Automatically improving the anytime behaviour of optimisation algorithms

•A method to automatically improve the anytime behaviour of optimisation algorithms.•Anytime behaviour is evaluated by the hypervolume measure.•Decision-maker’s preferences may be incorporated into the automatic tuning procedure.•Case-studies include configuring a heuristic algorithm and an MIP solv...

Full description

Saved in:
Bibliographic Details
Published in:European journal of operational research Vol. 235; no. 3; pp. 569 - 582
Main Authors: López-Ibáñez, Manuel, Stützle, Thomas
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 16.06.2014
Elsevier Sequoia S.A
Subjects:
ISSN:0377-2217, 1872-6860
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A method to automatically improve the anytime behaviour of optimisation algorithms.•Anytime behaviour is evaluated by the hypervolume measure.•Decision-maker’s preferences may be incorporated into the automatic tuning procedure.•Case-studies include configuring a heuristic algorithm and an MIP solver. Optimisation algorithms with good anytime behaviour try to return as high-quality solutions as possible independently of the computation time allowed. Designing algorithms with good anytime behaviour is a difficult task, because performance is often evaluated subjectively, by plotting the trade-off curve between computation time and solution quality. Yet, the trade-off curve may be modelled also as a set of mutually nondominated, bi-objective points. Using this model, we propose to combine an automatic configuration tool and the hypervolume measure, which assigns a single quality measure to a nondominated set. This allows us to improve the anytime behaviour of optimisation algorithms by means of automatically finding algorithmic configurations that produce the best nondominated sets. Moreover, the recently proposed weighted hypervolume measure is used here to incorporate the decision-maker’s preferences into the automatic tuning procedure. We report on the improvements reached when applying the proposed method to two relevant scenarios: (i) the design of parameter variation strategies for MAX-MIN Ant System and (ii) the tuning of the anytime behaviour of SCIP, an open-source mixed integer programming solver with more than 200 parameters.
AbstractList Optimisation algorithms with good anytime behaviour try to return as high-quality solutions as possible independently of the computation time allowed. Designing algorithms with good anytime behaviour is a difficult task, because performance is often evaluated subjectively, by plotting the trade-off curve between computation time and solution quality. Yet, the trade-off curve may be modelled also as a set of mutually nondominated, bi-objective points. Using this model, we propose to combine an automatic configuration tool and the hypervolume measure, which assigns a single quality measure to a nondominated set. This allows us to improve the anytime behaviour of optimisation algorithms by means of automatically finding algorithmic configurations that produce the best nondominated sets. Moreover, the recently proposed weighted hypervolume measure is used here to incorporate the decision-maker's preferences into the automatic tuning procedure. We report on the improvements reached when applying the proposed method to two relevant scenarios: (i) the design of parameter variation strategies for MAX-MIN Ant System and (ii) the tuning of the anytime behaviour of SCIP, an open-source mixed integer programming solver with more than 200 parameters.
•A method to automatically improve the anytime behaviour of optimisation algorithms.•Anytime behaviour is evaluated by the hypervolume measure.•Decision-maker’s preferences may be incorporated into the automatic tuning procedure.•Case-studies include configuring a heuristic algorithm and an MIP solver. Optimisation algorithms with good anytime behaviour try to return as high-quality solutions as possible independently of the computation time allowed. Designing algorithms with good anytime behaviour is a difficult task, because performance is often evaluated subjectively, by plotting the trade-off curve between computation time and solution quality. Yet, the trade-off curve may be modelled also as a set of mutually nondominated, bi-objective points. Using this model, we propose to combine an automatic configuration tool and the hypervolume measure, which assigns a single quality measure to a nondominated set. This allows us to improve the anytime behaviour of optimisation algorithms by means of automatically finding algorithmic configurations that produce the best nondominated sets. Moreover, the recently proposed weighted hypervolume measure is used here to incorporate the decision-maker’s preferences into the automatic tuning procedure. We report on the improvements reached when applying the proposed method to two relevant scenarios: (i) the design of parameter variation strategies for MAX-MIN Ant System and (ii) the tuning of the anytime behaviour of SCIP, an open-source mixed integer programming solver with more than 200 parameters.
Optimisation algorithms with good anytime behaviour try to return as high-quality solutions as possible independently of the computation time allowed. Designing algorithms with good anytime behaviour is a difficult task, because performance is often evaluated subjectively, by plotting the trade-off curve between computation time and solution quality. Yet, the trade-off curve may be modelled also as a set of mutually nondominated, bi-objective points. Using this model, we propose to combine an automatic configuration tool and the hypervolume measure, which assigns a single quality measure to a nondominated set. This allows us to improve the anytime behaviour of optimisation algorithms by means of automatically finding algorithmic configurations that produce the best nondominated sets. Moreover, the recently proposed weighted hypervolume measure is used here to incorporate the decision-maker's preferences into the automatic tuning procedure. We report on the improvements reached when applying the proposed method to two relevant scenarios: (i) the design of parameter variation strategies for MAX-MIN Ant System and (ii) the tuning of the anytime behaviour of SCIP, an open-source mixed integer programming solver with more than 200 parameters. [PUBLICATION ABSTRACT]
Author López-Ibáñez, Manuel
Stützle, Thomas
Author_xml – sequence: 1
  givenname: Manuel
  surname: López-Ibáñez
  fullname: López-Ibáñez, Manuel
  email: manuel.lopez-ibanez@ulb.ac.be
– sequence: 2
  givenname: Thomas
  surname: Stützle
  fullname: Stützle, Thomas
  email: stuetzle@ulb.ac.be
BookMark eNp9kM9LwzAYhoMoOKf_gKeCFy-dSdokLXgZ4i8QvOg5ZMkXl9I2M8kG--9NnScPOwVe3ufjzXOBTkc_AkLXBC8IJvyuW0Dnw4JiUuVggevqBM1II2jJG45P0QxXQpSUEnGOLmLsMMaEETZDL8tt8oNKTqu-3xdu2AS_c-NXkdZQqHGf3ADFCtZq5_w2FN4WfpMzFzPix0L1Xz64tB7iJTqzqo9w9ffO0efT48fDS_n2_vz6sHwrdc3aVPK6tsIyixmsFOCVsQKgtWCJVQyb2hBrWLviLa04kIpq3mjDrCGitaYVrJqj28PdPPR7CzHJPEZD36sR_DZKwhvWYNHUU_XmX7XLfxjzOkkYpqLmlPLcooeWDj7GAFZughtU2EuC5SRXdnKSKye5U5blZqj5B2mXfpWkoFx_HL0_oJAt7RwEGbWDUYNxAXSSxrtj-A9LLZkB
CODEN EJORDT
CitedBy_id crossref_primary_10_3390_math8050752
crossref_primary_10_3390_en11061416
crossref_primary_10_1109_TCYB_2017_2647821
crossref_primary_10_1155_2015_648035
crossref_primary_10_1016_j_aei_2025_103551
crossref_primary_10_1016_j_ejor_2019_07_073
crossref_primary_10_3390_app15062946
crossref_primary_10_1007_s10898_020_00909_9
crossref_primary_10_1109_TEVC_2022_3159087
crossref_primary_10_1111_itor_12316
crossref_primary_10_1016_j_ejor_2024_06_001
crossref_primary_10_1007_s10994_022_06212_w
crossref_primary_10_1016_j_ins_2021_02_074
crossref_primary_10_1007_s11750_020_00588_5
crossref_primary_10_1109_TCYB_2017_2772849
crossref_primary_10_1016_j_swevo_2014_10_006
crossref_primary_10_1016_j_ejor_2014_10_062
crossref_primary_10_1109_TEVC_2022_3169770
crossref_primary_10_1016_j_procs_2017_05_286
crossref_primary_10_1007_s10732_025_09561_6
crossref_primary_10_1016_j_cor_2021_105615
crossref_primary_10_1016_j_cor_2018_12_015
crossref_primary_10_1016_j_cor_2023_106344
crossref_primary_10_1287_isre_2021_1031
crossref_primary_10_1016_j_swevo_2023_101248
crossref_primary_10_1016_j_ejor_2025_07_024
Cites_doi 10.1145/2076450.2076469
10.1613/jair.2861
10.1109/TEVC.2011.2182651
10.1016/j.ejor.2006.12.062
10.1287/opre.1050.0243
10.1109/4235.797969
10.1007/s12532-008-0001-1
10.1109/TEVC.2003.810758
10.1016/S0167-739X(00)00043-1
10.1023/A:1026569813391
10.1016/j.tcs.2011.03.012
10.1109/4235.585892
10.1109/TEVC.2009.2021465
10.1504/IJMHEUR.2011.041195
10.1023/A:1006556606079
10.1016/j.swevo.2011.02.001
10.1016/j.asoc.2008.07.001
ContentType Journal Article
Copyright 2013 Elsevier B.V.
Copyright Elsevier Sequoia S.A. Jun 16, 2014
Copyright_xml – notice: 2013 Elsevier B.V.
– notice: Copyright Elsevier Sequoia S.A. Jun 16, 2014
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
7TA
JG9
DOI 10.1016/j.ejor.2013.10.043
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Materials Business File
Materials Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Materials Research Database
Materials Business File
DatabaseTitleList Materials Research Database

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EISSN 1872-6860
EndPage 582
ExternalDocumentID 3231498551
10_1016_j_ejor_2013_10_043
S0377221713008667
Genre Feature
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
XPP
ZMT
~02
~G-
1OL
29G
41~
9DU
AAAKG
AALRI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HVGLF
HZ~
R2-
SEW
VH1
WUQ
~HD
7SC
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
7TA
JG9
ID FETCH-LOGICAL-c459t-644f7f5f05ebae0bdf7ee9fef1fa50d4d1fd59b69236e132c68cd5fd179fd9753
ISICitedReferencesCount 58
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000332999500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0377-2217
IngestDate Sun Nov 09 11:54:26 EST 2025
Sun Nov 09 06:52:09 EST 2025
Tue Nov 18 21:49:25 EST 2025
Sat Nov 29 01:41:09 EST 2025
Fri Feb 23 02:32:26 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Anytime algorithms
Metaheuristics
Automatic configuration
Offline tuning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c459t-644f7f5f05ebae0bdf7ee9fef1fa50d4d1fd59b69236e132c68cd5fd179fd9753
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.research.manchester.ac.uk/portal/en/publications/automatically-improving-the-anytime-behaviour-of-optimisation-algorithms(236818de-3d01-4c16-a371-6e5a8f3b7336).html
PQID 1502746226
PQPubID 45678
PageCount 14
ParticipantIDs proquest_miscellaneous_1685807845
proquest_journals_1502746226
crossref_primary_10_1016_j_ejor_2013_10_043
crossref_citationtrail_10_1016_j_ejor_2013_10_043
elsevier_sciencedirect_doi_10_1016_j_ejor_2013_10_043
PublicationCentury 2000
PublicationDate 2014-06-16
PublicationDateYYYYMMDD 2014-06-16
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-06-16
  day: 16
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle European journal of operational research
PublicationYear 2014
Publisher Elsevier B.V
Elsevier Sequoia S.A
Publisher_xml – name: Elsevier B.V
– name: Elsevier Sequoia S.A
References López-Ibáñez, Stützle (b0220) 2012; 160
Auger, Hansen (b0035) 2005
Gagliolo, Legrand (b0135) 2010
Technical Report TR/IRIDIA/2012-012, IRIDIA, Université Libre de Bruxelles, Belgium.
Wessing, Beume, Rudolph, Naujoks (b0280) 2010; Vol. 6238
Auger, Bader, Brockhoff, Zitzler (b0030) 2012; 425
Dorigo, Stützle (b0105) 2004
Stützle T. (2002). ACOTSP: A software package of various ant colony optimization algorithms applied to the symmetric traveling salesman problem.
Bartz-Beielstein (b0045) 2006
Eiben, Smit (b0125) 2011; 10
Conover (b0080) 1999
Zitzler, Brockhoff, Thiele (b0295) 2007; Vol. 4403
Nannen, Eiben (b0245) 2006
Zilberstein (b0290) 1996; 170
PhD thesis, FG Intellektik, FB Informatik, TU Darmstadt, Germany.
Hutter, Hoos, Leyton-Brown, Stützle (b0160) 2009; 36
Ansótegui, Sellmann, Tierney (b0020) 2009; Vol. 5732
Knowles, J. D., Thiele, L., & Zitzler, E. (2006).
Hutter, Hoos, Leyton-Brown (b0155) 2011
KhudaBukhsh, Xu, Hoos, Leyton-Brown (b0170) 2009
Montes de Oca, Stützle, Birattari, Dorigo (b0240) 2009; 130
Stützle, T. (1997).
Birattari, Stützle, Paquete, Varrentrapp (b0060) 2002
Loudni, Boizumault (b0225) 2008; 191
Knowles, J. D. (2005). A summary-attainment-surface palotting method for visualizing the performance of stochastic multiobjective optimizers. In
Hoos, Stützle (b0150) 2005
López-Ibáñez, Stützle (b0215) 2010; Vol. 6234
Technical Report AIDA-97-4, FG Intellektik, FB Informatik, TU Darmstadt, Germany, July 1997.
Dean, Boddy (b0090) 1988
.
López-Ibáñez, M. & Stützle, T. (2012b).
Achterberg (b0005) 2009; 10
López-Ibáñez, Paquete, Stützle (b0210) 2010
Hoos (b0145) 2012; 550
Coy, Golden, Runger, Wasil (b0085) 2001; 70
Dubois-Lacoste, López-Ibáñez, Stützle (b0115) 2011
Maur, López-Ibáñez, Stützle (b0235) 2010
Aine, Kumar, Chakrabarti (b0015) 2009; 90
Adenso-Díaz, Laguna (b0010) 2006; 540
López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., & Birattari M. (2011).
Technical Report TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles, Belgium.
Zitzler, Thiele, Laumanns, Fonseca, Grunert da Fonseca (b0305) 2003; 70
López-Ibáñez, Liao, Stützle (b0205) 2012; Vol. 7491
Wah, Chen (b0275) 2000; Vol. 1894
Woodruff, Ritzinger, Oppen (b0285) 2011; 10
Bartz-Beielstein, Lasarczyk, Preuss (b0050) 2010
PhD thesis, FB Informatik, TU Darmstadt, Germany.
Eiben, Michalewicz, Schoenauer, Smith (b0120) 2007
Maron, Moore (b0230) 1997; 110
Dréo (b0110) 2009
TIK-Report 214, Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH), Zürich, Switzerland, February 2006. Revised version.
Zitzler, Thiele (b0300) 1999; 30
Grunert da Fonseca, Fonseca (b0140) 2010
Dorigo, Gambardella (b0100) 1997; 10
Johnson, D. S., McGeoch, L. A., Rego, C., & Glover, F. (2001).
Balaprakash, Birattari, Stützle (b0040) 2007; Vol. 4771
Auger, Bader, Brockhoff, Zitzler (b0025) 2009
Birattari, Yuan, Balaprakash, Stützle (b0065) 2010
Leyton-Brown, Pearson, Shoham (b0185) 2000
López-Ibáñez, M. & Stützle, T. (2012a).
Chiarandini, M. (2005).
Birattari (b0055) 2009; Vol. 197
Branke, Elomari (b0070) 2011
Stützle, López-Ibáñez, Pellegrini, Maur, Montes de Oca, Birattari (b0270) 2012
Fonseca, Paquete, López-Ibáñez (b0130) 2006
Radulescu, López-Ibáñez, Stützle (b0250) 2013; Vol. 7811
Stützle, Hoos (b0265) 2000; 160
(pp. 552–557).
den Besten, M. (2004).
Conover (10.1016/j.ejor.2013.10.043_b0080) 1999
Achterberg (10.1016/j.ejor.2013.10.043_b0005) 2009; 10
Montes de Oca (10.1016/j.ejor.2013.10.043_b0240) 2009; 130
10.1016/j.ejor.2013.10.043_b0190
Auger (10.1016/j.ejor.2013.10.043_b0030) 2012; 425
Auger (10.1016/j.ejor.2013.10.043_b0025) 2009
10.1016/j.ejor.2013.10.043_b0195
10.1016/j.ejor.2013.10.043_b0075
Stützle (10.1016/j.ejor.2013.10.043_b0270) 2012
Wessing (10.1016/j.ejor.2013.10.043_b0280) 2010; Vol. 6238
Auger (10.1016/j.ejor.2013.10.043_b0035) 2005
Hutter (10.1016/j.ejor.2013.10.043_b0155) 2011
Bartz-Beielstein (10.1016/j.ejor.2013.10.043_b0045) 2006
Birattari (10.1016/j.ejor.2013.10.043_b0065) 2010
Hoos (10.1016/j.ejor.2013.10.043_b0145) 2012; 550
Ansótegui (10.1016/j.ejor.2013.10.043_b0020) 2009; Vol. 5732
Eiben (10.1016/j.ejor.2013.10.043_b0120) 2007
10.1016/j.ejor.2013.10.043_b0180
10.1016/j.ejor.2013.10.043_b0260
Eiben (10.1016/j.ejor.2013.10.043_b0125) 2011; 10
Stützle (10.1016/j.ejor.2013.10.043_b0265) 2000; 160
López-Ibáñez (10.1016/j.ejor.2013.10.043_b0220) 2012; 160
Coy (10.1016/j.ejor.2013.10.043_b0085) 2001; 70
Zitzler (10.1016/j.ejor.2013.10.043_b0305) 2003; 70
Woodruff (10.1016/j.ejor.2013.10.043_b0285) 2011; 10
Hoos (10.1016/j.ejor.2013.10.043_b0150) 2005
Zilberstein (10.1016/j.ejor.2013.10.043_b0290) 1996; 170
KhudaBukhsh (10.1016/j.ejor.2013.10.043_b0170) 2009
López-Ibáñez (10.1016/j.ejor.2013.10.043_b0205) 2012; Vol. 7491
Bartz-Beielstein (10.1016/j.ejor.2013.10.043_b0050) 2010
Birattari (10.1016/j.ejor.2013.10.043_b0060) 2002
Fonseca (10.1016/j.ejor.2013.10.043_b0130) 2006
Adenso-Díaz (10.1016/j.ejor.2013.10.043_b0010) 2006; 540
10.1016/j.ejor.2013.10.043_b0095
Wah (10.1016/j.ejor.2013.10.043_b0275) 2000; Vol. 1894
10.1016/j.ejor.2013.10.043_b0255
Dean (10.1016/j.ejor.2013.10.043_b0090) 1988
Dorigo (10.1016/j.ejor.2013.10.043_b0100) 1997; 10
Dréo (10.1016/j.ejor.2013.10.043_b0110) 2009
Nannen (10.1016/j.ejor.2013.10.043_b0245) 2006
Birattari (10.1016/j.ejor.2013.10.043_b0055) 2009; Vol. 197
Maur (10.1016/j.ejor.2013.10.043_b0235) 2010
10.1016/j.ejor.2013.10.043_b0175
Aine (10.1016/j.ejor.2013.10.043_b0015) 2009; 90
Grunert da Fonseca (10.1016/j.ejor.2013.10.043_b0140) 2010
Balaprakash (10.1016/j.ejor.2013.10.043_b0040) 2007; Vol. 4771
Branke (10.1016/j.ejor.2013.10.043_b0070) 2011
Hutter (10.1016/j.ejor.2013.10.043_b0160) 2009; 36
Zitzler (10.1016/j.ejor.2013.10.043_b0295) 2007; Vol. 4403
Radulescu (10.1016/j.ejor.2013.10.043_b0250) 2013; Vol. 7811
Gagliolo (10.1016/j.ejor.2013.10.043_b0135) 2010
Leyton-Brown (10.1016/j.ejor.2013.10.043_b0185) 2000
10.1016/j.ejor.2013.10.043_b0200
Loudni (10.1016/j.ejor.2013.10.043_b0225) 2008; 191
10.1016/j.ejor.2013.10.043_b0165
Maron (10.1016/j.ejor.2013.10.043_b0230) 1997; 110
Dorigo (10.1016/j.ejor.2013.10.043_b0105) 2004
Zitzler (10.1016/j.ejor.2013.10.043_b0300) 1999; 30
Dubois-Lacoste (10.1016/j.ejor.2013.10.043_b0115) 2011
López-Ibáñez (10.1016/j.ejor.2013.10.043_b0215) 2010; Vol. 6234
López-Ibáñez (10.1016/j.ejor.2013.10.043_b0210) 2010
References_xml – start-page: 11
  year: 2002
  end-page: 18
  ident: b0060
  article-title: A racing algorithm for configuring metaheuristics 2002
  publication-title: Proceedings of GECCO
– volume: 160
  start-page: 889
  year: 2000
  end-page: 914
  ident: b0265
  article-title: MAX-MIN ant system
  publication-title: Future Generation Computer Systems
– volume: 425
  start-page: 0 75
  year: 2012
  end-page: 103
  ident: b0030
  article-title: Hypervolume-based multiobjective optimization: Theoretical foundations and practical implications
  publication-title: Theoretical Computer Science
– volume: Vol. 4771
  start-page: 108
  year: 2007
  end-page: 122
  ident: b0040
  article-title: Improvement strategies for the F-race algorithm: Sampling design and iterative refinement
  publication-title: Hybrid metaheuristics
– start-page: 563
  year: 2009
  end-page: 570
  ident: b0025
  article-title: Investigating and exploiting the bias of the weighted hypervolume to articulate user preferences
  publication-title: Proceedings of GECCO 2009
– reference: Chiarandini, M. (2005).
– start-page: 49
  year: 1988
  end-page: 54
  ident: b0090
  article-title: An analysis of time-dependent planning
  publication-title: Proceedings of the 7th national conference on artificial intelligence
– year: 2011
  ident: b0155
  article-title: Sequential model-based optimization for general algorithm configuration
  publication-title: Learning and intelligent optimization, 5th international conference, LION 5
– reference: (pp. 552–557).
– year: 2006
  ident: b0045
  article-title: Experimental research in evolutionary computation: The new experimentalism
– reference: López-Ibáñez, M. & Stützle, T. (2012a).
– start-page: 209
  year: 2010
  end-page: 222
  ident: b0210
  article-title: Exploratory analysis of stochastic local search algorithms in biobjective optimization
  publication-title: Experimental methods for the analysis of optimization algorithms
– reference: Johnson, D. S., McGeoch, L. A., Rego, C., & Glover, F. (2001).
– reference: . PhD thesis, FG Intellektik, FB Informatik, TU Darmstadt, Germany.
– start-page: 2197
  year: 2009
  end-page: 2200
  ident: b0110
  article-title: Using performance fronts for parameter setting of stochastic metaheuristics
  publication-title: GECCO (companion)
– reference: Knowles, J. D., Thiele, L., & Zitzler, E. (2006).
