An attention residual u-net with differential preprocessing and geometric postprocessing: Learning how to segment vasculature including intracranial aneurysms
•This paper proposes automatically segmenting vasculature, including intracranial aneurysms, from 3DRA images with the need for “patient-specific” computational hemodynamics.•An attention residual U-Net with preprocessing and postprocessing is constructed.•We design multi-scale supervision to improv...
Gespeichert in:
| Veröffentlicht in: | Medical image analysis Jg. 84; S. 102697 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Netherlands
Elsevier B.V
01.02.2023
|
| Schlagworte: | |
| ISSN: | 1361-8415, 1361-8423, 1361-8423 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •This paper proposes automatically segmenting vasculature, including intracranial aneurysms, from 3DRA images with the need for “patient-specific” computational hemodynamics.•An attention residual U-Net with preprocessing and postprocessing is constructed.•We design multi-scale supervision to improve the segmentation of small vessels.•We adopt a fully connected 3D conditional random field to remove unwanted vessel-to-vessel or vessel-to-aneurysm connections.•This is the first study to systematically investigate the potential of deep-learning image segmentation for “patient-specific” computational hemodynamics.
Intracranial aneurysms (IA) are lethal, with high morbidity and mortality rates. Reliable, rapid, and accurate segmentation of IAs and their adjacent vasculature from medical imaging data is important to improve the clinical management of patients with IAs. However, due to the blurred boundaries and complex structure of IAs and overlapping with brain tissue or other cerebral arteries, image segmentation of IAs remains challenging. This study aimed to develop an attention residual U-Net (ARU-Net) architecture with differential preprocessing and geometric postprocessing for automatic segmentation of IAs and their adjacent arteries in conjunction with 3D rotational angiography (3DRA) images.
The proposed ARU-Net followed the classic U-Net framework with the following key enhancements. First, we preprocessed the 3DRA images based on boundary enhancement to capture more contour information and enhance the presence of small vessels. Second, we introduced the long skip connections of the attention gate at each layer of the fully convolutional decoder-encoder structure to emphasize the field of view (FOV) for IAs. Third, residual-based short skip connections were also embedded in each layer to implement in-depth supervision to help the network converge. Fourth, we devised a multiscale supervision strategy for independent prediction at different levels of the decoding path, integrating multiscale semantic information to facilitate the segmentation of small vessels. Fifth, the 3D conditional random field (3DCRF) and 3D connected component optimization (3DCCO) were exploited as postprocessing to optimize the segmentation results.
Comprehensive experimental assessments validated the effectiveness of our ARU-Net. The proposed ARU-Net model achieved comparable or superior performance to the state-of-the-art methods through quantitative and qualitative evaluations. Notably, we found that ARU-Net improved the identification of arteries connecting to an IA, including small arteries that were hard to recognize by other methods. Consequently, IA geometries segmented by the proposed ARU-Net model yielded superior performance during subsequent computational hemodynamic studies (also known as "patient-specific" computational fluid dynamics [CFD] simulations). Furthermore, in an ablation study, the five key enhancements mentioned above were confirmed.
The proposed ARU-Net model can automatically segment the IAs in 3DRA images with relatively high accuracy and potentially has significant value for clinical computational hemodynamic analysis.
[Display omitted] |
|---|---|
| AbstractList | Intracranial aneurysms (IA) are lethal, with high morbidity and mortality rates. Reliable, rapid, and accurate segmentation of IAs and their adjacent vasculature from medical imaging data is important to improve the clinical management of patients with IAs. However, due to the blurred boundaries and complex structure of IAs and overlapping with brain tissue or other cerebral arteries, image segmentation of IAs remains challenging. This study aimed to develop an attention residual U-Net (ARU-Net) architecture with differential preprocessing and geometric postprocessing for automatic segmentation of IAs and their adjacent arteries in conjunction with 3D rotational angiography (3DRA) images.OBJECTIVEIntracranial aneurysms (IA) are lethal, with high morbidity and mortality rates. Reliable, rapid, and accurate segmentation of IAs and their adjacent vasculature from medical imaging data is important to improve the clinical management of patients with IAs. However, due to the blurred boundaries and complex structure of IAs and overlapping with brain tissue or other cerebral arteries, image segmentation of IAs remains challenging. This study aimed to develop an attention residual U-Net (ARU-Net) architecture with differential preprocessing and geometric postprocessing for automatic segmentation of IAs and their adjacent arteries in conjunction with 3D rotational angiography (3DRA) images.The proposed ARU-Net followed the classic U-Net framework with the following key enhancements. First, we preprocessed the 3DRA images based on boundary enhancement to capture more contour information and enhance the presence of small vessels. Second, we introduced the long skip connections of the attention gate at each layer of the fully convolutional decoder-encoder structure to emphasize the field of view (FOV) for IAs. Third, residual-based short skip connections were also embedded in each layer to implement in-depth supervision to help the network converge. Fourth, we devised a multiscale supervision strategy for independent prediction at different levels of the decoding path, integrating multiscale semantic information to facilitate the segmentation of small vessels. Fifth, the 3D conditional random field (3DCRF) and 3D connected component optimization (3DCCO) were exploited as postprocessing to optimize the segmentation results.METHODSThe proposed ARU-Net followed the classic U-Net framework with the following key enhancements. First, we preprocessed the 3DRA images based on boundary enhancement to capture more contour information and enhance the presence of small vessels. Second, we introduced the long skip connections of the attention gate at each layer of the fully convolutional decoder-encoder structure to emphasize the field of view (FOV) for IAs. Third, residual-based short skip connections were also embedded in each layer to implement in-depth supervision to help the network converge. Fourth, we devised a multiscale supervision strategy for independent prediction at different levels of the decoding path, integrating multiscale semantic information to facilitate the segmentation of small vessels. Fifth, the 3D conditional random field (3DCRF) and 3D connected component optimization (3DCCO) were exploited as postprocessing to optimize the segmentation results.Comprehensive experimental assessments validated the effectiveness of our ARU-Net. The proposed ARU-Net model achieved comparable or superior performance to the state-of-the-art methods through quantitative and qualitative evaluations. Notably, we found that ARU-Net improved the identification of arteries connecting to an IA, including small arteries that were hard to recognize by other methods. Consequently, IA geometries segmented by the proposed ARU-Net model yielded superior performance during subsequent computational hemodynamic studies (also known as "patient-specific" computational fluid dynamics [CFD] simulations). Furthermore, in an ablation study, the five key enhancements mentioned above were confirmed.RESULTSComprehensive experimental assessments validated the effectiveness of our ARU-Net. The proposed ARU-Net model achieved comparable or superior performance to the state-of-the-art methods through quantitative and qualitative evaluations. Notably, we found that ARU-Net improved the identification of arteries connecting to an IA, including small arteries that were hard to recognize by other methods. Consequently, IA geometries segmented by the proposed ARU-Net model yielded superior performance during subsequent computational hemodynamic studies (also known as "patient-specific" computational fluid dynamics [CFD] simulations). Furthermore, in an ablation study, the five key enhancements mentioned above were confirmed.The proposed ARU-Net model can automatically segment the IAs in 3DRA images with relatively high accuracy and potentially has significant value for clinical computational hemodynamic analysis.CONCLUSIONSThe proposed ARU-Net model can automatically segment the IAs in 3DRA images with relatively high accuracy and potentially has significant value for clinical computational hemodynamic analysis. Intracranial aneurysms (IA) are lethal, with high morbidity and mortality rates. Reliable, rapid, and accurate segmentation of IAs and their adjacent vasculature from medical imaging data is important to improve the clinical management of patients with IAs. However, due to the blurred boundaries and complex structure of IAs and overlapping with brain tissue or other cerebral arteries, image segmentation of IAs remains challenging. This study aimed to develop an attention residual U-Net (ARU-Net) architecture with differential preprocessing and geometric postprocessing for automatic segmentation of IAs and their adjacent arteries in conjunction with 3D rotational angiography (3DRA) images. The proposed ARU-Net followed the classic U-Net framework with the following key enhancements. First, we preprocessed the 3DRA images based on boundary enhancement to capture more contour information and enhance the presence of small vessels. Second, we introduced the long skip connections of the attention gate at each layer of the fully convolutional decoder-encoder structure to emphasize the field of view (FOV) for IAs. Third, residual-based short skip connections were also embedded in each layer to implement in-depth supervision to help the network converge. Fourth, we devised a multiscale supervision strategy for independent prediction at different levels of the decoding path, integrating multiscale semantic information to facilitate the segmentation of small vessels. Fifth, the 3D conditional random field (3DCRF) and 3D connected component optimization (3DCCO) were exploited as postprocessing to optimize the segmentation results. Comprehensive experimental assessments validated the effectiveness of our ARU-Net. The proposed ARU-Net model achieved comparable or superior performance to the state-of-the-art methods through quantitative and qualitative evaluations. Notably, we found that ARU-Net improved the identification of arteries connecting to an IA, including small arteries that were hard to recognize by other methods. Consequently, IA geometries segmented by the proposed ARU-Net model yielded superior performance during subsequent computational hemodynamic studies (also known as "patient-specific" computational fluid dynamics [CFD] simulations). Furthermore, in an ablation study, the five key enhancements mentioned above were confirmed. The proposed ARU-Net model can automatically segment the IAs in 3DRA images with relatively high accuracy and potentially has significant value for clinical computational hemodynamic analysis. •This paper proposes automatically segmenting vasculature, including intracranial aneurysms, from 3DRA images with the need for “patient-specific” computational hemodynamics.•An attention residual U-Net with preprocessing and postprocessing is constructed.•We design multi-scale supervision to improve the segmentation of small vessels.•We adopt a fully connected 3D conditional random field to remove unwanted vessel-to-vessel or vessel-to-aneurysm connections.•This is the first study to systematically investigate the potential of deep-learning image segmentation for “patient-specific” computational hemodynamics. Intracranial aneurysms (IA) are lethal, with high morbidity and mortality rates. Reliable, rapid, and accurate segmentation of IAs and their adjacent vasculature from medical imaging data is important to improve the clinical management of patients with IAs. However, due to the blurred boundaries and complex structure of IAs and overlapping with brain tissue or other cerebral arteries, image segmentation of IAs remains challenging. This study aimed to develop an attention residual U-Net (ARU-Net) architecture with differential preprocessing and geometric postprocessing for automatic segmentation of IAs and their adjacent arteries in conjunction with 3D rotational angiography (3DRA) images. The proposed ARU-Net followed the classic U-Net framework with the following key enhancements. First, we preprocessed the 3DRA images based on boundary enhancement to capture more contour information and enhance the presence of small vessels. Second, we introduced the long skip connections of the attention gate at each layer of the fully convolutional decoder-encoder structure to emphasize the field of view (FOV) for IAs. Third, residual-based short skip connections were also embedded in each layer to implement in-depth supervision to help the network converge. Fourth, we devised a multiscale supervision strategy for independent prediction at different levels of the decoding path, integrating multiscale semantic information to facilitate the segmentation of small vessels. Fifth, the 3D conditional random field (3DCRF) and 3D connected component optimization (3DCCO) were exploited as postprocessing to optimize the segmentation results. Comprehensive experimental assessments validated the effectiveness of our ARU-Net. The proposed ARU-Net model achieved comparable or superior performance to the state-of-the-art methods through quantitative and qualitative evaluations. Notably, we found that ARU-Net improved the identification of arteries connecting to an IA, including small arteries that were hard to recognize by other methods. Consequently, IA geometries segmented by the proposed ARU-Net model yielded superior performance during subsequent computational hemodynamic studies (also known as "patient-specific" computational fluid dynamics [CFD] simulations). Furthermore, in an ablation study, the five key enhancements mentioned above were confirmed. The proposed ARU-Net model can automatically segment the IAs in 3DRA images with relatively high accuracy and potentially has significant value for clinical computational hemodynamic analysis. [Display omitted] |
| ArticleNumber | 102697 |
| Author | Tang, Jinshan Jiang, Jingfeng Lyu, Zonghan Mu, Nan Rezaeitaleshmahalleh, Mostafa |
| AuthorAffiliation | c Center for Biocomputing and Digital Health, Health Research Institute and Institute of Computing and Cybernetics, Michigan Technological University, Houghton, Michigan, USA a Biomedical Engineering, Michigan Technological University, Houghton, Michigan USA b Department of Health Administration and Policy, George Mason University, Fairfax, Virginia, USA |
| AuthorAffiliation_xml | – name: c Center for Biocomputing and Digital Health, Health Research Institute and Institute of Computing and Cybernetics, Michigan Technological University, Houghton, Michigan, USA – name: b Department of Health Administration and Policy, George Mason University, Fairfax, Virginia, USA – name: a Biomedical Engineering, Michigan Technological University, Houghton, Michigan USA |
| Author_xml | – sequence: 1 givenname: Nan orcidid: 0000-0003-0476-7500 surname: Mu fullname: Mu, Nan organization: Biomedical Engineering, Michigan Technological University, Houghton, MI United States – sequence: 2 givenname: Zonghan surname: Lyu fullname: Lyu, Zonghan organization: Biomedical Engineering, Michigan Technological University, Houghton, MI United States – sequence: 3 givenname: Mostafa surname: Rezaeitaleshmahalleh fullname: Rezaeitaleshmahalleh, Mostafa organization: Biomedical Engineering, Michigan Technological University, Houghton, MI United States – sequence: 4 givenname: Jinshan orcidid: 0000-0001-7266-8534 surname: Tang fullname: Tang, Jinshan organization: Department of Health Administration and Policy, George Mason University, Fairfax, Virginia, United States – sequence: 5 givenname: Jingfeng orcidid: 0000-0001-8812-6246 surname: Jiang fullname: Jiang, Jingfeng email: jjiang1@mtu.edu organization: Biomedical Engineering, Michigan Technological University, Houghton, MI United States |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36462374$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9Uk1v3CAQRVWqJtn2F1SqOPbiLQYb25VaKYr6EWmlXNIzwjDeZWWDC3ij_Jn-1kI3SZseAgfQzHtvYOadoxPrLCD0tiTrkpT8w349gTZyTQmlKUJ517xAZyXjZdFWlJ083sv6FJ2HsCeENFVFXqFTxitOWVOdoV8XFssYwUbjLPYQjF7kiJfCQsS3Ju6wNsMAPgNSfPYwe6cgBGO3WFqNt-AmiN4oPLsQ_yY_4g1IbzNs525xdDjAdkoy-CCDWkYZFw_YWDUuOoOMjV4qL20uIy0s_i5M4TV6OcgxwJv7c4V-fP1yc_m92Fx_u7q82BSqqrtY9IQ3WvcKOl33UGsl245JymjftCoFeKvqAfhAe8nTrkjTtkpRwksCjFWErdDno-689KmrCvJrRjF7M0l_J5w04mnGmp3YuoPoWkbqLgu8vxfw7ucCIYrJBAXjmL7iliBoU3HWsbxW6N2_tR6LPAwlAbojQHkXgodBKBNlHlAqbUZREpENIPbijwFENoA4GiBx2X_cB_nnWZ-OLEg9PhjwIigDViWgBxWFduZZ_m9t5NGN |
| CitedBy_id | crossref_primary_10_1007_s11517_025_03345_7 crossref_primary_10_1088_2057_1976_acf3ed crossref_primary_10_1007_s00371_024_03730_7 crossref_primary_10_1016_j_compbiomed_2023_107648 crossref_primary_10_1109_ACCESS_2025_3552588 crossref_primary_10_1109_TASE_2025_3585728 crossref_primary_10_1186_s13244_024_01657_0 crossref_primary_10_1038_s41598_024_80891_4 crossref_primary_10_3390_bioengineering12050437 crossref_primary_10_1016_j_knosys_2025_113778 crossref_primary_10_1038_s41598_024_60475_y crossref_primary_10_1007_s12530_023_09489_x crossref_primary_10_3390_bioengineering12050552 crossref_primary_10_1007_s12194_025_00938_7 crossref_primary_10_1016_j_compmedimag_2024_102421 crossref_primary_10_1111_exsy_13588 crossref_primary_10_1186_s41016_023_00339_y crossref_primary_10_1016_j_medengphy_2024_104244 crossref_primary_10_1016_j_nbd_2025_106877 crossref_primary_10_1016_j_compbiomed_2025_110370 crossref_primary_10_1186_s12880_024_01347_9 crossref_primary_10_1016_j_bspc_2025_108028 crossref_primary_10_1109_TCE_2025_3526801 crossref_primary_10_1016_j_engappai_2025_110794 crossref_primary_10_1016_j_compbiomed_2024_108838 crossref_primary_10_1007_s11220_024_00493_2 crossref_primary_10_1109_TIM_2024_3497186 crossref_primary_10_1016_j_displa_2024_102929 crossref_primary_10_1016_j_wneu_2024_10_108 crossref_primary_10_3390_medicina61040561 crossref_primary_10_3233_XST_240093 crossref_primary_10_1186_s12911_024_02585_1 crossref_primary_10_1007_s10044_024_01266_z crossref_primary_10_1109_JBHI_2024_3448459 crossref_primary_10_1002_mp_70017 crossref_primary_10_3390_electronics12122750 crossref_primary_10_1002_ima_70071 crossref_primary_10_1016_j_tranon_2023_101833 crossref_primary_10_4274_TJAR_2023_231260 crossref_primary_10_1016_j_neucom_2025_129459 crossref_primary_10_1016_j_bspc_2023_105614 crossref_primary_10_1007_s11042_023_17652_4 crossref_primary_10_1016_j_nic_2025_05_002 crossref_primary_10_1007_s00701_024_06404_4 crossref_primary_10_1109_ACCESS_2023_3335045 crossref_primary_10_1148_ryai_240017 crossref_primary_10_1016_j_compbiomed_2024_108370 crossref_primary_10_1038_s41598_023_50989_2 crossref_primary_10_1002_ima_23199 crossref_primary_10_3389_fphys_2023_1209659 crossref_primary_10_1007_s12265_022_10352_8 crossref_primary_10_1007_s10439_025_03686_2 crossref_primary_10_1016_j_compbiomed_2024_108615 crossref_primary_10_1016_j_procs_2024_11_019 crossref_primary_10_3390_bioengineering10060722 crossref_primary_10_1136_jnis_2024_022784 crossref_primary_10_1016_j_knosys_2025_114359 crossref_primary_10_1007_s12265_025_10677_0 crossref_primary_10_1016_j_eswa_2025_128775 crossref_primary_10_1109_ACCESS_2025_3533417 |
| Cites_doi | 10.1016/j.jbiomech.2013.12.035 10.1177/0271678X19854640 10.1227/01.NEU.0000316847.64140.81 10.1038/s41592-020-01008-z 10.1148/radiol.2020192154 10.1136/neurintsurg-2019-015422 10.1109/TMI.2009.2021652 10.1186/s12880-020-00543-7 10.1007/s10439-015-1363-y 10.3174/ajnr.A2419 10.1002/jmri.25842 10.1109/TMI.2017.2695227 10.1007/s10278-018-0162-z 10.1038/35058500 10.1109/TMI.2020.2996645 10.1016/j.patcog.2021.108168 10.1007/s11517-008-0420-1 10.1007/s00701-020-04616-y 10.1117/12.2549761 10.3174/ajnr.A3558 10.1038/jcbfm.2009.176 10.1038/s41598-020-78384-1 10.1016/j.media.2016.10.004 10.1136/neurintsurg-2020-015824 10.1148/radiol.2018182225 10.1146/annurev.neuro.23.1.315 10.1002/jcp.30569 |
| ContentType | Journal Article |
| Copyright | 2022 The Authors Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2022 The Authors – notice: Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved. |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| DOI | 10.1016/j.media.2022.102697 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1361-8423 |
| EndPage | 102697 |
| ExternalDocumentID | PMC9830590 36462374 10_1016_j_media_2022_102697 S1361841522003255 |
| Genre | Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: R01 EB029570 |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABBQC ABJNI ABLVK ABMAC ABMZM ABXDB ABYKQ ACDAQ ACGFS ACIUM ACIWK ACNNM ACPRK ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV C45 CAG COF CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HX~ HZ~ IHE J1W JJJVA KOM LCYCR M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEL SES SEW SPC SPCBC SSH SST SSV SSZ T5K TEORI UHS ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c459t-b067ddbce9d5be5dca893a232b78cbe568c5fe6f2ba6a6a40788cc20610e33403 |
| ISICitedReferencesCount | 66 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000913159100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1361-8415 1361-8423 |
| IngestDate | Tue Sep 30 17:10:07 EDT 2025 Sun Nov 09 11:10:52 EST 2025 Thu Apr 03 07:01:16 EDT 2025 Sat Nov 29 07:00:45 EST 2025 Tue Nov 18 22:37:54 EST 2025 Fri Feb 23 02:38:03 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Conditional random field 3D segmentation Multiscale supervision Depth-aware attention gate Intracranial aneurysm |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c459t-b067ddbce9d5be5dca893a232b78cbe568c5fe6f2ba6a6a40788cc20610e33403 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-0476-7500 0000-0001-7266-8534 0000-0001-8812-6246 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.media.2022.102697 |
| PMID | 36462374 |
| PQID | 2746393333 |
| PQPubID | 23479 |
| PageCount | 1 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9830590 proquest_miscellaneous_2746393333 pubmed_primary_36462374 crossref_citationtrail_10_1016_j_media_2022_102697 crossref_primary_10_1016_j_media_2022_102697 elsevier_sciencedirect_doi_10_1016_j_media_2022_102697 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-02-01 |
| PublicationDateYYYYMMDD | 2023-02-01 |
| PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Medical image analysis |
| PublicationTitleAlternate | Med Image Anal |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Gwilliam, Hoggard, Capener, Singh, Marzo, Verma, Wilkinson (bib0057) 2009; 29 O. Oktay, J. Schlemper, L.L. Folgoc, M. Lee, M. Heinrich, K. Misawa, K. Mori, S. McDonagh, N.Y. Hammerla, B. Kainz, B. Glocker, and D. Rueckert, “Attention u-net: learning where to look for the pancreas,” arXiv preprint Jin, Geng, Yin, Hu, Yang, Xiang, Zhai, Ji, Fan, Hu, He, Qin, Zhang (bib0026) 2020; 12 Hatamizadeh, Terzopoulos, Myronenko (bib0049) 2019 Cebral, Mut, Weir, Putman (bib0003) 2011; 32 Mu, Wang, Zhang, Jiang, Tang (bib0052) 2021; 120 Meng, Tutino, Xiang, Siddiqui (bib0004) 2014; 35 Müller, Kramer (bib0017) 2021; 21 Xiang, Antiga, Varble, Snyder, Levy, Siddiqui, Meng (bib0007) 2016; 44 Valanarasu, Oza, Hacihaliloglu, Patel (bib0036) 2021 Fu, Liu, Tian, Li, Bao, Fang, Lu (bib0033) 2019 Isensee, Jaeger, Kohl, Petersen, Maier-Hein (bib0011) 2021; 18 Seferbekov, Iglovikov, Buslaev, Shvets (bib0040) 2018 Cheng, Xiao, Yuan, Wang (bib0029) 2021 Çiçek, Abdulkadir, Lienkamp, Brox, Ronneberger (bib0010) 2016 Milletari, Navab, Ahmadi (bib0046) 2016 Saqr, Rashad, Tupin, Niizuma, Hassan, Tominaga, Ohta (bib0001) 2020; 40 Shahzad, Pennig, Goertz, Thiele, Kabbasch, Schlamann, Krischek, Maintz, Perkuhn, Borggrefe (bib0028) 2020; 10 Bello, Zoph, Vaswani, Shlens, Le (bib0032) 2019 He, Zhang, Ren, Sun (bib0037) 2015 Fan, Zhou, Ji, Zhou, Chen, Fu, Shen, Shao (bib0051) 2020; 39 Flanders (bib0022) 2019; 290 Salehi, Erdogmus, Gholipour (bib0042) 2017 Stember, Chang, Stember, Liu, Grinband, Filippi, Meyers, Jambawalikar (bib0025) 2019; 32 Damiano, Tutino, Paliwal, Patel, Waqas, Levy, Davies, Siddiqui, Meng (bib0006) 2020; 12 Krähenbühl, Koltun (bib0043) 2011 pp. 1–10, 2022. pp. 1–10, 2018. He, Zhang, Ren, Sun (bib0014) 2016 Kong, Sun, Wu, Liu, Lin (bib0041) 2018 Antiga, Piccinelli, Botti, Ene-Iordache, Remuzzi, Steinman (bib0002) 2008; 46 Yang, Xie, Hu, Alwalid, Xu, Liu, Jin, Li, Tu, Liu, Zhang, Li, Long (bib0009) 2021; 298 Mnih, Heess, Graves, kavukcuoglu (bib0031) 2014 Wang, Zhu, Green, Adam, Yuille, Chen (bib0054) 2020 Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (bib0053) 2017 Valanarasu, Sindagi, Hacihaliloglu, Patel (bib0018) 2021 Bhalerao, Thakur (bib0016) 2019 Wong, Moradi, Tang, Syeda-Mahmood (bib0045) 2018 Sunderland, Wang, Pandey, Gemmete, Huang, Goudge, Jiang (bib0055) 2021; 163 Nakao, Hanaoka, Nomura, Sato, Nemoto, Miki, Maeda, Yoshikawa, Hayashi, Abe (bib0024) 2018; 47 Dhar, Tremmel, Mocco, Kim, Yamamoto, Siddiqui, Hopkins, Meng (bib0005) 2008; 63 Piccinelli, Veneziani, Steinman, Remuzzi, Antiga (bib0019) 2009; 28 Qin, Zhang, Huang, Gao, Dehghan, Jagersand (bib0050) 2019 Sunderland, Jiang, Zhao (bib0044) 2022; 237 D. Shao, X. Lu, and X. Liu, “3D intracranial aneurysm classification and segmentation via unsupervised Dual-branch learning,” arXiv preprint Brosch, Yoo, Tang, Li, Traboulsee, Tam (bib0048) 2015 Patel, Paliwal, Jaiswal, Waqas, Mokin, Siddiqui, Meng, Rai, Tutino (bib0027) 2020; 2020 Kamnitsas, Ledig, Newcombe, Simpson, Kane, Menon (bib0015) 2017; 36 Kastner, Ungerleider (bib0012) 2000; 23 Sunderland, Haferman, Chintalapani, Jiang (bib0056) 2016; 2016 Jirik, Lukes, Svobodova, Zelezny (bib0020) 2013 Lin, Dollar, Girshick, He, Hariharan, Belongie (bib0039) 2017 Yuan, Chao, Lo (bib0047) 2017; 36 Itti, Koch (bib0013) 2001; 2 Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly, Uszkoreit, Houlsby (bib0034) 2021 Ronneberger, Fischer, Brox (bib0008) 2015 Liu, Lin, Cao, Hu, Wei, Zhang, Lin, Guo (bib0035) 2021 Sen, Qian, Avolio, Morgan (bib0021) 2014; 47 Qin (10.1016/j.media.2022.102697_bib0050) 2019 Salehi (10.1016/j.media.2022.102697_bib0042) 2017 Mu (10.1016/j.media.2022.102697_bib0052) 2021; 120 Stember (10.1016/j.media.2022.102697_bib0025) 2019; 32 Kong (10.1016/j.media.2022.102697_bib0041) 2018 Yuan (10.1016/j.media.2022.102697_bib0047) 2017; 36 Meng (10.1016/j.media.2022.102697_bib0004) 2014; 35 He (10.1016/j.media.2022.102697_bib0014) 2016 Isensee (10.1016/j.media.2022.102697_bib0011) 2021; 18 Sunderland (10.1016/j.media.2022.102697_bib0056) 2016; 2016 Lin (10.1016/j.media.2022.102697_bib0039) 2017 Dhar (10.1016/j.media.2022.102697_bib0005) 2008; 63 Müller (10.1016/j.media.2022.102697_bib0017) 2021; 21 He (10.1016/j.media.2022.102697_bib0037) 2015 Bhalerao (10.1016/j.media.2022.102697_bib0016) 2019 Sunderland (10.1016/j.media.2022.102697_bib0055) 2021; 163 Flanders (10.1016/j.media.2022.102697_bib0022) 2019; 290 Valanarasu (10.1016/j.media.2022.102697_bib0018) 2021 Sunderland (10.1016/j.media.2022.102697_bib0044) 2022; 237 Jin (10.1016/j.media.2022.102697_bib0026) 2020; 12 Bello (10.1016/j.media.2022.102697_bib0032) 2019 Seferbekov (10.1016/j.media.2022.102697_bib0040) 2018 Piccinelli (10.1016/j.media.2022.102697_bib0019) 2009; 28 Itti (10.1016/j.media.2022.102697_bib0013) 2001; 2 Jirik (10.1016/j.media.2022.102697_bib0020) 2013 Yang (10.1016/j.media.2022.102697_bib0009) 2021; 298 Cheng (10.1016/j.media.2022.102697_bib0029) 2021 Liu (10.1016/j.media.2022.102697_bib0035) 2021 Antiga (10.1016/j.media.2022.102697_bib0002) 2008; 46 Nakao (10.1016/j.media.2022.102697_bib0024) 2018; 47 Wang (10.1016/j.media.2022.102697_bib0054) 2020 Gwilliam (10.1016/j.media.2022.102697_bib0057) 2009; 29 Milletari (10.1016/j.media.2022.102697_bib0046) 2016 Shahzad (10.1016/j.media.2022.102697_bib0028) 2020; 10 Çiçek (10.1016/j.media.2022.102697_bib0010) 2016 Sen (10.1016/j.media.2022.102697_bib0021) 2014; 47 Wong (10.1016/j.media.2022.102697_bib0045) 2018 Dosovitskiy (10.1016/j.media.2022.102697_bib0034) 2021 Kamnitsas (10.1016/j.media.2022.102697_bib0015) 2017; 36 Hatamizadeh (10.1016/j.media.2022.102697_bib0049) 2019 Ronneberger (10.1016/j.media.2022.102697_bib0008) 2015 Saqr (10.1016/j.media.2022.102697_bib0001) 2020; 40 10.1016/j.media.2022.102697_bib0030 Patel (10.1016/j.media.2022.102697_bib0027) 2020; 2020 Damiano (10.1016/j.media.2022.102697_bib0006) 2020; 12 Valanarasu (10.1016/j.media.2022.102697_bib0036) 2021 Vaswani (10.1016/j.media.2022.102697_bib0053) 2017 10.1016/j.media.2022.102697_bib0038 Xiang (10.1016/j.media.2022.102697_bib0007) 2016; 44 Mnih (10.1016/j.media.2022.102697_bib0031) 2014 Fu (10.1016/j.media.2022.102697_bib0033) 2019 Brosch (10.1016/j.media.2022.102697_bib0048) 2015 Cebral (10.1016/j.media.2022.102697_bib0003) 2011; 32 Kastner (10.1016/j.media.2022.102697_bib0012) 2000; 23 Krähenbühl (10.1016/j.media.2022.102697_bib0043) 2011 Fan (10.1016/j.media.2022.102697_bib0051) 2020; 39 |
| References_xml | – volume: 36 start-page: 61 year: 2017 end-page: 78 ident: bib0015 article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation publication-title: Med. Image Anal. – volume: 290 start-page: 195 year: 2019 end-page: 197 ident: bib0022 article-title: Machine learning detection of intracranial aneurysms—Will it play in Peoria? publication-title: Radiology – start-page: 7479 year: 2019 end-page: 7489 ident: bib0050 article-title: Basnet: boundary-aware salient object detection publication-title: IEEE Conference on Computer Vision and Pattern Recognition – volume: 2 start-page: 194 year: 2001 end-page: 203 ident: bib0013 article-title: Computational modelling of visual attention publication-title: Nat. Rev. Neurosci. – start-page: 108 year: 2020 end-page: 126 ident: bib0054 article-title: Axial-deeplab: stand-alone axial-attention for panoptic segmentation publication-title: European Conference on Computer Vision – start-page: 612 year: 2018 end-page: 619 ident: bib0045 article-title: 3D segmentation with exponential logarithmic loss for highly unbalanced object sizes publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 163 start-page: 2339 year: 2021 end-page: 2349 ident: bib0055 article-title: Quantitative analysis of flow vortices: differentiation of unruptured and ruptured medium-sized middle cerebral artery aneurysms publication-title: Acta Neurochir (Wien) – start-page: 218 year: 2019 end-page: 225 ident: bib0016 article-title: Brain tumor segmentation based on 3D residual U-Net publication-title: International MICCAI Brainlesion Workshop – volume: 120 start-page: 1 year: 2021 end-page: 12 ident: bib0052 article-title: Progressive global perception and local polishing network for lung infection segmentation of COVID-19 CT images publication-title: Pattern Recognit. – volume: 46 start-page: 1097 year: 2008 end-page: 1112 ident: bib0002 article-title: An image-based modeling framework for patient-specific computational hemodynamics publication-title: Med. Biol. Eng. Comput. Vol. – volume: 63 start-page: 185 year: 2008 end-page: 197 ident: bib0005 article-title: Morphology parameters for intracranial aneurysm rupture risk assessment publication-title: Neurosurgery – volume: 237 start-page: 278 year: 2022 end-page: 300 ident: bib0044 article-title: Disturbed flow's impact on cellular changes indicative of vascular aneurysm initiation, expansion, and rupture: a pathological and methodological review publication-title: J. Cell. Physiol. – volume: 18 start-page: 203 year: 2021 end-page: 211 ident: bib0011 article-title: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation publication-title: Nat. Methods – start-page: 565 year: 2016 end-page: 571 ident: bib0046 article-title: V-net: fully convolutional neural networks for volumetric medical image segmentation publication-title: 2016 fourth international conference on 3D vision – volume: 44 start-page: 1085 year: 2016 end-page: 1096 ident: bib0007 article-title: AView: an image-based clinical computational tool for intracranial aneurysm flow visualization and clinical management publication-title: Ann. Biomed. Eng. – reference: O. Oktay, J. Schlemper, L.L. Folgoc, M. Lee, M. Heinrich, K. Misawa, K. Mori, S. McDonagh, N.Y. Hammerla, B. Kainz, B. Glocker, and D. Rueckert, “Attention u-net: learning where to look for the pancreas,” arXiv preprint – volume: 2016 year: 2016 ident: bib0056 article-title: Vortex analysis of intra-aneurismal flow in cerebral aneurysms publication-title: Comput. Math. Methods Med. – start-page: 770 year: 2016 end-page: 778 ident: bib0014 article-title: Deep residual learning for image recognition publication-title: IEEE Conference on Computer Vision and Pattern Recognition – volume: 10 start-page: 1 year: 2020 end-page: 12 ident: bib0028 article-title: Fully automated detection and segmentation of intracranial aneurysms in subarachnoid hemorrhage on CTA using deep learning publication-title: Sci. Rep. – start-page: 2117 year: 2017 end-page: 2125 ident: bib0039 article-title: Feature pyramid networks for object detection publication-title: IEEE Conference on Computer Vision and Pattern Recognition – start-page: 3286 year: 2019 end-page: 3295 ident: bib0032 article-title: Attention augmented convolutional networks publication-title: IEEE International Conference on Computer Vision – volume: 36 start-page: 1876 year: 2017 end-page: 1886 ident: bib0047 article-title: Automatic skin lesion segmentation using deep fully convolutional networks with jaccard distance publication-title: IEEE Trans. Med. Imag. – start-page: 187 year: 2019 end-page: 194 ident: bib0049 article-title: End-to-end boundary aware networks for medical image segmentation publication-title: International Workshop on Machine Learning in Medical Imaging – start-page: 1 year: 2021 end-page: 13 ident: bib0018 article-title: KiU-Net: overcomplete convolutional architectures for biomedical image and volumetric segmentation publication-title: IEEE Trans. Med. Imag. – start-page: 236 year: 2021 end-page: 241 ident: bib0029 article-title: Automatic intracranial aneurysm segmentation based on spatial information fusion feature from 3D-RA using U-Net publication-title: IEEE International Conference on Mechatronics and Automation – volume: 40 start-page: 1021 year: 2020 end-page: 1039 ident: bib0001 article-title: What does computational fluid dynamics tell us about intracranial aneurysms? A meta-analysis and critical review publication-title: J. Cereb. Blood Flow Metabol. – reference: D. Shao, X. Lu, and X. Liu, “3D intracranial aneurysm classification and segmentation via unsupervised Dual-branch learning,” arXiv preprint – start-page: 109 year: 2011 end-page: 117 ident: bib0043 article-title: Efficient inference in fully connected CRFs with gaussian edge potentials publication-title: Advances in Neural Information Processing Systems – volume: 298 start-page: 155 year: 2021 end-page: 163 ident: bib0009 article-title: Deep learning for detecting cerebral aneurysms with CT angiography publication-title: Radiology – volume: 32 start-page: 808 year: 2019 end-page: 815 ident: bib0025 article-title: Convolutional neural networks for the detection and measurement of cerebral aneurysms on magnetic resonance angiography publication-title: J. Digit. Imag. – volume: 12 start-page: 1023 year: 2020 end-page: 1027 ident: bib0026 article-title: Fully automated intracranial aneurysm detection and segmentation from digital subtraction angiography series using an end-to-end spatiotemporal deep neural network publication-title: J. Neurointerv. Surg. – start-page: 379 year: 2017 end-page: 387 ident: bib0042 article-title: Tversky loss function for image segmentation using 3D fully convolutional deep networks publication-title: International Workshop on Machine Learning in Medical Imaging – start-page: 234 year: 2015 end-page: 241 ident: bib0008 article-title: U-net: convolutional networks for biomedical image segmentation publication-title: Med. Image Comput. Comp.-Assist. Intervent. – volume: 23 start-page: 315 year: 2000 end-page: 341 ident: bib0012 article-title: Mechanisms of visual attention in the human cortex publication-title: Annu. Rev. Neurosci. – volume: 47 start-page: 1014 year: 2014 end-page: 1019 ident: bib0021 article-title: Image segmentation methods for intracranial aneurysm haemodynamic research publication-title: J. Biomech. – volume: 39 start-page: 2626 year: 2020 end-page: 2637 ident: bib0051 article-title: Inf-net: automatic covid-19 lung infection segmentation from ct images publication-title: IEEE Trans. Med. Imag. – volume: 32 start-page: 145 year: 2011 end-page: 151 ident: bib0003 article-title: Quantitative characterization of the hemodynamic environment in ruptured and unruptured brain aneurysms publication-title: Am. J. Neuroradiol. – start-page: 346 year: 2018 end-page: 355 ident: bib0041 article-title: Hybrid pyramid u-net model for brain tumor segmentation publication-title: International Conference on Intelligent Information Processing – start-page: 272 year: 2018 end-page: 275 ident: bib0040 article-title: Feature pyramid network for multi-class land segmentation publication-title: IEEE Conference on Computer Vision and Pattern Recognition – start-page: 3 year: 2015 end-page: 11 ident: bib0048 article-title: Deep convolutional encoder networks for multiple sclerosis lesion segmentation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 424 year: 2016 end-page: 432 ident: bib0010 article-title: 3D U-Net: learning dense volumetric segmentation from sparse annotation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 1 year: 2021 end-page: 22 ident: bib0034 article-title: An image is worth 16x16 words: transformers for image recognition at scale publication-title: International Conference on Learning Representations – volume: 29 start-page: 1975 year: 2009 end-page: 1982 ident: bib0057 article-title: MR derived volumetric flow rate waveforms at locations within the common carotid, internal carotid, and basilar arteries publication-title: J. Cereb. Blood Flow Metabol. – reference: , pp. 1–10, 2022. – volume: 35 start-page: 1254 year: 2014 end-page: 1262 ident: bib0004 article-title: High WSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis publication-title: Am. J. Neuroradiol. – volume: 12 start-page: 706 year: 2020 end-page: 713 ident: bib0006 article-title: Aneurysm characteristics, coil packing, and post-coiling hemodynamics affect long-term treatment outcome publication-title: J. Neurointerv. Surg. – volume: 47 start-page: 948 year: 2018 end-page: 953 ident: bib0024 article-title: Deep neural network-based computer-assisted detection of cerebral aneurysms in MR angiography publication-title: J. Magnet. Reson. Imag. – volume: 21 start-page: 1 year: 2021 end-page: 11 ident: bib0017 article-title: MIScnn: a framework for medical image segmentation with convolutional neural networks and deep learning publication-title: BMC Med. Imag. – start-page: 1 year: 2014 end-page: 9 ident: bib0031 article-title: Recurrent models of visual attention publication-title: Advances in Neural Information Processing Systems – start-page: 3146 year: 2019 end-page: 3154 ident: bib0033 article-title: Dual attention network for scene segmentation publication-title: IEEE Conference on Computer Vision and Pattern Recognition – start-page: 10012 year: 2021 end-page: 10022 ident: bib0035 article-title: Swin transformer: hierarchical vision transformer using shifted windows publication-title: IEEE International Conference on Computer Vision – start-page: 1026 year: 2015 end-page: 1034 ident: bib0037 article-title: Delving deep into rectifiers: surpassing human-level performance on imagenet classification publication-title: IEEE International Conference on Computer Vision – start-page: 201 year: 2013 end-page: 204 ident: bib0020 article-title: Image segmentation in medical imaging via graph-cuts publication-title: 11th International Conference on Pattern Recognition and Image Analysis: New Information Technologies – start-page: 36 year: 2021 end-page: 46 ident: bib0036 article-title: Medical transformer: gated axial-attention for medical image segmentation publication-title: Medical Image Computing and Computer Assisted Intervention – volume: 28 start-page: 1141 year: 2009 end-page: 1155 ident: bib0019 article-title: A framework for geometric analysis of vascular structures: application to cerebral aneurysms publication-title: IEEE Trans. Med. Imag. – reference: , pp. 1–10, 2018. – start-page: 1 year: 2017 end-page: 11 ident: bib0053 article-title: Attention is all you need publication-title: 31st Conference on Neural Information Processing Systems – volume: 2020 year: 2020 ident: bib0027 article-title: Multi-resolution CNN for brain vessel segmentation from cerebrovascular images of intracranial aneurysm: a comparison of U-Net and DeepMedic publication-title: Comp.-Aid. Diagn. – start-page: 187 year: 2019 ident: 10.1016/j.media.2022.102697_bib0049 article-title: End-to-end boundary aware networks for medical image segmentation – volume: 47 start-page: 1014 issue: 5 year: 2014 ident: 10.1016/j.media.2022.102697_bib0021 article-title: Image segmentation methods for intracranial aneurysm haemodynamic research publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2013.12.035 – start-page: 218 year: 2019 ident: 10.1016/j.media.2022.102697_bib0016 article-title: Brain tumor segmentation based on 3D residual U-Net – volume: 40 start-page: 1021 issue: 5 year: 2020 ident: 10.1016/j.media.2022.102697_bib0001 article-title: What does computational fluid dynamics tell us about intracranial aneurysms? A meta-analysis and critical review publication-title: J. Cereb. Blood Flow Metabol. doi: 10.1177/0271678X19854640 – volume: 63 start-page: 185 issue: 2 year: 2008 ident: 10.1016/j.media.2022.102697_bib0005 article-title: Morphology parameters for intracranial aneurysm rupture risk assessment publication-title: Neurosurgery doi: 10.1227/01.NEU.0000316847.64140.81 – start-page: 1 year: 2017 ident: 10.1016/j.media.2022.102697_bib0053 article-title: Attention is all you need – start-page: 3146 year: 2019 ident: 10.1016/j.media.2022.102697_bib0033 article-title: Dual attention network for scene segmentation – volume: 18 start-page: 203 issue: 2 year: 2021 ident: 10.1016/j.media.2022.102697_bib0011 article-title: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation publication-title: Nat. Methods doi: 10.1038/s41592-020-01008-z – start-page: 201 year: 2013 ident: 10.1016/j.media.2022.102697_bib0020 article-title: Image segmentation in medical imaging via graph-cuts – volume: 298 start-page: 155 issue: 1 year: 2021 ident: 10.1016/j.media.2022.102697_bib0009 article-title: Deep learning for detecting cerebral aneurysms with CT angiography publication-title: Radiology doi: 10.1148/radiol.2020192154 – volume: 12 start-page: 706 issue: 7 year: 2020 ident: 10.1016/j.media.2022.102697_bib0006 article-title: Aneurysm characteristics, coil packing, and post-coiling hemodynamics affect long-term treatment outcome publication-title: J. Neurointerv. Surg. doi: 10.1136/neurintsurg-2019-015422 – ident: 10.1016/j.media.2022.102697_bib0030 – start-page: 1 year: 2014 ident: 10.1016/j.media.2022.102697_bib0031 article-title: Recurrent models of visual attention – start-page: 379 year: 2017 ident: 10.1016/j.media.2022.102697_bib0042 article-title: Tversky loss function for image segmentation using 3D fully convolutional deep networks – start-page: 272 year: 2018 ident: 10.1016/j.media.2022.102697_bib0040 article-title: Feature pyramid network for multi-class land segmentation – volume: 2016 issue: 1–17 year: 2016 ident: 10.1016/j.media.2022.102697_bib0056 article-title: Vortex analysis of intra-aneurismal flow in cerebral aneurysms publication-title: Comput. Math. Methods Med. – volume: 28 start-page: 1141 issue: 8 year: 2009 ident: 10.1016/j.media.2022.102697_bib0019 article-title: A framework for geometric analysis of vascular structures: application to cerebral aneurysms publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2009.2021652 – volume: 21 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.media.2022.102697_bib0017 article-title: MIScnn: a framework for medical image segmentation with convolutional neural networks and deep learning publication-title: BMC Med. Imag. doi: 10.1186/s12880-020-00543-7 – volume: 44 start-page: 1085 issue: 4 year: 2016 ident: 10.1016/j.media.2022.102697_bib0007 article-title: AView: an image-based clinical computational tool for intracranial aneurysm flow visualization and clinical management publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-015-1363-y – volume: 32 start-page: 145 issue: 1 year: 2011 ident: 10.1016/j.media.2022.102697_bib0003 article-title: Quantitative characterization of the hemodynamic environment in ruptured and unruptured brain aneurysms publication-title: Am. J. Neuroradiol. doi: 10.3174/ajnr.A2419 – ident: 10.1016/j.media.2022.102697_bib0038 – start-page: 612 year: 2018 ident: 10.1016/j.media.2022.102697_bib0045 article-title: 3D segmentation with exponential logarithmic loss for highly unbalanced object sizes – start-page: 108 year: 2020 ident: 10.1016/j.media.2022.102697_bib0054 article-title: Axial-deeplab: stand-alone axial-attention for panoptic segmentation – start-page: 36 year: 2021 ident: 10.1016/j.media.2022.102697_bib0036 article-title: Medical transformer: gated axial-attention for medical image segmentation – start-page: 3286 year: 2019 ident: 10.1016/j.media.2022.102697_bib0032 article-title: Attention augmented convolutional networks – start-page: 2117 year: 2017 ident: 10.1016/j.media.2022.102697_bib0039 article-title: Feature pyramid networks for object detection – volume: 47 start-page: 948 issue: 4 year: 2018 ident: 10.1016/j.media.2022.102697_bib0024 article-title: Deep neural network-based computer-assisted detection of cerebral aneurysms in MR angiography publication-title: J. Magnet. Reson. Imag. doi: 10.1002/jmri.25842 – volume: 36 start-page: 1876 issue: 9 year: 2017 ident: 10.1016/j.media.2022.102697_bib0047 article-title: Automatic skin lesion segmentation using deep fully convolutional networks with jaccard distance publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2017.2695227 – volume: 32 start-page: 808 year: 2019 ident: 10.1016/j.media.2022.102697_bib0025 article-title: Convolutional neural networks for the detection and measurement of cerebral aneurysms on magnetic resonance angiography publication-title: J. Digit. Imag. doi: 10.1007/s10278-018-0162-z – start-page: 1026 year: 2015 ident: 10.1016/j.media.2022.102697_bib0037 article-title: Delving deep into rectifiers: surpassing human-level performance on imagenet classification – volume: 2 start-page: 194 issue: 3 year: 2001 ident: 10.1016/j.media.2022.102697_bib0013 article-title: Computational modelling of visual attention publication-title: Nat. Rev. Neurosci. doi: 10.1038/35058500 – start-page: 770 year: 2016 ident: 10.1016/j.media.2022.102697_bib0014 article-title: Deep residual learning for image recognition – volume: 39 start-page: 2626 issue: 8 year: 2020 ident: 10.1016/j.media.2022.102697_bib0051 article-title: Inf-net: automatic covid-19 lung infection segmentation from ct images publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2020.2996645 – volume: 120 start-page: 1 year: 2021 ident: 10.1016/j.media.2022.102697_bib0052 article-title: Progressive global perception and local polishing network for lung infection segmentation of COVID-19 CT images publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2021.108168 – volume: 46 start-page: 1097 issue: 11 year: 2008 ident: 10.1016/j.media.2022.102697_bib0002 article-title: An image-based modeling framework for patient-specific computational hemodynamics publication-title: Med. Biol. Eng. Comput. Vol. doi: 10.1007/s11517-008-0420-1 – start-page: 234 year: 2015 ident: 10.1016/j.media.2022.102697_bib0008 article-title: U-net: convolutional networks for biomedical image segmentation publication-title: Med. Image Comput. Comp.-Assist. Intervent. – start-page: 346 year: 2018 ident: 10.1016/j.media.2022.102697_bib0041 article-title: Hybrid pyramid u-net model for brain tumor segmentation – volume: 163 start-page: 2339 year: 2021 ident: 10.1016/j.media.2022.102697_bib0055 article-title: Quantitative analysis of flow vortices: differentiation of unruptured and ruptured medium-sized middle cerebral artery aneurysms publication-title: Acta Neurochir (Wien) doi: 10.1007/s00701-020-04616-y – volume: 2020 year: 2020 ident: 10.1016/j.media.2022.102697_bib0027 article-title: Multi-resolution CNN for brain vessel segmentation from cerebrovascular images of intracranial aneurysm: a comparison of U-Net and DeepMedic publication-title: Comp.-Aid. Diagn. doi: 10.1117/12.2549761 – volume: 35 start-page: 1254 issue: 7 year: 2014 ident: 10.1016/j.media.2022.102697_bib0004 article-title: High WSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis publication-title: Am. J. Neuroradiol. doi: 10.3174/ajnr.A3558 – start-page: 1 year: 2021 ident: 10.1016/j.media.2022.102697_bib0018 article-title: KiU-Net: overcomplete convolutional architectures for biomedical image and volumetric segmentation publication-title: IEEE Trans. Med. Imag. – start-page: 1 year: 2021 ident: 10.1016/j.media.2022.102697_bib0034 article-title: An image is worth 16x16 words: transformers for image recognition at scale – volume: 29 start-page: 1975 issue: 12 year: 2009 ident: 10.1016/j.media.2022.102697_bib0057 article-title: MR derived volumetric flow rate waveforms at locations within the common carotid, internal carotid, and basilar arteries publication-title: J. Cereb. Blood Flow Metabol. doi: 10.1038/jcbfm.2009.176 – start-page: 10012 year: 2021 ident: 10.1016/j.media.2022.102697_bib0035 article-title: Swin transformer: hierarchical vision transformer using shifted windows – volume: 10 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.media.2022.102697_bib0028 article-title: Fully automated detection and segmentation of intracranial aneurysms in subarachnoid hemorrhage on CTA using deep learning publication-title: Sci. Rep. doi: 10.1038/s41598-020-78384-1 – volume: 36 start-page: 61 year: 2017 ident: 10.1016/j.media.2022.102697_bib0015 article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.10.004 – start-page: 565 year: 2016 ident: 10.1016/j.media.2022.102697_bib0046 article-title: V-net: fully convolutional neural networks for volumetric medical image segmentation – start-page: 424 year: 2016 ident: 10.1016/j.media.2022.102697_bib0010 article-title: 3D U-Net: learning dense volumetric segmentation from sparse annotation – volume: 12 start-page: 1023 issue: 10 year: 2020 ident: 10.1016/j.media.2022.102697_bib0026 article-title: Fully automated intracranial aneurysm detection and segmentation from digital subtraction angiography series using an end-to-end spatiotemporal deep neural network publication-title: J. Neurointerv. Surg. doi: 10.1136/neurintsurg-2020-015824 – volume: 290 start-page: 195 issue: 1 year: 2019 ident: 10.1016/j.media.2022.102697_bib0022 article-title: Machine learning detection of intracranial aneurysms—Will it play in Peoria? publication-title: Radiology doi: 10.1148/radiol.2018182225 – volume: 23 start-page: 315 issue: 1 year: 2000 ident: 10.1016/j.media.2022.102697_bib0012 article-title: Mechanisms of visual attention in the human cortex publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.neuro.23.1.315 – start-page: 236 year: 2021 ident: 10.1016/j.media.2022.102697_bib0029 article-title: Automatic intracranial aneurysm segmentation based on spatial information fusion feature from 3D-RA using U-Net – start-page: 3 year: 2015 ident: 10.1016/j.media.2022.102697_bib0048 article-title: Deep convolutional encoder networks for multiple sclerosis lesion segmentation – start-page: 7479 year: 2019 ident: 10.1016/j.media.2022.102697_bib0050 article-title: Basnet: boundary-aware salient object detection – volume: 237 start-page: 278 issue: 1 year: 2022 ident: 10.1016/j.media.2022.102697_bib0044 article-title: Disturbed flow's impact on cellular changes indicative of vascular aneurysm initiation, expansion, and rupture: a pathological and methodological review publication-title: J. Cell. Physiol. doi: 10.1002/jcp.30569 – start-page: 109 year: 2011 ident: 10.1016/j.media.2022.102697_bib0043 article-title: Efficient inference in fully connected CRFs with gaussian edge potentials |
| SSID | ssj0007440 |
| Score | 2.590035 |
| Snippet | •This paper proposes automatically segmenting vasculature, including intracranial aneurysms, from 3DRA images with the need for “patient-specific”... Intracranial aneurysms (IA) are lethal, with high morbidity and mortality rates. Reliable, rapid, and accurate segmentation of IAs and their adjacent... |
| SourceID | pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 102697 |
| SubjectTerms | 3D segmentation Angiography Attention Conditional random field Depth-aware attention gate Humans Image Processing, Computer-Assisted - methods Imaging, Three-Dimensional - methods Intracranial aneurysm Intracranial Aneurysm - diagnostic imaging Multiscale supervision |
| Title | An attention residual u-net with differential preprocessing and geometric postprocessing: Learning how to segment vasculature including intracranial aneurysms |
| URI | https://dx.doi.org/10.1016/j.media.2022.102697 https://www.ncbi.nlm.nih.gov/pubmed/36462374 https://www.proquest.com/docview/2746393333 https://pubmed.ncbi.nlm.nih.gov/PMC9830590 |
| Volume | 84 |
| WOSCitedRecordID | wos000913159100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: AIEXJ dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DSF4QDAYlMtkJN5KpjbOxeGtQkMwsQmhIlW8RKnjtplap2rSafBj-DX8MI6vTVdRsQdaKYqc2HJ7PtvHx985B6E3Wc8fZYTDSBv1ci-gY-4lIZfWpl7OQkoTPg5Uson44oIOh8mXVuu39YW5msVC0OvrZPFfRQ1lIGzpOnsLcbtGoQDuQehwBbHD9Z8E3xcdGTNTsxhhM629rVae4LW2utqcKLU0li9kVEvlK2C9FSe8nMs0W6yzKKt6_VDaDj5bQ8pUZqIrOxWfKDKB4bOq04hCsNnKuMrUy4zBYliogAQcxFeZ4Og2h5Q5JirmkjqUmQApaxCY-d-xhn6oku-lmEzXpV_5z4zL3Ce8ms4zlRxG2YrOofvZ2C07A2MZPytEZWsbc4dPLEPazdAk6nk00D6gdgqnQWMOBpUp0pzfreVBWyouT5RXzgk075-s394Mxn1jkXTURcuKu0xVI6lsJNWN7KEDPw4TmFsP-p9Oh2dOI5BBGLX_n-66jX6leIZbffmbhrS9A7pJ5G1oRoOH6IHZ0uC-huIj1OLiEN1vBLo8RHfPDYXjMfrVF9jhE1t8YoVPLPGJm_jEG_jEgE_s8Ik38fkOW3RiQCeuS2zQiRvoxA6duIlO7ND5BH37cDp4_9EzSUI8FoRJ7Y1A3crzEeNJHo54mLMMNPAM9gmjmDIoiKjkU0ZjmJIi-Mpja8qYD2pslxMSdMkR2hel4M8QzvJ43CV-RiLKg4AnCeV56POY0G4uk7i1kW8FkzITQV8mcpmlO0DRRm9dpYUOILP79chKPDU6sNZtU8Dw7oqvLT5SWCHksR_8deWqSv04gG0IgU8bPdV4cT0hUQD7nzhoo3gDSe4FGX1-84kopioKfUKJdFx_frvf9wLdW4_ql2i_Xq74K3SHXdVFtTxGe_GQHpvh8wepxwkh |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+attention+residual+u-net+with+differential+preprocessing+and+geometric+postprocessing%3A+Learning+how+to+segment+vasculature+including+intracranial+aneurysms&rft.jtitle=Medical+image+analysis&rft.au=Mu%2C+Nan&rft.au=Lyu%2C+Zonghan&rft.au=Rezaeitaleshmahalleh%2C+Mostafa&rft.au=Tang%2C+Jinshan&rft.date=2023-02-01&rft.issn=1361-8415&rft.volume=84&rft.spage=102697&rft_id=info:doi/10.1016%2Fj.media.2022.102697&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_media_2022_102697 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon |