Machine learning-aided real-time detection of keyhole pore generation in laser powder bed fusion

Porosity defects are currently a major factor that hinders the widespread adoption of laser-based metal additive manufacturing technologies. One common porosity occurs when an unstable vapor depression zone (keyhole) forms because of excess laser energy input. With simultaneous high-speed synchrotro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) Jg. 379; H. 6627; S. 89
Hauptverfasser: Ren, Zhongshu, Gao, Lin, Clark, Samuel J, Fezzaa, Kamel, Shevchenko, Pavel, Choi, Ann, Everhart, Wes, Rollett, Anthony D, Chen, Lianyi, Sun, Tao
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 06.01.2023
ISSN:1095-9203, 1095-9203
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Porosity defects are currently a major factor that hinders the widespread adoption of laser-based metal additive manufacturing technologies. One common porosity occurs when an unstable vapor depression zone (keyhole) forms because of excess laser energy input. With simultaneous high-speed synchrotron x-ray imaging and thermal imaging, coupled with multiphysics simulations, we discovered two types of keyhole oscillation in laser powder bed fusion of Ti-6Al-4V. Amplifying this understanding with machine learning, we developed an approach for detecting the stochastic keyhole porosity generation events with submillisecond temporal resolution and near-perfect prediction rate. The highly accurate data labeling enabled by operando x-ray imaging allowed us to demonstrate a facile and practical way to adopt our approach in commercial systems.
AbstractList Porosity defects are currently a major factor that hinders the widespread adoption of laser-based metal additive manufacturing technologies. One common porosity occurs when an unstable vapor depression zone (keyhole) forms because of excess laser energy input. With simultaneous high-speed synchrotron x-ray imaging and thermal imaging, coupled with multiphysics simulations, we discovered two types of keyhole oscillation in laser powder bed fusion of Ti-6Al-4V. Amplifying this understanding with machine learning, we developed an approach for detecting the stochastic keyhole porosity generation events with submillisecond temporal resolution and near-perfect prediction rate. The highly accurate data labeling enabled by operando x-ray imaging allowed us to demonstrate a facile and practical way to adopt our approach in commercial systems.Porosity defects are currently a major factor that hinders the widespread adoption of laser-based metal additive manufacturing technologies. One common porosity occurs when an unstable vapor depression zone (keyhole) forms because of excess laser energy input. With simultaneous high-speed synchrotron x-ray imaging and thermal imaging, coupled with multiphysics simulations, we discovered two types of keyhole oscillation in laser powder bed fusion of Ti-6Al-4V. Amplifying this understanding with machine learning, we developed an approach for detecting the stochastic keyhole porosity generation events with submillisecond temporal resolution and near-perfect prediction rate. The highly accurate data labeling enabled by operando x-ray imaging allowed us to demonstrate a facile and practical way to adopt our approach in commercial systems.
Porosity defects are currently a major factor that hinders the widespread adoption of laser-based metal additive manufacturing technologies. One common porosity occurs when an unstable vapor depression zone (keyhole) forms because of excess laser energy input. With simultaneous high-speed synchrotron x-ray imaging and thermal imaging, coupled with multiphysics simulations, we discovered two types of keyhole oscillation in laser powder bed fusion of Ti-6Al-4V. Amplifying this understanding with machine learning, we developed an approach for detecting the stochastic keyhole porosity generation events with submillisecond temporal resolution and near-perfect prediction rate. The highly accurate data labeling enabled by operando x-ray imaging allowed us to demonstrate a facile and practical way to adopt our approach in commercial systems.
Author Shevchenko, Pavel
Choi, Ann
Rollett, Anthony D
Chen, Lianyi
Fezzaa, Kamel
Sun, Tao
Gao, Lin
Clark, Samuel J
Everhart, Wes
Ren, Zhongshu
Author_xml – sequence: 1
  givenname: Zhongshu
  orcidid: 0000-0003-4662-2422
  surname: Ren
  fullname: Ren, Zhongshu
  organization: Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA 22904, USA
– sequence: 2
  givenname: Lin
  orcidid: 0000-0001-8988-7354
  surname: Gao
  fullname: Gao, Lin
  organization: Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA 22904, USA
– sequence: 3
  givenname: Samuel J
  orcidid: 0000-0002-8678-3020
  surname: Clark
  fullname: Clark, Samuel J
  organization: X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
– sequence: 4
  givenname: Kamel
  orcidid: 0000-0001-6135-8450
  surname: Fezzaa
  fullname: Fezzaa, Kamel
  organization: X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
– sequence: 5
  givenname: Pavel
  orcidid: 0000-0002-7847-472X
  surname: Shevchenko
  fullname: Shevchenko, Pavel
  organization: X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
– sequence: 6
  givenname: Ann
  orcidid: 0000-0001-5233-8423
  surname: Choi
  fullname: Choi, Ann
  organization: Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
– sequence: 7
  givenname: Wes
  orcidid: 0000-0001-6253-5527
  surname: Everhart
  fullname: Everhart, Wes
  organization: Kansas City National Security Campus Managed by Honeywell Federal Manufacturing and Technologies, US Department of Energy, Kansas City, MO 64147, USA
– sequence: 8
  givenname: Anthony D
  orcidid: 0000-0003-4445-2191
  surname: Rollett
  fullname: Rollett, Anthony D
  organization: Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
– sequence: 9
  givenname: Lianyi
  orcidid: 0000-0003-3720-398X
  surname: Chen
  fullname: Chen, Lianyi
  organization: Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
– sequence: 10
  givenname: Tao
  orcidid: 0000-0002-4881-9774
  surname: Sun
  fullname: Sun, Tao
  organization: Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA 22904, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36603080$$D View this record in MEDLINE/PubMed
BookMark eNpNkElPwzAUhC0EogucuSEfuaR4ixsfUcUmFXGBc3Dsl9aQ2MVOhPrvsaBInOY9faORZmbo2AcPCF1QsqCUyetkHHgDC22tkHJ5hKaUqLJQjPDjf_cEzVJ6JyT_ip-iCZeScFKRKXp70mbrPOAOdPTObwrtLFgcQXfF4HrAFgYwgwsehxZ_wH4bOsC7EAFvwEPUP8h53OkEMYMvm6XJEe2YMjpDJ63uEpwfdI5e725fVg_F-vn-cXWzLowo1VCo0ghqiFS5B2moASUFkEq0oHXLKqssKYUxTS6pDG9aUkrFBddWM6UqADZHV7-5uxg-R0hD3btkoOu0hzCmmi0lVUtecZWtlwfr2PRg6110vY77-m8V9g21VmhJ
CitedBy_id crossref_primary_10_1007_s40820_024_01373_w
crossref_primary_10_1016_j_actamat_2024_120464
crossref_primary_10_1080_09507116_2024_2317959
crossref_primary_10_1016_j_addma_2023_103810
crossref_primary_10_1016_j_addma_2024_104506
crossref_primary_10_1016_j_mtcomm_2025_112280
crossref_primary_10_1016_j_optlastec_2023_109472
crossref_primary_10_1016_j_compositesb_2023_111039
crossref_primary_10_3390_met15020106
crossref_primary_10_1016_j_optlastec_2024_112009
crossref_primary_10_1080_17452759_2024_2438899
crossref_primary_10_1007_s10845_023_02119_y
crossref_primary_10_1016_j_addma_2025_104750
crossref_primary_10_1002_advs_202412554
crossref_primary_10_1016_j_addma_2024_104195
crossref_primary_10_1016_j_ymssp_2024_111936
crossref_primary_10_1080_17452759_2024_2325572
crossref_primary_10_3390_met13101658
crossref_primary_10_1016_j_optlastec_2025_112761
crossref_primary_10_1016_j_matlet_2025_139331
crossref_primary_10_1016_j_addma_2024_104512
crossref_primary_10_1016_j_amf_2025_200212
crossref_primary_10_1038_s41524_023_01172_8
crossref_primary_10_3390_ma17020432
crossref_primary_10_1016_j_amf_2025_200216
crossref_primary_10_1016_j_jmatprotec_2025_118912
crossref_primary_10_1016_j_jmapro_2024_08_003
crossref_primary_10_1016_j_jmrt_2024_08_028
crossref_primary_10_1016_j_jmrt_2025_05_211
crossref_primary_10_1016_j_jallcom_2025_180543
crossref_primary_10_1016_j_mtcomm_2024_110373
crossref_primary_10_1107_S1600577525000323
crossref_primary_10_1016_j_addma_2024_104218
crossref_primary_10_3390_ma16062424
crossref_primary_10_1016_j_addma_2025_104916
crossref_primary_10_1038_s43246_024_00699_7
crossref_primary_10_1016_j_nima_2023_168690
crossref_primary_10_1016_j_pmatsci_2023_101153
crossref_primary_10_1016_j_cirp_2023_03_031
crossref_primary_10_1016_j_addma_2024_104187
crossref_primary_10_1016_j_addma_2025_104886
crossref_primary_10_1016_j_optlastec_2025_112872
crossref_primary_10_1038_s41578_023_00536_2
crossref_primary_10_1016_j_addma_2025_104921
crossref_primary_10_1016_j_matdes_2024_113181
crossref_primary_10_1016_j_addma_2024_104503
crossref_primary_10_1080_0951192X_2025_2452984
crossref_primary_10_1016_j_addma_2024_104502
crossref_primary_10_1016_j_matdes_2025_113767
crossref_primary_10_1016_j_addma_2024_104501
crossref_primary_10_1016_j_revmat_2025_100010
crossref_primary_10_1016_j_engfracmech_2023_109628
crossref_primary_10_2497_jjspm_17D_T17_09
crossref_primary_10_1016_j_jmrt_2024_08_019
crossref_primary_10_1016_j_addlet_2023_100161
crossref_primary_10_1007_s11465_024_0792_4
crossref_primary_10_1007_s12206_024_2401_1
crossref_primary_10_3390_ma17071569
crossref_primary_10_1016_j_engfracmech_2025_111036
crossref_primary_10_1016_j_mtcomm_2023_106979
crossref_primary_10_1016_j_ijfatigue_2024_108428
crossref_primary_10_1016_j_optlastec_2025_112461
crossref_primary_10_1016_j_ijmachtools_2023_104089
crossref_primary_10_1016_j_ijheatmasstransfer_2025_127781
crossref_primary_10_1016_j_jmapro_2025_01_051
crossref_primary_10_1016_j_optlastec_2025_113432
crossref_primary_10_3390_mi15020243
crossref_primary_10_1007_s00170_025_16031_7
crossref_primary_10_1063_5_0252992
crossref_primary_10_1016_j_addma_2024_104576
crossref_primary_10_1016_j_addma_2025_104692
crossref_primary_10_1016_j_jmst_2023_07_072
crossref_primary_10_1016_j_addma_2024_104057
crossref_primary_10_1016_j_jmapro_2025_03_049
crossref_primary_10_1080_17452759_2024_2424463
crossref_primary_10_1016_j_apsusc_2024_159438
crossref_primary_10_1016_j_matdes_2025_113629
crossref_primary_10_1016_j_csite_2024_105097
crossref_primary_10_1016_j_jmst_2023_05_077
crossref_primary_10_3390_s25144401
crossref_primary_10_1007_s10845_024_02355_w
crossref_primary_10_1016_j_addma_2025_104736
crossref_primary_10_1007_s11837_024_06922_7
crossref_primary_10_1016_j_addma_2025_104858
crossref_primary_10_2351_7_0001401
crossref_primary_10_1016_j_ijmecsci_2025_110272
crossref_primary_10_1016_j_optlastec_2024_111341
crossref_primary_10_1039_D4MH01022A
crossref_primary_10_1016_j_cirp_2024_04_102
crossref_primary_10_1007_s10845_024_02342_1
crossref_primary_10_1016_j_actamat_2025_121515
crossref_primary_10_1016_j_addma_2024_104323
crossref_primary_10_1016_j_matdes_2024_113443
crossref_primary_10_1088_2631_7990_ad2545
crossref_primary_10_1016_j_rio_2025_100865
crossref_primary_10_1016_j_jmapro_2024_08_054
crossref_primary_10_1080_17452759_2025_2500671
crossref_primary_10_1126_science_ado8554
crossref_primary_10_1016_j_addma_2023_103614
crossref_primary_10_1016_j_procir_2025_03_050
crossref_primary_10_1007_s00170_024_13893_1
crossref_primary_10_1016_j_jmatprotec_2023_118032
crossref_primary_10_1016_j_jmatprotec_2023_118153
crossref_primary_10_1038_s41467_024_45913_9
crossref_primary_10_1126_science_abo7579
crossref_primary_10_1038_s41598_024_64214_1
crossref_primary_10_1016_j_jmapro_2024_04_043
crossref_primary_10_1007_s11665_024_10566_8
crossref_primary_10_1016_j_addma_2025_104833
crossref_primary_10_1016_j_jmapro_2025_09_012
crossref_primary_10_1016_j_fmre_2025_08_006
crossref_primary_10_1038_s44359_025_00109_2
crossref_primary_10_3389_fhpcp_2025_1537080
crossref_primary_10_1016_j_jmapro_2025_03_107
crossref_primary_10_1016_j_bioactmat_2024_03_033
crossref_primary_10_1088_2631_7990_acf96a
crossref_primary_10_1016_j_engappai_2025_111807
crossref_primary_10_1016_j_addma_2025_104838
crossref_primary_10_1016_j_jmatprotec_2025_119071
crossref_primary_10_1016_j_ijmachtools_2023_104077
crossref_primary_10_1016_j_jmst_2024_01_092
crossref_primary_10_1016_j_optlastec_2024_112175
crossref_primary_10_1038_s44334_024_00003_y
crossref_primary_10_1088_2752_5724_ad89e2
crossref_primary_10_1002_adma_202310006
crossref_primary_10_1016_j_ijheatmasstransfer_2025_127279
crossref_primary_10_1038_s41467_025_60164_y
crossref_primary_10_1016_j_commatsci_2024_113185
crossref_primary_10_1007_s10845_023_02117_0
crossref_primary_10_3390_mi16080871
crossref_primary_10_1016_j_addma_2023_103756
crossref_primary_10_1088_2631_7990_ada8e4
crossref_primary_10_3390_met15070787
crossref_primary_10_1002_nano_202400149
crossref_primary_10_1016_j_jmapro_2025_06_027
crossref_primary_10_1016_j_addma_2025_104926
crossref_primary_10_3390_jmmp8060269
crossref_primary_10_1007_s00170_024_14858_0
crossref_primary_10_1007_s00170_023_12771_6
crossref_primary_10_1016_j_apsusc_2025_162384
crossref_primary_10_1007_s11760_025_04077_9
crossref_primary_10_1080_10589759_2025_2533389
crossref_primary_10_1016_j_ijfatigue_2024_108624
crossref_primary_10_1016_j_jmapro_2024_04_023
crossref_primary_10_1016_j_addma_2024_104095
crossref_primary_10_1016_j_jmrt_2024_07_135
crossref_primary_10_1016_j_jmrt_2025_09_025
crossref_primary_10_1016_j_addma_2024_104092
crossref_primary_10_1016_j_addma_2023_103642
crossref_primary_10_1016_j_ymssp_2024_111993
crossref_primary_10_3390_ma17092104
crossref_primary_10_1088_2631_7990_aded4f
crossref_primary_10_1016_j_neunet_2024_106794
crossref_primary_10_3390_s24134397
crossref_primary_10_1038_s41598_024_63288_1
crossref_primary_10_1016_j_jmst_2025_05_063
crossref_primary_10_1016_j_ymssp_2025_113256
crossref_primary_10_1016_j_addma_2024_104013
crossref_primary_10_1364_AO_558661
crossref_primary_10_1016_j_addma_2023_103923
crossref_primary_10_1016_j_procir_2024_08_122
crossref_primary_10_1080_17452759_2025_2503258
crossref_primary_10_1080_10426914_2025_2469552
crossref_primary_10_1016_j_jmsy_2024_04_013
crossref_primary_10_3390_nano15191462
crossref_primary_10_1016_j_jmst_2024_07_047
crossref_primary_10_1016_j_addma_2024_104403
crossref_primary_10_1007_s40964_024_00637_6
ContentType Journal Article
DBID NPM
7X8
DOI 10.1126/science.add4667
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
ExternalDocumentID 36603080
Genre Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0B8
0R~
0WA
123
18M
2FS
2KS
2WC
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
ABCQX
ABDBF
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADUKH
AEGBM
AENEX
AEUPB
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
BKF
BLC
C45
CS3
DB2
DU5
EBS
EMOBN
ESX
F5P
FA8
FEDTE
GX1
HZ~
I.T
IAO
IEA
IGG
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
JCF
JLS
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
NPM
O9-
OCB
OFXIZ
OGEVE
OK1
OMK
OVD
P-O
P2P
PQQKQ
PZZ
RHI
RXW
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UIG
UKR
UMD
UNMZH
UQL
USG
VQA
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YCJ
YIF
YIN
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
2XV
7X8
ADXHL
AETEA
AFBNE
ID FETCH-LOGICAL-c459t-95c41c069d460b1ce964e084feaaf28d9d054ccb6679c3bf0569343ada2998ee2
IEDL.DBID 7X8
ISICitedReferencesCount 201
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000920432900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1095-9203
IngestDate Sun Sep 28 01:13:55 EDT 2025
Wed Feb 19 02:24:26 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6627
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-95c41c069d460b1ce964e084feaaf28d9d054ccb6679c3bf0569343ada2998ee2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4662-2422
0000-0002-8678-3020
0000-0002-4881-9774
0000-0001-6253-5527
0000-0003-4445-2191
0000-0001-5233-8423
0000-0001-6135-8450
0000-0001-8988-7354
0000-0002-7847-472X
0000-0003-3720-398X
OpenAccessLink https://www.osti.gov/servlets/purl/1963710
PMID 36603080
PQID 2761973839
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2761973839
pubmed_primary_36603080
PublicationCentury 2000
PublicationDate 2023-Jan-06
20230106
PublicationDateYYYYMMDD 2023-01-06
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-Jan-06
  day: 06
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2023
SSID ssj0009593
Score 2.713557
Snippet Porosity defects are currently a major factor that hinders the widespread adoption of laser-based metal additive manufacturing technologies. One common...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 89
Title Machine learning-aided real-time detection of keyhole pore generation in laser powder bed fusion
URI https://www.ncbi.nlm.nih.gov/pubmed/36603080
https://www.proquest.com/docview/2761973839
Volume 379
WOSCitedRecordID wos000920432900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA_qFLyo83N-EcGDHqJpm6bJSUQcHtzYQWW3mSbpGEg396H43_uSZijiQfDSHtKG8vreyy8vye-H0KmjoGNUxURHlBKmTELyiOVERCk8H2c595RCT_dZuy26XdkJBbdJ2FY5z4k-UZuhdjXyy9jNtzOYT8mr0StxqlFudTVIaCyiWgJQxnl11hU_SXcj6vQIY5oEap9vh2YuILwZr0Tmf8eXfpxprv_3CzfQWkCY-LpyiTpasOUmWqk0Jz82UT1E8wSfBcrp8y303PJ7Ki0OIhJ94pgjDQZE-UKc_Dw2duo3bZV4WGAIfCeriwG7W9z3vfimQYkBjNsxNLwbuOXQRTFz9bht9Ni8fbi5I0F7gWiWyimRqWaRplyCeWgeaSs5s1SwwipVxMJIA1hP6xxsJ3WSF4CjZMISZRSMb8LaeActlcPS7iEcGWk1F4WAvgCuUGEhrcRSp0oWPFK0gU7m9uyBb7sFC1Xa4WzS-7JoA-1WP6U3qkg4egnnjmqH7v_h7QO06lTifeWEH6JaAZFtj9CyfpsOJuNj7zRwbXdan0MSzP8
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning-aided+real-time+detection+of+keyhole+pore+generation+in+laser+powder+bed+fusion&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Ren%2C+Zhongshu&rft.au=Gao%2C+Lin&rft.au=Clark%2C+Samuel+J&rft.au=Fezzaa%2C+Kamel&rft.date=2023-01-06&rft.eissn=1095-9203&rft.volume=379&rft.issue=6627&rft.spage=89&rft_id=info:doi/10.1126%2Fscience.add4667&rft_id=info%3Apmid%2F36603080&rft_id=info%3Apmid%2F36603080&rft.externalDocID=36603080
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1095-9203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1095-9203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1095-9203&client=summon