– volume: 540
  start-page: 0 99
  year: 2006
  end-page: 114
  ident: b0010
  article-title: Fine-tuning of algorithms using fractional experimental design and local search
  publication-title: Operations Research
– volume: 110
  start-page: 193
  year: 1997
  end-page: 225
  ident: b0230
  article-title: The racing algorithm: Model selection for lazy learners
  publication-title: Artificial Intelligence Research
– volume: 70
  start-page: 0 117
  year: 2003
  end-page: 132
  ident: b0305
  article-title: Performance assessment of multiobjective optimizers: an analysis and review
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: Vol. 7491
  start-page: 357
  year: 2012
  end-page: 366
  ident: b0205
  article-title: On the anytime behavior of IPOP-CMA-ES
  publication-title: PPSN 2012, Part I
– volume: Vol. 5732
  start-page: 142
  year: 2009
  end-page: 157
  ident: b0020
  article-title: A gender-based genetic algorithm for the automatic configuration of algorithms
  publication-title: Principles and practice of constraint programming, CP 2009
– volume: 550
  start-page: 0 70
  year: 2012
  end-page: 80
  ident: b0145
  article-title: Programming by optimization
  publication-title: Communications of the ACM
– reference: López-Ibáñez, M. & Stützle, T. (2012b).
– volume: 10
  start-page: 0 53
  year: 1997
  end-page: 66
  ident: b0100
  article-title: Ant colony system: A cooperative learning approach to the traveling salesman problem
  publication-title: IEEE Transactions on Evolutionary Computation
– start-page: 66
  year: 2000
  end-page: 76
  ident: b0185
  article-title: Towards a universal test suite for combinatorial auction algorithms
  publication-title: ACM conference on electronic commerce (EC-00)
– reference: . Technical Report TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles, Belgium.
– volume: Vol. 6234
  start-page: 95
  year: 2010
  end-page: 106
  ident: b0215
  article-title: Automatic configuration of multi-objective ACO algorithms
  publication-title: Swarm intelligence, 7th international conference, ANTS 2010
– volume: 170
  start-page: 0 73
  year: 1996
  end-page: 83
  ident: b0290
  article-title: Using anytime algorithms in intelligent systems
  publication-title: AI Magazine
– volume: 10
  start-page: 0 1
  year: 2009
  end-page: 41
  ident: b0005
  article-title: SCIP: Solving constraint integer programs
  publication-title: Mathematical Programming Computation
– start-page: 103
  year: 2010
  end-page: 130
  ident: b0140
  article-title: The attainment-function approach to stochastic multiobjective optimizer assessment and comparison
  publication-title: Experimental methods for the analysis of optimization algorithms
– reference: .
– reference: den Besten, M. (2004).
– start-page: 311
  year: 2010
  end-page: 336
  ident: b0065
  article-title: F-race and iterated F-race: An overview
  publication-title: Experimental methods for the analysis of optimization algorithms
– volume: 160
  start-page: 0 861
  year: 2012
  end-page: 875
  ident: b0220
  article-title: The automatic design of multi-objective ant colony optimization algorithms
  publication-title: IEEE Transactions on Evolutionary Computation
– reference: . TIK-Report 214, Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH), Zürich, Switzerland, February 2006. Revised version.
– start-page: 1157
  year: 2006
  end-page: 1163
  ident: b0130
  article-title: An improved dimension-sweep algorithm for the hypervolume indicator
  publication-title: Proceedings of the 2006 congress on evolutionary computation (CEC 2006)
– start-page: 191
  year: 2012
  end-page: 215
  ident: b0270
  article-title: Parameter adaptation in ant colony optimization
  publication-title: Autonomous search
– volume: 70
  start-page: 77
  year: 2001
  end-page: 97
  ident: b0085
  article-title: Using experimental design to find effective parameter settings for heuristics
  publication-title: Journal of Heuristics
– volume: 30
  start-page: 0 257
  year: 1999
  end-page: 271
  ident: b0300
  article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto evolutionary algorithm
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 90
  start-page: 0 527
  year: 2009
  end-page: 540
  ident: b0015
  article-title: Adaptive parameter control of evolutionary algorithms to improve quality-time trade-off
  publication-title: Applied Soft Computing
– start-page: 3823
  year: 2010
  end-page: 3830
  ident: b0235
  article-title: Pre-scheduled and adaptive parameter variation in MAX-MIN Ant System
  publication-title: Proceedings of the 2010 congress on evolutionary computation (CEC 2010)
– reference: . PhD thesis, FB Informatik, TU Darmstadt, Germany.
– volume: 10
  start-page: 19
  year: 2011
  end-page: 31
  ident: b0125
  article-title: Parameter tuning for configuring and analyzing evolutionary algorithms
  publication-title: Swarm and Evolutionary Computation
– volume: 130
  start-page: 1120
  year: 2009
  end-page: 1132
  ident: b0240
  article-title: Frankenstein’s PSO: A composite particle swarm optimization algorithm
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 191
  start-page: 705
  year: 2008
  end-page: 735
  ident: b0225
  article-title: Combining VNS with constraint programming for solving anytime optimization problems
  publication-title: European Journal of Operational Research
– volume: Vol. 1894
  start-page: 425
  year: 2000
  end-page: 440
  ident: b0275
  article-title: Optimal anytime constrained simulated annealing for constrained global optimization
  publication-title: Principles and practice of constraint programming, CP 2000
– reference: López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., & Birattari M. (2011).
– start-page: 263
  year: 2011
  end-page: 264
  ident: b0070
  article-title: Simultaneous tuning of metaheuristic parameters for various computing budgets
  publication-title: Proceedings of GECCO 2011
– reference: Knowles, J. D. (2005). A summary-attainment-surface palotting method for visualizing the performance of stochastic multiobjective optimizers. In
– volume: Vol. 7811
  start-page: 825
  year: 2013
  end-page: 840
  ident: b0250
  article-title: Automatically improving the anytime behaviour of multiobjective evolutionary algorithms
  publication-title: EMO 2013
– start-page: 1769
  year: 2005
  end-page: 1776
  ident: b0035
  article-title: A restart CMA evolution strategy with increasing population size
  publication-title: Proceedings of CEC 2005
– volume: Vol. 4403
  start-page: 862
  year: 2007
  end-page: 876
  ident: b0295
  article-title: The hypervolume indicator revisited: On the design of Pareto-compliant indicators via weighted integration
  publication-title: EMO 2007
– start-page: 517
  year: 2009
  end-page: 524
  ident: b0170
  article-title: SATenstein: Automatically building local search SAT solvers from components
  publication-title: Proceedings of the twenty-first international joint conference on artificial intelligence (IJCAI-09)
– start-page: 19
  year: 2007
  end-page: 46
  ident: b0120
  article-title: Parameter control in evolutionary algorithms
  publication-title: Parameter setting in evolutionary algorithms
– start-page: 2019
  year: 2011
  end-page: 2026
  ident: b0115
  article-title: Automatic configuration of state-of-the-art multi-objective optimizers using the TP
  publication-title: Proceedings of GECCO 2011
– start-page: 183
  year: 2006
  end-page: 190
  ident: b0245
  article-title: A method for parameter calibration and relevance estimation in evolutionary algorithms
  publication-title: Proceedings of GECCO 2006
– reference: Stützle T. (2002). ACOTSP: A software package of various ant colony optimization algorithms applied to the symmetric traveling salesman problem.
– volume: 10
  start-page: 0 222
  year: 2011
  end-page: 231
  ident: b0285
  article-title: Research note: the point of diminishing returns in heuristic search
  publication-title: International Journal of Metaheuristics
– year: 1999
  ident: b0080
  article-title: Practical nonparametric statistics
– volume: 36
  start-page: 267
  year: 2009
  end-page: 306
  ident: b0160
  article-title: ParamILS: An automatic algorithm configuration framework
  publication-title: Journal of Artificial Intelligence Research
– volume: Vol. 197
  year: 2009
  ident: b0055
  article-title: Tuning metaheuristics: A machine learning perspective
  publication-title: Studies in computational intelligence
– reference: .
– start-page: 337
  year: 2010
  end-page: 360
  ident: b0050
  article-title: The sequential parameter optimization toolbox
  publication-title: Experimental methods for the analysis of optimization algorithms
– volume: Vol. 6238
  start-page: 728
  year: 2010
  end-page: 737
  ident: b0280
  article-title: Parameter tuning boosts performance of variation operators in multiobjective optimization
  publication-title: Parallel problem solving from nature XI
– year: 2005
  ident: b0150
  article-title: Stochastic local search—Foundations and applications
– reference: Stützle, T. (1997).
– reference: . Technical Report TR/IRIDIA/2012-012, IRIDIA, Université Libre de Bruxelles, Belgium.
– start-page: 161
  year: 2010
  end-page: 184
  ident: b0135
  article-title: Algorithm survival analysis
  publication-title: Experimental methods for the analysis of optimization algorithms
– year: 2004
  ident: b0105
  article-title: Ant colony optimization
– reference: . Technical Report AIDA-97-4, FG Intellektik, FB Informatik, TU Darmstadt, Germany, July 1997.
– volume: Vol. 197
  year: 2009
  ident: 10.1016/j.ejor.2013.10.043_b0055
  article-title: Tuning metaheuristics: A machine learning perspective
– volume: Vol. 7811
  start-page: 825
  year: 2013
  ident: 10.1016/j.ejor.2013.10.043_b0250
  article-title: Automatically improving the anytime behaviour of multiobjective evolutionary algorithms
– year: 2006
  ident: 10.1016/j.ejor.2013.10.043_b0045
– volume: 550
  start-page: 0 70
  issue: 2
  year: 2012
  ident: 10.1016/j.ejor.2013.10.043_b0145
  article-title: Programming by optimization
  publication-title: Communications of the ACM
  doi: 10.1145/2076450.2076469
– volume: 36
  start-page: 267
  year: 2009
  ident: 10.1016/j.ejor.2013.10.043_b0160
  article-title: ParamILS: An automatic algorithm configuration framework
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.2861
– volume: 160
  start-page: 0 861
  issue: 6
  year: 2012
  ident: 10.1016/j.ejor.2013.10.043_b0220
  article-title: The automatic design of multi-objective ant colony optimization algorithms
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2011.2182651
– ident: 10.1016/j.ejor.2013.10.043_b0255
– volume: 191
  start-page: 705
  year: 2008
  ident: 10.1016/j.ejor.2013.10.043_b0225
  article-title: Combining VNS with constraint programming for solving anytime optimization problems
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2006.12.062
– volume: 540
  start-page: 0 99
  issue: 1
  year: 2006
  ident: 10.1016/j.ejor.2013.10.043_b0010
  article-title: Fine-tuning of algorithms using fractional experimental design and local search
  publication-title: Operations Research
  doi: 10.1287/opre.1050.0243
– ident: 10.1016/j.ejor.2013.10.043_b0190
– volume: 30
  start-page: 0 257
  issue: 4
  year: 1999
  ident: 10.1016/j.ejor.2013.10.043_b0300
  article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto evolutionary algorithm
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.797969
– ident: 10.1016/j.ejor.2013.10.043_b0175
– ident: 10.1016/j.ejor.2013.10.043_b0095
– year: 1999
  ident: 10.1016/j.ejor.2013.10.043_b0080
– ident: 10.1016/j.ejor.2013.10.043_b0200
– volume: Vol. 4403
  start-page: 862
  year: 2007
  ident: 10.1016/j.ejor.2013.10.043_b0295
  article-title: The hypervolume indicator revisited: On the design of Pareto-compliant indicators via weighted integration
– year: 2005
  ident: 10.1016/j.ejor.2013.10.043_b0150
– volume: Vol. 1894
  start-page: 425
  year: 2000
  ident: 10.1016/j.ejor.2013.10.043_b0275
  article-title: Optimal anytime constrained simulated annealing for constrained global optimization
– start-page: 337
  year: 2010
  ident: 10.1016/j.ejor.2013.10.043_b0050
  article-title: The sequential parameter optimization toolbox
– start-page: 49
  year: 1988
  ident: 10.1016/j.ejor.2013.10.043_b0090
  article-title: An analysis of time-dependent planning
– start-page: 517
  year: 2009
  ident: 10.1016/j.ejor.2013.10.043_b0170
  article-title: SATenstein: Automatically building local search SAT solvers from components
– ident: 10.1016/j.ejor.2013.10.043_b0195
– start-page: 161
  year: 2010
  ident: 10.1016/j.ejor.2013.10.043_b0135
  article-title: Algorithm survival analysis
– ident: 10.1016/j.ejor.2013.10.043_b0180
– start-page: 1157
  year: 2006
  ident: 10.1016/j.ejor.2013.10.043_b0130
  article-title: An improved dimension-sweep algorithm for the hypervolume indicator
– start-page: 563
  year: 2009
  ident: 10.1016/j.ejor.2013.10.043_b0025
  article-title: Investigating and exploiting the bias of the weighted hypervolume to articulate user preferences
– start-page: 66
  year: 2000
  ident: 10.1016/j.ejor.2013.10.043_b0185
  article-title: Towards a universal test suite for combinatorial auction algorithms
– volume: 10
  start-page: 0 1
  issue: 1
  year: 2009
  ident: 10.1016/j.ejor.2013.10.043_b0005
  article-title: SCIP: Solving constraint integer programs
  publication-title: Mathematical Programming Computation
  doi: 10.1007/s12532-008-0001-1
– start-page: 1769
  year: 2005
  ident: 10.1016/j.ejor.2013.10.043_b0035
  article-title: A restart CMA evolution strategy with increasing population size
– start-page: 2197
  year: 2009
  ident: 10.1016/j.ejor.2013.10.043_b0110
  article-title: Using performance fronts for parameter setting of stochastic metaheuristics
– start-page: 103
  year: 2010
  ident: 10.1016/j.ejor.2013.10.043_b0140
  article-title: The attainment-function approach to stochastic multiobjective optimizer assessment and comparison
– ident: 10.1016/j.ejor.2013.10.043_b0075
– volume: 70
  start-page: 0 117
  issue: 2
  year: 2003
  ident: 10.1016/j.ejor.2013.10.043_b0305
  article-title: Performance assessment of multiobjective optimizers: an analysis and review
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2003.810758
– year: 2011
  ident: 10.1016/j.ejor.2013.10.043_b0155
  article-title: Sequential model-based optimization for general algorithm configuration
– volume: 160
  start-page: 889
  issue: 8
  year: 2000
  ident: 10.1016/j.ejor.2013.10.043_b0265
  article-title: MAX-MIN ant system
  publication-title: Future Generation Computer Systems
  doi: 10.1016/S0167-739X(00)00043-1
– volume: 70
  start-page: 77
  issue: 1
  year: 2001
  ident: 10.1016/j.ejor.2013.10.043_b0085
  article-title: Using experimental design to find effective parameter settings for heuristics
  publication-title: Journal of Heuristics
  doi: 10.1023/A:1026569813391
– volume: 425
  start-page: 0 75
  year: 2012
  ident: 10.1016/j.ejor.2013.10.043_b0030
  article-title: Hypervolume-based multiobjective optimization: Theoretical foundations and practical implications
  publication-title: Theoretical Computer Science
  doi: 10.1016/j.tcs.2011.03.012
– start-page: 11
  year: 2002
  ident: 10.1016/j.ejor.2013.10.043_b0060
  article-title: A racing algorithm for configuring metaheuristics 2002
– volume: 10
  start-page: 0 53
  issue: 1
  year: 1997
  ident: 10.1016/j.ejor.2013.10.043_b0100
  article-title: Ant colony system: A cooperative learning approach to the traveling salesman problem
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.585892
– volume: 170
  start-page: 0 73
  issue: 3
  year: 1996
  ident: 10.1016/j.ejor.2013.10.043_b0290
  article-title: Using anytime algorithms in intelligent systems
  publication-title: AI Magazine
– start-page: 209
  year: 2010
  ident: 10.1016/j.ejor.2013.10.043_b0210
  article-title: Exploratory analysis of stochastic local search algorithms in biobjective optimization
– start-page: 311
  year: 2010
  ident: 10.1016/j.ejor.2013.10.043_b0065
  article-title: F-race and iterated F-race: An overview
– volume: Vol. 4771
  start-page: 108
  year: 2007
  ident: 10.1016/j.ejor.2013.10.043_b0040
  article-title: Improvement strategies for the F-race algorithm: Sampling design and iterative refinement
– volume: 130
  start-page: 1120
  issue: 5
  year: 2009
  ident: 10.1016/j.ejor.2013.10.043_b0240
  article-title: Frankenstein’s PSO: A composite particle swarm optimization algorithm
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2009.2021465
– start-page: 191
  year: 2012
  ident: 10.1016/j.ejor.2013.10.043_b0270
  article-title: Parameter adaptation in ant colony optimization
– volume: 10
  start-page: 0 222
  issue: 3
  year: 2011
  ident: 10.1016/j.ejor.2013.10.043_b0285
  article-title: Research note: the point of diminishing returns in heuristic search
  publication-title: International Journal of Metaheuristics
  doi: 10.1504/IJMHEUR.2011.041195
– volume: Vol. 6238
  start-page: 728
  year: 2010
  ident: 10.1016/j.ejor.2013.10.043_b0280
  article-title: Parameter tuning boosts performance of variation operators in multiobjective optimization
– volume: 110
  start-page: 193
  issue: 1–5
  year: 1997
  ident: 10.1016/j.ejor.2013.10.043_b0230
  article-title: The racing algorithm: Model selection for lazy learners
  publication-title: Artificial Intelligence Research
  doi: 10.1023/A:1006556606079
– start-page: 183
  year: 2006
  ident: 10.1016/j.ejor.2013.10.043_b0245
  article-title: A method for parameter calibration and relevance estimation in evolutionary algorithms
– volume: 10
  start-page: 19
  issue: 1
  year: 2011
  ident: 10.1016/j.ejor.2013.10.043_b0125
  article-title: Parameter tuning for configuring and analyzing evolutionary algorithms
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2011.02.001
– volume: 90
  start-page: 0 527
  issue: 2
  year: 2009
  ident: 10.1016/j.ejor.2013.10.043_b0015
  article-title: Adaptive parameter control of evolutionary algorithms to improve quality-time trade-off
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2008.07.001
– start-page: 263
  year: 2011
  ident: 10.1016/j.ejor.2013.10.043_b0070
  article-title: Simultaneous tuning of metaheuristic parameters for various computing budgets
– volume: Vol. 7491
  start-page: 357
  year: 2012
  ident: 10.1016/j.ejor.2013.10.043_b0205
  article-title: On the anytime behavior of IPOP-CMA-ES
– start-page: 3823
  year: 2010
  ident: 10.1016/j.ejor.2013.10.043_b0235
  article-title: Pre-scheduled and adaptive parameter variation in MAX-MIN Ant System
– year: 2004
  ident: 10.1016/j.ejor.2013.10.043_b0105
– volume: Vol. 6234
  start-page: 95
  year: 2010
  ident: 10.1016/j.ejor.2013.10.043_b0215
  article-title: Automatic configuration of multi-objective ACO algorithms
– ident: 10.1016/j.ejor.2013.10.043_b0260
– start-page: 19
  year: 2007
  ident: 10.1016/j.ejor.2013.10.043_b0120
  article-title: Parameter control in evolutionary algorithms
– volume: Vol. 5732
  start-page: 142
  year: 2009
  ident: 10.1016/j.ejor.2013.10.043_b0020
  article-title: A gender-based genetic algorithm for the automatic configuration of algorithms
– start-page: 2019
  year: 2011
  ident: 10.1016/j.ejor.2013.10.043_b0115
  article-title: Automatic configuration of state-of-the-art multi-objective optimizers using the TP+PLS framework
– ident: 10.1016/j.ejor.2013.10.043_b0165
SSID ssj0001515
Score 2.4224172
Snippet •A method to automatically improve the anytime behaviour of optimisation algorithms.•Anytime behaviour is evaluated by the hypervolume...
Optimisation algorithms with good anytime behaviour try to return as high-quality solutions as possible independently of the computation time allowed....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 569
SubjectTerms Algorithms
Anytime algorithms
Automatic configuration
Automation
Computation
Integer programming
Mathematical models
Metaheuristics
Offline tuning
Optimization
Optimization algorithms
Source code
Studies
Tradeoff analysis
Tradeoffs
Tuning
Title Automatically improving the anytime behaviour of optimisation algorithms
URI https://dx.doi.org/10.1016/j.ejor.2013.10.043
https://www.proquest.com/docview/1502746226
https://www.proquest.com/docview/1685807845
Volume 235
WOSCitedRecordID wos000332999500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6860
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001515
  issn: 0377-2217
  databaseCode: AIEXJ
  dateStart: 19950105
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWFiE4FFhAXSjISNyqrPJynByXqlWLSoXUIu0tSmIbugrJaptUba_8cWZiO91uSwVIXKzIeXvG4_E8viHkA-MKtPgcJhKTkRNyaGI_UQ5i24kcCB6IDsT1kB8dxdNp8mUw-GlzYc5LXlXxxUUy_6-khj4gNqbO_gW5-4dCBxwD0aEFskP7R4SftE3d4bBmZXmJWZDGaIAaJsx8LCZvk_PbzkVQg9T4YaJ6trPyW704bb4bEPO7bPZGf4WOhbUkGsig3rR8iP73j8FcXjkHeeeL97oeT9urP2dVK_vQjuOmO7fTXOnQ5qWYJWOO8EIMm9LZktpGditPRudmce74vs7SHEstamPuO1GsqwlYWexr7BLDdMGSZGW6ootZpJmuWHRL_mtTxGwsZzWCvXrBGEP3NBDUCq72MX4UfhM69OIo4g_Ius9ZAtJ9fXKwO_3UL-io83XOKPMTJvdKhwmuvul3-s3KSt-pLyfPyIbZd9CJ5pfnZCCrIXlk0x6G5Kkt70GNtB-SJ0tYlS_I_g2-oj1fUeAraviK9nxFa0WX-Ype89VL8nVv92Rn3zFlOJwiZEnjgMasuGLKZTLPpJsLxaVMlFSeypgrQuEpwZI8gq1CJL3AL6K4EEwJEPVKYN72K7JW1ZXcJDTgQcQyyXnG3ZC7KocVJAtUkcRFIKQnRsSzg5cWBqMeS6WUqQ1GnKU44CkOOPbBgI_Idn_PXCO03Hs1szRJjY6pdccUWOje-7YsAVMz1c5S2Ez5PIxgBzMi7_vTMLLodMsqWbdwDRZ4AD08ZK__8dVvyOPribZF1ppFK9-Sh8V5c3q2eGeY9RdDHrcv
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatically+improving+the+anytime+behaviour+of+optimisation+algorithms&rft.jtitle=European+journal+of+operational+research&rft.au=L%C3%B3pez-Ib%C3%A1%C3%B1ez%2C+Manuel&rft.au=St%C3%BCtzle%2C+Thomas&rft.date=2014-06-16&rft.pub=Elsevier+B.V&rft.issn=0377-2217&rft.eissn=1872-6860&rft.volume=235&rft.issue=3&rft.spage=569&rft.epage=582&rft_id=info:doi/10.1016%2Fj.ejor.2013.10.043&rft.externalDocID=S0377221713008667
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon