Evidence for lateral transfer of genes encoding ferredoxins, nitroreductases, NADH oxidase, and alcohol dehydrogenase 3 from anaerobic prokaryotes to Giardia lamblia and Entamoeba histolytica

Giardia lamblia and Entamoeba histolytica are amitochondriate, microaerophilic protists which use fermentation enzymes like those of bacteria to survive anaerobic conditions within the intestinal lumen. Genes encoding fermentation enzymes and related electron transport peptides (e.g., ferredoxins) i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Eukaryotic cell Jg. 1; H. 2; S. 181
Hauptverfasser: Nixon, Julie E J, Wang, Amy, Field, Jessica, Morrison, Hilary G, McArthur, Andrew G, Sogin, Mitchell L, Loftus, Brendan J, Samuelson, John
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 01.04.2002
Schlagworte:
ISSN:1535-9778
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Giardia lamblia and Entamoeba histolytica are amitochondriate, microaerophilic protists which use fermentation enzymes like those of bacteria to survive anaerobic conditions within the intestinal lumen. Genes encoding fermentation enzymes and related electron transport peptides (e.g., ferredoxins) in giardia organisms and amebae are hypothesized to be derived from either an ancient anaerobic eukaryote (amitochondriate fossil hypothesis), a mitochondrial endosymbiont (hydrogen hypothesis), or anaerobic bacteria (lateral transfer hypothesis). The goals here were to complete the molecular characterization of giardial and amebic fermentation enzymes and to determine the origins of the genes encoding them, when possible. A putative giardia [2Fe-2S]ferredoxin which had a hypothetical organelle-targeting sequence at its N terminus showed similarity to mitochondrial ferredoxins and the hydrogenosomal ferredoxin of Trichomonas vaginalis (another luminal protist). However, phylogenetic trees were star shaped, with weak bootstrap support, so we were unable to confirm or rule out the endosymbiotic origin of the giardia [2Fe-2S]ferredoxin gene. Putative giardial and amebic 6-kDa ferredoxins, ferredoxin-nitroreductase fusion proteins, and oxygen-insensitive nitroreductases each tentatively supported the lateral transfer hypothesis. Although there were not enough sequences to perform meaningful phylogenetic analyses, the unique common occurrence of these peptides and enzymes in giardia organisms, amebae, and the few anaerobic prokaryotes suggests the possibility of lateral transfer. In contrast, there was more robust phylogenetic evidence for the lateral transfer of G. lamblia genes encoding an NADH oxidase from a gram-positive coccus and a microbial group 3 alcohol dehydrogenase from thermoanaerobic prokaryotes. In further support of lateral transfer, the G. lamblia NADH oxidase and adh3 genes appeared to have an evolutionary history distinct from those of E. histolytica.
AbstractList Giardia lamblia and Entamoeba histolytica are amitochondriate, microaerophilic protists which use fermentation enzymes like those of bacteria to survive anaerobic conditions within the intestinal lumen. Genes encoding fermentation enzymes and related electron transport peptides (e.g., ferredoxins) in giardia organisms and amebae are hypothesized to be derived from either an ancient anaerobic eukaryote (amitochondriate fossil hypothesis), a mitochondrial endosymbiont (hydrogen hypothesis), or anaerobic bacteria (lateral transfer hypothesis). The goals here were to complete the molecular characterization of giardial and amebic fermentation enzymes and to determine the origins of the genes encoding them, when possible. A putative giardia [2Fe-2S]ferredoxin which had a hypothetical organelle-targeting sequence at its N terminus showed similarity to mitochondrial ferredoxins and the hydrogenosomal ferredoxin of Trichomonas vaginalis (another luminal protist). However, phylogenetic trees were star shaped, with weak bootstrap support, so we were unable to confirm or rule out the endosymbiotic origin of the giardia [2Fe-2S]ferredoxin gene. Putative giardial and amebic 6-kDa ferredoxins, ferredoxin-nitroreductase fusion proteins, and oxygen-insensitive nitroreductases each tentatively supported the lateral transfer hypothesis. Although there were not enough sequences to perform meaningful phylogenetic analyses, the unique common occurrence of these peptides and enzymes in giardia organisms, amebae, and the few anaerobic prokaryotes