Mechanical signals activate p38 MAPK pathway-dependent reinforcement of actin via mechanosensitive HspB1

Despite the importance of a cell's ability to sense and respond to mechanical force, the molecular mechanisms by which physical cues are converted to cell-instructive chemical information to influence cell behaviors remain to be elucidated. Exposure of cultured fibroblasts to uniaxial cyclic st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular biology of the cell Jg. 28; H. 20; S. 2661
Hauptverfasser: Hoffman, Laura, Jensen, Christopher C, Yoshigi, Masaaki, Beckerle, Mary
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 01.10.2017
Schlagworte:
ISSN:1939-4586, 1939-4586
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Despite the importance of a cell's ability to sense and respond to mechanical force, the molecular mechanisms by which physical cues are converted to cell-instructive chemical information to influence cell behaviors remain to be elucidated. Exposure of cultured fibroblasts to uniaxial cyclic stretch results in an actin stress fiber reinforcement response that stabilizes the actin cytoskeleton. p38 MAPK signaling is activated in response to stretch, and inhibition of p38 MAPK abrogates stretch-induced cytoskeletal reorganization. Here we show that the small heat shock protein HspB1 (hsp25/27) is phosphorylated in stretch-stimulated mouse fibroblasts via a p38 MAPK-dependent mechanism. Phosphorylated HspB1 is recruited to the actin cytoskeleton, displaying prominent accumulation on actin "comet tails" that emanate from focal adhesions in stretch-stimulated cells. Site-directed mutagenesis to block HspB1 phosphorylation inhibits the protein's cytoskeletal recruitment in response to mechanical stimulation. HspB1-null cells, generated by CRISPR/Cas9 nuclease genome editing, display an abrogated stretch-stimulated actin reinforcement response and increased cell migration. HspB1 is recruited to sites of increased traction force in cells geometrically constrained on micropatterned substrates. Our findings elucidate a molecular pathway by which a mechanical signal is transduced via activation of p38 MAPK to influence actin remodeling and cell migration via a zyxin-independent process.
AbstractList Despite the importance of a cell's ability to sense and respond to mechanical force, the molecular mechanisms by which physical cues are converted to cell-instructive chemical information to influence cell behaviors remain to be elucidated. Exposure of cultured fibroblasts to uniaxial cyclic stretch results in an actin stress fiber reinforcement response that stabilizes the actin cytoskeleton. p38 MAPK signaling is activated in response to stretch, and inhibition of p38 MAPK abrogates stretch-induced cytoskeletal reorganization. Here we show that the small heat shock protein HspB1 (hsp25/27) is phosphorylated in stretch-stimulated mouse fibroblasts via a p38 MAPK-dependent mechanism. Phosphorylated HspB1 is recruited to the actin cytoskeleton, displaying prominent accumulation on actin "comet tails" that emanate from focal adhesions in stretch-stimulated cells. Site-directed mutagenesis to block HspB1 phosphorylation inhibits the protein's cytoskeletal recruitment in response to mechanical stimulation. HspB1-null cells, generated by CRISPR/Cas9 nuclease genome editing, display an abrogated stretch-stimulated actin reinforcement response and increased cell migration. HspB1 is recruited to sites of increased traction force in cells geometrically constrained on micropatterned substrates. Our findings elucidate a molecular pathway by which a mechanical signal is transduced via activation of p38 MAPK to influence actin remodeling and cell migration via a zyxin-independent process.
Despite the importance of a cell's ability to sense and respond to mechanical force, the molecular mechanisms by which physical cues are converted to cell-instructive chemical information to influence cell behaviors remain to be elucidated. Exposure of cultured fibroblasts to uniaxial cyclic stretch results in an actin stress fiber reinforcement response that stabilizes the actin cytoskeleton. p38 MAPK signaling is activated in response to stretch, and inhibition of p38 MAPK abrogates stretch-induced cytoskeletal reorganization. Here we show that the small heat shock protein HspB1 (hsp25/27) is phosphorylated in stretch-stimulated mouse fibroblasts via a p38 MAPK-dependent mechanism. Phosphorylated HspB1 is recruited to the actin cytoskeleton, displaying prominent accumulation on actin "comet tails" that emanate from focal adhesions in stretch-stimulated cells. Site-directed mutagenesis to block HspB1 phosphorylation inhibits the protein's cytoskeletal recruitment in response to mechanical stimulation. HspB1-null cells, generated by CRISPR/Cas9 nuclease genome editing, display an abrogated stretch-stimulated actin reinforcement response and increased cell migration. HspB1 is recruited to sites of increased traction force in cells geometrically constrained on micropatterned substrates. Our findings elucidate a molecular pathway by which a mechanical signal is transduced via activation of p38 MAPK to influence actin remodeling and cell migration via a zyxin-independent process.Despite the importance of a cell's ability to sense and respond to mechanical force, the molecular mechanisms by which physical cues are converted to cell-instructive chemical information to influence cell behaviors remain to be elucidated. Exposure of cultured fibroblasts to uniaxial cyclic stretch results in an actin stress fiber reinforcement response that stabilizes the actin cytoskeleton. p38 MAPK signaling is activated in response to stretch, and inhibition of p38 MAPK abrogates stretch-induced cytoskeletal reorganization. Here we show that the small heat shock protein HspB1 (hsp25/27) is phosphorylated in stretch-stimulated mouse fibroblasts via a p38 MAPK-dependent mechanism. Phosphorylated HspB1 is recruited to the actin cytoskeleton, displaying prominent accumulation on actin "comet tails" that emanate from focal adhesions in stretch-stimulated cells. Site-directed mutagenesis to block HspB1 phosphorylation inhibits the protein's cytoskeletal recruitment in response to mechanical stimulation. HspB1-null cells, generated by CRISPR/Cas9 nuclease genome editing, display an abrogated stretch-stimulated actin reinforcement response and increased cell migration. HspB1 is recruited to sites of increased traction force in cells geometrically constrained on micropatterned substrates. Our findings elucidate a molecular pathway by which a mechanical signal is transduced via activation of p38 MAPK to influence actin remodeling and cell migration via a zyxin-independent process.
Author Jensen, Christopher C
Beckerle, Mary
Hoffman, Laura
Yoshigi, Masaaki
Author_xml – sequence: 1
