Predicting the Risk of Chronic Kidney Disease (CKD) Using Machine Learning Algorithm

Background: Creatinine is a type of metabolite of blood that is strongly correlated to glomerular filtration rate (GFR). As measuring GFR is difficult, creatinine value is used for indirectly determining GFR and then the stage of chronic kidney disease (CKD). Adding a creatinine test into routine he...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied Sciences Ročník 11; číslo 1; s. 202
Hlavní autori: Wang, Weilun, Chakraborty, Goutam, Chakraborty, Basabi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.01.2021
Predmet:
ISSN:2076-3417, 2076-3417
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Background: Creatinine is a type of metabolite of blood that is strongly correlated to glomerular filtration rate (GFR). As measuring GFR is difficult, creatinine value is used for indirectly determining GFR and then the stage of chronic kidney disease (CKD). Adding a creatinine test into routine health examination could detect CKD. As more items for comprehensive examination means higher cost, creatinine testing is not included in the routine health examination in many countries. An algorithm based on common test results, without creatinine test, to evaluate the risk of CKD will increase the chance of its early detection and treatment. Methods: In this study, we used open source data containing 1 million samples. These data contain 23 health-related features, including common diagnostic test results provided by National Health Insurance Sharing Service (NHISS). A low GFR indicates possible chronic kidney disease (CKD). As is commonly accepted in the medical community, a GFR of 60 mL/min is used as the threshold, below which is considered to have CKD. In this study, the first step aims to build a regression model to predict the value of creatinine from 23 features, and then combine the predicted value of creatinine with the original 23 features to evaluate the risk of CKD. We will show by simulation that by the proposed method we can achieve better prediction results compared to direct prediction from 23 features. The data is extremely unbalanced for predicting the target variable creatinine. We used undersampling method and proposed a new cost-sensitive mean-squared error (MSE) loss function to deal with the problem. Regrading model selection, this work used three machine learning models: a bagging tree model named Random Forest, a boosting tree model named XGBoost, and a neural network based model named ResNet. To improve the result of the creatinine predictor, we averaged results from eight predictors, a method known as ensemble learning. Finally, the predicted creatinine and the original 23 features is used to predict the risk of CKD. Results: We optimized results of R-Squared (R2) value to select the appropriate undersampling strategy and the regression model for the regression stage of creatinine prediction. Ensembled model achieved the best performance of R2 of 0.5590. The six factors from 23 are selected from the top of the list of how strongly they affect the creatinine value. They are sex, age, hemoglobin, the level of urine protein, waist circumference, and habit of smoking. Using the predicted value of creatinine, an area under Receiver Operating Characteristic curve (AUC) of 0.76 is achieved while classifying samples for CKD. Conclusions: Using commonly available health parameters, the proposed system can assess the risk of CKD for public health. High-risk subjects can be screened and advised to take a creatinine test for further confirmation. In this way, we can reduce the impact of CKD on public health and facilitate early detection for many, where a blanket test of creatinine is not available for all.
AbstractList Background: Creatinine is a type of metabolite of blood that is strongly correlated to glomerular filtration rate (GFR). As measuring GFR is difficult, creatinine value is used for indirectly determining GFR and then the stage of chronic kidney disease (CKD). Adding a creatinine test into routine health examination could detect CKD. As more items for comprehensive examination means higher cost, creatinine testing is not included in the routine health examination in many countries. An algorithm based on common test results, without creatinine test, to evaluate the risk of CKD will increase the chance of its early detection and treatment. Methods: In this study, we used open source data containing 1 million samples. These data contain 23 health-related features, including common diagnostic test results provided by National Health Insurance Sharing Service (NHISS). A low GFR indicates possible chronic kidney disease (CKD). As is commonly accepted in the medical community, a GFR of 60 mL/min is used as the threshold, below which is considered to have CKD. In this study, the first step aims to build a regression model to predict the value of creatinine from 23 features, and then combine the predicted value of creatinine with the original 23 features to evaluate the risk of CKD. We will show by simulation that by the proposed method we can achieve better prediction results compared to direct prediction from 23 features. The data is extremely unbalanced for predicting the target variable creatinine. We used undersampling method and proposed a new cost-sensitive mean-squared error (MSE) loss function to deal with the problem. Regrading model selection, this work used three machine learning models: a bagging tree model named Random Forest, a boosting tree model named XGBoost, and a neural network based model named ResNet. To improve the result of the creatinine predictor, we averaged results from eight predictors, a method known as ensemble learning. Finally, the predicted creatinine and the original 23 features is used to predict the risk of CKD. Results: We optimized results of R-Squared (R2) value to select the appropriate undersampling strategy and the regression model for the regression stage of creatinine prediction. Ensembled model achieved the best performance of R2 of 0.5590. The six factors from 23 are selected from the top of the list of how strongly they affect the creatinine value. They are sex, age, hemoglobin, the level of urine protein, waist circumference, and habit of smoking. Using the predicted value of creatinine, an area under Receiver Operating Characteristic curve (AUC) of 0.76 is achieved while classifying samples for CKD. Conclusions: Using commonly available health parameters, the proposed system can assess the risk of CKD for public health. High-risk subjects can be screened and advised to take a creatinine test for further confirmation. In this way, we can reduce the impact of CKD on public health and facilitate early detection for many, where a blanket test of creatinine is not available for all.
Author Weilun Wang
Goutam Chakraborty
Basabi Chakraborty
Author_xml – sequence: 1
  givenname: Weilun
  orcidid: 0000-0002-8864-4374
  surname: Wang
  fullname: Wang, Weilun
– sequence: 2
  givenname: Goutam
  surname: Chakraborty
  fullname: Chakraborty, Goutam
– sequence: 3
  givenname: Basabi
  surname: Chakraborty
  fullname: Chakraborty, Basabi
BackLink https://cir.nii.ac.jp/crid/1873962440910424448$$DView record in CiNii
BookMark eNptkV9rVDEQxS9Swdr2yS8Q0AelbM3k_30sW62lK4q0zyE3mexm3Sbb5Pah3967roUinYeZYfjN4cB52x3kkrHr3gE947ynn912C0CBMspedYeMajXjAvTBs_1Nd9Lamk7VAzdAD7ubnxVD8mPKSzKukPxK7TcpkcxXteTkyXUKGR_JRWroGpKP8-uLT-S27fDvzq9SRrJAV_PucL5ZlprG1d1x9zq6TcOTf_Oou_365Wb-bbb4cXk1P1_MvJD9OFOMByF67SFiNEGC9DEY8AP1SkVppFMRwRmvgwtMDwqM04DRIzLBUPGj7mqvG4pb221Nd64-2uKS_XsodWldHZPfoHXKRIaSM--94AMMZsCoJA-DUbEHN2m932tta7l_wDbadXmoebJvmZS9AKY1TBTsKV9LaxWj9Wl0Yyp5rC5tLFC7y8I-y2L6Of3v58npy_SHPZ1TmsR3HYzmvWJCTKlRMU1h-B_u2pUR
CitedBy_id crossref_primary_10_3390_diagnostics13233548
crossref_primary_10_1016_j_asr_2024_11_013
crossref_primary_10_1016_j_dajour_2023_100169
crossref_primary_10_1016_j_renene_2024_121311
crossref_primary_10_1016_j_eswa_2023_119851
crossref_primary_10_3390_app142210085
crossref_primary_10_3389_frai_2023_1230649
crossref_primary_10_13005_bpj_2264
crossref_primary_10_1155_2023_3553216
crossref_primary_10_3390_coatings15030325
crossref_primary_10_3390_s22145365
crossref_primary_10_1155_2023_3140270
crossref_primary_10_3390_s22145304
crossref_primary_10_2196_43734
crossref_primary_10_7717_peerj_cs_2291
crossref_primary_10_3390_su16135779
crossref_primary_10_1007_s44174_023_00133_5
crossref_primary_10_3390_app11115071
crossref_primary_10_3390_healthcare10122496
crossref_primary_10_48047_5c8ppz07
crossref_primary_10_1007_s12040_023_02210_1
crossref_primary_10_1016_j_csbr_2024_100013
crossref_primary_10_1038_s41598_025_88631_y
crossref_primary_10_1080_15564886_2024_2398588
crossref_primary_10_1016_j_health_2025_100398
crossref_primary_10_1186_s12882_025_03972_0
crossref_primary_10_3390_s22134670
crossref_primary_10_1007_s11227_023_05337_6
crossref_primary_10_1016_j_ijbiomac_2025_140954
crossref_primary_10_54393_pjhs_v6i8_3286
crossref_primary_10_1109_ACCESS_2021_3129491
crossref_primary_10_1186_s40001_025_02680_7
crossref_primary_10_13005_bpj_2979
crossref_primary_10_3390_app122312001
crossref_primary_10_1016_j_intimp_2021_108154
crossref_primary_10_1016_j_sbsr_2024_100697
crossref_primary_10_1155_2022_7176261
crossref_primary_10_1016_j_procs_2023_12_108
Cites_doi 10.7326/0003-4819-158-11-201306040-00007
10.1186/s12882-017-0497-6
10.1016/j.imu.2019.100178
10.1038/s41746-019-0104-2
10.1159/000489897
10.14257/ijmue.2017.12.8.03
10.3390/e22020193
10.1145/2939672.2939785
10.1016/j.neunet.2018.07.011
10.1038/ki.2011.368
10.1109/ICHI.2016.36
10.35940/ijitee.L3572.1081219
10.1214/aos/1013203451
10.1016/j.compbiomed.2019.04.017
10.14569/IJACSA.2019.0100813
ContentType Journal Article
Copyright 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID RYH
AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app11010202
DatabaseName CiNii Complete
CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Sciences (General)
Physics
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_a68f2e532ccc43b1b8bef653db86f91a
10_3390_app11010202
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
RYH
TUS
AAYXX
CITATION
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c459t-623d4497c1fef8d515cfd81cb0c66f585a6fe1a8c7dad27b618a71efcee242e63
IEDL.DBID DOA
ISICitedReferencesCount 40
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000605830900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Tue Oct 14 18:59:18 EDT 2025
Mon Jun 30 07:37:05 EDT 2025
Sat Nov 29 07:09:29 EST 2025
Tue Nov 18 20:58:01 EST 2025
Mon Nov 10 09:16:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-623d4497c1fef8d515cfd81cb0c66f585a6fe1a8c7dad27b618a71efcee242e63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8864-4374
OpenAccessLink https://doaj.org/article/a68f2e532ccc43b1b8bef653db86f91a
PQID 2559412771
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_a68f2e532ccc43b1b8bef653db86f91a
proquest_journals_2559412771
crossref_citationtrail_10_3390_app11010202
crossref_primary_10_3390_app11010202
nii_cinii_1873962440910424448
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied Sciences
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Stevens (ref_1) 2013; 158
ref_14
Rady (ref_9) 2019; 15
ref_13
Bikbov (ref_2) 2018; 139
Couser (ref_3) 2011; 80
ref_12
Kumar (ref_8) 2016; 5
Chimwayi (ref_10) 2017; 12
Liaw (ref_15) 2002; 2
ref_18
ref_17
Buda (ref_19) 2017; 106
ref_16
Kuo (ref_6) 2019; 2
Almansour (ref_11) 2019; 109
ref_5
ref_4
ref_7
References_xml – volume: 5
  start-page: 24
  year: 2016
  ident: ref_8
  article-title: Prediction of chronic kidney disease using random forest machine learning algorithm
  publication-title: Int. J. Comput. Sci. Mob. Comput.
– volume: 158
  start-page: 825
  year: 2013
  ident: ref_1
  article-title: Evaluation and management of chronic kidney disease: Synopsis of the kidney disease: Improving global outcomes 2012 clinical practice guideline
  publication-title: Ann. Intern. Med.
  doi: 10.7326/0003-4819-158-11-201306040-00007
– ident: ref_4
– ident: ref_5
  doi: 10.1186/s12882-017-0497-6
– volume: 15
  start-page: 100178
  year: 2019
  ident: ref_9
  article-title: Prediction of kidney disease stages using data mining algorithms
  publication-title: Inform. Med. Unlocked
  doi: 10.1016/j.imu.2019.100178
– volume: 2
  start-page: 1
  year: 2019
  ident: ref_6
  article-title: Automation of the kidney function prediction and classification through ultrasound-based kidney imaging using deep learning
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-019-0104-2
– volume: 139
  start-page: 313
  year: 2018
  ident: ref_2
  article-title: Disparities in chronic kidney disease prevalence among males and females in 195 countries: Analysis of the Global Burden of Disease 2016 Study
  publication-title: Nephron
  doi: 10.1159/000489897
– volume: 12
  start-page: 23
  year: 2017
  ident: ref_10
  article-title: Risk Level Prediction of Chronic Kidney Disease Using Neuro-Fuzzy and Hierarchical Clustering Algorithm (s)
  publication-title: Int. J. Multimedia Ubiq. Eng.
  doi: 10.14257/ijmue.2017.12.8.03
– ident: ref_17
  doi: 10.3390/e22020193
– ident: ref_14
– ident: ref_16
  doi: 10.1145/2939672.2939785
– volume: 106
  start-page: 249
  year: 2017
  ident: ref_19
  article-title: A systematic study of the class imbalance problem in convolutional neural networks
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2018.07.011
– volume: 80
  start-page: 1258
  year: 2011
  ident: ref_3
  article-title: The contribution of chronic kidney disease to the global burden of major noncommunicable diseases
  publication-title: Kidney Int.
  doi: 10.1038/ki.2011.368
– ident: ref_12
  doi: 10.1109/ICHI.2016.36
– ident: ref_7
  doi: 10.35940/ijitee.L3572.1081219
– volume: 2
  start-page: 18
  year: 2002
  ident: ref_15
  article-title: Classification and regression by randomForest
  publication-title: R News
– ident: ref_18
  doi: 10.1214/aos/1013203451
– volume: 109
  start-page: 101
  year: 2019
  ident: ref_11
  article-title: Neural network and support vector machine for the prediction of chronic kidney disease: A comparative study
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.04.017
– ident: ref_13
  doi: 10.14569/IJACSA.2019.0100813
SSID ssj0000913810
ssib023169898
ssib045317060
ssib045318793
ssib045318197
ssib045321406
ssib045321407
ssib045316253
ssib030194696
ssib045320369
ssib045316688
ssib045318623
ssib045318831
ssib045321377
ssib045320582
ssib045318927
Score 2.4822829
Snippet Background: Creatinine is a type of metabolite of blood that is strongly correlated to glomerular filtration rate (GFR). As measuring GFR is difficult,...
SourceID doaj
proquest
crossref
nii
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 202
SubjectTerms Age
Algorithms
Biology (General)
Blood pressure
Chemistry
chronic kidney disease
Classification
creatine
Creatinine
Datasets
Decision trees
Diabetes
Engineering (General). Civil engineering (General)
ensemble learning
Hypertension
Kidney diseases
Machine learning
Neural networks
Physics
QC1-999
QD1-999
QH301-705.5
regression
T
TA1-2040
Technology
unbalanced data
Variables
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BlgMcWlpAbB_Ihx5apIi149jOCfWpSlVXq6pIvUV-LhElWzZLpf57PIl3qQTiwiUHxwdLM_b3eWb8DcC-xKft3KCetmEZd4XLTMTtjBkU61JuNNJ9swk5Hqvb23KSAm5tKqtcnondQe1mFmPkn5D6csqkpJ_vf2TYNQqzq6mFxnNYQ6UyPoC147Px5HoVZUHVS0VH_cO8PN7vMS8cES_CagqkLKGoU-yPANPU9R_Hcoc15xv_u8rXsJ5YJjnq3WITnvlmC1490R7cgs20q1tykKSnD9_AzWSOiRsshSaRGZLruv1GZoEkCV1yWbvGP5LTPqtDDk4uTw9JV3VArrqqTE-SYOuUHN1N48oWX7-_hS_nZzcnF1nqu5BZXpSLLDIix3kpLQ0-KBcZjw1OUWtGVogQ7xdaBE-1stJpx6QRVGlJfYh4GwHfi_wdDJpZ498DsSUtgiq9LkPggVutRGSIxjMnmWM-DOHj0gSVTaLk2BvjroqXE7RX9cReQ9hfTb7vtTj-Pu0YbbmaggLa3cBsPq3Sfqy0UIH5ImfWWp4bapTxQRS5M0qEkuoh7EVPiGvCL1UyL0UkQkiu8GUgV0PYXTpAlXZ9W_22_va_f-_AS4a1MV0oZxcGi_lPvwcv7MOibucfkhP_AreW-EY
  priority: 102
  providerName: ProQuest
Title Predicting the Risk of Chronic Kidney Disease (CKD) Using Machine Learning Algorithm
URI https://cir.nii.ac.jp/crid/1873962440910424448
https://www.proquest.com/docview/2559412771
https://doaj.org/article/a68f2e532ccc43b1b8bef653db86f91a
Volume 11
WOSCitedRecordID wos000605830900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5C2kN7CE3S0m2ToEMOScF0Jct6HPOkJWQxIYX0ZKxXYpp6y-6mkH-fkawNCy300otBRgcxGun7Rhp9A7Av49N2bqKetmEFd5UrDOJ2wUwU61JuPG6HYhNyMlE3N7peKfUVc8IGeeDBcJ9boQLzVcmstbw01Cjjg6hKZ5QImiZqhKxnJZhKe7CmUbpqeJBXYlwf74MR6RBO8wHKEoKSUj8CS991f2zHCWPO38BGJofkaBjUJqz5fgter0gGbsFmXoxzcpAVow-34bqexfuWmMFMkNCRq27-g0wDycq35KJzvX8kp8NlDDk4uTg9JClZgFymZEpPss7qLTm6v53OusXdz7fw7fzs-uRLkcslFJZXelEgkXGca2lp8EE5JCo2OEWtGVshAoYFrQietspK1zomjaCqldQHhEnEaS_Kd7DeT3v_HojVtApK-1aHwAO3rRJI7IxnTjLHfBjBp6UFG5u1xGNJi_sGY4po7mbF3CPYf-78a5DQ-Hu34zgVz12i7nX6gd7QZG9o_uUNI9jFicQxxS9VstQC-UvkRPFBH1cj2FlOcZMX67yJURWnTEr64X-M4SO8YjHxJZ3T7MD6Yvbgd-Gl_b3o5rM9eHF8Nqmv9pK_Yqv-ell_fwJCVu1h
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFH4aHRJwADZAFDbwYUgbUkTsOLZzQGisTKu6VhUq0jhl8a8u2khHW0D7p_gbsROnTAJx24FLDokVJfaX9708v_c9gB3uS9up9HrakkRUpzqSjrcjIr1Yl9BxXDTNJvhoJE5OsvEa_GxrYXxaZWsTa0OtZ8rHyN9415diwjl-d_k18l2j_O5q20KjgcXAXP1wv2yLt_2eW99XhBx-mBwcRaGrQKRomi0jx_ea0owrbI0V2vG5slpgJWPFmHXec8GswYVQXBeacMmwKDg21rGJozPDEnffW7BOHdhFB9bH_eH48yqq41U2BY6bQsAkyWK_D-0Y1tF4CNy01Fd3CHCEVpXlHzRQc9vhg_9tVh7C_eBFo_0G9huwZqpNuHdNW3ETNoLVWqDdIK299wgm47nfmPKp3sh5vuhjuThHM4uCRDAalLoyV6jX7Fqh3YNBbw_VWRVoWGedGhQEaado_2LqZmJ59uUxfLqRd30CnWpWmaeAVIZTKzJTZNZSS1UhmPOApSGaE02M7cLrdslzFUTXfe-Pi9z9fHl85Nfw0YWd1eDLRmvk78Pee-yshniB8PrEbD7Ng73JCyYsMWlClFI0kVgKaSxLEy0FsxkuurDtkOeeyR-x4EnGnKPnnUdf-UhFF7ZawOXBqi3y32h79u_LL-HO0WR4nB_3R4PncJf4PKA6bLUFneX8m9mG2-r7slzMX4QPCMHpTaPzF_E2WC0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VFiE4AC0gFlrwoUgtUtTYcRLngFDpsmK1dBWhIpVTiL-WiJItmwXUv8avY5w4SyUQtx645JBYUWI_zxvbM28AdlOX2s6l09OWLOA61oFE3g6YdGJdQodh2RWbSKdTcXqa5Wvws8-FcWGVvU1sDbWeK7dHfuBcX05ZmtID68Mi8uHo5fnXwFWQcietfTmNDiITc_EDl2_Ni_EQx_oZY6PXJ0dvAl9hIFA8zpYBcr_mPEsVtcYKjdyurBZUyVAliUVPukysoaVQqS41S2VCRZlSY5FZkNpMEuF7r8EGuuQc59hGPj7OP6x2eJzipqBhlxQYRVnozqSRbZHS_SZOT4NttQAkt7qq_qCEludGd_7nHroLt713TQ676bAJa6begluXNBe3YNNbs4bsecnt_Xtwki_cgZULASfoEZN3VfOZzC3x0sFkUunaXJBhd5pF9o4mw33SRluQ4zYa1RAvVDsjh2cz7Inlpy_34f2V_OsDWK_ntXkIRGU0tiIzZWYtt1yVIkHPWBqmU6aZsQN43g9_obwYu6sJclbgosxhpbiElQHsrhqfdxokf2_2yuFo1cQJh7c35otZ4e1QUSbCMhNHTCnFI0mlkMYmcaSlSGxGywHsIArxm9yVijTKEnQAnVPpMiK5GMB2D77CW7um-I28R_9-_BRuICSLt-Pp5DHcZC48qN3N2ob15eKb2YHr6vuyahZP_Fwi8PGqwfkLkvJg7Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+the+Risk+of+Chronic+Kidney+Disease+%28CKD%29+Using+Machine+Learning+Algorithm&rft.jtitle=Applied+sciences&rft.au=Weilun+Wang&rft.au=Goutam+Chakraborty&rft.au=Basabi+Chakraborty&rft.date=2021-01-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=11&rft.issue=1&rft.spage=202&rft_id=info:doi/10.3390%2Fapp11010202&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a68f2e532ccc43b1b8bef653db86f91a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon