A new study on two different vaccinated fractional-order COVID-19 models via numerical algorithms

The main purpose of this paper is to provide new vaccinated models of COVID-19 in the sense of Caputo-Fabrizio and new generalized Caputo-type fractional derivatives. The formulation of the given models is presented including an exhaustive study of the model dynamics such as positivity, boundedness...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of King Saud University. Science s. 101914
Hlavní autoři: Zeb, Anwar, Kumar, Pushpendra, Erturk, Vedat Suat, Sitthiwirattham, Thanin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Saudi Arabia 01.06.2022
Témata:
ISSN:2213-686X, 2213-686X
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The main purpose of this paper is to provide new vaccinated models of COVID-19 in the sense of Caputo-Fabrizio and new generalized Caputo-type fractional derivatives. The formulation of the given models is presented including an exhaustive study of the model dynamics such as positivity, boundedness of the solutions and local stability analysis. Furthermore, the unique solution existence for the proposed fractional order models is discussed via fixed point theory. Numerical solutions are also derived by using two-steps Adams-Bashforth algorithm for Caputo-Fabrizio operator, and modified Predictor-Corrector method for generalised Caputo fractional derivative. Our analysis allow to show that the given fractional-order models exemplify the dynamics of COVID-19 much better than the classical ones. Also, the analysis on the convergence and stability for the proposed methods are performed. By this study, we see that how the vaccine availability plays an important role in the control of COVID-19 infection.
AbstractList The main purpose of this paper is to provide new vaccinated models of COVID-19 in the sense of Caputo-Fabrizio and new generalized Caputo-type fractional derivatives. The formulation of the given models is presented including an exhaustive study of the model dynamics such as positivity, boundedness of the solutions and local stability analysis. Furthermore, the unique solution existence for the proposed fractional order models is discussed via fixed point theory. Numerical solutions are also derived by using two-steps Adams-Bashforth algorithm for Caputo-Fabrizio operator, and modified Predictor-Corrector method for generalised Caputo fractional derivative. Our analysis allow to show that the given fractional-order models exemplify the dynamics of COVID-19 much better than the classical ones. Also, the analysis on the convergence and stability for the proposed methods are performed. By this study, we see that how the vaccine availability plays an important role in the control of COVID-19 infection.
The main purpose of this paper is to provide new vaccinated models of COVID-19 in the sense of Caputo-Fabrizio and new generalized Caputo-type fractional derivatives. The formulation of the given models is presented including an exhaustive study of the model dynamics such as positivity, boundedness of the solutions and local stability analysis. Furthermore, the unique solution existence for the proposed fractional order models is discussed via fixed point theory. Numerical solutions are also derived by using two-steps Adams-Bashforth algorithm for Caputo-Fabrizio operator, and modified Predictor-Corrector method for generalised Caputo fractional derivative. Our analysis allow to show that the given fractional-order models exemplify the dynamics of COVID-19 much better than the classical ones. Also, the analysis on the convergence and stability for the proposed methods are performed. By this study, we see that how the vaccine availability plays an important role in the control of COVID-19 infection.The main purpose of this paper is to provide new vaccinated models of COVID-19 in the sense of Caputo-Fabrizio and new generalized Caputo-type fractional derivatives. The formulation of the given models is presented including an exhaustive study of the model dynamics such as positivity, boundedness of the solutions and local stability analysis. Furthermore, the unique solution existence for the proposed fractional order models is discussed via fixed point theory. Numerical solutions are also derived by using two-steps Adams-Bashforth algorithm for Caputo-Fabrizio operator, and modified Predictor-Corrector method for generalised Caputo fractional derivative. Our analysis allow to show that the given fractional-order models exemplify the dynamics of COVID-19 much better than the classical ones. Also, the analysis on the convergence and stability for the proposed methods are performed. By this study, we see that how the vaccine availability plays an important role in the control of COVID-19 infection.
Author Zeb, Anwar
Kumar, Pushpendra
Sitthiwirattham, Thanin
Erturk, Vedat Suat
Author_xml – sequence: 1
  givenname: Anwar
  surname: Zeb
  fullname: Zeb, Anwar
  organization: Department of Mathematics, COMSATS University Islamabad, Abbottabad 22060, K.P.K, Pakistan
– sequence: 2
  givenname: Pushpendra
  surname: Kumar
  fullname: Kumar, Pushpendra
  organization: Department of Mathematics and Statistics, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, 151001, India
– sequence: 3
  givenname: Vedat Suat
  surname: Erturk
  fullname: Erturk, Vedat Suat
  organization: Department of Mathematics, Ondokuz Mayis University, Atakum-55200, Samsun, Turkey
– sequence: 4
  givenname: Thanin
  surname: Sitthiwirattham
  fullname: Sitthiwirattham, Thanin
  organization: Mathematics Department, Faculty of Science and Technology, Suan Dusit University, Bangkok 10300, Thailand
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35194351$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtLAzEUhYNU7EN_gSBZupma12Qmy1JfBaEbFXdDJg9NnUlqMtPSf--IFdycczl8nAtnCkY-eAPAJUZzjDC_2cw3n6lPc4II-UkEZidgQgimGS_52-jfPQbTlDYI8ZJyfgbGNMeCDTIBcgG92cPU9foAg4fdPkDtrDXR-A7upFLOy85oaKNUnQteNlmI2kS4XL-ubjMsYBu0aRLcOQl935rolGygbN5DdN1Hm87BqZVNMhdHn4GX-7vn5WP2tH5YLRdPmWK56LICU5SLWtqSKIRKxJFmkvI6t6XFlkpSE024zRGjZYFqJrBAKs9FIQumB4LMwPVv7zaGr96krmpdUqZppDehTxXhlGBWDl8G9OqI9nVrdLWNrpXxUP3NQr4BrTlnQw
CitedBy_id crossref_primary_10_1007_s40435_023_01146_0
crossref_primary_10_32604_cmes_2023_025033
crossref_primary_10_3390_fractalfract7050363
crossref_primary_10_1007_s40819_022_01482_3
crossref_primary_10_1016_j_physa_2022_127452
crossref_primary_10_1016_j_chaos_2022_112301
crossref_primary_10_3390_axioms12060546
crossref_primary_10_1007_s12597_024_00782_0
crossref_primary_10_3390_fractalfract6100533
crossref_primary_10_3390_vaccines10111773
crossref_primary_10_1007_s40314_023_02413_8
crossref_primary_10_1016_j_imu_2023_101416
crossref_primary_10_1007_s11071_024_10228_3
crossref_primary_10_3390_tropicalmed8030178
crossref_primary_10_1002_mma_8785
crossref_primary_10_1002_jnm_3256
crossref_primary_10_1002_mma_8736
crossref_primary_10_1002_mma_9614
crossref_primary_10_1155_2023_6648524
crossref_primary_10_1155_2022_9752628
crossref_primary_10_1016_j_chaos_2022_112906
crossref_primary_10_3390_math10234466
ContentType Journal Article
Copyright 2022 The Author(s).
Copyright_xml – notice: 2022 The Author(s).
DBID NPM
7X8
DOI 10.1016/j.jksus.2022.101914
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2213-686X
ExternalDocumentID 35194351
Genre Journal Article
GroupedDBID NPM
--K
-~X
0R~
1B1
4.4
457
5VS
71M
7X8
AAEDT
AAEDW
AAHBH
AAIKJ
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ADBBV
ADEZE
ADVLN
AEXQZ
AFJKZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BCNDV
EBS
EP3
FDB
FEDTE
FNPLU
HH5
HVGLF
IXB
KQ8
M41
O-L
O9-
OK1
OZT
ROL
SES
SSZ
XH2
~HD
ID FETCH-LOGICAL-c459t-713059baf82c008060d4a36b5f8f1f3a2b2d26f5043870b49190c5597a74df1f2
IEDL.DBID 7X8
ISICitedReferencesCount 31
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000819841500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2213-686X
IngestDate Thu Oct 02 09:59:37 EDT 2025
Thu Jan 02 22:40:54 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Caputo-Fabrizio and new generalized Caputo fractional-derivatives
Numerical methods
Fractional mathematical model
Language English
License 2022 The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-713059baf82c008060d4a36b5f8f1f3a2b2d26f5043870b49190c5597a74df1f2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8851876
PMID 35194351
PQID 2632148305
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2632148305
pubmed_primary_35194351
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Saudi Arabia
PublicationPlace_xml – name: Saudi Arabia
PublicationTitle Journal of King Saud University. Science
PublicationTitleAlternate J King Saud Univ Sci
PublicationYear 2022
SSID ssj0068366
Score 2.399558
Snippet The main purpose of this paper is to provide new vaccinated models of COVID-19 in the sense of Caputo-Fabrizio and new generalized Caputo-type fractional...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 101914
Title A new study on two different vaccinated fractional-order COVID-19 models via numerical algorithms
URI https://www.ncbi.nlm.nih.gov/pubmed/35194351
https://www.proquest.com/docview/2632148305
WOSCitedRecordID wos000819841500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWAMrAA5bN8yUgMMFg0jpM4E6oKCAZKB0DZIjuOoVCS0qTl73N2EpiQkFg8RI5k2Xf2O9_5PYROJITG1KcOkcxhhHGIWaVpBBzVSqdK0a60YhPBYMCjKBzWF25FXVbZ7Il2o1Z5Yu7Izw2vOEB3MM-LyQcxqlEmu1pLaCyilgtQxpR0BdF3FsHnrs1VUuq4xOd-1LAO2fqu17diZvi6KTVfQvOM5zeMac-a67X_jnIdrdYoE_cqs2ijhTTbQO3ajwt8WpNNn20i0cMArLFlmcV5hsvPHDeiKSWeiyQZZQBHFdbT6gmEGBNL14n790-3l8QJsRXTKfB8JHA2qxJAYyzGzzCu8uW92EKP11cP_RtSyy6QhHlhSSBsBcwlheY0MYDS7yomXF96mmtHu4JKqqivDfUZOLtkIWCKxAQmImAKetBttJTlWbqLMEsTLqhHme6mzIP-gK887fmhxx3hBrKDjptpjMGsTa5CZGk-K-KfieygnWot4knFvxEbTUFAec7eH_7eRytmiavirgPU0uDU6SFaTublqJgeWXuBdjC8-wItL8g8
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+study+on+two+different+vaccinated+fractional-order+COVID-19+models+via+numerical+algorithms&rft.jtitle=Journal+of+King+Saud+University.+Science&rft.au=Zeb%2C+Anwar&rft.au=Kumar%2C+Pushpendra&rft.au=Erturk%2C+Vedat+Suat&rft.au=Sitthiwirattham%2C+Thanin&rft.date=2022-06-01&rft.issn=2213-686X&rft.eissn=2213-686X&rft.spage=101914&rft_id=info:doi/10.1016%2Fj.jksus.2022.101914&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-686X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-686X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-686X&client=summon