suggests the possibility of lateral transfer. In contrast, there was more robust phylogenetic evidence for the lateral transfer of G. lamblia genes encoding an NADH oxidase from a gram-positive coccus and a microbial group 3 alcohol dehydrogenase from thermoanaerobic prokaryotes. In further support of lateral transfer, the G. lamblia NADH oxidase and adh3 genes appeared to have an evolutionary history distinct from those of E. histolytica.Giardia lamblia and Entamoeba histolytica are amitochondriate, microaerophilic protists which use fermentation enzymes like those of bacteria to survive anaerobic conditions within the intestinal lumen. Genes encoding fermentation enzymes and related electron transport peptides (e.g., ferredoxins) in giardia organisms and amebae are hypothesized to be derived from either an ancient anaerobic eukaryote (amitochondriate fossil hypothesis), a mitochondrial endosymbiont (hydrogen hypothesis), or anaerobic bacteria (lateral transfer hypothesis). The goals here were to complete the molecular characterization of giardial and amebic fermentation enzymes and to determine the origins of the genes encoding them, when possible. A putative giardia [2Fe-2S]ferredoxin which had a hypothetical organelle-targeting sequence at its N terminus showed similarity to mitochondrial ferredoxins and the hydrogenosomal ferredoxin of Trichomonas vaginalis (another luminal protist). However, phylogenetic trees were star shaped, with weak bootstrap support, so we were unable to confirm or rule out the endosymbiotic origin of the giardia [2Fe-2S]ferredoxin gene. Putative giardial and amebic 6-kDa ferredoxins, ferredoxin-nitroreductase fusion proteins, and oxygen-insensitive nitroreductases each tentatively supported the lateral transfer hypothesis. Although there were not enough sequences to perform meaningful phylogenetic analyses, the unique common occurrence of these peptides and enzymes in giardia organisms, amebae, and the few anaerobic prokaryotes suggests the possibility of lateral transfer. In contrast, there was more robust phylogenetic evidence for the lateral transfer of G. lamblia genes encoding an NADH oxidase from a gram-positive coccus and a microbial group 3 alcohol dehydrogenase from thermoanaerobic prokaryotes. In further support of lateral transfer, the G. lamblia NADH oxidase and adh3 genes appeared to have an evolutionary history distinct from those of E. histolytica.
Giardia lamblia and Entamoeba histolytica are amitochondriate, microaerophilic protists which use fermentation enzymes like those of bacteria to survive anaerobic conditions within the intestinal lumen. Genes encoding fermentation enzymes and related electron transport peptides (e.g., ferredoxins) in giardia organisms and amebae are hypothesized to be derived from either an ancient anaerobic eukaryote (amitochondriate fossil hypothesis), a mitochondrial endosymbiont (hydrogen hypothesis), or anaerobic bacteria (lateral transfer hypothesis). The goals here were to complete the molecular characterization of giardial and amebic fermentation enzymes and to determine the origins of the genes encoding them, when possible. A putative giardia [2Fe-2S]ferredoxin which had a hypothetical organelle-targeting sequence at its N terminus showed similarity to mitochondrial ferredoxins and the hydrogenosomal ferredoxin of Trichomonas vaginalis (another luminal protist). However, phylogenetic trees were star shaped, with weak bootstrap support, so we were unable to confirm or rule out the endosymbiotic origin of the giardia [2Fe-2S]ferredoxin gene. Putative giardial and amebic 6-kDa ferredoxins, ferredoxin-nitroreductase fusion proteins, and oxygen-insensitive nitroreductases each tentatively supported the lateral transfer hypothesis. Although there were not enough sequences to perform meaningful phylogenetic analyses, the unique common occurrence of these peptides and enzymes in giardia organisms, amebae, and the few anaerobic prokaryotes suggests the possibility of lateral transfer. In contrast, there was more robust phylogenetic evidence for the lateral transfer of G. lamblia genes encoding an NADH oxidase from a gram-positive coccus and a microbial group 3 alcohol dehydrogenase from thermoanaerobic prokaryotes. In further support of lateral transfer, the G. lamblia NADH oxidase and adh3 genes appeared to have an evolutionary history distinct from those of E. histolytica.
