A better way to define and describe Morlet wavelets for time-frequency analysis

Complex Morlet wavelets are frequently used for time-frequency analysis of non-stationary time series data, such as neuroelectrical signals recorded from the brain. The crucial parameter of Morlet wavelets is the width of the Gaussian that tapers the sine wave. This width parameter controls the trad...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:NeuroImage (Orlando, Fla.) Ročník 199; s. 81 - 86
Hlavný autor: Cohen, Michael X
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Elsevier Inc 01.10.2019
Elsevier Limited
Predmet:
ISSN:1053-8119, 1095-9572, 1095-9572
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Complex Morlet wavelets are frequently used for time-frequency analysis of non-stationary time series data, such as neuroelectrical signals recorded from the brain. The crucial parameter of Morlet wavelets is the width of the Gaussian that tapers the sine wave. This width parameter controls the trade-off between temporal precision and spectral precision. It is typically defined as the “number of cycles,” but this parameter is opaque, and often leads to uncertainty and suboptimal analysis choices, as well as being difficult to interpret and evaluate. The purpose of this paper is to present alternative formulations of Morlet wavelets in time and in frequency that allow parameterizing the wavelets directly in terms of the desired temporal and spectral smoothing (expressed as full-width at half-maximum). This formulation provides clarity on an important data analysis parameter, and can facilitate proper analyses, reporting, and interpretation of results. MATLAB code and sample data are provided. •Morlet wavelets are used for time-frequency analysis.•The width parameter is usually defined as number-of-cycles.•Alternative formulas are presented here that use full-width at half-maximum.•These formulas will increase clarity of time-frequency analyses and results.
AbstractList Complex Morlet wavelets are frequently used for time-frequency analysis of non-stationary time series data, such as neuroelectrical signals recorded from the brain. The crucial parameter of Morlet wavelets is the width of the Gaussian that tapers the sine wave. This width parameter controls the trade-off between temporal precision and spectral precision. It is typically defined as the “number of cycles,” but this parameter is opaque, and often leads to uncertainty and suboptimal analysis choices, as well as being difficult to interpret and evaluate. The purpose of this paper is to present alternative formulations of Morlet wavelets in time and in frequency that allow parameterizing the wavelets directly in terms of the desired temporal and spectral smoothing (expressed as full-width at half-maximum). This formulation provides clarity on an important data analysis parameter, and can facilitate proper analyses, reporting, and interpretation of results. MATLAB code and sample data are provided.
Complex Morlet wavelets are frequently used for time-frequency analysis of non-stationary time series data, such as neuroelectrical signals recorded from the brain. The crucial parameter of Morlet wavelets is the width of the Gaussian that tapers the sine wave. This width parameter controls the trade-off between temporal precision and spectral precision. It is typically defined as the “number of cycles,” but this parameter is opaque, and often leads to uncertainty and suboptimal analysis choices, as well as being difficult to interpret and evaluate. The purpose of this paper is to present alternative formulations of Morlet wavelets in time and in frequency that allow parameterizing the wavelets directly in terms of the desired temporal and spectral smoothing (expressed as full-width at half-maximum). This formulation provides clarity on an important data analysis parameter, and can facilitate proper analyses, reporting, and interpretation of results. MATLAB code and sample data are provided. •Morlet wavelets are used for time-frequency analysis.•The width parameter is usually defined as number-of-cycles.•Alternative formulas are presented here that use full-width at half-maximum.•These formulas will increase clarity of time-frequency analyses and results.
Complex Morlet wavelets are frequently used for time-frequency analysis of non-stationary time series data, such as neuroelectrical signals recorded from the brain. The crucial parameter of Morlet wavelets is the width of the Gaussian that tapers the sine wave. This width parameter controls the trade-off between temporal precision and spectral precision. It is typically defined as the "number of cycles," but this parameter is opaque, and often leads to uncertainty and suboptimal analysis choices, as well as being difficult to interpret and evaluate. The purpose of this paper is to present alternative formulations of Morlet wavelets in time and in frequency that allow parameterizing the wavelets directly in terms of the desired temporal and spectral smoothing (expressed as full-width at half-maximum). This formulation provides clarity on an important data analysis parameter, and can facilitate proper analyses, reporting, and interpretation of results. MATLAB code and sample data are provided.Complex Morlet wavelets are frequently used for time-frequency analysis of non-stationary time series data, such as neuroelectrical signals recorded from the brain. The crucial parameter of Morlet wavelets is the width of the Gaussian that tapers the sine wave. This width parameter controls the trade-off between temporal precision and spectral precision. It is typically defined as the "number of cycles," but this parameter is opaque, and often leads to uncertainty and suboptimal analysis choices, as well as being difficult to interpret and evaluate. The purpose of this paper is to present alternative formulations of Morlet wavelets in time and in frequency that allow parameterizing the wavelets directly in terms of the desired temporal and spectral smoothing (expressed as full-width at half-maximum). This formulation provides clarity on an important data analysis parameter, and can facilitate proper analyses, reporting, and interpretation of results. MATLAB code and sample data are provided.
Author Cohen, Michael X
Author_xml – sequence: 1
  givenname: Michael X
  surname: Cohen
  fullname: Cohen, Michael X
  email: mikexcohen@gmail.com
  organization: Radboud University and Radboud University Medical Center, Donders Institute for Neuroscience, the Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31145982$$D View this record in MEDLINE/PubMed
BookMark eNqNkUFv1DAQhS3UirYLfwFZ4sIlwY7jjX1BlKotlYp6gbPl2GPkJWsX2ynKv69XW0Da055mDt-8eXrvAp2EGAAhTElLCV1_3LQB5hT9Vv-EtiNUtoS3pBev0DklkjeSD93JbuesEZTKM3SR84YQImkvXqMzRmnPpejO0cMlHqEUSPiPXnCJ2ILzAbAOtq7ZJD8C_hbTBKUST1Bnxi4mXPwWGpfg9wzBLJXX05J9foNOnZ4yvH2ZK_Tj5vr71dfm_uH27uryvjH1cWkGzUnPhZPOMjqMdtCD6xnrulEztx6tBguj4FT2ttoXtBOayZGBJo4SwwxboQ973ccUq4Vc1NZnA9OkA8Q5q65jTPBBSFrR9wfoJs6p-t1Ra8H7QdbXK_TuhZrHLVj1mGq6aVF_o6qA2AMmxZwTuH8IJWrXitqo_62oXSuKcFVbqaefDk6NL7r4GErSfjpG4MteAGqkTx6SysbX3MH6BKYoG_0xIp8PRMzkgzd6-gXLcRLPrmDFQw
CitedBy_id crossref_primary_10_1038_s41598_024_58335_w
crossref_primary_10_1109_TNSRE_2023_3346947
crossref_primary_10_3390_diagnostics12123188
crossref_primary_10_1016_j_conbuildmat_2023_134416
crossref_primary_10_1016_j_gaitpost_2025_04_002
crossref_primary_10_1016_j_clinph_2023_12_004
crossref_primary_10_1016_j_jeca_2022_e00254
crossref_primary_10_1007_s00421_025_05867_2
crossref_primary_10_1016_j_jpowsour_2024_234655
crossref_primary_10_1007_s10690_023_09436_5
crossref_primary_10_1016_j_compstruc_2022_106957
crossref_primary_10_1088_1748_9326_ac0f27
crossref_primary_10_1109_ACCESS_2022_3188286
crossref_primary_10_1109_TIM_2024_3376019
crossref_primary_10_1016_j_bbr_2022_113932
crossref_primary_10_1111_psyp_14052
crossref_primary_10_1016_j_ijrmms_2021_104758
crossref_primary_10_1109_JSEN_2021_3049277
crossref_primary_10_1109_ACCESS_2024_3452188
crossref_primary_10_1007_s00221_020_05782_2
crossref_primary_10_1186_s40708_024_00243_w
crossref_primary_10_1016_j_eswa_2024_125585
crossref_primary_10_1038_s41598_024_55656_8
crossref_primary_10_3390_brainsci12050647
crossref_primary_10_1073_pnas_2210698120
crossref_primary_10_1016_j_jenvman_2025_124829
crossref_primary_10_1093_cercor_bhaf224
crossref_primary_10_1109_ACCESS_2020_3012565
crossref_primary_10_1007_s10462_025_11126_9
crossref_primary_10_1134_S1061830920020084
crossref_primary_10_1109_JSEN_2021_3095176
crossref_primary_10_1111_pcn_13702
crossref_primary_10_1016_j_jweia_2022_104953
crossref_primary_10_1007_s12530_025_09696_8
crossref_primary_10_1177_09544119251321129
crossref_primary_10_1016_j_brainresbull_2024_110902
crossref_primary_10_3389_fnins_2023_1304031
crossref_primary_10_1016_j_ijpsycho_2023_08_008
crossref_primary_10_1038_s41467_025_60821_2
crossref_primary_10_1177_09544119231184113
crossref_primary_10_1038_s42003_025_08480_3
crossref_primary_10_1080_10589759_2020_1825707
crossref_primary_10_1088_1741_2552_ad3f50
crossref_primary_10_1109_ACCESS_2025_3583263
crossref_primary_10_1016_j_agwat_2025_109373
crossref_primary_10_1016_j_jhydrol_2025_133729
crossref_primary_10_1016_j_isci_2024_109679
crossref_primary_10_1088_1741_2552_ad6cf5
crossref_primary_10_1016_j_bspc_2023_105179
crossref_primary_10_1016_j_applthermaleng_2025_127899
crossref_primary_10_1109_JSEN_2024_3510059
crossref_primary_10_1523_JNEUROSCI_0918_24_2024
crossref_primary_10_1109_ACCESS_2023_3248263
crossref_primary_10_1109_TIM_2023_3274174
crossref_primary_10_1007_s40430_025_05782_9
crossref_primary_10_1016_j_bspc_2021_102819
crossref_primary_10_53443_anadoluibfd_1625517
crossref_primary_10_1093_cercor_bhac373
crossref_primary_10_1111_psyp_13959
crossref_primary_10_1007_s11042_023_15653_x
crossref_primary_10_3390_s20185201
crossref_primary_10_1088_1741_2552_adf011
crossref_primary_10_1109_ACCESS_2024_3399114
crossref_primary_10_1038_s42003_022_03378_w
crossref_primary_10_1109_TIM_2023_3308235
crossref_primary_10_1007_s10614_024_10780_5
crossref_primary_10_1002_brb3_2324
crossref_primary_10_1162_jocn_a_02330
crossref_primary_10_1186_s12984_024_01408_8
crossref_primary_10_1117_1_JEI_34_1_013050
crossref_primary_10_1038_s41598_023_32664_8
crossref_primary_10_1109_TUFFC_2025_3579871
crossref_primary_10_1007_s00249_025_01775_7
crossref_primary_10_1155_2020_6380486
crossref_primary_10_3390_s23136152
crossref_primary_10_1016_j_cam_2023_115532
crossref_primary_10_3390_atmos15091063
crossref_primary_10_3390_s24216872
crossref_primary_10_3389_fnins_2021_602437
crossref_primary_10_1038_s41467_023_38712_1
crossref_primary_10_1016_j_neuron_2019_10_012
crossref_primary_10_1080_10589759_2024_2446650
crossref_primary_10_1016_j_scitotenv_2023_166176
crossref_primary_10_3390_brainsci13010021
crossref_primary_10_1016_j_energy_2020_118777
crossref_primary_10_1109_TGRS_2025_3568527
crossref_primary_10_1016_j_oceaneng_2022_111299
crossref_primary_10_1016_j_istruc_2025_108388
crossref_primary_10_1007_s00419_021_02016_x
crossref_primary_10_1016_j_bspc_2023_105431
crossref_primary_10_1016_j_cmpb_2025_109008
crossref_primary_10_1186_s40708_023_00191_x
crossref_primary_10_1177_14613484241233392
crossref_primary_10_3390_su142013443
crossref_primary_10_1016_j_measurement_2020_108704
crossref_primary_10_3390_bioengineering10020200
crossref_primary_10_1038_s41598_025_92490_y
crossref_primary_10_1088_2634_4386_ac4917
crossref_primary_10_3390_oceans3020013
crossref_primary_10_1016_j_coldregions_2020_103208
crossref_primary_10_1016_j_margeo_2021_106556
crossref_primary_10_1016_j_jneumeth_2025_110409
crossref_primary_10_1111_psyp_70055
crossref_primary_10_1109_TNSRE_2023_3236434
crossref_primary_10_1016_j_bspc_2025_107885
crossref_primary_10_1016_j_apacoust_2024_110026
crossref_primary_10_1016_j_bspc_2024_106235
crossref_primary_10_2112_SI99_053_1
crossref_primary_10_1016_j_cortex_2023_11_004
crossref_primary_10_1016_j_jelekin_2023_102836
crossref_primary_10_3390_brainsci13010002
crossref_primary_10_1016_j_ijpsycho_2025_112555
crossref_primary_10_3390_pr11010107
crossref_primary_10_1016_j_jenvman_2022_115160
crossref_primary_10_1109_TNSRE_2020_3028966
crossref_primary_10_1016_j_ebiom_2024_105259
crossref_primary_10_1016_j_jneuroling_2025_101282
crossref_primary_10_1016_j_rsma_2024_103605
crossref_primary_10_1007_s12666_025_03670_3
crossref_primary_10_3390_sym17081298
crossref_primary_10_1016_j_eswa_2022_119488
crossref_primary_10_1016_j_bspc_2024_106123
crossref_primary_10_1016_j_neures_2022_03_006
crossref_primary_10_1016_j_nicl_2023_103348
crossref_primary_10_1007_s11468_024_02360_y
crossref_primary_10_1007_s13748_024_00354_9
crossref_primary_10_1016_j_pneurobio_2024_102576
crossref_primary_10_3389_fnins_2021_729449
crossref_primary_10_1016_j_neuroimage_2024_120638
crossref_primary_10_1038_s42003_024_06083_y
crossref_primary_10_1007_s11468_024_02201_y
crossref_primary_10_1038_s41598_022_21937_3
crossref_primary_10_5194_cp_21_1383_2025
crossref_primary_10_1080_23322039_2022_2114161
crossref_primary_10_1093_scan_nsaa130
crossref_primary_10_1111_psyp_14207
crossref_primary_10_1007_s11468_025_02919_3
crossref_primary_10_1038_s41598_025_99878_w
crossref_primary_10_3389_fnins_2019_00940
crossref_primary_10_1007_s42452_024_05816_2
crossref_primary_10_1016_j_dcn_2022_101067
crossref_primary_10_1109_LGRS_2023_3287470
crossref_primary_10_1002_hbm_70196
crossref_primary_10_1038_s41598_022_19158_9
crossref_primary_10_1111_psyp_13805
crossref_primary_10_1002_joc_8104
crossref_primary_10_3758_s13415_022_00994_1
crossref_primary_10_1038_s41598_025_94076_0
crossref_primary_10_3389_fnhum_2023_1329097
crossref_primary_10_1016_j_measurement_2022_111223
crossref_primary_10_3389_fneur_2022_871166
crossref_primary_10_1038_s41467_025_60666_9
crossref_primary_10_1007_s13246_022_01132_4
crossref_primary_10_1016_j_neuroimage_2022_119119
crossref_primary_10_21307_ijssis_2021_001
crossref_primary_10_1038_s43586_025_00392_0
crossref_primary_10_1016_j_optlaseng_2024_108736
crossref_primary_10_1109_TIM_2024_3368479
crossref_primary_10_1016_j_renene_2022_04_107
crossref_primary_10_1007_s11062_021_09910_8
crossref_primary_10_1016_j_oceaneng_2021_108666
crossref_primary_10_1016_j_clinph_2021_06_021
crossref_primary_10_3389_fnins_2022_1062095
crossref_primary_10_1088_1361_6501_ad128b
crossref_primary_10_1016_j_bspc_2024_106034
crossref_primary_10_1038_s42003_020_0913_5
crossref_primary_10_3390_e26030242
crossref_primary_10_1016_j_bspc_2025_107566
crossref_primary_10_1016_j_jag_2021_102378
crossref_primary_10_1080_17588928_2022_2026312
crossref_primary_10_1111_ejn_16101
crossref_primary_10_1152_jn_00480_2023
crossref_primary_10_3389_fnsys_2021_716897
crossref_primary_10_1007_s11468_024_02565_1
crossref_primary_10_1016_j_scitotenv_2022_156598
crossref_primary_10_47743_saeb_2025_0008
crossref_primary_10_1016_j_neuroimage_2023_120405
crossref_primary_10_1371_journal_pcbi_1012218
crossref_primary_10_1152_japplphysiol_00262_2021
crossref_primary_10_3390_rs15133409
crossref_primary_10_3390_rs17142344
crossref_primary_10_3390_s20185131
crossref_primary_10_1007_s11069_024_06580_7
crossref_primary_10_1016_j_bspc_2021_103072
crossref_primary_10_3389_fnhum_2021_711279
crossref_primary_10_1111_ejn_14972
crossref_primary_10_1126_science_ads4760
crossref_primary_10_7717_peerj_17104
crossref_primary_10_1186_s12984_024_01371_4
crossref_primary_10_1088_1402_4896_ad8e90
crossref_primary_10_1016_j_ymssp_2023_110952
crossref_primary_10_3390_pr11113240
crossref_primary_10_7554_eLife_65085
crossref_primary_10_1523_JNEUROSCI_0189_24_2024
crossref_primary_10_1016_j_humov_2025_103387
crossref_primary_10_1016_j_apacoust_2022_108881
crossref_primary_10_1016_j_cortex_2024_08_004
crossref_primary_10_3758_s13415_025_01281_5
crossref_primary_10_3390_app13063530
crossref_primary_10_1016_j_scitotenv_2020_140855
crossref_primary_10_1111_mice_13520
crossref_primary_10_3390_sym13091748
crossref_primary_10_3390_info14100540
crossref_primary_10_1038_s41598_024_73789_8
crossref_primary_10_3390_electronics11223774
crossref_primary_10_1080_17452759_2022_2028380
crossref_primary_10_1063_5_0275530
crossref_primary_10_3389_fnhum_2025_1526554
crossref_primary_10_1007_s00221_025_07116_6
crossref_primary_10_3390_atmos14071072
crossref_primary_10_1016_j_rcar_2025_06_003
crossref_primary_10_1111_psyp_70102
crossref_primary_10_1016_j_neuropsychologia_2021_108084
crossref_primary_10_1016_j_bpsc_2020_08_013
crossref_primary_10_2478_fiqf_2025_0019
crossref_primary_10_1038_s41598_025_01560_8
crossref_primary_10_1113_JP288632
crossref_primary_10_1007_s00500_021_05583_x
crossref_primary_10_1016_j_heliyon_2024_e33322
crossref_primary_10_32604_sdhm_2021_012751
crossref_primary_10_1016_j_eswa_2024_126079
crossref_primary_10_1186_s12984_024_01453_3
crossref_primary_10_1016_j_cortex_2024_04_009
crossref_primary_10_1088_1741_2552_ad44d7
crossref_primary_10_1109_TNSRE_2021_3076311
crossref_primary_10_1088_1741_2552_abd82b
crossref_primary_10_1016_j_jweia_2025_106137
crossref_primary_10_1016_j_neuroimage_2025_121182
crossref_primary_10_3390_s23104656
crossref_primary_10_1007_s42417_022_00780_w
crossref_primary_10_3390_s20030620
crossref_primary_10_1016_j_talanta_2024_127188
crossref_primary_10_1109_ACCESS_2025_3576659
crossref_primary_10_1016_j_jneumeth_2025_110375
crossref_primary_10_1016_j_conbuildmat_2024_139694
crossref_primary_10_1016_j_inffus_2023_102006
crossref_primary_10_1007_s00249_022_01590_4
crossref_primary_10_1016_j_clinph_2023_10_013
crossref_primary_10_1093_cercor_bhad527
crossref_primary_10_1038_s41598_023_45526_0
crossref_primary_10_1016_j_neuroimage_2019_116178
crossref_primary_10_1007_s00285_025_02224_x
crossref_primary_10_1093_cercor_bhad522
crossref_primary_10_1109_TNSRE_2022_3176575
crossref_primary_10_1177_0193841X221134847
crossref_primary_10_1029_2020JB019526
crossref_primary_10_1109_JBHI_2025_3577611
crossref_primary_10_1186_s12984_025_01627_7
crossref_primary_10_3389_fnins_2023_1194554
crossref_primary_10_3390_w16142062
crossref_primary_10_1038_s41598_025_98264_w
crossref_primary_10_1523_JNEUROSCI_0463_24_2024
crossref_primary_10_1016_j_energy_2025_135141
crossref_primary_10_3390_app13042734
Cites_doi 10.1016/j.ijpsycho.2014.09.013
10.1016/j.tics.2016.12.008
10.1016/j.jneumeth.2004.03.002
10.1016/S1364-6613(99)01299-1
10.1016/j.conb.2016.06.010
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright © 2019 Elsevier Inc. All rights reserved.
2019. Elsevier Inc.
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright © 2019 Elsevier Inc. All rights reserved.
– notice: 2019. Elsevier Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
DOI 10.1016/j.neuroimage.2019.05.048
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest One Psychology
MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 86
ExternalDocumentID 31145982
10_1016_j_neuroimage_2019_05_048
S1053811919304409
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
~HD
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJOXV
AMFUW
C45
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
9DU
AAFWJ
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AFFHD
AFPKN
AGHFR
AGQPQ
AIGII
AKRLJ
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
OK1
R2-
SEW
WUQ
XPP
ZMT
0SF
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
ID FETCH-LOGICAL-c459t-7a50458f9fd317bd7a7f43322ba3f6bdaedeb85194d1198128a39b3ea0f10c3c3
IEDL.DBID BENPR
ISICitedReferencesCount 307
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000478780200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-8119
1095-9572
IngestDate Sun Sep 28 03:27:13 EDT 2025
Tue Oct 07 06:48:02 EDT 2025
Wed Feb 19 02:31:26 EST 2025
Sat Nov 29 07:07:51 EST 2025
Tue Nov 18 20:38:45 EST 2025
Fri Feb 23 02:47:27 EST 2024
Tue Oct 14 19:39:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License Copyright © 2019 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-7a50458f9fd317bd7a7f43322ba3f6bdaedeb85194d1198128a39b3ea0f10c3c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 31145982
PQID 2268547943
PQPubID 2031077
PageCount 6
ParticipantIDs proquest_miscellaneous_2233857891
proquest_journals_2268547943
pubmed_primary_31145982
crossref_primary_10_1016_j_neuroimage_2019_05_048
crossref_citationtrail_10_1016_j_neuroimage_2019_05_048
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2019_05_048
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2019_05_048
PublicationCentury 2000
PublicationDate 2019-10-01
2019-10-00
20191001
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2019
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Bruns (bib1) 2004; 137
Cohen (bib3) 2014
Jones (bib5) 2016; 40
Cole, Voytek (bib4) 2017; 21
Cohen (bib2) 2015; 97
Tallon-Baudry, Bertrand (bib6) 1999; 3
Cohen (10.1016/j.neuroimage.2019.05.048_bib2) 2015; 97
Cohen (10.1016/j.neuroimage.2019.05.048_bib3) 2014
Bruns (10.1016/j.neuroimage.2019.05.048_bib1) 2004; 137
Jones (10.1016/j.neuroimage.2019.05.048_bib5) 2016; 40
Cole (10.1016/j.neuroimage.2019.05.048_bib4) 2017; 21
Tallon-Baudry (10.1016/j.neuroimage.2019.05.048_bib6) 1999; 3
References_xml – volume: 21
  start-page: 137
  year: 2017
  end-page: 149
  ident: bib4
  article-title: Brain oscillations and the importance of waveform shape
  publication-title: Trends Cognit. Sci.
– volume: 97
  start-page: 245
  year: 2015
  end-page: 257
  ident: bib2
  article-title: Comparison of different spatial transformations applied to EEG data: a case study of error processing
  publication-title: Int. J. Psychophysiol.
– volume: 3
  start-page: 151
  year: 1999
  end-page: 162
  ident: bib6
  article-title: Oscillatory gamma activity in humans and its role in object representation
  publication-title: Trends Cognit. Sci.
– volume: 40
  start-page: 72
  year: 2016
  end-page: 80
  ident: bib5
  article-title: When brain rhythms aren't “rhythmic”: implication for their mechanisms and meaning
  publication-title: Curr. Opin. Neurobiol.
– volume: 137
  start-page: 321
  year: 2004
  end-page: 332
  ident: bib1
  article-title: Fourier-, Hilbert- and wavelet-based signal analysis: are they really different approaches?
  publication-title: J. Neurosci. Methods
– year: 2014
  ident: bib3
  article-title: Analyzing Neural Time Series Data: Theory and Practice
– volume: 97
  start-page: 245
  year: 2015
  ident: 10.1016/j.neuroimage.2019.05.048_bib2
  article-title: Comparison of different spatial transformations applied to EEG data: a case study of error processing
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2014.09.013
– volume: 21
  start-page: 137
  year: 2017
  ident: 10.1016/j.neuroimage.2019.05.048_bib4
  article-title: Brain oscillations and the importance of waveform shape
  publication-title: Trends Cognit. Sci.
  doi: 10.1016/j.tics.2016.12.008
– volume: 137
  start-page: 321
  year: 2004
  ident: 10.1016/j.neuroimage.2019.05.048_bib1
  article-title: Fourier-, Hilbert- and wavelet-based signal analysis: are they really different approaches?
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2004.03.002
– year: 2014
  ident: 10.1016/j.neuroimage.2019.05.048_bib3
– volume: 3
  start-page: 151
  year: 1999
  ident: 10.1016/j.neuroimage.2019.05.048_bib6
  article-title: Oscillatory gamma activity in humans and its role in object representation
  publication-title: Trends Cognit. Sci.
  doi: 10.1016/S1364-6613(99)01299-1
– volume: 40
  start-page: 72
  year: 2016
  ident: 10.1016/j.neuroimage.2019.05.048_bib5
  article-title: When brain rhythms aren't “rhythmic”: implication for their mechanisms and meaning
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2016.06.010
SSID ssj0009148
Score 2.690686
Snippet Complex Morlet wavelets are frequently used for time-frequency analysis of non-stationary time series data, such as neuroelectrical signals recorded from the...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 81
SubjectTerms Cerebral Cortex - physiology
Data analysis
Data Interpretation, Statistical
Electroencephalography - methods
Fourier transforms
Frequency dependence
Functional Neuroimaging - methods
Humans
Models, Theoretical
Researchers
Time series
Title A better way to define and describe Morlet wavelets for time-frequency analysis
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811919304409
https://dx.doi.org/10.1016/j.neuroimage.2019.05.048
https://www.ncbi.nlm.nih.gov/pubmed/31145982
https://www.proquest.com/docview/2268547943
https://www.proquest.com/docview/2233857891
Volume 199
WOSCitedRecordID wos000478780200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20191231
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AIEXJ
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251007
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: M7P
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251007
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: 7X7
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251007
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: BENPR
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Psychology Database
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251007
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: M2M
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/psychology
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RLUK98H4slMpIXCPiONnY4oAKasVllxUCaW-WX5GKICm7aVH_PTOxs3sBtBIXK5E9Vuyxx1_s8TcAr_PKqNzOiizPvc_KMOOZkjjdnc2tr31TcRuDTdSLhVyt1DJtuG2SW-VoEwdD7TtHe-RvECbIiujQxbvLnxlFjaLT1RRC4wAOiamsnMDh-7PF8vOOdpeX8TJcJTKJJZIvT_TwGhgjL37gvCUXLzUweFIcoD8vUH8DoMNCdH7vf5twH-4mCMpO45h5ALdC-xDuzNMh-yP4dMrscMmH_TI3rO-YDw1mMNN6fCQzYwObd2vUOJagwBX9hiH2ZRSnPmvW0Tn7BstHvpPH8PX87MuHj1mKu5C5slJ9VpuKjk8b1XhEF6gyUzdEc1ZYI5qZ9Sb4YBGpqdJjlyJCkEYoK4LJG5474cQTmLRdG54Bk0HMrCys4s6UZeCqKagujmugdKYSU6jHztYukZJTbIzvevQ--6Z3atKkJp1XGtU0Bb6VvIzEHHvIqFGferx4iqZS4-qxh-zbrWwCJxF07Cl9PA4JnYzERu_GwxRebbNxetOZjWlDd0VlhJBoVRWfwtM47LbNFfgvS_yLz_9d-Qs4oi-JHojHMOnXV-El3HbX_cVmfQIH9aoeUnmSZg--zYs5pfXyN1ljI9U
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgoAL78eWAkaCY9Q4TjaxKoQqoGrV7sKhSHszdmxLi2hSdlOq_VP9jZ2Jk90LoL30wC2SPVYen2fG8edvAN7GmZaxGSZRHFsbpW7II1ngdC9NbGxufcZNKDaRj8fFZCK_bsBlfxaGaJW9T2wdta1L-ke-g2lCkZEcuvhw9iuiqlG0u9qX0AiwOHKLC1yyzd8ffsLv-y5J9j-ffDyIuqoCUZlmsolyndHmoJfeYuzEG9K5JxGvxGjhh8ZqZ53BPESmluOKHP23FtIIp2PP41KUAse9ATfRj-dEIcsn-Urkl6fh6F0mogKNO-ZQ4JO1-pTTU_QSRCiTrV4oVR36czj8W7rbhr39-__bC3sA97oEm-2FGfEQNlz1CG6POgrBY_iyx0x7hIld6AVramadxwamK4uX5ESNY6N6hnjGHlSWo5kzzOxZMz11kZ8F6vkC-wc1lyfw7Voe5ylsVnXlngMrnBiaIjGSlzpNHZc-obE4Rvii1JkYQN5_XFV2kutU-eOn6rl1P9QKFopgoeJMISwGwJeWZ0F2ZA0b2eNH9cdqMRAojI1r2O4ubbvUK6RUa1pv9xBUnQucqxX-BvBm2YzOi3akdOXqc-ojRIExQ_IBPAswXz6uwJU6qUtu_Xvw13Dn4GR0rI4Px0cv4C7dVeBabsNmMzt3L-FW-buZzmev2rnK4Pt1Y_0K29F8cg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VFlVceD8WChgJjlbjONnEQggV2hVV6bJCIPXm-iktoknZTan2r_HrGMfJ7gXQXnrgFskeK4_PM-P48zcAL5NciUQPU5ok1tLMDRkVJU53oxNtC-tzpmOxiWI8Lk9OxGQDfvVnYQKtsveJraO2tQn_yHcxTSjzIIfOd31Hi5jsj96e_6ChglTYae3LaUSIHLnFJS7f5m8O9_Fbv0rT0cGX9x9oV2GAmiwXDS1UHjYKvfAW4yjenCp8EPRKteJ-qK1y1mnMSURmGa7O0ZcrLjR3KvEsMdxwHPcabBWYZODs2np3MJ58Xkn-siwexMs5LdG84xFFdlmrVjk9Q58R6GWiVQ8NNYj-HBz_lvy2QXB0639-fbfhZpd6k704V-7AhqvuwvZxRy64B5_2iG4PN5FLtSBNTazz2EBUZfEyuFftyHE9Q6Rjj1Cwo5kTzPlJMz1z1M8iKX2B_aPOy334eiWP8wA2q7pyj4CUjg91mWrBjMoyx4RPw1gMY39pVM4HUPQfWppOjD3UBPkue9bdN7mCiAwQkUkuESIDYEvL8yhIsoaN6LEk-wO3GCIkRs01bF8vbbukLCZba1rv9HCUnXOcyxUWB_Bi2YxuLexVqcrVF6EP5yVGE8EG8DBCfvm4HNfwQXfy8b8Hfw7bCHH58XB89ARuhJuKJMwd2GxmF-4pXDc_m-l89qybuAROrxrsvwF904aT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+better+way+to+define+and+describe+Morlet+wavelets+for+time-frequency+analysis&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Cohen%2C+Michael+X&rft.date=2019-10-01&rft.eissn=1095-9572&rft.volume=199&rft.spage=81&rft_id=info:doi/10.1016%2Fj.neuroimage.2019.05.048&rft_id=info%3Apmid%2F31145982&rft.externalDocID=31145982
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon