A better way to define and describe Morlet wavelets for time-frequency analysis
Complex Morlet wavelets are frequently used for time-frequency analysis of non-stationary time series data, such as neuroelectrical signals recorded from the brain. The crucial parameter of Morlet wavelets is the width of the Gaussian that tapers the sine wave. This width parameter controls the trad...
Uložené v:
| Vydané v: | NeuroImage (Orlando, Fla.) Ročník 199; s. 81 - 86 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Elsevier Inc
01.10.2019
Elsevier Limited |
| Predmet: | |
| ISSN: | 1053-8119, 1095-9572, 1095-9572 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Complex Morlet wavelets are frequently used for time-frequency analysis of non-stationary time series data, such as neuroelectrical signals recorded from the brain. The crucial parameter of Morlet wavelets is the width of the Gaussian that tapers the sine wave. This width parameter controls the trade-off between temporal precision and spectral precision. It is typically defined as the “number of cycles,” but this parameter is opaque, and often leads to uncertainty and suboptimal analysis choices, as well as being difficult to interpret and evaluate. The purpose of this paper is to present alternative formulations of Morlet wavelets in time and in frequency that allow parameterizing the wavelets directly in terms of the desired temporal and spectral smoothing (expressed as full-width at half-maximum). This formulation provides clarity on an important data analysis parameter, and can facilitate proper analyses, reporting, and interpretation of results. MATLAB code and sample data are provided.
•Morlet wavelets are used for time-frequency analysis.•The width parameter is usually defined as number-of-cycles.•Alternative formulas are presented here that use full-width at half-maximum.•These formulas will increase clarity of time-frequency analyses and results. |
|---|---|
| AbstractList | Complex Morlet wavelets are frequently used for time-frequency analysis of non-stationary time series data, such as neuroelectrical signals recorded from the brain. The crucial parameter of Morlet wavelets is the width of the Gaussian that tapers the sine wave. This width parameter controls the trade-off between temporal precision and spectral precision. It is typically defined as the “number of cycles,” but this parameter is opaque, and often leads to uncertainty and suboptimal analysis choices, as well as being difficult to interpret and evaluate. The purpose of this paper is to present alternative formulations of Morlet wavelets in time and in frequency that allow parameterizing the wavelets directly in terms of the desired temporal and spectral smoothing (expressed as full-width at half-maximum). This formulation provides clarity on an important data analysis parameter, and can facilitate proper analyses, reporting, and interpretation of results. MATLAB code and sample data are provided. Complex Morlet wavelets are frequently used for time-frequency analysis of non-stationary time series data, such as neuroelectrical signals recorded from the brain. The crucial parameter of Morlet wavelets is the width of the Gaussian that tapers the sine wave. This width parameter controls the trade-off between temporal precision and spectral precision. It is typically defined as the “number of cycles,” but this parameter is opaque, and often leads to uncertainty and suboptimal analysis choices, as well as being difficult to interpret and evaluate. The purpose of this paper is to present alternative formulations of Morlet wavelets in time and in frequency that allow parameterizing the wavelets directly in terms of the desired temporal and spectral smoothing (expressed as full-width at half-maximum). This formulation provides clarity on an important data analysis parameter, and can facilitate proper analyses, reporting, and interpretation of results. MATLAB code and sample data are provided. •Morlet wavelets are used for time-frequency analysis.•The width parameter is usually defined as number-of-cycles.•Alternative formulas are presented here that use full-width at half-maximum.•These formulas will increase clarity of time-frequency analyses and results. Complex Morlet wavelets are frequently used for time-frequency analysis of non-stationary time series data, such as neuroelectrical signals recorded from the brain. The crucial parameter of Morlet wavelets is the width of the Gaussian that tapers the sine wave. This width parameter controls the trade-off between temporal precision and spectral precision. It is typically defined as the "number of cycles," but this parameter is opaque, and often leads to uncertainty and suboptimal analysis choices, as well as being difficult to interpret and evaluate. The purpose of this paper is to present alternative formulations of Morlet wavelets in time and in frequency that allow parameterizing the wavelets directly in terms of the desired temporal and spectral smoothing (expressed as full-width at half-maximum). This formulation provides clarity on an important data analysis parameter, and can facilitate proper analyses, reporting, and interpretation of results. MATLAB code and sample data are provided.Complex Morlet wavelets are frequently used for time-frequency analysis of non-stationary time series data, such as neuroelectrical signals recorded from the brain. The crucial parameter of Morlet wavelets is the width of the Gaussian that tapers the sine wave. This width parameter controls the trade-off between temporal precision and spectral precision. It is typically defined as the "number of cycles," but this parameter is opaque, and often leads to uncertainty and suboptimal analysis choices, as well as being difficult to interpret and evaluate. The purpose of this paper is to present alternative formulations of Morlet wavelets in time and in frequency that allow parameterizing the wavelets directly in terms of the desired temporal and spectral smoothing (expressed as full-width at half-maximum). This formulation provides clarity on an important data analysis parameter, and can facilitate proper analyses, reporting, and interpretation of results. MATLAB code and sample data are provided. |
| Author | Cohen, Michael X |
| Author_xml | – sequence: 1 givenname: Michael X surname: Cohen fullname: Cohen, Michael X email: mikexcohen@gmail.com organization: Radboud University and Radboud University Medical Center, Donders Institute for Neuroscience, the Netherlands |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31145982$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUFv1DAQhS3UirYLfwFZ4sIlwY7jjX1BlKotlYp6gbPl2GPkJWsX2ynKv69XW0Da055mDt-8eXrvAp2EGAAhTElLCV1_3LQB5hT9Vv-EtiNUtoS3pBev0DklkjeSD93JbuesEZTKM3SR84YQImkvXqMzRmnPpejO0cMlHqEUSPiPXnCJ2ILzAbAOtq7ZJD8C_hbTBKUST1Bnxi4mXPwWGpfg9wzBLJXX05J9foNOnZ4yvH2ZK_Tj5vr71dfm_uH27uryvjH1cWkGzUnPhZPOMjqMdtCD6xnrulEztx6tBguj4FT2ttoXtBOayZGBJo4SwwxboQ973ccUq4Vc1NZnA9OkA8Q5q65jTPBBSFrR9wfoJs6p-t1Ra8H7QdbXK_TuhZrHLVj1mGq6aVF_o6qA2AMmxZwTuH8IJWrXitqo_62oXSuKcFVbqaefDk6NL7r4GErSfjpG4MteAGqkTx6SysbX3MH6BKYoG_0xIp8PRMzkgzd6-gXLcRLPrmDFQw |
| CitedBy_id | crossref_primary_10_1038_s41598_024_58335_w crossref_primary_10_1109_TNSRE_2023_3346947 crossref_primary_10_3390_diagnostics12123188 crossref_primary_10_1016_j_conbuildmat_2023_134416 crossref_primary_10_1016_j_gaitpost_2025_04_002 crossref_primary_10_1016_j_clinph_2023_12_004 crossref_primary_10_1016_j_jeca_2022_e00254 crossref_primary_10_1007_s00421_025_05867_2 crossref_primary_10_1016_j_jpowsour_2024_234655 crossref_primary_10_1007_s10690_023_09436_5 crossref_primary_10_1016_j_compstruc_2022_106957 crossref_primary_10_1088_1748_9326_ac0f27 crossref_primary_10_1109_ACCESS_2022_3188286 crossref_primary_10_1109_TIM_2024_3376019 crossref_primary_10_1016_j_bbr_2022_113932 crossref_primary_10_1111_psyp_14052 crossref_primary_10_1016_j_ijrmms_2021_104758 crossref_primary_10_1109_JSEN_2021_3049277 crossref_primary_10_1109_ACCESS_2024_3452188 crossref_primary_10_1007_s00221_020_05782_2 crossref_primary_10_1186_s40708_024_00243_w crossref_primary_10_1016_j_eswa_2024_125585 crossref_primary_10_1038_s41598_024_55656_8 crossref_primary_10_3390_brainsci12050647 crossref_primary_10_1073_pnas_2210698120 crossref_primary_10_1016_j_jenvman_2025_124829 crossref_primary_10_1093_cercor_bhaf224 crossref_primary_10_1109_ACCESS_2020_3012565 crossref_primary_10_1007_s10462_025_11126_9 crossref_primary_10_1134_S1061830920020084 crossref_primary_10_1109_JSEN_2021_3095176 crossref_primary_10_1111_pcn_13702 crossref_primary_10_1016_j_jweia_2022_104953 crossref_primary_10_1007_s12530_025_09696_8 crossref_primary_10_1177_09544119251321129 crossref_primary_10_1016_j_brainresbull_2024_110902 crossref_primary_10_3389_fnins_2023_1304031 crossref_primary_10_1016_j_ijpsycho_2023_08_008 crossref_primary_10_1038_s41467_025_60821_2 crossref_primary_10_1177_09544119231184113 crossref_primary_10_1038_s42003_025_08480_3 crossref_primary_10_1080_10589759_2020_1825707 crossref_primary_10_1088_1741_2552_ad3f50 crossref_primary_10_1109_ACCESS_2025_3583263 crossref_primary_10_1016_j_agwat_2025_109373 crossref_primary_10_1016_j_jhydrol_2025_133729 crossref_primary_10_1016_j_isci_2024_109679 crossref_primary_10_1088_1741_2552_ad6cf5 crossref_primary_10_1016_j_bspc_2023_105179 crossref_primary_10_1016_j_applthermaleng_2025_127899 crossref_primary_10_1109_JSEN_2024_3510059 crossref_primary_10_1523_JNEUROSCI_0918_24_2024 crossref_primary_10_1109_ACCESS_2023_3248263 crossref_primary_10_1109_TIM_2023_3274174 crossref_primary_10_1007_s40430_025_05782_9 crossref_primary_10_1016_j_bspc_2021_102819 crossref_primary_10_53443_anadoluibfd_1625517 crossref_primary_10_1093_cercor_bhac373 crossref_primary_10_1111_psyp_13959 crossref_primary_10_1007_s11042_023_15653_x crossref_primary_10_3390_s20185201 crossref_primary_10_1088_1741_2552_adf011 crossref_primary_10_1109_ACCESS_2024_3399114 crossref_primary_10_1038_s42003_022_03378_w crossref_primary_10_1109_TIM_2023_3308235 crossref_primary_10_1007_s10614_024_10780_5 crossref_primary_10_1002_brb3_2324 crossref_primary_10_1162_jocn_a_02330 crossref_primary_10_1186_s12984_024_01408_8 crossref_primary_10_1117_1_JEI_34_1_013050 crossref_primary_10_1038_s41598_023_32664_8 crossref_primary_10_1109_TUFFC_2025_3579871 crossref_primary_10_1007_s00249_025_01775_7 crossref_primary_10_1155_2020_6380486 crossref_primary_10_3390_s23136152 crossref_primary_10_1016_j_cam_2023_115532 crossref_primary_10_3390_atmos15091063 crossref_primary_10_3390_s24216872 crossref_primary_10_3389_fnins_2021_602437 crossref_primary_10_1038_s41467_023_38712_1 crossref_primary_10_1016_j_neuron_2019_10_012 crossref_primary_10_1080_10589759_2024_2446650 crossref_primary_10_1016_j_scitotenv_2023_166176 crossref_primary_10_3390_brainsci13010021 crossref_primary_10_1016_j_energy_2020_118777 crossref_primary_10_1109_TGRS_2025_3568527 crossref_primary_10_1016_j_oceaneng_2022_111299 crossref_primary_10_1016_j_istruc_2025_108388 crossref_primary_10_1007_s00419_021_02016_x crossref_primary_10_1016_j_bspc_2023_105431 crossref_primary_10_1016_j_cmpb_2025_109008 crossref_primary_10_1186_s40708_023_00191_x crossref_primary_10_1177_14613484241233392 crossref_primary_10_3390_su142013443 crossref_primary_10_1016_j_measurement_2020_108704 crossref_primary_10_3390_bioengineering10020200 crossref_primary_10_1038_s41598_025_92490_y crossref_primary_10_1088_2634_4386_ac4917 crossref_primary_10_3390_oceans3020013 crossref_primary_10_1016_j_coldregions_2020_103208 crossref_primary_10_1016_j_margeo_2021_106556 crossref_primary_10_1016_j_jneumeth_2025_110409 crossref_primary_10_1111_psyp_70055 crossref_primary_10_1109_TNSRE_2023_3236434 crossref_primary_10_1016_j_bspc_2025_107885 crossref_primary_10_1016_j_apacoust_2024_110026 crossref_primary_10_1016_j_bspc_2024_106235 crossref_primary_10_2112_SI99_053_1 crossref_primary_10_1016_j_cortex_2023_11_004 crossref_primary_10_1016_j_jelekin_2023_102836 crossref_primary_10_3390_brainsci13010002 crossref_primary_10_1016_j_ijpsycho_2025_112555 crossref_primary_10_3390_pr11010107 crossref_primary_10_1016_j_jenvman_2022_115160 crossref_primary_10_1109_TNSRE_2020_3028966 crossref_primary_10_1016_j_ebiom_2024_105259 crossref_primary_10_1016_j_jneuroling_2025_101282 crossref_primary_10_1016_j_rsma_2024_103605 crossref_primary_10_1007_s12666_025_03670_3 crossref_primary_10_3390_sym17081298 crossref_primary_10_1016_j_eswa_2022_119488 crossref_primary_10_1016_j_bspc_2024_106123 crossref_primary_10_1016_j_neures_2022_03_006 crossref_primary_10_1016_j_nicl_2023_103348 crossref_primary_10_1007_s11468_024_02360_y crossref_primary_10_1007_s13748_024_00354_9 crossref_primary_10_1016_j_pneurobio_2024_102576 crossref_primary_10_3389_fnins_2021_729449 crossref_primary_10_1016_j_neuroimage_2024_120638 crossref_primary_10_1038_s42003_024_06083_y crossref_primary_10_1007_s11468_024_02201_y crossref_primary_10_1038_s41598_022_21937_3 crossref_primary_10_5194_cp_21_1383_2025 crossref_primary_10_1080_23322039_2022_2114161 crossref_primary_10_1093_scan_nsaa130 crossref_primary_10_1111_psyp_14207 crossref_primary_10_1007_s11468_025_02919_3 crossref_primary_10_1038_s41598_025_99878_w crossref_primary_10_3389_fnins_2019_00940 crossref_primary_10_1007_s42452_024_05816_2 crossref_primary_10_1016_j_dcn_2022_101067 crossref_primary_10_1109_LGRS_2023_3287470 crossref_primary_10_1002_hbm_70196 crossref_primary_10_1038_s41598_022_19158_9 crossref_primary_10_1111_psyp_13805 crossref_primary_10_1002_joc_8104 crossref_primary_10_3758_s13415_022_00994_1 crossref_primary_10_1038_s41598_025_94076_0 crossref_primary_10_3389_fnhum_2023_1329097 crossref_primary_10_1016_j_measurement_2022_111223 crossref_primary_10_3389_fneur_2022_871166 crossref_primary_10_1038_s41467_025_60666_9 crossref_primary_10_1007_s13246_022_01132_4 crossref_primary_10_1016_j_neuroimage_2022_119119 crossref_primary_10_21307_ijssis_2021_001 crossref_primary_10_1038_s43586_025_00392_0 crossref_primary_10_1016_j_optlaseng_2024_108736 crossref_primary_10_1109_TIM_2024_3368479 crossref_primary_10_1016_j_renene_2022_04_107 crossref_primary_10_1007_s11062_021_09910_8 crossref_primary_10_1016_j_oceaneng_2021_108666 crossref_primary_10_1016_j_clinph_2021_06_021 crossref_primary_10_3389_fnins_2022_1062095 crossref_primary_10_1088_1361_6501_ad128b crossref_primary_10_1016_j_bspc_2024_106034 crossref_primary_10_1038_s42003_020_0913_5 crossref_primary_10_3390_e26030242 crossref_primary_10_1016_j_bspc_2025_107566 crossref_primary_10_1016_j_jag_2021_102378 crossref_primary_10_1080_17588928_2022_2026312 crossref_primary_10_1111_ejn_16101 crossref_primary_10_1152_jn_00480_2023 crossref_primary_10_3389_fnsys_2021_716897 crossref_primary_10_1007_s11468_024_02565_1 crossref_primary_10_1016_j_scitotenv_2022_156598 crossref_primary_10_47743_saeb_2025_0008 crossref_primary_10_1016_j_neuroimage_2023_120405 crossref_primary_10_1371_journal_pcbi_1012218 crossref_primary_10_1152_japplphysiol_00262_2021 crossref_primary_10_3390_rs15133409 crossref_primary_10_3390_rs17142344 crossref_primary_10_3390_s20185131 crossref_primary_10_1007_s11069_024_06580_7 crossref_primary_10_1016_j_bspc_2021_103072 crossref_primary_10_3389_fnhum_2021_711279 crossref_primary_10_1111_ejn_14972 crossref_primary_10_1126_science_ads4760 crossref_primary_10_7717_peerj_17104 crossref_primary_10_1186_s12984_024_01371_4 crossref_primary_10_1088_1402_4896_ad8e90 crossref_primary_10_1016_j_ymssp_2023_110952 crossref_primary_10_3390_pr11113240 crossref_primary_10_7554_eLife_65085 crossref_primary_10_1523_JNEUROSCI_0189_24_2024 crossref_primary_10_1016_j_humov_2025_103387 crossref_primary_10_1016_j_apacoust_2022_108881 crossref_primary_10_1016_j_cortex_2024_08_004 crossref_primary_10_3758_s13415_025_01281_5 crossref_primary_10_3390_app13063530 crossref_primary_10_1016_j_scitotenv_2020_140855 crossref_primary_10_1111_mice_13520 crossref_primary_10_3390_sym13091748 crossref_primary_10_3390_info14100540 crossref_primary_10_1038_s41598_024_73789_8 crossref_primary_10_3390_electronics11223774 crossref_primary_10_1080_17452759_2022_2028380 crossref_primary_10_1063_5_0275530 crossref_primary_10_3389_fnhum_2025_1526554 crossref_primary_10_1007_s00221_025_07116_6 crossref_primary_10_3390_atmos14071072 crossref_primary_10_1016_j_rcar_2025_06_003 crossref_primary_10_1111_psyp_70102 crossref_primary_10_1016_j_neuropsychologia_2021_108084 crossref_primary_10_1016_j_bpsc_2020_08_013 crossref_primary_10_2478_fiqf_2025_0019 crossref_primary_10_1038_s41598_025_01560_8 crossref_primary_10_1113_JP288632 crossref_primary_10_1007_s00500_021_05583_x crossref_primary_10_1016_j_heliyon_2024_e33322 crossref_primary_10_32604_sdhm_2021_012751 crossref_primary_10_1016_j_eswa_2024_126079 crossref_primary_10_1186_s12984_024_01453_3 crossref_primary_10_1016_j_cortex_2024_04_009 crossref_primary_10_1088_1741_2552_ad44d7 crossref_primary_10_1109_TNSRE_2021_3076311 crossref_primary_10_1088_1741_2552_abd82b crossref_primary_10_1016_j_jweia_2025_106137 crossref_primary_10_1016_j_neuroimage_2025_121182 crossref_primary_10_3390_s23104656 crossref_primary_10_1007_s42417_022_00780_w crossref_primary_10_3390_s20030620 crossref_primary_10_1016_j_talanta_2024_127188 crossref_primary_10_1109_ACCESS_2025_3576659 crossref_primary_10_1016_j_jneumeth_2025_110375 crossref_primary_10_1016_j_conbuildmat_2024_139694 crossref_primary_10_1016_j_inffus_2023_102006 crossref_primary_10_1007_s00249_022_01590_4 crossref_primary_10_1016_j_clinph_2023_10_013 crossref_primary_10_1093_cercor_bhad527 crossref_primary_10_1038_s41598_023_45526_0 crossref_primary_10_1016_j_neuroimage_2019_116178 crossref_primary_10_1007_s00285_025_02224_x crossref_primary_10_1093_cercor_bhad522 crossref_primary_10_1109_TNSRE_2022_3176575 crossref_primary_10_1177_0193841X221134847 crossref_primary_10_1029_2020JB019526 crossref_primary_10_1109_JBHI_2025_3577611 crossref_primary_10_1186_s12984_025_01627_7 crossref_primary_10_3389_fnins_2023_1194554 crossref_primary_10_3390_w16142062 crossref_primary_10_1038_s41598_025_98264_w crossref_primary_10_1523_JNEUROSCI_0463_24_2024 crossref_primary_10_1016_j_energy_2025_135141 crossref_primary_10_3390_app13042734 |
| Cites_doi | 10.1016/j.ijpsycho.2014.09.013 10.1016/j.tics.2016.12.008 10.1016/j.jneumeth.2004.03.002 10.1016/S1364-6613(99)01299-1 10.1016/j.conb.2016.06.010 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Inc. Copyright © 2019 Elsevier Inc. All rights reserved. 2019. Elsevier Inc. |
| Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright © 2019 Elsevier Inc. All rights reserved. – notice: 2019. Elsevier Inc. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 |
| DOI | 10.1016/j.neuroimage.2019.05.048 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | ProQuest One Psychology MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1095-9572 |
| EndPage | 86 |
| ExternalDocumentID | 31145982 10_1016_j_neuroimage_2019_05_048 S1053811919304409 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACLOT ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- ~HD AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJOXV AMFUW C45 HMQ LCYCR RIG SNS ZA5 29N 53G 9DU AAFWJ AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFFHD AFPKN AGHFR AGQPQ AIGII AKRLJ ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 R2- SEW WUQ XPP ZMT 0SF ALIPV CGR CUY CVF ECM EIF NPM 3V. 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 PUEGO |
| ID | FETCH-LOGICAL-c459t-7a50458f9fd317bd7a7f43322ba3f6bdaedeb85194d1198128a39b3ea0f10c3c3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 307 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000478780200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1053-8119 1095-9572 |
| IngestDate | Sun Sep 28 03:27:13 EDT 2025 Tue Oct 07 06:48:02 EDT 2025 Wed Feb 19 02:31:26 EST 2025 Sat Nov 29 07:07:51 EST 2025 Tue Nov 18 20:38:45 EST 2025 Fri Feb 23 02:47:27 EST 2024 Tue Oct 14 19:39:37 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | Copyright © 2019 Elsevier Inc. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c459t-7a50458f9fd317bd7a7f43322ba3f6bdaedeb85194d1198128a39b3ea0f10c3c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 31145982 |
| PQID | 2268547943 |
| PQPubID | 2031077 |
| PageCount | 6 |
| ParticipantIDs | proquest_miscellaneous_2233857891 proquest_journals_2268547943 pubmed_primary_31145982 crossref_primary_10_1016_j_neuroimage_2019_05_048 crossref_citationtrail_10_1016_j_neuroimage_2019_05_048 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2019_05_048 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2019_05_048 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-10-01 2019-10-00 20191001 |
| PublicationDateYYYYMMDD | 2019-10-01 |
| PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Amsterdam |
| PublicationTitle | NeuroImage (Orlando, Fla.) |
| PublicationTitleAlternate | Neuroimage |
| PublicationYear | 2019 |
| Publisher | Elsevier Inc Elsevier Limited |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
| References | Bruns (bib1) 2004; 137 Cohen (bib3) 2014 Jones (bib5) 2016; 40 Cole, Voytek (bib4) 2017; 21 Cohen (bib2) 2015; 97 Tallon-Baudry, Bertrand (bib6) 1999; 3 Cohen (10.1016/j.neuroimage.2019.05.048_bib2) 2015; 97 Cohen (10.1016/j.neuroimage.2019.05.048_bib3) 2014 Bruns (10.1016/j.neuroimage.2019.05.048_bib1) 2004; 137 Jones (10.1016/j.neuroimage.2019.05.048_bib5) 2016; 40 Cole (10.1016/j.neuroimage.2019.05.048_bib4) 2017; 21 Tallon-Baudry (10.1016/j.neuroimage.2019.05.048_bib6) 1999; 3 |
| References_xml | – volume: 21 start-page: 137 year: 2017 end-page: 149 ident: bib4 article-title: Brain oscillations and the importance of waveform shape publication-title: Trends Cognit. Sci. – volume: 97 start-page: 245 year: 2015 end-page: 257 ident: bib2 article-title: Comparison of different spatial transformations applied to EEG data: a case study of error processing publication-title: Int. J. Psychophysiol. – volume: 3 start-page: 151 year: 1999 end-page: 162 ident: bib6 article-title: Oscillatory gamma activity in humans and its role in object representation publication-title: Trends Cognit. Sci. – volume: 40 start-page: 72 year: 2016 end-page: 80 ident: bib5 article-title: When brain rhythms aren't “rhythmic”: implication for their mechanisms and meaning publication-title: Curr. Opin. Neurobiol. – volume: 137 start-page: 321 year: 2004 end-page: 332 ident: bib1 article-title: Fourier-, Hilbert- and wavelet-based signal analysis: are they really different approaches? publication-title: J. Neurosci. Methods – year: 2014 ident: bib3 article-title: Analyzing Neural Time Series Data: Theory and Practice – volume: 97 start-page: 245 year: 2015 ident: 10.1016/j.neuroimage.2019.05.048_bib2 article-title: Comparison of different spatial transformations applied to EEG data: a case study of error processing publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2014.09.013 – volume: 21 start-page: 137 year: 2017 ident: 10.1016/j.neuroimage.2019.05.048_bib4 article-title: Brain oscillations and the importance of waveform shape publication-title: Trends Cognit. Sci. doi: 10.1016/j.tics.2016.12.008 – volume: 137 start-page: 321 year: 2004 ident: 10.1016/j.neuroimage.2019.05.048_bib1 article-title: Fourier-, Hilbert- and wavelet-based signal analysis: are they really different approaches? publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2004.03.002 – year: 2014 ident: 10.1016/j.neuroimage.2019.05.048_bib3 – volume: 3 start-page: 151 year: 1999 ident: 10.1016/j.neuroimage.2019.05.048_bib6 article-title: Oscillatory gamma activity in humans and its role in object representation publication-title: Trends Cognit. Sci. doi: 10.1016/S1364-6613(99)01299-1 – volume: 40 start-page: 72 year: 2016 ident: 10.1016/j.neuroimage.2019.05.048_bib5 article-title: When brain rhythms aren't “rhythmic”: implication for their mechanisms and meaning publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2016.06.010 |
| SSID | ssj0009148 |
| Score | 2.690686 |
| Snippet | Complex Morlet wavelets are frequently used for time-frequency analysis of non-stationary time series data, such as neuroelectrical signals recorded from the... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 81 |
| SubjectTerms | Cerebral Cortex - physiology Data analysis Data Interpretation, Statistical Electroencephalography - methods Fourier transforms Frequency dependence Functional Neuroimaging - methods Humans Models, Theoretical Researchers Time series |
| Title | A better way to define and describe Morlet wavelets for time-frequency analysis |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811919304409 https://dx.doi.org/10.1016/j.neuroimage.2019.05.048 https://www.ncbi.nlm.nih.gov/pubmed/31145982 https://www.proquest.com/docview/2268547943 https://www.proquest.com/docview/2233857891 |
| Volume | 199 |
| WOSCitedRecordID | wos000478780200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AIEXJ dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1095-9572 dateEnd: 20251007 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: M7P dateStart: 19980501 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1095-9572 dateEnd: 20251007 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: 7X7 dateStart: 20020801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1095-9572 dateEnd: 20251007 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: BENPR dateStart: 19980501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Psychology Database customDbUrl: eissn: 1095-9572 dateEnd: 20251007 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: M2M dateStart: 20020801 isFulltext: true titleUrlDefault: https://www.proquest.com/psychology providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RLUK98H4slMpIXCPiONnY4oAKasVllxUCaW-WX5GKICm7aVH_PTOxs3sBtBIXK5E9Vuyxx1_s8TcAr_PKqNzOiizPvc_KMOOZkjjdnc2tr31TcRuDTdSLhVyt1DJtuG2SW-VoEwdD7TtHe-RvECbIiujQxbvLnxlFjaLT1RRC4wAOiamsnMDh-7PF8vOOdpeX8TJcJTKJJZIvT_TwGhgjL37gvCUXLzUweFIcoD8vUH8DoMNCdH7vf5twH-4mCMpO45h5ALdC-xDuzNMh-yP4dMrscMmH_TI3rO-YDw1mMNN6fCQzYwObd2vUOJagwBX9hiH2ZRSnPmvW0Tn7BstHvpPH8PX87MuHj1mKu5C5slJ9VpuKjk8b1XhEF6gyUzdEc1ZYI5qZ9Sb4YBGpqdJjlyJCkEYoK4LJG5474cQTmLRdG54Bk0HMrCys4s6UZeCqKagujmugdKYSU6jHztYukZJTbIzvevQ--6Z3atKkJp1XGtU0Bb6VvIzEHHvIqFGferx4iqZS4-qxh-zbrWwCJxF07Cl9PA4JnYzERu_GwxRebbNxetOZjWlDd0VlhJBoVRWfwtM47LbNFfgvS_yLz_9d-Qs4oi-JHojHMOnXV-El3HbX_cVmfQIH9aoeUnmSZg--zYs5pfXyN1ljI9U |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgoAL78eWAkaCY9Q4TjaxKoQqoGrV7sKhSHszdmxLi2hSdlOq_VP9jZ2Jk90LoL30wC2SPVYen2fG8edvAN7GmZaxGSZRHFsbpW7II1ngdC9NbGxufcZNKDaRj8fFZCK_bsBlfxaGaJW9T2wdta1L-ke-g2lCkZEcuvhw9iuiqlG0u9qX0AiwOHKLC1yyzd8ffsLv-y5J9j-ffDyIuqoCUZlmsolyndHmoJfeYuzEG9K5JxGvxGjhh8ZqZ53BPESmluOKHP23FtIIp2PP41KUAse9ATfRj-dEIcsn-Urkl6fh6F0mogKNO-ZQ4JO1-pTTU_QSRCiTrV4oVR36czj8W7rbhr39-__bC3sA97oEm-2FGfEQNlz1CG6POgrBY_iyx0x7hIld6AVramadxwamK4uX5ESNY6N6hnjGHlSWo5kzzOxZMz11kZ8F6vkC-wc1lyfw7Voe5ylsVnXlngMrnBiaIjGSlzpNHZc-obE4Rvii1JkYQN5_XFV2kutU-eOn6rl1P9QKFopgoeJMISwGwJeWZ0F2ZA0b2eNH9cdqMRAojI1r2O4ubbvUK6RUa1pv9xBUnQucqxX-BvBm2YzOi3akdOXqc-ojRIExQ_IBPAswXz6uwJU6qUtu_Xvw13Dn4GR0rI4Px0cv4C7dVeBabsNmMzt3L-FW-buZzmev2rnK4Pt1Y_0K29F8cg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VFlVceD8WChgJjlbjONnEQggV2hVV6bJCIPXm-iktoknZTan2r_HrGMfJ7gXQXnrgFskeK4_PM-P48zcAL5NciUQPU5ok1tLMDRkVJU53oxNtC-tzpmOxiWI8Lk9OxGQDfvVnYQKtsveJraO2tQn_yHcxTSjzIIfOd31Hi5jsj96e_6ChglTYae3LaUSIHLnFJS7f5m8O9_Fbv0rT0cGX9x9oV2GAmiwXDS1UHjYKvfAW4yjenCp8EPRKteJ-qK1y1mnMSURmGa7O0ZcrLjR3KvEsMdxwHPcabBWYZODs2np3MJ58Xkn-siwexMs5LdG84xFFdlmrVjk9Q58R6GWiVQ8NNYj-HBz_lvy2QXB0639-fbfhZpd6k704V-7AhqvuwvZxRy64B5_2iG4PN5FLtSBNTazz2EBUZfEyuFftyHE9Q6Rjj1Cwo5kTzPlJMz1z1M8iKX2B_aPOy334eiWP8wA2q7pyj4CUjg91mWrBjMoyx4RPw1gMY39pVM4HUPQfWppOjD3UBPkue9bdN7mCiAwQkUkuESIDYEvL8yhIsoaN6LEk-wO3GCIkRs01bF8vbbukLCZba1rv9HCUnXOcyxUWB_Bi2YxuLexVqcrVF6EP5yVGE8EG8DBCfvm4HNfwQXfy8b8Hfw7bCHH58XB89ARuhJuKJMwd2GxmF-4pXDc_m-l89qybuAROrxrsvwF904aT |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+better+way+to+define+and+describe+Morlet+wavelets+for+time-frequency+analysis&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Cohen%2C+Michael+X&rft.date=2019-10-01&rft.eissn=1095-9572&rft.volume=199&rft.spage=81&rft_id=info:doi/10.1016%2Fj.neuroimage.2019.05.048&rft_id=info%3Apmid%2F31145982&rft.externalDocID=31145982 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |