Evidence for lateral transfer of genes encoding ferredoxins, nitroreductases, NADH oxidase, and alcohol dehydrogenase 3 from anaerobic prokaryotes to Giardia lamblia and Entamoeba histolytica
Giardia lamblia and Entamoeba histolytica are amitochondriate, microaerophilic protists which use fermentation enzymes like those of bacteria to survive anaerobic conditions within the intestinal lumen. Genes encoding fermentation enzymes and related electron transport peptides (e.g., ferredoxins) i...
Gespeichert in:
| Veröffentlicht in: | Eukaryotic cell Jg. 1; H. 2; S. 181 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
01.04.2002
|
| Schlagworte: | |
| ISSN: | 1535-9778 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Giardia lamblia and Entamoeba histolytica are amitochondriate, microaerophilic protists which use fermentation enzymes like those of bacteria to survive anaerobic conditions within the intestinal lumen. Genes encoding fermentation enzymes and related electron transport peptides (e.g., ferredoxins) in giardia organisms and amebae are hypothesized to be derived from either an ancient anaerobic eukaryote (amitochondriate fossil hypothesis), a mitochondrial endosymbiont (hydrogen hypothesis), or anaerobic bacteria (lateral transfer hypothesis). The goals here were to complete the molecular characterization of giardial and amebic fermentation enzymes and to determine the origins of the genes encoding them, when possible. A putative giardia [2Fe-2S]ferredoxin which had a hypothetical organelle-targeting sequence at its N terminus showed similarity to mitochondrial ferredoxins and the hydrogenosomal ferredoxin of Trichomonas vaginalis (another luminal protist). However, phylogenetic trees were star shaped, with weak bootstrap support, so we were unable to confirm or rule out the endosymbiotic origin of the giardia [2Fe-2S]ferredoxin gene. Putative giardial and amebic 6-kDa ferredoxins, ferredoxin-nitroreductase fusion proteins, and oxygen-insensitive nitroreductases each tentatively supported the lateral transfer hypothesis. Although there were not enough sequences to perform meaningful phylogenetic analyses, the unique common occurrence of these peptides and enzymes in giardia organisms, amebae, and the few anaerobic prokaryotes suggests the possibility of lateral transfer. In contrast, there was more robust phylogenetic evidence for the lateral transfer of G. lamblia genes encoding an NADH oxidase from a gram-positive coccus and a microbial group 3 alcohol dehydrogenase from thermoanaerobic prokaryotes. In further support of lateral transfer, the G. lamblia NADH oxidase and adh3 genes appeared to have an evolutionary history distinct from those of E. histolytica. |
|---|---|
| AbstractList | Giardia lamblia and Entamoeba histolytica are amitochondriate, microaerophilic protists which use fermentation enzymes like those of bacteria to survive anaerobic conditions within the intestinal lumen. Genes encoding fermentation enzymes and related electron transport peptides (e.g., ferredoxins) in giardia organisms and amebae are hypothesized to be derived from either an ancient anaerobic eukaryote (amitochondriate fossil hypothesis), a mitochondrial endosymbiont (hydrogen hypothesis), or anaerobic bacteria (lateral transfer hypothesis). The goals here were to complete the molecular characterization of giardial and amebic fermentation enzymes and to determine the origins of the genes encoding them, when possible. A putative giardia [2Fe-2S]ferredoxin which had a hypothetical organelle-targeting sequence at its N terminus showed similarity to mitochondrial ferredoxins and the hydrogenosomal ferredoxin of Trichomonas vaginalis (another luminal protist). However, phylogenetic trees were star shaped, with weak bootstrap support, so we were unable to confirm or rule out the endosymbiotic origin of the giardia [2Fe-2S]ferredoxin gene. Putative giardial and amebic 6-kDa ferredoxins, ferredoxin-nitroreductase fusion proteins, and oxygen-insensitive nitroreductases each tentatively supported the lateral transfer hypothesis. Although there were not enough sequences to perform meaningful phylogenetic analyses, the unique common occurrence of these peptides and enzymes in giardia organisms, amebae, and the few anaerobic prokaryotes suggests the possibility of lateral transfer. In contrast, there was more robust phylogenetic evidence for the lateral transfer of G. lamblia genes encoding an NADH oxidase from a gram-positive coccus and a microbial group 3 alcohol dehydrogenase from thermoanaerobic prokaryotes. In further support of lateral transfer, the G. lamblia NADH oxidase and adh3 genes appeared to have an evolutionary history distinct from those of E. histolytica.Giardia lamblia and Entamoeba histolytica are amitochondriate, microaerophilic protists which use fermentation enzymes like those of bacteria to survive anaerobic conditions within the intestinal lumen. Genes encoding fermentation enzymes and related electron transport peptides (e.g., ferredoxins) in giardia organisms and amebae are hypothesized to be derived from either an ancient anaerobic eukaryote (amitochondriate fossil hypothesis), a mitochondrial endosymbiont (hydrogen hypothesis), or anaerobic bacteria (lateral transfer hypothesis). The goals here were to complete the molecular characterization of giardial and amebic fermentation enzymes and to determine the origins of the genes encoding them, when possible. A putative giardia [2Fe-2S]ferredoxin which had a hypothetical organelle-targeting sequence at its N terminus showed similarity to mitochondrial ferredoxins and the hydrogenosomal ferredoxin of Trichomonas vaginalis (another luminal protist). However, phylogenetic trees were star shaped, with weak bootstrap support, so we were unable to confirm or rule out the endosymbiotic origin of the giardia [2Fe-2S]ferredoxin gene. Putative giardial and amebic 6-kDa ferredoxins, ferredoxin-nitroreductase fusion proteins, and oxygen-insensitive nitroreductases each tentatively supported the lateral transfer hypothesis. Although there were not enough sequences to perform meaningful phylogenetic analyses, the unique common occurrence of these peptides and enzymes in giardia organisms, amebae, and the few anaerobic prokaryotes suggests the possibility of lateral transfer. In contrast, there was more robust phylogenetic evidence for the lateral transfer of G. lamblia genes encoding an NADH oxidase from a gram-positive coccus and a microbial group 3 alcohol dehydrogenase from thermoanaerobic prokaryotes. In further support of lateral transfer, the G. lamblia NADH oxidase and adh3 genes appeared to have an evolutionary history distinct from those of E. histolytica. Giardia lamblia and Entamoeba histolytica are amitochondriate, microaerophilic protists which use fermentation enzymes like those of bacteria to survive anaerobic conditions within the intestinal lumen. Genes encoding fermentation enzymes and related electron transport peptides (e.g., ferredoxins) in giardia organisms and amebae are hypothesized to be derived from either an ancient anaerobic eukaryote (amitochondriate fossil hypothesis), a mitochondrial endosymbiont (hydrogen hypothesis), or anaerobic bacteria (lateral transfer hypothesis). The goals here were to complete the molecular characterization of giardial and amebic fermentation enzymes and to determine the origins of the genes encoding them, when possible. A putative giardia [2Fe-2S]ferredoxin which had a hypothetical organelle-targeting sequence at its N terminus showed similarity to mitochondrial ferredoxins and the hydrogenosomal ferredoxin of Trichomonas vaginalis (another luminal protist). However, phylogenetic trees were star shaped, with weak bootstrap support, so we were unable to confirm or rule out the endosymbiotic origin of the giardia [2Fe-2S]ferredoxin gene. Putative giardial and amebic 6-kDa ferredoxins, ferredoxin-nitroreductase fusion proteins, and oxygen-insensitive nitroreductases each tentatively supported the lateral transfer hypothesis. Although there were not enough sequences to perform meaningful phylogenetic analyses, the unique common occurrence of these peptides and enzymes in giardia organisms, amebae, and the few anaerobic prokaryotes suggests the possibility of lateral transfer. In contrast, there was more robust phylogenetic evidence for the lateral transfer of G. lamblia genes encoding an NADH oxidase from a gram-positive coccus and a microbial group 3 alcohol dehydrogenase from thermoanaerobic prokaryotes. In further support of lateral transfer, the G. lamblia NADH oxidase and adh3 genes appeared to have an evolutionary history distinct from those of E. histolytica. |
| Author | Field, Jessica Samuelson, John McArthur, Andrew G Loftus, Brendan J Sogin, Mitchell L Wang, Amy Nixon, Julie E J Morrison, Hilary G |
| Author_xml | – sequence: 1 givenname: Julie E J surname: Nixon fullname: Nixon, Julie E J organization: Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA – sequence: 2 givenname: Amy surname: Wang fullname: Wang, Amy – sequence: 3 givenname: Jessica surname: Field fullname: Field, Jessica – sequence: 4 givenname: Hilary G surname: Morrison fullname: Morrison, Hilary G – sequence: 5 givenname: Andrew G surname: McArthur fullname: McArthur, Andrew G – sequence: 6 givenname: Mitchell L surname: Sogin fullname: Sogin, Mitchell L – sequence: 7 givenname: Brendan J surname: Loftus fullname: Loftus, Brendan J – sequence: 8 givenname: John surname: Samuelson fullname: Samuelson, John |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/12455953$$D View this record in MEDLINE/PubMed |
| BookMark | eNo1kE1OHDEQhb0AhZ_kBJEir7KiG9vdHreXaDIBJJRskvXIbZcZB7cLbA9iTperxRGwKr2qT6-q3hk5SpiAkM-c9ZyL6XKz7nkvej7xjmvWC8bEETnlcpCdVmo6IWel_GGMS62GD-SEi1FKLYdT8nfzHBwkC9RjptFUyCbSmk0qHjJFT-8hQaENQRfSPW3dDA5fQioXNIWascm9raZAa_y4-nZD29A1eUFNctREizuM1MHu4DI2tzaiA_UZlwYYyDgHSx8zPph8wNp2VaTXwWQXTDtomWOr_502qZoFYTZ0F0rFeKjBmo_k2JtY4NNbPSe_v29-rW-6u5_Xt-uru86OUtdOz55rb0ZmvQPunfReNCdr9TgqMY0z08oq5fVKDs4bGABWHjxfraYWFUzinHx99W2HPu2h1O0SioUYTQLcl60SSgyKDQ388gbu5wXc9jGHpT22fY9c_ANTV4lg |
| CitedBy_id | crossref_primary_10_1126_science_1143837 crossref_primary_10_1371_journal_pntd_0004261 crossref_primary_10_3390_cimb46090574 crossref_primary_10_1111_j_1365_2958_2007_05979_x crossref_primary_10_1016_j_gene_2007_02_009 crossref_primary_10_1128_CMR_00019_06 crossref_primary_10_1073_pnas_0500349102 crossref_primary_10_1007_s40475_016_0088_9 crossref_primary_10_1128_AEM_70_6_3338_3345_2004 crossref_primary_10_1893_0005_3155_90_1_30 crossref_primary_10_1016_j_pt_2007_08_013 crossref_primary_10_3390_microorganisms8101608 crossref_primary_10_1016_j_biotechadv_2015_04_009 crossref_primary_10_1186_1471_2148_6_27 crossref_primary_10_1128_AAC_00800_10 crossref_primary_10_1186_1471_2164_14_729 crossref_primary_10_1078_143446103764928468 crossref_primary_10_1186_1741_7007_8_150 crossref_primary_10_1186_gb_2011_12_3_r29 crossref_primary_10_1074_jbc_M500787200 crossref_primary_10_1111_j_1420_9101_2008_01605_x crossref_primary_10_1128_MMBR_05024_11 crossref_primary_10_1016_j_pt_2018_04_007 crossref_primary_10_1186_1471_2148_7_89 crossref_primary_10_1046_j_1365_2958_2003_03912_x crossref_primary_10_1002_mbo3_904 crossref_primary_10_1016_j_meegid_2009_06_008 crossref_primary_10_1093_jac_dkt106 crossref_primary_10_1007_BF02704848 crossref_primary_10_1111_j_1432_1033_2004_04195_x crossref_primary_10_1186_1471_2164_8_51 crossref_primary_10_1007_s11105_011_0352_z crossref_primary_10_1128_AAC_00909_08 crossref_primary_10_1016_j_dnarep_2019_02_009 crossref_primary_10_1111_j_1550_7408_2004_tb00394_x crossref_primary_10_3390_genes1010102 crossref_primary_10_1007_s10142_007_0059_2 crossref_primary_10_1016_j_molbiopara_2016_01_004 crossref_primary_10_1016_j_pt_2010_07_002 crossref_primary_10_1007_s00436_014_4299_5 crossref_primary_10_3390_biology13030178 crossref_primary_10_1016_j_exppara_2023_108492 crossref_primary_10_1002_pmic_200900022 crossref_primary_10_1093_glycob_cwq081 crossref_primary_10_1128_AAC_01227_12 crossref_primary_10_1016_j_bbrc_2007_02_049 crossref_primary_10_1093_mtomcs_mfac009 crossref_primary_10_1186_gb_2004_5_11_r88 crossref_primary_10_1074_jbc_M117_794172 crossref_primary_10_1128_AEM_00988_19 crossref_primary_10_1128_AAC_01548_06 crossref_primary_10_1080_07388550701334378 crossref_primary_10_1128_AEM_71_6_2955_2961_2005 crossref_primary_10_1111_j_1574_6976_2009_00209_x crossref_primary_10_1016_j_molbiopara_2005_09_008 crossref_primary_10_1371_journal_pone_0003036 crossref_primary_10_3389_fmicb_2017_00398 crossref_primary_10_1007_s11105_011_0297_2 crossref_primary_10_1016_j_freeradbiomed_2011_07_017 crossref_primary_10_1016_S0960_9822_03_00003_4 crossref_primary_10_1038_nature01743 crossref_primary_10_1016_j_pt_2013_05_001 crossref_primary_10_1093_nar_gkm474 crossref_primary_10_1371_journal_pgen_1004053 crossref_primary_10_1016_j_bbapap_2020_140512 crossref_primary_10_3390_metabo10020053 crossref_primary_10_1038_nrmicro_2017_137 crossref_primary_10_1016_j_freeradbiomed_2019_03_030 crossref_primary_10_2307_1543490 crossref_primary_10_1128_AAC_00977_16 crossref_primary_10_1111_j_0141_9838_2004_00669_x crossref_primary_10_3390_pathogens10020129 crossref_primary_10_1074_jbc_M304359200 crossref_primary_10_1074_jbc_M313314200 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1128/EC.1.2.181-190.2002 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Zoology Biology |
| ExternalDocumentID | 12455953 |
| Genre | Research Support, U.S. Gov't, P.H.S Comparative Study Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: NIAID NIH HHS grantid: AI46516 – fundername: NIAID NIH HHS grantid: AI43273 – fundername: NIAID NIH HHS grantid: R01 AI048082 – fundername: NIAID NIH HHS grantid: R01 AI046516 – fundername: NIAID NIH HHS grantid: AI33492 |
| GroupedDBID | --- 0R~ 18M 29G 2WC 4.4 53G 5GY 5VS ACGFO ADBBV AENEX ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C1A CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HYE HZ~ KQ8 NPM O9- OK1 P2P RHF RHI RNS RPM RSF TR2 W8F WHG WOQ 7X8 AAFWJ AAGFI ADXHL |
| ID | FETCH-LOGICAL-c459t-9bf19fa40cfde1fd5ff2ebacc9447284b097c77f9653dfae3ee6fef1668245e82 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 86 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000178729200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1535-9778 |
| IngestDate | Fri Jul 11 10:39:16 EDT 2025 Sat Sep 28 08:36:53 EDT 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c459t-9bf19fa40cfde1fd5ff2ebacc9447284b097c77f9653dfae3ee6fef1668245e82 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| OpenAccessLink | https://doi.org/10.1128/ec.1.2.181-190.2002 |
| PMID | 12455953 |
| PQID | 72723703 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_72723703 pubmed_primary_12455953 |
| PublicationCentury | 2000 |
| PublicationDate | 2002-Apr 20020401 |
| PublicationDateYYYYMMDD | 2002-04-01 |
| PublicationDate_xml | – month: 04 year: 2002 text: 2002-Apr |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Eukaryotic cell |
| PublicationTitleAlternate | Eukaryot Cell |
| PublicationYear | 2002 |
| SSID | ssj0015973 |
| Score | 2.013105 |
| Snippet | Giardia lamblia and Entamoeba histolytica are amitochondriate, microaerophilic protists which use fermentation enzymes like those of bacteria to survive... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 181 |
| SubjectTerms | Alcohol Dehydrogenase - analysis Alcohol Dehydrogenase - genetics Amino Acid Sequence Anaerobiosis Animals Bacteria - genetics Entamoeba histolytica - enzymology Entamoeba histolytica - genetics Fermentation Ferredoxins - analysis Ferredoxins - classification Ferredoxins - genetics Gene Transfer, Horizontal Giardia lamblia - enzymology Giardia lamblia - genetics Iron-Sulfur Proteins - genetics Mitochondria - genetics Models, Biological Molecular Sequence Data Multienzyme Complexes - analysis Multienzyme Complexes - genetics NADH, NADPH Oxidoreductases - analysis NADH, NADPH Oxidoreductases - genetics Nitroreductases - analysis Nitroreductases - classification Nitroreductases - genetics Oxidoreductases - genetics Phylogeny Prokaryotic Cells - metabolism Sequence Alignment Sequence Analysis, Protein |
| Title | Evidence for lateral transfer of genes encoding ferredoxins, nitroreductases, NADH oxidase, and alcohol dehydrogenase 3 from anaerobic prokaryotes to Giardia lamblia and Entamoeba histolytica |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/12455953 https://www.proquest.com/docview/72723703 |
| Volume | 1 |
| WOSCitedRecordID | wos000178729200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYotBKXlr6hhc6hRwxJnMSxhIQQLHDpikMrrXpZOX7QVZcYsmnF_rr-NWacjXqqeuCSOHZsOfJk5rPH_oaxz9KaytdEhViImudZZrhKSs1lJXxZIWauVR9sQo7H1WSirtbY0XAWhrZVDjoxKmobDK2RH5LDUKB4Ht_ecYoZRb7VVQCNJ2xDIJAhmZaTvz4EhMqiZ0stOKKcasU5hAr5cHR6gHPDA7RuHA1i3Kjwb4QZLc35i8f1cYs9XyFMOOlF4iVbc80r9qyPObnE1PcQU6_ZnyGiKCBwhbmms8hz6CKSdS0ED9ekCIGoLsnCAeYSvej9rFnsA6qCNrRE_NqhIcSM8cnZJWChxcd90I0F3YffBet-LG0bsDUsAgF0pAVf0I44oAzgR_7U7TIg6IUuwMUsCi126Kae451aGjWdvgmu1hD5kedLWoF_w76dj76eXvJVPAdu8kJ1XNU-VV7nifHWpd4W3mdY0xiV5xLNZJ0oaaT0qiyE9doJ50rvfFqWVZYXrsresvUmNO49AxQql1qPcM8UuXFS1zpRPpMusT7RJt1mn4YRmuL_Qk4Q3bjwazEdxmibvesHeXrb03pMEeng9KoQO_-t-4FtxqAwcQPPR7bhUVO4XfbU_O5mi3YviiFex1dfHgAPpOvH |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evidence+for+lateral+transfer+of+genes+encoding+ferredoxins%2C+nitroreductases%2C+NADH+oxidase%2C+and+alcohol+dehydrogenase+3+from+anaerobic+prokaryotes+to+Giardia+lamblia+and+Entamoeba+histolytica&rft.jtitle=Eukaryotic+cell&rft.au=Nixon%2C+Julie+E+J&rft.au=Wang%2C+Amy&rft.au=Field%2C+Jessica&rft.au=Morrison%2C+Hilary+G&rft.date=2002-04-01&rft.issn=1535-9778&rft.volume=1&rft.issue=2&rft.spage=181&rft_id=info:doi/10.1128%2FEC.1.2.181-190.2002&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1535-9778&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1535-9778&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1535-9778&client=summon |