads to a complex and multifaceted immune response possibly resulting in latent infection, tubercular disease or to the complete clearance of the pathogen. Macrophages and CD4+ T lymphocytes, together with granuloma formation, are traditionally considered the pillars of immune defense against Mtb and their role stands out clearly. However, there is no component of the immune system that does not take part in the response to this pathogen. On the other side, Mtb displays a complex artillery of immune-escaping mechanisms capable of responding in an equally varied manner. In addition, the role of each cellular line has become discussed and uncertain further than ever before. Each defense mechanism is based on a subtle balance that, if altered, can lean to one side to favor Mtb proliferation, resulting in disease progression and on the other to the host tissue damage by the immune system itself. Through a brief and complete overview of the role of each cell type involved in the Mtb response, we aimed to highlight the main literature reviews and the most relevant studies in order to facilitate the approach to such a complex and changeable topic. In conclusion, this narrative mini-review summarizes the various immunologic mechanisms which modulate the individual ability to fight Mtb infection taking in account the major host and pathogen determinants in the susceptibility to tuberculosis.The encounter between Mycobacterium tuberculosis (Mtb) and the host leads to a complex and multifaceted immune response possibly resulting in latent infection, tubercular disease or to the complete clearance of the pathogen. Macrophages and CD4+ T lymphocytes, together with granuloma formation, are traditionally considered the pillars of immune defense against Mtb and their role stands out clearly. However, there is no component of the immune system that does not take part in the response to this pathogen. On the other side, Mtb displays a complex artillery of immune-escaping mechanisms capable of responding in an equally varied manner. In addition, the role of each cellular line has become discussed and uncertain further than ever before. Each defense mechanism is based on a subtle balance that, if altered, can lean to one side to favor Mtb proliferation, resulting in disease progression and on the other to the host tissue damage by the immune system itself. Through a brief and complete overview of the role of each cell type involved in the Mtb response, we aimed to highlight the main literature reviews and the most relevant studies in order to facilitate the approach to such a complex and changeable topic. In conclusion, this narrative mini-review summarizes the various immunologic mechanisms which modulate the individual ability to fight Mtb infection taking in account the major host and pathogen determinants in the susceptibility to tuberculosis. The encounter between Mycobacterium tuberculosis (Mtb) and the host leads to a complex and multifaceted immune response possibly resulting in latent infection, tubercular disease or to the complete clearance of the pathogen. Macrophages and CD4+ T lymphocytes, together with granuloma formation, are traditionally considered the pillars of immune defense against Mtb and their role stands out clearly. However, there is no component of the immune system that does not take part in the response to this pathogen. On the other side, Mtb displays a complex artillery of immune-escaping mechanisms capable of responding in an equally varied manner. In addition, the role of each cellular line has become discussed and uncertain further than ever before. Each defense mechanism is based on a subtle balance that, if altered, can lean to one side to favor Mtb proliferation, resulting in disease progression and on the other to the host tissue damage by the immune system itself. Through a brief and complete overview of the role of each cell type involved in the Mtb response, we aimed to highlight the main literature reviews and the most relevant studies in order to facilitate the approach to such a complex and changeable topic. In conclusion, this narrative mini-review summarizes the various immunologic mechanisms which modulate the individual ability to fight Mtb infection taking in account the major host and pathogen determinants in the susceptibility to tuberculosis. The encounter between (Mtb) and the host leads to a complex and multifaceted immune response possibly resulting in latent infection, tubercular disease or to the complete clearance of the pathogen. Macrophages and CD4 T lymphocytes, together with granuloma formation, are traditionally considered the pillars of immune defense against Mtb and their role stands out clearly. However, there is no component of the immune system that does not take part in the response to this pathogen. On the other side, Mtb displays a complex artillery of immune-escaping mechanisms capable of responding in an equally varied manner. In addition, the role of each cellular line has become discussed and uncertain further than ever before. Each defense mechanism is based on a subtle balance that, if altered, can lean to one side to favor Mtb proliferation, resulting in disease progression and on the other to the host tissue damage by the immune system itself. Through a brief and complete overview of the role of each cell type involved in the Mtb response, we aimed to highlight the main literature reviews and the most relevant studies in order to facilitate the approach to such a complex and changeable topic. In conclusion, this narrative mini-review summarizes the various immunologic mechanisms which modulate the individual ability to fight Mtb infection taking in account the major host and pathogen determinants in the susceptibility to tuberculosis. |
| Author | Chiappini, Elena de Martino, Maurizio Lodi, Lorenzo Galli, Luisa |
| AuthorAffiliation | Department of Health Sciences, University of Florence , Florence , Italy |
| AuthorAffiliation_xml | – name: Department of Health Sciences, University of Florence , Florence , Italy |
| Author_xml | – sequence: 1 givenname: Maurizio surname: de Martino fullname: de Martino, Maurizio – sequence: 2 givenname: Lorenzo surname: Lodi fullname: Lodi, Lorenzo – sequence: 3 givenname: Luisa surname: Galli fullname: Galli, Luisa – sequence: 4 givenname: Elena surname: Chiappini fullname: Chiappini, Elena |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31508399$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kUtr3DAUhUVJadI06-6Kl93MRK9rS10UhtDHQNpCyV5I8nWqYFtTSZ6Qf187k5SkUG0krs75DtzzmhyNcURC3jK6FkLp826H7ZpTpteUCqAvyAnnul5xUdOjJ-9jcpbzDZ2PbigweEWOBQOqhNYnZLMdhmnE6ifmXRwzViVW3-58dNYXTGEaqjI5TH7qYw75Q7WpvtuUbAn7xbMPePuGvOxsn_Hs4T4lV58_XV18XV3--LK92FyuvARdVr6mDhzXSguAuum8A0lFo3nnpetaANq1ylOLnUbHwNYCtBWqlcrxzjlxSrYHbBvtjdmlMNh0Z6IN5n4Q07WxqQTfowHwrAHGxJwnqUPVapBCaqcFa1vkM-vjgbWb3ICtx7Ek2z-DPv8Zwy9zHfembpiadzgD3j8AUvw9YS5mCNlj39sR45QN50o1ILiUs_Td06y_IY8VzAI4CHyKOSfsjA9lXnBcokNvGDVL22Zp2yxtm_u2Z9_5P75H9P8cfwDv1KzJ |
| CitedBy_id | crossref_primary_10_1016_j_tube_2020_101900 crossref_primary_10_1016_S1473_3099_20_30148_1 crossref_primary_10_1080_14787210_2025_2468331 crossref_primary_10_3390_cells12020317 crossref_primary_10_3389_fimmu_2019_03103 crossref_primary_10_3389_fimmu_2021_685237 crossref_primary_10_1007_s00203_025_04463_4 crossref_primary_10_2147_AABC_S366431 crossref_primary_10_3390_ijms24087267 crossref_primary_10_1038_s42003_024_06620_9 crossref_primary_10_3389_fimmu_2023_1205449 crossref_primary_10_3390_biomedicines11092568 crossref_primary_10_3389_fimmu_2023_1091352 crossref_primary_10_3389_fimmu_2022_840610 crossref_primary_10_1016_j_ijid_2021_02_094 crossref_primary_10_1111_cpr_13698 crossref_primary_10_14309_ctg_0000000000000493 crossref_primary_10_3389_fimmu_2025_1442101 crossref_primary_10_3390_cells12222610 crossref_primary_10_3390_jcm14082782 crossref_primary_10_1177_11772719241312776 crossref_primary_10_3390_diseases12090202 crossref_primary_10_1002_admt_202200056 crossref_primary_10_1016_j_micres_2023_127400 crossref_primary_10_3389_fcimb_2021_763591 crossref_primary_10_1016_j_ebiom_2020_102965 crossref_primary_10_3390_v16030321 crossref_primary_10_2147_IJGM_S483185 crossref_primary_10_2147_CCID_S343351 crossref_primary_10_3389_fimmu_2025_1586789 crossref_primary_10_1111_tmi_13454 crossref_primary_10_3389_fimmu_2024_1437901 crossref_primary_10_3390_jcm14072154 crossref_primary_10_1093_cid_ciad401 crossref_primary_10_1016_j_bmc_2021_116506 crossref_primary_10_1159_000512531 crossref_primary_10_3390_pathogens12091149 crossref_primary_10_1016_j_imbio_2022_152321 crossref_primary_10_1016_j_micpath_2020_104456 crossref_primary_10_1038_s41598_020_79407_7 crossref_primary_10_1097_MD_0000000000030737 crossref_primary_10_4103_ijmy_ijmy_6_25 crossref_primary_10_1111_tid_14294 crossref_primary_10_1016_j_tube_2025_102616 crossref_primary_10_3389_fmed_2022_890609 crossref_primary_10_3389_fmicb_2022_993897 crossref_primary_10_1038_s41598_021_89659_6 crossref_primary_10_1016_j_dci_2021_104111 crossref_primary_10_1128_iai_00063_25 crossref_primary_10_1002_jbt_70119 crossref_primary_10_1016_j_trim_2023_101798 crossref_primary_10_4103_ijmy_ijmy_190_22 crossref_primary_10_7554_eLife_64834 crossref_primary_10_3390_cells9122673 crossref_primary_10_1016_j_ijbiomac_2024_132332 crossref_primary_10_3390_microorganisms11081988 crossref_primary_10_1016_j_tube_2021_102078 crossref_primary_10_7759_cureus_69588 crossref_primary_10_3389_fcimb_2023_1196904 crossref_primary_10_1186_s12890_022_02088_7 crossref_primary_10_3390_ijms26104522 crossref_primary_10_1186_s12889_020_09051_3 crossref_primary_10_3389_fimmu_2024_1474346 crossref_primary_10_3390_jcm13030756 crossref_primary_10_3389_fimmu_2022_923492 crossref_primary_10_3389_fphar_2022_879729 crossref_primary_10_3390_vaccines8010067 crossref_primary_10_1134_S1068162024010151 crossref_primary_10_3390_vaccines11081304 crossref_primary_10_1016_j_cyto_2024_156708 crossref_primary_10_3389_fimmu_2020_587617 crossref_primary_10_1080_21505594_2023_2180230 crossref_primary_10_3389_fimmu_2022_944183 crossref_primary_10_1007_s10989_022_10406_0 crossref_primary_10_3390_jpm13010116 crossref_primary_10_1016_j_bbrc_2022_06_021 crossref_primary_10_22207_JPAM_19_1_52 crossref_primary_10_22207_JPAM_19_2_20 crossref_primary_10_3390_vaccines13030305 crossref_primary_10_3390_microorganisms12122649 crossref_primary_10_1016_j_jiph_2021_11_019 crossref_primary_10_2147_RRTM_S252550 crossref_primary_10_1177_1759720X20930116 crossref_primary_10_3390_microorganisms9112291 crossref_primary_10_3390_microorganisms13051040 crossref_primary_10_1371_journal_ppat_1013474 crossref_primary_10_1016_j_heliyon_2024_e35670 crossref_primary_10_3389_fimmu_2021_740117 crossref_primary_10_1093_infdis_jiaa596 crossref_primary_10_3390_diagnostics12112676 crossref_primary_10_4103_lungindia_lungindia_552_24 crossref_primary_10_3389_fimmu_2021_657261 crossref_primary_10_4167_jbv_2020_50_4_203 crossref_primary_10_3390_ijms241713261 crossref_primary_10_51867_ajernet_5_4_80 crossref_primary_10_3892_etm_2022_11165 crossref_primary_10_1021_acsinfecdis_4c00790 crossref_primary_10_2147_JIR_S517034 crossref_primary_10_3389_fgene_2022_883810 crossref_primary_10_12998_wjcc_v9_i25_7311 crossref_primary_10_7717_peerj_11565 crossref_primary_10_3389_fmed_2021_729229 crossref_primary_10_1186_s13568_024_01691_7 crossref_primary_10_3389_fimmu_2023_1278947 crossref_primary_10_1007_s42770_021_00520_4 crossref_primary_10_1038_s41598_025_87160_y crossref_primary_10_1007_s11274_023_03735_9 crossref_primary_10_1186_s12967_022_03835_4 crossref_primary_10_3390_jpm12040569 crossref_primary_10_1371_journal_pone_0313306 crossref_primary_10_1093_rheumatology_keae185 crossref_primary_10_1111_imm_13781 crossref_primary_10_2147_ITT_S455744 crossref_primary_10_1155_2021_7925903 crossref_primary_10_3390_vaccines10101740 crossref_primary_10_58838_2075_1230_2024_102_2_6_19 crossref_primary_10_1002_adbi_202400174 crossref_primary_10_1002_adhm_202304299 crossref_primary_10_3389_fnins_2023_1157652 crossref_primary_10_3390_ph17050559 crossref_primary_10_1016_j_vaccine_2024_07_010 crossref_primary_10_4103_ijmy_ijmy_101_22 crossref_primary_10_1073_pnas_2318003121 crossref_primary_10_1016_j_micpath_2021_105083 crossref_primary_10_1007_s12275_023_00101_0 crossref_primary_10_3389_fcimb_2022_956607 crossref_primary_10_1016_S1473_3099_24_00143_9 crossref_primary_10_3390_jcm10010164 crossref_primary_10_3390_vaccines11101604 crossref_primary_10_1134_S2079086425600146 crossref_primary_10_3389_fimmu_2021_640168 crossref_primary_10_1038_s41559_025_02837_x crossref_primary_10_1002_mco2_82 crossref_primary_10_3390_clinpract12050082 crossref_primary_10_21292_2075_1230_2022_100_10_50_56 crossref_primary_10_3389_fimmu_2021_660916 crossref_primary_10_3389_fimmu_2022_992743 crossref_primary_10_1016_j_it_2022_06_004 crossref_primary_10_1098_rsif_2025_0138 crossref_primary_10_1016_j_intimp_2025_115455 crossref_primary_10_1016_j_micres_2020_126674 crossref_primary_10_3389_fcimb_2025_1548238 crossref_primary_10_1016_j_meegid_2024_105703 crossref_primary_10_1016_j_ijid_2020_09_1056 crossref_primary_10_1042_CS20230307 crossref_primary_10_1016_j_heliyon_2024_e37536 crossref_primary_10_1128_spectrum_00412_24 crossref_primary_10_1007_s11274_023_03636_x crossref_primary_10_1021_acscentsci_3c00040 crossref_primary_10_1016_j_ajpath_2020_09_013 crossref_primary_10_1007_s12291_022_01110_3 crossref_primary_10_1371_journal_ppat_1008632 crossref_primary_10_7759_cureus_38875 crossref_primary_10_1016_j_bbrc_2025_151575 crossref_primary_10_7759_cureus_76397 crossref_primary_10_3390_vaccines12080901 crossref_primary_10_1016_j_micres_2023_127466 crossref_primary_10_1093_jambio_lxad104 crossref_primary_10_4103_apjtm_apjtm_116_24 crossref_primary_10_3390_pathogens13121078 crossref_primary_10_1016_j_jiac_2023_09_011 crossref_primary_10_3390_pathogens11090981 crossref_primary_10_3390_pharmaceutics13050592 crossref_primary_10_1038_s41598_022_20409_y crossref_primary_10_1080_08820139_2023_2298398 crossref_primary_10_3389_fimmu_2025_1561459 crossref_primary_10_3389_fimmu_2023_1104828 crossref_primary_10_1155_2022_7526501 crossref_primary_10_1016_j_bbrep_2025_101952 crossref_primary_10_1016_j_tips_2021_06_004 crossref_primary_10_1007_s13258_023_01469_4 crossref_primary_10_1016_j_ijtb_2025_07_004 crossref_primary_10_52692_1857_0011_2024_3_80_35 crossref_primary_10_1016_j_micres_2024_127664 crossref_primary_10_3389_fimmu_2021_635985 crossref_primary_10_3389_fimmu_2022_829355 crossref_primary_10_3389_fimmu_2021_662218 crossref_primary_10_3390_microorganisms11071722 crossref_primary_10_1186_s42522_025_00144_w crossref_primary_10_1093_jleuko_qiae246 crossref_primary_10_3389_fimmu_2022_861931 crossref_primary_10_3389_fphar_2021_746496 crossref_primary_10_7717_peerj_19576 crossref_primary_10_3390_pharmaceutics15051521 crossref_primary_10_3389_fcimb_2025_1567592 crossref_primary_10_3389_fimmu_2021_776913 crossref_primary_10_3390_ijms24087439 crossref_primary_10_3390_ph16101475 crossref_primary_10_58838_2075_1230_2025_103_1_60_67 crossref_primary_10_1007_s11033_021_06846_4 crossref_primary_10_1186_s12879_022_07895_1 crossref_primary_10_3389_fmed_2022_970408 crossref_primary_10_3389_fimmu_2022_1025931 crossref_primary_10_3390_microorganisms13010021 crossref_primary_10_1016_j_ijtb_2023_03_012 crossref_primary_10_3389_fped_2022_908963 crossref_primary_10_1073_pnas_2423349122 crossref_primary_10_3390_ijms23042235 crossref_primary_10_1016_j_arr_2021_101396 crossref_primary_10_1590_1806_9282_20230725 crossref_primary_10_1093_oxfimm_iqad008 crossref_primary_10_3389_fmicb_2021_719531 crossref_primary_10_2217_imt_2021_0197 crossref_primary_10_1093_imammb_dqac001 |
| Cites_doi | 10.3390/pathogens7040088 10.1054/tube.2002.0324 10.1186/1471-2334-14-S1-S1 10.1371/journal.pone.0162220 10.1371/journal.ppat.1006530 10.1016/j.celrep.2017.03.007 10.3389/fmicb.2017.02284 10.1038/ni.1781 10.1186/s12879-019-3707-y 10.4161/viru.22329 10.1016/j.cell.2016.08.072 10.1146/annurev.immunol.021908.132703 10.1111/imcb.12210 10.1038/nature09247 10.1007/978-1-4614-6111-1_12 10.1007/978-1-4614-6111-1_11 10.1146/annurev-immunol-032712-095939 10.1155/2015/747543 10.1016/j.chom.2009.08.004 10.1371/journal.pone.0097515 10.1111/cmi.12480 10.1038/nri3211 10.1038/mi.2014.136 10.4049/jimmunol.176.4.2610 10.1177/0300985817705177 10.1128/CMR.11.3.514 10.4049/jimmunol.162.9.5407 10.1186/cc9354 10.1371/journal.pone.0004094 10.4161/viru.22586 10.1146/annurev.immunol.20.081501.125851 10.1016/j.tube.2016.08.001 10.1007/s12026-015-8654-0 10.4049/jimmunol.177.3.1864 10.1038/icb.2010.22 10.1371/journal.ppat.1003499 10.1016/j.ejcb.2009.10.004 10.1097/MD.0000000000012179 10.1016/j.chom.2011.08.006 10.1038/nrmicro1538 10.1038/ni.1992 10.1111/imr.12265 10.1177/2058738419840241 10.3389/fimmu.2018.02637 10.1016/j.cellimm.2011.09.001 10.3389/fimmu.2017.01290 10.1128/IAI.00387-17 10.3389/fmed.2018.00213 10.3389/fcimb.2018.00327 10.1159/000363321 10.1016/S1874-5326(07)80027-5 10.1128/microbiolspec.TBTB2-0018-2016 10.1084/jem.20090892 10.1371/journal.pone.0092340 10.1016/j.mib.2011.10.006 10.3109/08830185.2015.1015718 10.1186/1471-2334-10-220 10.1128/IAI.01497-08 10.1155/2012/929743 10.1007/s00281-015-0490-8 10.1038/nrmicro.2016.131 10.4049/jimmunol.167.5.2734 10.1111/tmi.12923 10.1155/2012/791392 10.3389/fimmu.2018.02427 10.4049/jimmunol.160.11.5448 10.3389/fimmu.2018.00903 10.3389/fimmu.2018.00471 |
| ContentType | Journal Article |
| Copyright | Copyright © 2019 de Martino, Lodi, Galli and Chiappini. 2019 de Martino, Lodi, Galli and Chiappini |
| Copyright_xml | – notice: Copyright © 2019 de Martino, Lodi, Galli and Chiappini. 2019 de Martino, Lodi, Galli and Chiappini |
| DBID | AAYXX CITATION NPM 7X8 5PM DOA |
| DOI | 10.3389/fped.2019.00350 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2296-2360 |
| ExternalDocumentID | oai_doaj_org_article_55c1751135b240be8d954349b931dde2 PMC6718705 31508399 10_3389_fped_2019_00350 |
| Genre | Journal Article Review |
| GroupedDBID | 53G 5VS 9T4 AAFWJ AAYXX ACGFO ACGFS ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM ACXDI EMOBN IAO IEA IHR IHW IPNFZ NPM RIG 7X8 5PM |
| ID | FETCH-LOGICAL-c459t-c60b5b298935567fcb5403792fc4bfd550fd8c0aef9eb15a6359a38d48b2fbb3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 228 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000482826200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2296-2360 |
| IngestDate | Fri Oct 03 12:53:49 EDT 2025 Tue Sep 30 16:59:11 EDT 2025 Fri Sep 05 13:03:21 EDT 2025 Thu Jan 02 23:04:39 EST 2025 Tue Nov 18 22:24:24 EST 2025 Sat Nov 29 02:51:32 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Mycobacterium tuberculosis children immune response granuloma tuberculosis macrophage immunity adaptive immunity |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c459t-c60b5b298935567fcb5403792fc4bfd550fd8c0aef9eb15a6359a38d48b2fbb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Edited by: Gian Luigi Marseglia, Policlinico San Matteo Fondazione (IRCCS), Italy This article was submitted to Pediatric Immunology, a section of the journal Frontiers in Pediatrics Reviewed by: Silvia Garazzino, University Hospital of the City of Health and Science of Turin, Italy; Sara Manti, University of Catania, Italy |
| OpenAccessLink | https://doaj.org/article/55c1751135b240be8d954349b931dde2 |
| PMID | 31508399 |
| PQID | 2288753244 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_55c1751135b240be8d954349b931dde2 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6718705 proquest_miscellaneous_2288753244 pubmed_primary_31508399 crossref_citationtrail_10_3389_fped_2019_00350 crossref_primary_10_3389_fped_2019_00350 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-08-27 |
| PublicationDateYYYYMMDD | 2019-08-27 |
| PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-27 day: 27 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland |
| PublicationTitle | Frontiers in pediatrics |
| PublicationTitleAlternate | Front Pediatr |
| PublicationYear | 2019 |
| Publisher | Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media S.A |
| References | Arora (B39) 2013; 783 Domingo-Gonzalez (B47) 2016 Garcia-Rodriguez (B41) 2017; 8 Lubbers (B43) 2018; 9 Caruso (B68) 1999; 162 O'Garra (B4) 2013; 31 Li (B16) 2012; 2012 Georgieva (B35) 2018; 86 Wayne (B69) 1976; 114 Zhang (B30) 2010; 14 Kozakiewicz (B53) 2013; 783 van Tong (B11) 2017; 22 McKinney (B66) 1998 Mihret (B31) 2012; 3 Lu (B56) 2016; 167 Ramakrishnan (B57) 2012; 12 Kroon (B27) 2018; 9 Ringshausen (B6) 2010; 10 Velasquez (B36) 2018; 9 Martinot (B61) 2018; 55 Russell (B62) 2009; 10 Lin (B50) 2015; 37 B1 Sun (B24) 2013; 9 Venturini (B65) 2019; 33 Blankley (B14) 2016; 11 Queval (B18) 2017; 8 Gröschel (B21) 2016; 14 Botella (B26) 2011; 10 Sia (B23) 2015; 2015 Middleton (B3) 2002; 82 Harishankar (B10) 2018; 5 Gou (B63) 2018; 97 Balboa (B34) 2010; 88 Wu (B33) 2011; 272 Parkash (B48) 2015; 62 Cooper (B45) 2009; 27 Rosain (B12) 2019; 97 Casanova (B7) 2002; 20 Canaday (B51) 2001; 167 Esin (B38) 2015; 7 Cai (B44) 2014; 9 Lowe (B28) 2018; 9 Monin (B67) 2015; 8 Tan (B29) 2006; 177 Harriff (B17) 2014; 9 Khan (B32) 2016; 35 Glatman-Freedman (B55) 1998; 11 Stein (B9) 2008; 3 de Martino (B5) 2014; 14 Jacobs (B54) 2016; 101 Refai (B60) 2018; 8 Oddo (B52) 1998; 160 Tellier (B2) 2019; 19 Lerner (B19) 2015; 17 Cobat (B8) 2009; 206 Bustamante (B22) 2011; 12 Ehlers (B37) 2010; 89 Sia (B46) 2017; 13 Russell (B58) 2007; 5 Carlos (B42) 2009; 77 Neyrolles (B25) 2015; 264 Reece (B59) 2012; 15 Berry (B13) 2010; 466 Gibson (B70) 2018; 7 Sallin (B49) 2017; 18 Zhang (B40) 2006; 176 Guimarães-Costa (B64) 2012; 2012 Forrellad (B15) 2013; 4 Yuk (B20) 2009; 6 |
| References_xml | – volume: 7 start-page: E88 year: 2018 ident: B70 article-title: Modelling a silent epidemic: a review of the in vitro models of latent tuberculosis publication-title: Pathogens. doi: 10.3390/pathogens7040088 – volume: 82 start-page: 69 year: 2002 ident: B3 article-title: Interaction of Mycobacterium tuberculosis with human respiratory mucosa publication-title: Tuberculosis. doi: 10.1054/tube.2002.0324 – volume: 14 year: 2014 ident: B5 article-title: Reflections on the immunology of tuberculosis: will we ever unravel the skein? publication-title: BMC Infect Dis. doi: 10.1186/1471-2334-14-S1-S1 – volume: 114 start-page: 807 year: 1976 ident: B69 article-title: Dynamics of submerged growth of Mycobacterium tuberculosis under aerobic and microaerophilic conditions publication-title: Am Rev Respir Dis. – volume: 11 start-page: e0162220 year: 2016 ident: B14 article-title: The transcriptional signature of active tuberculosis reflects symptom status in extra-pulmonary and pulmonary tuberculosis publication-title: PLoS ONE. doi: 10.1371/journal.pone.0162220 – volume: 13 start-page: e1006530 year: 2017 ident: B46 article-title: Engaging the CD40-CD40L pathway augments T-helper cell responses and improves control of Mycobacterium tuberculosis infection publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1006530 – volume: 18 start-page: 3091 year: 2017 ident: B49 article-title: Th1 differentiation drives the accumulation of intravascular, non-protective CD4 T cells during tuberculosis publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.03.007 – volume: 8 start-page: 2284 year: 2017 ident: B18 article-title: The macrophage: a disputed fortress in the battle against Mycobacterium tuberculosis publication-title: Front Microbiol. doi: 10.3389/fmicb.2017.02284 – volume: 10 start-page: 943 year: 2009 ident: B62 article-title: Foamy macrophages and the progression of the human tuberculosis granuloma publication-title: Nat Immunol. doi: 10.1038/ni.1781 – volume: 19 start-page: 101 year: 2019 ident: B2 article-title: Recognition of aerosol transmission of infectious agents: a commentary publication-title: BMC Infect Dis. doi: 10.1186/s12879-019-3707-y – volume: 4 start-page: 3 year: 2013 ident: B15 article-title: Virulence factors of the Mycobacterium tuberculosis complex publication-title: Virulence. doi: 10.4161/viru.22329 – volume: 167 start-page: 433 year: 2016 ident: B56 article-title: A functional role for antibodies in tuberculosis publication-title: Cell. doi: 10.1016/j.cell.2016.08.072 – volume: 27 start-page: 393 year: 2009 ident: B45 article-title: Cell-mediated immune responses in tuberculosis publication-title: Annu Rev Immunol. doi: 10.1146/annurev.immunol.021908.132703 – volume: 97 start-page: 360 year: 2019 ident: B12 article-title: Mendelian susceptibility to mycobacterial disease: 2014–2018 update publication-title: Immunol Cell Biol. doi: 10.1111/imcb.12210 – volume: 466 start-page: 973 year: 2010 ident: B13 article-title: An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis publication-title: Nature. doi: 10.1038/nature09247 – volume: 783 start-page: 225 year: 2013 ident: B53 article-title: The role of B cells and humoral immunity in Mycobacterium tuberculosis infection publication-title: Adv Exp Med Biol. doi: 10.1007/978-1-4614-6111-1_12 – volume: 783 start-page: 199 year: 2013 ident: B39 article-title: CD1d and natural killer T cells in immunity to Mycobacterium tuberculosis publication-title: Adv Exp Med Biol. doi: 10.1007/978-1-4614-6111-1_11 – volume: 31 start-page: 475 year: 2013 ident: B4 article-title: The immune response in tuberculosis publication-title: Annu Rev Immunol. doi: 10.1146/annurev-immunol-032712-095939 – volume: 2015 start-page: 747543 year: 2015 ident: B23 article-title: Innate immune defenses in human tuberculosis: an overview of the interactions between Mycobacterium tuberculosis and innate immune cells publication-title: J Immunol Res. doi: 10.1155/2015/747543 – volume: 6 start-page: 231 year: 2009 ident: B20 article-title: Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin publication-title: Cell Host Microbe. doi: 10.1016/j.chom.2009.08.004 – volume: 9 start-page: e97515 year: 2014 ident: B17 article-title: Human lung epithelial cells contain Mycobacterium tuberculosis in a late endosomal vacuole and are efficiently recognized by CD8+ T cells publication-title: PLoS ONE. doi: 10.1371/journal.pone.0097515 – volume: 17 start-page: 1277 year: 2015 ident: B19 article-title: The innate immune response in human tuberculosis publication-title: Cell Microbiol. doi: 10.1111/cmi.12480 – volume: 12 start-page: 352 year: 2012 ident: B57 article-title: Revisiting the role of the granuloma in tuberculosis publication-title: Nat Rev Immunol. doi: 10.1038/nri3211 – volume: 8 start-page: 1099 year: 2015 ident: B67 article-title: Immune requirements for protective Th17 recall responses to Mycobacterium tuberculosis challenge publication-title: Mucosal Immunol. doi: 10.1038/mi.2014.136 – volume: 176 start-page: 2610 year: 2006 ident: B40 article-title: Human NK cells positively regulate gammadelta T cells in response to Mycobacterium tuberculosis publication-title: J Immunol. doi: 10.4049/jimmunol.176.4.2610 – volume: 55 start-page: 14 year: 2018 ident: B61 article-title: Microbial offense vs host defense: who controls the TB granuloma? publication-title: Vet Pathol. doi: 10.1177/0300985817705177 – volume: 11 start-page: 514 year: 1998 ident: B55 article-title: Serum therapy for tuberculosis revisited: reappraisal of the role of antibody-mediated immunity against Mycobacterium tuberculosis publication-title: Clin Microbiol Rev. doi: 10.1128/CMR.11.3.514 – volume: 162 start-page: 5407 year: 1999 ident: B68 article-title: Mice deficient in CD4 T cells have only transiently diminished levels of IFN-gamma, yet succumb to tuberculosis publication-title: J Immunol. doi: 10.4049/jimmunol.162.9.5407 – volume: 14 start-page: R220 year: 2010 ident: B30 article-title: PD-L1 blockade improves survival in experimental sepsis by inhibiting lymphocyte apoptosis and reversing monocyte dysfunction publication-title: Crit Care. doi: 10.1186/cc9354 – volume: 3 start-page: e4094 year: 2008 ident: B9 article-title: Genome scan of M. tuberculosis infection and disease in Ugandans publication-title: PLoS ONE. doi: 10.1371/journal.pone.0004094 – volume: 3 start-page: 654 year: 2012 ident: B31 article-title: The role of dendritic cells in Mycobacterium tuberculosis infection publication-title: Virulence. doi: 10.4161/viru.22586 – volume: 20 start-page: 581 year: 2002 ident: B7 article-title: Genetic dissection of immunity to mycobacteria: the human model publication-title: Annu Rev Immunol. doi: 10.1146/annurev.immunol.20.081501.125851 – volume: 101 start-page: 102 year: 2016 ident: B54 article-title: Antibodies and tuberculosis publication-title: Tuberculosis. doi: 10.1016/j.tube.2016.08.001 – volume: 62 start-page: 386 year: 2015 ident: B48 article-title: T regulatory cells: Achilles' heel of Mycobacterium tuberculosis infection? publication-title: Immunol Res. doi: 10.1007/s12026-015-8654-0 – volume: 177 start-page: 1864 year: 2006 ident: B29 article-title: Macrophages acquire neutrophil granules for antimicrobial activity against intracellular pathogens publication-title: J Immunol. doi: 10.4049/jimmunol.177.3.1864 – volume: 88 start-page: 716 year: 2010 ident: B34 article-title: Mycobacterium tuberculosis impairs dendritic cell response by altering CD1b, DC-SIGN and MR profile publication-title: Immunol Cell Biol. doi: 10.1038/icb.2010.22 – volume: 9 start-page: e1003499 year: 2013 ident: B24 article-title: Mycobacterium tuberculosis nucleoside diphosphate kinase inactivates small GTPases leading to evasion of innate immunity publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1003499 – volume: 89 start-page: 95 year: 2010 ident: B37 article-title: DC-SIGN and mannosylated surface structures of Mycobacterium tuberculosis: a deceptive liaison publication-title: Eur J Cell Biol. doi: 10.1016/j.ejcb.2009.10.004 – volume: 97 start-page: e12179 year: 2018 ident: B63 article-title: The association between vitamin D status and tuberculosis in children: a meta-analysis publication-title: Medicine. doi: 10.1097/MD.0000000000012179 – volume: 10 start-page: 248 year: 2011 ident: B26 article-title: Mycobacterial p(1)-type ATPases mediate resistance to zinc poisoning in human macrophages publication-title: Cell Host Microbe. doi: 10.1016/j.chom.2011.08.006 – ident: B1 – volume: 5 start-page: 39 year: 2007 ident: B58 article-title: Who puts the tubercle in tuberculosis? publication-title: Nat Rev Microbiol. doi: 10.1038/nrmicro1538 – volume: 12 start-page: 213 year: 2011 ident: B22 article-title: Germline CYBB mutations that selectively affect macrophages in kindreds with X-linked predisposition to tuberculous mycobacterial disease publication-title: Nat Immunol. doi: 10.1038/ni.1992 – volume: 264 start-page: 249 year: 2015 ident: B25 article-title: Mycobacteria, metals, and the macrophage publication-title: Immunol Rev. doi: 10.1111/imr.12265 – volume: 33 start-page: 2058738419840241 year: 2019 ident: B65 article-title: CD3, CD4, CD8, CD19 and CD16/CD56 positive cells in tuberculosis infection and disease: peculiar features in children publication-title: Int J Immunopathol Pharmacol. doi: 10.1177/2058738419840241 – volume: 9 start-page: 2637 year: 2018 ident: B27 article-title: Neutrophils: innate effectors of TB resistance? publication-title: Front Immunol. doi: 10.3389/fimmu.2018.02637 – volume: 272 start-page: 94 year: 2011 ident: B33 article-title: Interaction between mannosylated lipoarabinomannan and dendritic cell-specific intercellular adhesion molecule-3 grabbing nonintegrin influences dendritic cells maturation and T cell immunity publication-title: Cell Immunol. doi: 10.1016/j.cellimm.2011.09.001 – volume: 8 start-page: 1290 year: 2017 ident: B41 article-title: The role of mast cells in tuberculosis: orchestrating innate immune crosstalk? publication-title: Front Immunol. doi: 10.3389/fimmu.2017.01290 – volume: 86 start-page: e00387 year: 2018 ident: B35 article-title: Mycobacterium tuberculosis GroEL2 modulates dendritic cell responses publication-title: Infect Immun. doi: 10.1128/IAI.00387-17 – volume: 5 start-page: 213 year: 2018 ident: B10 article-title: Influence of genetic polymorphism towards pulmonary tuberculosis susceptibility publication-title: Front Med. doi: 10.3389/fmed.2018.00213 – volume: 8 start-page: 327 year: 2018 ident: B60 article-title: Mycobacterium tuberculosis virulent factor ESAT-6 drives macrophage differentiation toward the pro-inflammatory M1 phenotype and subsequently switches it to the anti-inflammatory M2 phenotype publication-title: Front Cell Infect Microbiol. doi: 10.3389/fcimb.2018.00327 – volume: 7 start-page: 11 year: 2015 ident: B38 article-title: Natural killer cells: a coherent model for their functional role in Mycobacterium tuberculosis infection publication-title: J Innate Immun. doi: 10.1159/000363321 – start-page: 51 volume-title: Emerging Infections year: 1998 ident: B66 article-title: Persisting problems in tuberculosis doi: 10.1016/S1874-5326(07)80027-5 – year: 2016 ident: B47 article-title: Cytokines and chemokines in Mycobacterium tuberculosis infection publication-title: Microbiol Spectr. doi: 10.1128/microbiolspec.TBTB2-0018-2016 – volume: 206 start-page: 2583 year: 2009 ident: B8 article-title: Two loci control tuberculin skin test reactivity in an area hyperendemic for tuberculosis publication-title: J Exp Med. doi: 10.1084/jem.20090892 – volume: 9 start-page: e92340 year: 2014 ident: B44 article-title: Increased complement C1q level marks active disease in human tuberculosis publication-title: PLoS ONE. doi: 10.1371/journal.pone.0092340 – volume: 15 start-page: 63 year: 2012 ident: B59 article-title: Floating between the poles of pathology and protection: can we pin down the granuloma in tuberculosis? publication-title: Curr Opin Microbiol. doi: 10.1016/j.mib.2011.10.006 – volume: 35 start-page: 386 year: 2016 ident: B32 article-title: Distinct strategies employed by dendritic cells and macrophages in restricting Mycobacterium tuberculosis infection: different philosophies but same desire publication-title: Int Rev Immunol. doi: 10.3109/08830185.2015.1015718 – volume: 10 start-page: 220 year: 2010 ident: B6 article-title: Predictors of persistently positive Mycobacterium-tuberculosis-specific interferon-gamma responses in the serial testing of health care workers publication-title: BMC Infect Dis. doi: 10.1186/1471-2334-10-220 – volume: 77 start-page: 5359 year: 2009 ident: B42 article-title: Histamine plays an essential regulatory role in lung inflammation and protective immunity in the acute phase of Mycobacterium tuberculosis infection publication-title: Infect Immun. doi: 10.1128/IAI.01497-08 – volume: 2012 start-page: 929743 year: 2012 ident: B64 article-title: ETosis: a microbicidal mechanism beyond cell death publication-title: J Parasitol Res. doi: 10.1155/2012/929743 – volume: 37 start-page: 239 year: 2015 ident: B50 article-title: CD8 T cells and Mycobacterium tuberculosis infection publication-title: Semin Immunopathol. doi: 10.1007/s00281-015-0490-8 – volume: 14 start-page: 677 year: 2016 ident: B21 article-title: ESX secretion systems: mycobacterial evolution to counter host immunity publication-title: Nat Rev Microbiol. doi: 10.1038/nrmicro.2016.131 – volume: 167 start-page: 2734 year: 2001 ident: B51 article-title: CD4+ and CD8+ T cells kill intracellular Mycobacterium tuberculosis by a perforin and Fas/Fas ligand-independent mechanism publication-title: J Immunol. doi: 10.4049/jimmunol.167.5.2734 – volume: 22 start-page: 1063 year: 2017 ident: B11 article-title: Human genetic factors in tuberculosis: an update publication-title: Trop Med Int Health. doi: 10.1111/tmi.12923 – volume: 2012 start-page: 791392 year: 2012 ident: B16 article-title: The role of airway epithelial cells in response to mycobacteria infection publication-title: Clin Dev Immunol. doi: 10.1155/2012/791392 – volume: 9 start-page: 2427 year: 2018 ident: B43 article-title: Complement component C1q as serum biomarker to detect active tuberculosis publication-title: Front Immunol. doi: 10.3389/fimmu.2018.02427 – volume: 160 start-page: 5448 year: 1998 ident: B52 article-title: Fas ligand-induced apoptosis of infected human macrophages reduces the viability of intracellular Mycobacterium tuberculosis publication-title: J Immunol. doi: 10.4049/jimmunol.160.11.5448 – volume: 9 start-page: 903 year: 2018 ident: B28 article-title: Differential effect of viable versus necrotic neutrophils on Mycobacterium tuberculosis growth and cytokine induction in whole blood publication-title: Front Immunol. doi: 10.3389/fimmu.2018.00903 – volume: 9 start-page: 471 year: 2018 ident: B36 article-title: Targeting Mycobacterium tuberculosis antigens to dendritic cells via the DC-specific-ICAM3-grabbing-nonintegrin receptor induces strong T-helper 1 immune responses publication-title: Front Immunol. doi: 10.3389/fimmu.2018.00471 |
| SSID | ssj0000970515 |
| Score | 2.538479 |
| SecondaryResourceType | review_article |
| Snippet | The encounter between
(Mtb) and the host leads to a complex and multifaceted immune response possibly resulting in latent infection, tubercular disease or to... The encounter between Mycobacterium tuberculosis (Mtb) and the host leads to a complex and multifaceted immune response possibly resulting in latent infection,... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 350 |
| SubjectTerms | children immune response immunity macrophage Mycobacterium tuberculosis Pediatrics tuberculosis |
| Title | Immune Response to Mycobacterium tuberculosis: A Narrative Review |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/31508399 https://www.proquest.com/docview/2288753244 https://pubmed.ncbi.nlm.nih.gov/PMC6718705 https://doaj.org/article/55c1751135b240be8d954349b931dde2 |
| Volume | 7 |
| WOSCitedRecordID | wos000482826200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2296-2360 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000970515 issn: 2296-2360 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2296-2360 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000970515 issn: 2296-2360 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ba9swFH5sZZRdRre2m9euaNBDL15jy46k3rLRsh0SSukhN2HJEgt0TkjsQS_97XtPckNSVnbZxQdbxuLTe3rvs6TvAZx6PsyktT7NbWbTwiLdqVxhUu8HPsOQP_DWh2ITYjKR06m63ij1RXvCojxwBO68LC1GuCzjpcHgY5ysFZ2GVEbxDF0zzL6Y9WyQqTAHK0HFS6KWD7Iwde4XjoRBM5Kn5HTKfiMMBbX-v6WYT3dKboSeqz140-eMbBT7-hZeuOYd7I77VfF9GP2gQx6O3cT9ro61cza-t-ipQYm5-8Xazril7e7mq9nqgo3YpFpGxW8W1wYO4Pbq8vbb97QvjZDaolRtaocDg4AoSfLoQ-GtwcyLC5V7WxhfI-3wtbSDynmFk3FZYVqhKi7rQprcG8MPYaeZN-4DMOFKaTjNcpVCamhkUaPfV7UoiLk5nsCXR6C07WXDqXrFnUb6QMhqQlYTsjogm8DZ-oVFVMx4vulXQn7djKSuww00AN0bgP6XASTw-XHcNLoGrXdUjZt3K53nktgYJjAJvI_juP4UDzr4SiUgtkZ4qy_bT5rZzyC_PcRwjtb18X90_gheExz0kzoXx7DTLjv3CV7Z3-1stTyBl2IqT4Jl43X8cPkHxOn9_g |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Immune+Response+to+Mycobacterium+tuberculosis%3A+A+Narrative+Review&rft.jtitle=Frontiers+in+pediatrics&rft.au=de+Martino%2C+Maurizio&rft.au=Lodi%2C+Lorenzo&rft.au=Galli%2C+Luisa&rft.au=Chiappini%2C+Elena&rft.date=2019-08-27&rft.issn=2296-2360&rft.eissn=2296-2360&rft.volume=7&rft.spage=350&rft_id=info:doi/10.3389%2Ffped.2019.00350&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-2360&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-2360&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-2360&client=summon |