  givenname: Laura
  surname: Hoffman
  fullname: Hoffman, Laura
  organization: Department of Biology, University of Utah, Salt Lake City, UT 84112
– sequence: 2
  givenname: Christopher C
  surname: Jensen
  fullname: Jensen, Christopher C
  organization: Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
– sequence: 3
  givenname: Masaaki
  surname: Yoshigi
  fullname: Yoshigi, Masaaki
  organization: Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
– sequence: 4
  givenname: Mary
  surname: Beckerle
  fullname: Beckerle, Mary
  email: Mary.beckerle@hci.utah.edu
  organization: Department of Pediatrics, University of Utah, Salt Lake City, UT 84112
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28768826$$D View this record in MEDLINE/PubMed
BookMark eNpNkDFPwzAQRi1URFtgZkMeWVJs14ntsVSFIlrBAHPk2GdqlDghTov67wmlSEifdHfSuzd8YzQIdQCEriiZUKLobVWYyYKKhLCEEClO0IiqqUp4KrPBv32IxjF-EEI5z8QZGjIpMilZNkKbNZiNDt7oEkf_HnQZsTad3-kOcDOVeD17ecKN7jZfep9YaCBYCB1uwQdXtwaqn6t2h6eAd17j6mCsI4ToexHgZWzu6AU6db0cLo_zHL3dL17ny2T1_PA4n60Sw1PVJSIlBaSaa23BUSVY5qjgxCklOaMCjCi4ltYy4oy0RSqtVIWdgswoWC0pO0c3v96mrT-3ELu88tFAWeoA9TbmVLFUqj6sR6-P6LaowOZN6yvd7vO_dtg3lwZqEg
CitedBy_id crossref_primary_10_3389_fcvm_2020_626699
crossref_primary_10_1111_nyas_14529
crossref_primary_10_1152_japplphysiol_01038_2018
crossref_primary_10_1007_s12192_020_01095_z
crossref_primary_10_1016_j_placenta_2023_06_004
crossref_primary_10_3390_genes14020272
crossref_primary_10_3390_cells12151947
crossref_primary_10_1016_j_vph_2018_06_013
crossref_primary_10_1126_sciadv_adv8804
crossref_primary_10_1002_cbin_11267
crossref_primary_10_3390_cancers15061641
crossref_primary_10_3390_ijms252212090
crossref_primary_10_3390_bioengineering7020033
crossref_primary_10_3390_ijms22094928
crossref_primary_10_1093_genetics_iyab114
crossref_primary_10_3390_cells11081325
crossref_primary_10_15252_embj_2022111650
crossref_primary_10_1016_j_ajoms_2018_12_012
crossref_primary_10_1007_s10237_021_01548_z
crossref_primary_10_1016_j_actbio_2020_02_032
crossref_primary_10_3390_ijms222312790
crossref_primary_10_1093_bjd_ljae384
crossref_primary_10_1007_s00418_022_02158_1
crossref_primary_10_1016_j_jtha_2024_05_025
crossref_primary_10_1177_20417314211041428
crossref_primary_10_1002_jbt_23826
crossref_primary_10_1016_j_jbiomech_2018_03_040
crossref_primary_10_3390_ijms20020436
crossref_primary_10_3390_bioengineering10020269
crossref_primary_10_1177_09636897211051382
crossref_primary_10_1111_jcmm_70271
crossref_primary_10_1210_endocr_bqad045
crossref_primary_10_3390_ijms21041409
crossref_primary_10_1002_cbf_3400
crossref_primary_10_1002_advs_201901412
crossref_primary_10_1016_j_ajog_2024_05_048
crossref_primary_10_3390_brainsci14040380
crossref_primary_10_3390_nu13082521
crossref_primary_10_1091_mbc_E22_02_0057
crossref_primary_10_1371_journal_pcbi_1010153
crossref_primary_10_1038_s41598_024_56680_4
crossref_primary_10_1091_mbc_E19_01_0027
crossref_primary_10_1038_s41467_021_27398_y
crossref_primary_10_1016_j_cellsig_2025_112036
crossref_primary_10_3390_ijms24076551
crossref_primary_10_1093_hmg_ddad047
crossref_primary_10_1002_bies_202200249
crossref_primary_10_2147_JIR_S322231
crossref_primary_10_3390_cells12020224
crossref_primary_10_1038_s41598_024_52992_7
crossref_primary_10_1016_j_actbio_2021_04_021
crossref_primary_10_3390_cancers12020490
crossref_primary_10_1016_j_ceb_2023_102304
crossref_primary_10_1016_j_neulet_2019_134673
crossref_primary_10_15252_embj_2020105789
crossref_primary_10_3390_ijms24087455
crossref_primary_10_1242_jcs_236000
crossref_primary_10_1186_s12951_024_02773_1
crossref_primary_10_1007_s11010_019_03496_w
ContentType Journal Article
Copyright 2017 Hoffman et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
2017 Hoffman et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Copyright_xml – notice: 2017 Hoffman et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
– notice: 2017 Hoffman et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1091/mbc.E17-02-0087
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
EISSN 1939-4586
ExternalDocumentID 28768826
Genre Journal Article
GrantInformation_xml – fundername: NCRR NIH HHS
  grantid: S10 RR024761
– fundername: NCI NIH HHS
  grantid: P30 CA042014
– fundername: NIGMS NIH HHS
  grantid: R01 GM050877
GroupedDBID ---
123
18M
29M
2WC
34G
39C
4.4
5RE
5VS
ABDNZ
ABSQV
ACGFO
ADBBV
ADNWM
AEILP
AENEX
AFHIN
AFOSN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
CGR
CS3
CUY
CVF
D0L
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
F9R
GX1
H13
HH5
HYE
IH2
INIJC
KQ8
NPM
OK1
R0Z
RHF
RPM
SJN
TCB
TR2
VQA
W8F
WOQ
YHG
YKV
YNT
YQT
YWH
7X8
ABUFD
ID FETCH-LOGICAL-c459t-750be5a4aadef19726f1740f9984217ec7b4a8dd20fc8db58d89bd3e861eda812
IEDL.DBID 7X8
ISICitedReferencesCount 75
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000412115100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1939-4586
IngestDate Sun Nov 09 11:14:44 EST 2025
Wed Feb 19 02:42:10 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
License 2017 Hoffman et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-750be5a4aadef19726f1740f9984217ec7b4a8dd20fc8db58d89bd3e861eda812
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://doi.org/10.1091/mbc.E17-02-0087
PMID 28768826
PQID 1925895892
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1925895892
pubmed_primary_28768826
PublicationCentury 2000
PublicationDate 2017-Oct-01
20171001
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-Oct-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular biology of the cell
PublicationTitleAlternate Mol Biol Cell
PublicationYear 2017
References 12112152 - Cell Motil Cytoskeleton. 2002 Jun;52(2):97-106
24933506 - Trends Cell Biol. 2014 Oct;24(10):575-83
3058164 - Annu Rev Cell Biol. 1988;4:487-525
17163490 - J Cell Biochem. 2007 Apr 15;100(6):1581-92
22123860 - J Cell Biol. 2011 Nov 28;195(5):721-7
9048659 - Circ Res. 1997 Mar;80(3):383-92
9265645 - J Cell Biol. 1997 Aug 25;138(4):771-81
24157548 - Nat Protoc. 2013 Nov;8(11):2281-2308
6987736 - Science. 1980 Apr 11;208(4440):177-9
19197330 - Nat Rev Mol Cell Biol. 2009 Jan;10(1):34-43
9057088 - J Cell Sci. 1997 Feb;110 ( Pt 3):357-68
27200351 - Front Cell Dev Biol. 2016 May 06;4:40
3145203 - Eur J Biochem. 1988 Dec 15;178(2):543-53
18832141 - Neurology. 2008 Nov 18;71(21):1660-8
2572080 - Trends Biochem Sci. 1989 Aug;14(8):339-42
21163521 - Biomaterials. 2011 Mar;32(8):2043-51
19186141 - Biophys J. 2009 Feb;96(3):1036-44
12380682 - Cell Stress Chaperones. 2002 Apr;7(2):146-55
17030606 - Mol Cell Biol. 2007 Jan;27(1):170-81
20100912 - J Cell Biol. 2010 Jan 25;188(2):287-97
18270588 - PLoS One. 2008 Feb 13;3(2):e1601
19240800 - PLoS One. 2009;4(2):e4600
8093612 - J Biol Chem. 1993 Jan 25;268(3):1517-20
6681677 - Science. 1983 Feb 18;219(4586):867-9
19197329 - Nat Rev Mol Cell Biol. 2009 Jan;10(1):21-33
12482962 - Mol Cell Biol. 2003 Jan;23(1):70-9
17129785 - Cell. 2006 Dec 1;127(5):1015-26
12380684 - Cell Stress Chaperones. 2002 Apr;7(2):167-76
17353456 - Circulation. 2007 Mar 13;115(10):1285-95
20626350 - Biochem J. 2010 Aug 1;429(3):403-17
8608589 - Cell. 1996 Feb 9;84(3):359-69
3536951 - J Cell Biol. 1986 Nov;103(5):1679-87
3533955 - J Cell Biol. 1986 Oct;103(4):1495-507
14556705 - Neuron. 2003 Oct 9;40(2):209-27
11457815 - J Appl Physiol (1985). 2001 Aug;91(2):963-72
7799959 - Mol Cell Biol. 1995 Jan;15(1):505-16
16247023 - J Cell Biol. 2005 Oct 24;171(2):209-15
23200042 - Biophys J. 2012 Nov 21;103(10):2082-92
9115281 - J Biol Chem. 1997 May 2;272(18):12116-21
11228165 - J Cell Sci. 2001 Mar;114(Pt 6):1221-7
10802712 - Nat Med. 2000 May;6(5):556-63
14505316 - Cytometry A. 2003 Oct;55(2):109-18
17525165 - J Biol Chem. 2007 Aug 10;282(32):23081-8
19556500 - Science. 2009 Jun 26;324(5935):1673-7
19179532 - Science. 2009 Jan 30;323(5914):638-41
16505170 - J Cell Biol. 2006 Feb 27;172(5):771-82
15713747 - J Cell Sci. 2005 Mar 1;118(Pt 5):937-49
18682496 - J Cell Sci. 2008 Sep 1;121(Pt 17):2795-804
1332886 - FEBS Lett. 1992 Nov 30;313(3):307-13
17855386 - J Cell Sci. 2007 Oct 1;120(Pt 19):3475-87
2071672 - J Cell Biol. 1991 Jul;114(2):255-61
25355507 - Nat Rev Mol Cell Biol. 2014 Dec;15(12 ):825-33
8843730 - Am J Physiol. 1996 Sep;271(3 Pt 1):C994-1000
22809138 - Annu Rev Biomed Eng. 2012;14:97-111
3312229 - J Cell Biol. 1987 Oct;105(4):1473-8
20833360 - Dev Cell. 2010 Sep 14;19(3):365-76
15122254 - Nat Genet. 2004 Jun;36(6):602-6
18390476 - Am J Respir Cell Mol Biol. 2008 Sep;39(3):270-8
7356663 - J Biol Chem. 1980 Feb 10;255(3):835-8
11847190 - Hypertension. 2002 Feb;39(2):233-8
26097520 - Cell Mol Bioeng. 2015;8(1):151-159
23990882 - PLoS One. 2013 Aug 21;8(8):e69378
2005121 - J Biol Chem. 1991 Mar 25;266(9):5847-53
8714691 - Biochem Cell Biol. 1995 Sep-Oct;73(9-10):703-7
7750577 - FEBS Lett. 1995 May 8;364(2):229-33
21926999 - Nature. 2011 Sep 18;478(7368):260-3
21880897 - Mol Biol Cell. 2011 Nov;22(21):3986-94
8051180 - J Biol Chem. 1994 Aug 12;269(32):20780-4
21423176 - Nat Cell Biol. 2011 Apr;13(4):383-93
12153987 - FASEB J. 2002 Aug;16(10):1195-204
19684308 - Am J Respir Cell Mol Biol. 2010 Jul;43(1):64-73
24143227 - PLoS One. 2013 Oct 15;8(10):e77383
22013208 - Physiol Rev. 2011 Oct;91(4):1123-59
21818410 - Nucleus. 2011 May-Jun;2(3):173-81
11003596 - Am J Physiol Cell Physiol. 2000 Oct;279(4):C1155-67
2573430 - Cell. 1989 Nov 17;59(4):591-601
21311561 - EMBO Rep. 2011 Mar;12 (3):259-66
7684161 - Science. 1993 May 21;260(5111):1124-7
27698029 - Cold Spring Harb Perspect Biol. 2016 Oct 3;8(10 ):null
20442784 - PLoS One. 2010 Apr 28;5(4):e10385
26515553 - Exp Cell Res. 2016 Apr 10;343 (1):7-13
22022566 - PLoS One. 2011;6(10):e26200
18579210 - Pharmacol Ther. 2008 Jul;119(1):44-54
22456508 - Mol Biol Cell. 2012 May;23(10):1846-59
18843115 - J Cell Sci. 2008 Oct 15;121(Pt 20):3285-92
17804814 - Mol Biol Cell. 2007 Nov;18(11):4519-27
12202485 - J Biol Chem. 2002 Nov 8;277(45):42596-602
22321312 - Curr Biol. 2012 Feb 7;22(3):R96-101
19401336 - J Cell Sci. 2009 May 15;122(Pt 10):1665-79
6367964 - Cell Muscle Motil. 1984;5:83-137
14729728 - J Appl Physiol (1985). 2004 May;96(5):1701-13
17446863 - EMBO J. 2007 May 2;26(9):2240-50
15591055 - J Biol Chem. 2005 Feb 25;280(8):7273-84
6894300 - J Cell Biol. 1981 Mar;88(3):487-91
22797927 - J Cell Sci. 2012 Jul 1;125(Pt 13):3061-73
1860882 - J Cell Biol. 1991 Aug;114(3):503-13
23874834 - PLoS One. 2013 Jul 10;8(7):e68978
References_xml – reference: 8714691 - Biochem Cell Biol. 1995 Sep-Oct;73(9-10):703-7
– reference: 17353456 - Circulation. 2007 Mar 13;115(10):1285-95
– reference: 17129785 - Cell. 2006 Dec 1;127(5):1015-26
– reference: 3536951 - J Cell Biol. 1986 Nov;103(5):1679-87
– reference: 2071672 - J Cell Biol. 1991 Jul;114(2):255-61
– reference: 14556705 - Neuron. 2003 Oct 9;40(2):209-27
– reference: 24157548 - Nat Protoc. 2013 Nov;8(11):2281-2308
– reference: 19197330 - Nat Rev Mol Cell Biol. 2009 Jan;10(1):34-43
– reference: 21163521 - Biomaterials. 2011 Mar;32(8):2043-51
– reference: 19197329 - Nat Rev Mol Cell Biol. 2009 Jan;10(1):21-33
– reference: 3533955 - J Cell Biol. 1986 Oct;103(4):1495-507
– reference: 17804814 - Mol Biol Cell. 2007 Nov;18(11):4519-27
– reference: 23990882 - PLoS One. 2013 Aug 21;8(8):e69378
– reference: 22797927 - J Cell Sci. 2012 Jul 1;125(Pt 13):3061-73
– reference: 19179532 - Science. 2009 Jan 30;323(5914):638-41
– reference: 9057088 - J Cell Sci. 1997 Feb;110 ( Pt 3):357-68
– reference: 10802712 - Nat Med. 2000 May;6(5):556-63
– reference: 12380684 - Cell Stress Chaperones. 2002 Apr;7(2):167-76
– reference: 18832141 - Neurology. 2008 Nov 18;71(21):1660-8
– reference: 9048659 - Circ Res. 1997 Mar;80(3):383-92
– reference: 18579210 - Pharmacol Ther. 2008 Jul;119(1):44-54
– reference: 17030606 - Mol Cell Biol. 2007 Jan;27(1):170-81
– reference: 7799959 - Mol Cell Biol. 1995 Jan;15(1):505-16
– reference: 1860882 - J Cell Biol. 1991 Aug;114(3):503-13
– reference: 18270588 - PLoS One. 2008 Feb 13;3(2):e1601
– reference: 22809138 - Annu Rev Biomed Eng. 2012;14:97-111
– reference: 9115281 - J Biol Chem. 1997 May 2;272(18):12116-21
– reference: 11457815 - J Appl Physiol (1985). 2001 Aug;91(2):963-72
– reference: 21818410 - Nucleus. 2011 May-Jun;2(3):173-81
– reference: 23874834 - PLoS One. 2013 Jul 10;8(7):e68978
– reference: 1332886 - FEBS Lett. 1992 Nov 30;313(3):307-13
– reference: 19556500 - Science. 2009 Jun 26;324(5935):1673-7
– reference: 11003596 - Am J Physiol Cell Physiol. 2000 Oct;279(4):C1155-67
– reference: 2573430 - Cell. 1989 Nov 17;59(4):591-601
– reference: 6681677 - Science. 1983 Feb 18;219(4586):867-9
– reference: 3058164 - Annu Rev Cell Biol. 1988;4:487-525
– reference: 27698029 - Cold Spring Harb Perspect Biol. 2016 Oct 3;8(10 ):null
– reference: 8051180 - J Biol Chem. 1994 Aug 12;269(32):20780-4
– reference: 7750577 - FEBS Lett. 1995 May 8;364(2):229-33
– reference: 19240800 - PLoS One. 2009;4(2):e4600
– reference: 18843115 - J Cell Sci. 2008 Oct 15;121(Pt 20):3285-92
– reference: 22022566 - PLoS One. 2011;6(10):e26200
– reference: 23200042 - Biophys J. 2012 Nov 21;103(10):2082-92
– reference: 26515553 - Exp Cell Res. 2016 Apr 10;343 (1):7-13
– reference: 20100912 - J Cell Biol. 2010 Jan 25;188(2):287-97
– reference: 25355507 - Nat Rev Mol Cell Biol. 2014 Dec;15(12 ):825-33
– reference: 21926999 - Nature. 2011 Sep 18;478(7368):260-3
– reference: 22456508 - Mol Biol Cell. 2012 May;23(10):1846-59
– reference: 15713747 - J Cell Sci. 2005 Mar 1;118(Pt 5):937-49
– reference: 19401336 - J Cell Sci. 2009 May 15;122(Pt 10):1665-79
– reference: 21423176 - Nat Cell Biol. 2011 Apr;13(4):383-93
– reference: 17163490 - J Cell Biochem. 2007 Apr 15;100(6):1581-92
– reference: 8608589 - Cell. 1996 Feb 9;84(3):359-69
– reference: 2572080 - Trends Biochem Sci. 1989 Aug;14(8):339-42
– reference: 8843730 - Am J Physiol. 1996 Sep;271(3 Pt 1):C994-1000
– reference: 21880897 - Mol Biol Cell. 2011 Nov;22(21):3986-94
– reference: 20442784 - PLoS One. 2010 Apr 28;5(4):e10385
– reference: 3312229 - J Cell Biol. 1987 Oct;105(4):1473-8
– reference: 15122254 - Nat Genet. 2004 Jun;36(6):602-6
– reference: 17525165 - J Biol Chem. 2007 Aug 10;282(32):23081-8
– reference: 17855386 - J Cell Sci. 2007 Oct 1;120(Pt 19):3475-87
– reference: 11228165 - J Cell Sci. 2001 Mar;114(Pt 6):1221-7
– reference: 22123860 - J Cell Biol. 2011 Nov 28;195(5):721-7
– reference: 20833360 - Dev Cell. 2010 Sep 14;19(3):365-76
– reference: 12202485 - J Biol Chem. 2002 Nov 8;277(45):42596-602
– reference: 11847190 - Hypertension. 2002 Feb;39(2):233-8
– reference: 7684161 - Science. 1993 May 21;260(5111):1124-7
– reference: 16505170 - J Cell Biol. 2006 Feb 27;172(5):771-82
– reference: 16247023 - J Cell Biol. 2005 Oct 24;171(2):209-15
– reference: 18390476 - Am J Respir Cell Mol Biol. 2008 Sep;39(3):270-8
– reference: 8093612 - J Biol Chem. 1993 Jan 25;268(3):1517-20
– reference: 6987736 - Science. 1980 Apr 11;208(4440):177-9
– reference: 7356663 - J Biol Chem. 1980 Feb 10;255(3):835-8
– reference: 21311561 - EMBO Rep. 2011 Mar;12 (3):259-66
– reference: 14729728 - J Appl Physiol (1985). 2004 May;96(5):1701-13
– reference: 18682496 - J Cell Sci. 2008 Sep 1;121(Pt 17):2795-804
– reference: 14505316 - Cytometry A. 2003 Oct;55(2):109-18
– reference: 26097520 - Cell Mol Bioeng. 2015;8(1):151-159
– reference: 19684308 - Am J Respir Cell Mol Biol. 2010 Jul;43(1):64-73
– reference: 12153987 - FASEB J. 2002 Aug;16(10):1195-204
– reference: 6367964 - Cell Muscle Motil. 1984;5:83-137
– reference: 24933506 - Trends Cell Biol. 2014 Oct;24(10):575-83
– reference: 12112152 - Cell Motil Cytoskeleton. 2002 Jun;52(2):97-106
– reference: 6894300 - J Cell Biol. 1981 Mar;88(3):487-91
– reference: 9265645 - J Cell Biol. 1997 Aug 25;138(4):771-81
– reference: 24143227 - PLoS One. 2013 Oct 15;8(10):e77383
– reference: 12380682 - Cell Stress Chaperones. 2002 Apr;7(2):146-55
– reference: 22321312 - Curr Biol. 2012 Feb 7;22(3):R96-101
– reference: 17446863 - EMBO J. 2007 May 2;26(9):2240-50
– reference: 22013208 - Physiol Rev. 2011 Oct;91(4):1123-59
– reference: 15591055 - J Biol Chem. 2005 Feb 25;280(8):7273-84
– reference: 19186141 - Biophys J. 2009 Feb;96(3):1036-44
– reference: 27200351 - Front Cell Dev Biol. 2016 May 06;4:40
– reference: 20626350 - Biochem J. 2010 Aug 1;429(3):403-17
– reference: 12482962 - Mol Cell Biol. 2003 Jan;23(1):70-9
– reference: 3145203 - Eur J Biochem. 1988 Dec 15;178(2):543-53
– reference: 2005121 - J Biol Chem. 1991 Mar 25;266(9):5847-53
SSID ssj0014467
Score 2.5110302
Snippet Despite the importance of a cell's ability to sense and respond to mechanical force, the molecular mechanisms by which physical cues are converted to...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 2661
SubjectTerms Actin Cytoskeleton - metabolism
Actins - metabolism
Animals
Cell Movement - physiology
Cells, Cultured
Cytoskeletal Proteins - metabolism
Cytoskeleton - metabolism
Fibroblasts - metabolism
Focal Adhesions - metabolism
Heat-Shock Proteins - metabolism
MAP Kinase Signaling System
Mechanical Phenomena
Mice
Neoplasm Proteins - metabolism
p38 Mitogen-Activated Protein Kinases - metabolism
Phosphorylation
Signal Transduction
Stress Fibers - metabolism
Stress, Mechanical
Zyxin - metabolism
Title Mechanical signals activate p38 MAPK pathway-dependent reinforcement of actin via mechanosensitive HspB1
URI https://www.ncbi.nlm.nih.gov/pubmed/28768826
https://www.proquest.com/docview/1925895892
Volume 28
WOSCitedRecordID wos000412115100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7qFHzxfpk3Ivga10vaJk8yZWMgG3tQ2NtIc8E9rK3rnOzfe5K27EkQhNK3lJCcnvN9OSfnQ-jBF6kIAs6AlkQxoTBXwiHukZBHmhqqgYUoJzaRjEZsMuHj-sCtrMsqG5_oHLXKpT0j7wASiRiHJ3gqPolVjbLZ1VpCYxu1QoAy9sdMJpssAlCdpMoqc0IjFjetfbjfmafysQcO2tbfeiz5HV-6ONM__O8Mj9BBjTBxtzKJY7SlsxO0V2lOrk_Rx1Dby752b7At3gDzw_ZywwpAJy5Chofd8Su2QsXfYk0ajdwlXmjXY1W640ScGzcow6uZwHP3xby0tfDWe-JBWTz7Z-i933t7GZBaboFIGvElAeyQ6khQIZQ2Vo0sNkBXPAOEjAJx0TJJqWBKBZ6RTKURU4ynKtQs9rUSABTO0U6WZ_oSYWYC22hRBCZVVHKPh8ajKkxNqGTImGmj-2YJp2DONkchMp1_ldPNIrbRRbUP06LquzEFchcDIYiv_jD6Gu0HNgC7srsb1DKwmvoW7crVclYu7pydwHs0Hv4ALK_IyA
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanical+signals+activate+p38+MAPK+pathway-dependent+reinforcement+of+actin+via+mechanosensitive+HspB1&rft.jtitle=Molecular+biology+of+the+cell&rft.au=Hoffman%2C+Laura&rft.au=Jensen%2C+Christopher+C&rft.au=Yoshigi%2C+Masaaki&rft.au=Beckerle%2C+Mary&rft.date=2017-10-01&rft.issn=1939-4586&rft.eissn=1939-4586&rft.volume=28&rft.issue=20&rft.spage=2661&rft_id=info:doi/10.1091%2Fmbc.E17-02-0087&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-4586&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-4586&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-4586&client=summon