Author Field, Jessica
Samuelson, John
McArthur, Andrew G
Loftus, Brendan J
Sogin, Mitchell L
Wang, Amy
Nixon, Julie E J
Morrison, Hilary G
Author_xml – sequence: 1
  givenname: Julie E J
  surname: Nixon
  fullname: Nixon, Julie E J
  organization: Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA
– sequence: 2
  givenname: Amy
  surname: Wang
  fullname: Wang, Amy
– sequence: 3
  givenname: Jessica
  surname: Field
  fullname: Field, Jessica
– sequence: 4
  givenname: Hilary G
  surname: Morrison
  fullname: Morrison, Hilary G
– sequence: 5
  givenname: Andrew G
  surname: McArthur
  fullname: McArthur, Andrew G
– sequence: 6
  givenname: Mitchell L
  surname: Sogin
  fullname: Sogin, Mitchell L
– sequence: 7
  givenname: Brendan J
  surname: Loftus
  fullname: Loftus, Brendan J
– sequence: 8
  givenname: John
  surname: Samuelson
  fullname: Samuelson, John
BackLink https://www.ncbi.nlm.nih.gov/pubmed/12455953$$D View this record in MEDLINE/PubMed
BookMark eNo1kE1OHDEQhb0AhZ_kBJEir7KiG9vdHreXaDIBJJRskvXIbZcZB7cLbA9iTperxRGwKr2qT6-q3hk5SpiAkM-c9ZyL6XKz7nkvej7xjmvWC8bEETnlcpCdVmo6IWel_GGMS62GD-SEi1FKLYdT8nfzHBwkC9RjptFUyCbSmk0qHjJFT-8hQaENQRfSPW3dDA5fQioXNIWascm9raZAa_y4-nZD29A1eUFNctREizuM1MHu4DI2tzaiA_UZlwYYyDgHSx8zPph8wNp2VaTXwWQXTDtomWOr_502qZoFYTZ0F0rFeKjBmo_k2JtY4NNbPSe_v29-rW-6u5_Xt-uru86OUtdOz55rb0ZmvQPunfReNCdr9TgqMY0z08oq5fVKDs4bGABWHjxfraYWFUzinHx99W2HPu2h1O0SioUYTQLcl60SSgyKDQ388gbu5wXc9jGHpT22fY9c_ANTV4lg
CitedBy_id crossref_primary_10_1126_science_1143837
crossref_primary_10_1371_journal_pntd_0004261
crossref_primary_10_3390_cimb46090574
crossref_primary_10_1111_j_1365_2958_2007_05979_x
crossref_primary_10_1016_j_gene_2007_02_009
crossref_primary_10_1128_CMR_00019_06
crossref_primary_10_1073_pnas_0500349102
crossref_primary_10_1007_s40475_016_0088_9
crossref_primary_10_1128_AEM_70_6_3338_3345_2004
crossref_primary_10_1893_0005_3155_90_1_30
crossref_primary_10_1016_j_pt_2007_08_013
crossref_primary_10_3390_microorganisms8101608
crossref_primary_10_1016_j_biotechadv_2015_04_009
crossref_primary_10_1186_1471_2148_6_27
crossref_primary_10_1128_AAC_00800_10
crossref_primary_10_1186_1471_2164_14_729
crossref_primary_10_1078_143446103764928468
crossref_primary_10_1186_1741_7007_8_150
crossref_primary_10_1186_gb_2011_12_3_r29
crossref_primary_10_1074_jbc_M500787200
crossref_primary_10_1111_j_1420_9101_2008_01605_x
crossref_primary_10_1128_MMBR_05024_11
crossref_primary_10_1016_j_pt_2018_04_007
crossref_primary_10_1186_1471_2148_7_89
crossref_primary_10_1046_j_1365_2958_2003_03912_x
crossref_primary_10_1002_mbo3_904
crossref_primary_10_1016_j_meegid_2009_06_008
crossref_primary_10_1093_jac_dkt106
crossref_primary_10_1007_BF02704848
crossref_primary_10_1111_j_1432_1033_2004_04195_x
crossref_primary_10_1186_1471_2164_8_51
crossref_primary_10_1007_s11105_011_0352_z
crossref_primary_10_1128_AAC_00909_08
crossref_primary_10_1016_j_dnarep_2019_02_009
crossref_primary_10_1111_j_1550_7408_2004_tb00394_x
crossref_primary_10_3390_genes1010102
crossref_primary_10_1007_s10142_007_0059_2
crossref_primary_10_1016_j_molbiopara_2016_01_004
crossref_primary_10_1016_j_pt_2010_07_002
crossref_primary_10_1007_s00436_014_4299_5
crossref_primary_10_3390_biology13030178
crossref_primary_10_1016_j_exppara_2023_108492
crossref_primary_10_1002_pmic_200900022
crossref_primary_10_1093_glycob_cwq081
crossref_primary_10_1128_AAC_01227_12
crossref_primary_10_1016_j_bbrc_2007_02_049
crossref_primary_10_1093_mtomcs_mfac009
crossref_primary_10_1186_gb_2004_5_11_r88
crossref_primary_10_1074_jbc_M117_794172
crossref_primary_10_1128_AEM_00988_19
crossref_primary_10_1128_AAC_01548_06
crossref_primary_10_1080_07388550701334378
crossref_primary_10_1128_AEM_71_6_2955_2961_2005
crossref_primary_10_1111_j_1574_6976_2009_00209_x
crossref_primary_10_1016_j_molbiopara_2005_09_008
crossref_primary_10_1371_journal_pone_0003036
crossref_primary_10_3389_fmicb_2017_00398
crossref_primary_10_1007_s11105_011_0297_2
crossref_primary_10_1016_j_freeradbiomed_2011_07_017
crossref_primary_10_1016_S0960_9822_03_00003_4
crossref_primary_10_1038_nature01743
crossref_primary_10_1016_j_pt_2013_05_001
crossref_primary_10_1093_nar_gkm474
crossref_primary_10_1371_journal_pgen_1004053
crossref_primary_10_1016_j_bbapap_2020_140512
crossref_primary_10_3390_metabo10020053
crossref_primary_10_1038_nrmicro_2017_137
crossref_primary_10_1016_j_freeradbiomed_2019_03_030
crossref_primary_10_2307_1543490
crossref_primary_10_1128_AAC_00977_16
crossref_primary_10_1111_j_0141_9838_2004_00669_x
crossref_primary_10_3390_pathogens10020129
crossref_primary_10_1074_jbc_M304359200
crossref_primary_10_1074_jbc_M313314200
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1128/EC.1.2.181-190.2002
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Zoology
Biology
ExternalDocumentID 12455953
Genre Research Support, U.S. Gov't, P.H.S
Comparative Study
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: AI46516
– fundername: NIAID NIH HHS
  grantid: AI43273
– fundername: NIAID NIH HHS
  grantid: R01 AI048082
– fundername: NIAID NIH HHS
  grantid: R01 AI046516
– fundername: NIAID NIH HHS
  grantid: AI33492
GroupedDBID ---
0R~
18M
29G
2WC
4.4
53G
5GY
5VS
ACGFO
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C1A
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HYE
HZ~
KQ8
NPM
O9-
OK1
P2P
RHF
RHI
RNS
RPM
RSF
TR2
W8F
WHG
WOQ
7X8
AAFWJ
AAGFI
ADXHL
ID FETCH-LOGICAL-c459t-9bf19fa40cfde1fd5ff2ebacc9447284b097c77f9653dfae3ee6fef1668245e82
IEDL.DBID 7X8
ISICitedReferencesCount 86
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000178729200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1535-9778
IngestDate Fri Jul 11 10:39:16 EDT 2025
Sat Sep 28 08:36:53 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-9bf19fa40cfde1fd5ff2ebacc9447284b097c77f9653dfae3ee6fef1668245e82
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://doi.org/10.1128/ec.1.2.181-190.2002
PMID 12455953
PQID 72723703
PQPubID 23479
ParticipantIDs proquest_miscellaneous_72723703
pubmed_primary_12455953
PublicationCentury 2000
PublicationDate 2002-Apr
20020401
PublicationDateYYYYMMDD 2002-04-01
PublicationDate_xml – month: 04
  year: 2002
  text: 2002-Apr
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Eukaryotic cell
PublicationTitleAlternate Eukaryot Cell
PublicationYear 2002
SSID ssj0015973
Score 2.013105
Snippet Giardia lamblia and Entamoeba histolytica are amitochondriate, microaerophilic protists which use fermentation enzymes like those of bacteria to survive...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 181
SubjectTerms Alcohol Dehydrogenase - analysis
Alcohol Dehydrogenase - genetics
Amino Acid Sequence
Anaerobiosis
Animals
Bacteria - genetics
Entamoeba histolytica - enzymology
Entamoeba histolytica - genetics
Fermentation
Ferredoxins - analysis
Ferredoxins - classification
Ferredoxins - genetics
Gene Transfer, Horizontal
Giardia lamblia - enzymology
Giardia lamblia - genetics
Iron-Sulfur Proteins - genetics
Mitochondria - genetics
Models, Biological
Molecular Sequence Data
Multienzyme Complexes - analysis
Multienzyme Complexes - genetics
NADH, NADPH Oxidoreductases - analysis
NADH, NADPH Oxidoreductases - genetics
Nitroreductases - analysis
Nitroreductases - classification
Nitroreductases - genetics
Oxidoreductases - genetics
Phylogeny
Prokaryotic Cells - metabolism
Sequence Alignment
Sequence Analysis, Protein
Title Evidence for lateral transfer of genes encoding ferredoxins, nitroreductases, NADH oxidase, and alcohol dehydrogenase 3 from anaerobic prokaryotes to Giardia lamblia and Entamoeba histolytica
URI https://www.ncbi.nlm.nih.gov/pubmed/12455953
https://www.proquest.com/docview/72723703
Volume 1
WOSCitedRecordID wos000178729200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYotBKXlr6hhc6hRwxJnMSxhIQQLHDpikMrrXpZOX7QVZcYsmnF_rr-NWacjXqqeuCSOHZsOfJk5rPH_oaxz9KaytdEhViImudZZrhKSs1lJXxZIWauVR9sQo7H1WSirtbY0XAWhrZVDjoxKmobDK2RH5LDUKB4Ht_ecYoZRb7VVQCNJ2xDIJAhmZaTvz4EhMqiZ0stOKKcasU5hAr5cHR6gHPDA7RuHA1i3Kjwb4QZLc35i8f1cYs9XyFMOOlF4iVbc80r9qyPObnE1PcQU6_ZnyGiKCBwhbmms8hz6CKSdS0ED9ekCIGoLsnCAeYSvej9rFnsA6qCNrRE_NqhIcSM8cnZJWChxcd90I0F3YffBet-LG0bsDUsAgF0pAVf0I44oAzgR_7U7TIg6IUuwMUsCi126Kae451aGjWdvgmu1hD5kedLWoF_w76dj76eXvJVPAdu8kJ1XNU-VV7nifHWpd4W3mdY0xiV5xLNZJ0oaaT0qiyE9doJ50rvfFqWVZYXrsresvUmNO49AxQql1qPcM8UuXFS1zpRPpMusT7RJt1mn4YRmuL_Qk4Q3bjwazEdxmibvesHeXrb03pMEeng9KoQO_-t-4FtxqAwcQPPR7bhUVO4XfbU_O5mi3YviiFex1dfHgAPpOvH
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evidence+for+lateral+transfer+of+genes+encoding+ferredoxins%2C+nitroreductases%2C+NADH+oxidase%2C+and+alcohol+dehydrogenase+3+from+anaerobic+prokaryotes+to+Giardia+lamblia+and+Entamoeba+histolytica&rft.jtitle=Eukaryotic+cell&rft.au=Nixon%2C+Julie+E+J&rft.au=Wang%2C+Amy&rft.au=Field%2C+Jessica&rft.au=Morrison%2C+Hilary+G&rft.date=2002-04-01&rft.issn=1535-9778&rft.volume=1&rft.issue=2&rft.spage=181&rft_id=info:doi/10.1128%2FEC.1.2.181-190.2002&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1535-9778&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1535-9778&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1535-9778&client=summon