An efficient image descriptor for image classification and CBIR

Pattern recognition and feature extraction of images always have been important subjects in improving the performance of image classification and Content-Based Image Retrieval (CBIR). Recently, Machine Learning and Deep Learning algorithms are utilized widely in order to achieve these targets. In th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Optik (Stuttgart) Ročník 214; s. 164833
Hlavní autoři: Shakarami, Ashkan, Tarrah, Hadis
Médium: Journal Article
Jazyk:angličtina
Vydáno: Germany Elsevier GmbH 01.07.2020
Témata:
ISSN:0030-4026, 1618-1336, 0030-4026
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Pattern recognition and feature extraction of images always have been important subjects in improving the performance of image classification and Content-Based Image Retrieval (CBIR). Recently, Machine Learning and Deep Learning algorithms are utilized widely in order to achieve these targets. In this research, an efficient method for image description is proposed which is developed by Machine Learning and Deep Learning algorithms. This method is created using combination of an improved AlexNet Convolutional Neural Network (CNN), Histogram of Oriented Gradients (HOG) and Local Binary Pattern (LBP) descriptors. Furthermore, the Principle Component Analysis (PCA) algorithm has been used for dimension reduction. The experimental results demonstrate the superiority of the offered method compared to existing methods by improving the accuracy, mean Average Precision (mAP) and decreasing the complex computation. The experiments have been run on Corel-1000, OT and FP datasets.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0030-4026
1618-1336
0030-4026
DOI:10.1016/j.ijleo.2020.164833