Tumor Associated Neutrophils. Their Role in Tumorigenesis, Metastasis, Prognosis and Therapy

Tumor Associated Neutrophils (TANs) are engaged into the tumor microenvironment by cytokines and chemokines, can be distinguished according to their activation and cytokine status and effects on tumor cell growing in N1 and N2 TANs. N1 TANs exert an antitumor activity, by direct or indirect cytotoxi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Frontiers in oncology Ročník 9; s. 1146
Hlavní autoři: Masucci, Maria Teresa, Minopoli, Michele, Carriero, Maria Vincenza
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland Frontiers Media S.A 15.11.2019
Témata:
ISSN:2234-943X, 2234-943X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Tumor Associated Neutrophils (TANs) are engaged into the tumor microenvironment by cytokines and chemokines, can be distinguished according to their activation and cytokine status and effects on tumor cell growing in N1 and N2 TANs. N1 TANs exert an antitumor activity, by direct or indirect cytotoxicity. N2 TANs stimulate immunosuppression, tumor growth, angiogenesis and metastasis by DNA instability, or by cytokines and chemokines release. In tumor patients, either a high number of TANs and Neutrophil-to-Lymphocyte Ratio (NLR) do correlate with poor prognosis, and, so far, TAN counts and NLR can be regarded as biomarkers. Owing to the pivotal role of TANs in stimulating tumor progression, therapeutic strategies to target TANs have been suggested, and two major approaches have been proposed: (a) targeting the CXCL-8/CXCR-1/CXCR-2 axis, thereby blocking TANs or (b) targeting substances produced by polymorpho-nuclear cells that promote tumor growth. Many studies have been accomplished either and in animal models, whereas clinical studies are restrained, presently, due to the risk of inducing immunosuppression. In this review, we deeply discuss the anti-tumorigenic or pro-tumorigenic activity of TANs. In particular, TANs relevance in tumor prognosis and therapeutic strategies are widely described. On-going clinical trials, aimed to inhibit neutrophil recruitment into the tumor are also accurately debated.
AbstractList Tumor Associated Neutrophils (TANs) are engaged into the tumor microenvironment by cytokines and chemokines, can be distinguished according to their activation and cytokine status and effects on tumor cell growing in N1 and N2 TANs. N1 TANs exert an antitumor activity, by direct or indirect cytotoxicity. N2 TANs stimulate immunosuppression, tumor growth, angiogenesis and metastasis by DNA instability, or by cytokines and chemokines release. In tumor patients, either a high number of TANs and Neutrophil-to-Lymphocyte Ratio (NLR) do correlate with poor prognosis, and, so far, TAN counts and NLR can be regarded as biomarkers. Owing to the pivotal role of TANs in stimulating tumor progression, therapeutic strategies to target TANs have been suggested, and two major approaches have been proposed: (a) targeting the CXCL-8/CXCR-1/CXCR-2 axis, thereby blocking TANs or (b) targeting substances produced by polymorpho-nuclear cells that promote tumor growth. Many studies have been accomplished either in vitro and in animal models, whereas clinical studies are restrained, presently, due to the risk of inducing immunosuppression. In this review, we deeply discuss the anti-tumorigenic or pro-tumorigenic activity of TANs. In particular, TANs relevance in tumor prognosis and in vitro therapeutic strategies are widely described. On-going clinical trials, aimed to inhibit neutrophil recruitment into the tumor are also accurately debated.
Tumor Associated Neutrophils (TANs) are engaged into the tumor microenvironment by cytokines and chemokines, can be distinguished according to their activation and cytokine status and effects on tumor cell growing in N1 and N2 TANs. N1 TANs exert an antitumor activity, by direct or indirect cytotoxicity. N2 TANs stimulate immunosuppression, tumor growth, angiogenesis and metastasis by DNA instability, or by cytokines and chemokines release. In tumor patients, either a high number of TANs and Neutrophil-to-Lymphocyte Ratio (NLR) do correlate with poor prognosis, and, so far, TAN counts and NLR can be regarded as biomarkers. Owing to the pivotal role of TANs in stimulating tumor progression, therapeutic strategies to target TANs have been suggested, and two major approaches have been proposed: (a) targeting the CXCL-8/CXCR-1/CXCR-2 axis, thereby blocking TANs or (b) targeting substances produced by polymorpho-nuclear cells that promote tumor growth. Many studies have been accomplished either and in animal models, whereas clinical studies are restrained, presently, due to the risk of inducing immunosuppression. In this review, we deeply discuss the anti-tumorigenic or pro-tumorigenic activity of TANs. In particular, TANs relevance in tumor prognosis and therapeutic strategies are widely described. On-going clinical trials, aimed to inhibit neutrophil recruitment into the tumor are also accurately debated.
Tumor Associated Neutrophils (TANs) are engaged into the tumor microenvironment by cytokines and chemokines, can be distinguished according to their activation and cytokine status and effects on tumor cell growing in N1 and N2 TANs. N1 TANs exert an antitumor activity, by direct or indirect cytotoxicity. N2 TANs stimulate immunosuppression, tumor growth, angiogenesis and metastasis by DNA instability, or by cytokines and chemokines release. In tumor patients, either a high number of TANs and Neutrophil-to-Lymphocyte Ratio (NLR) do correlate with poor prognosis, and, so far, TAN counts and NLR can be regarded as biomarkers. Owing to the pivotal role of TANs in stimulating tumor progression, therapeutic strategies to target TANs have been suggested, and two major approaches have been proposed: (a) targeting the CXCL-8/CXCR-1/CXCR-2 axis, thereby blocking TANs or (b) targeting substances produced by polymorpho-nuclear cells that promote tumor growth. Many studies have been accomplished either in vitro and in animal models, whereas clinical studies are restrained, presently, due to the risk of inducing immunosuppression. In this review, we deeply discuss the anti-tumorigenic or pro-tumorigenic activity of TANs. In particular, TANs relevance in tumor prognosis and in vitro therapeutic strategies are widely described. On-going clinical trials, aimed to inhibit neutrophil recruitment into the tumor are also accurately debated.Tumor Associated Neutrophils (TANs) are engaged into the tumor microenvironment by cytokines and chemokines, can be distinguished according to their activation and cytokine status and effects on tumor cell growing in N1 and N2 TANs. N1 TANs exert an antitumor activity, by direct or indirect cytotoxicity. N2 TANs stimulate immunosuppression, tumor growth, angiogenesis and metastasis by DNA instability, or by cytokines and chemokines release. In tumor patients, either a high number of TANs and Neutrophil-to-Lymphocyte Ratio (NLR) do correlate with poor prognosis, and, so far, TAN counts and NLR can be regarded as biomarkers. Owing to the pivotal role of TANs in stimulating tumor progression, therapeutic strategies to target TANs have been suggested, and two major approaches have been proposed: (a) targeting the CXCL-8/CXCR-1/CXCR-2 axis, thereby blocking TANs or (b) targeting substances produced by polymorpho-nuclear cells that promote tumor growth. Many studies have been accomplished either in vitro and in animal models, whereas clinical studies are restrained, presently, due to the risk of inducing immunosuppression. In this review, we deeply discuss the anti-tumorigenic or pro-tumorigenic activity of TANs. In particular, TANs relevance in tumor prognosis and in vitro therapeutic strategies are widely described. On-going clinical trials, aimed to inhibit neutrophil recruitment into the tumor are also accurately debated.
Author Masucci, Maria Teresa
Carriero, Maria Vincenza
Minopoli, Michele
AuthorAffiliation Tumor Progression Unit, Department of Experimental Oncology, Istituto Nazionale Tumori Fondazione “G. Pascale” IRCCS , Naples , Italy
AuthorAffiliation_xml – name: Tumor Progression Unit, Department of Experimental Oncology, Istituto Nazionale Tumori Fondazione “G. Pascale” IRCCS , Naples , Italy
Author_xml – sequence: 1
  givenname: Maria Teresa
  surname: Masucci
  fullname: Masucci, Maria Teresa
– sequence: 2
  givenname: Michele
  surname: Minopoli
  fullname: Minopoli, Michele
– sequence: 3
  givenname: Maria Vincenza
  surname: Carriero
  fullname: Carriero, Maria Vincenza
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31799175$$D View this record in MEDLINE/PubMed
BookMark eNp1Us1rFDEUD1Kxde3Zm8zRg7tNJpPM5CKUYrVQP5AVPAjhbfJmN2U2WZOM0P--md1aWsEQyHvJ7yPwfi_JkQ8eCXnN6ILzTp31wZtFTZlaUMYa-Yyc1DVv5qrhP48e1cfkNKUbWpYUlFH-ghxz1irFWnFCfi3HbYjVeUrBOMhoqy845hh2GzekRbXcoIvV9zBg5Xy1x7o1ekwuvas-Y4ZU9lR_i2HtQykr8HaiRdjdviLPexgSnt6fM_Lj8sPy4tP8-uvHq4vz67lphMpzgUZ2LbYM6pb3VLVgBV_JnnPT1Ih9o6SCVqqW9mBX1tgOZCcKxKgVBUX5jFwddG2AG72LbgvxVgdwen8R4lpDzM4MqGXX1YICWi77ppOso5bzyVQaYH1pZuT9QWs3rrZoDfocYXgi-vTFu41ehz9FuW3KFIrA23uBGH6PmLLeumRwGMBjGJOuec2kFHWxnZE3j70eTP6OpwDODgATQ0oR-wcIo3rKgJ4yoKcM6H0GCkP8wzAuQ3Zh-qwb_su7A3Hht2U
CitedBy_id crossref_primary_10_1016_j_bjoms_2023_03_012
crossref_primary_10_1002_iid3_379
crossref_primary_10_1039_D4NR01740D
crossref_primary_10_1097_MD_0000000000043024
crossref_primary_10_1186_s12964_023_01424_6
crossref_primary_10_1016_j_smim_2025_101931
crossref_primary_10_3390_cancers13112771
crossref_primary_10_3390_jcm10225273
crossref_primary_10_3389_fimmu_2024_1506236
crossref_primary_10_1038_s41392_023_01528_y
crossref_primary_10_1016_j_acuro_2022_12_006
crossref_primary_10_1158_1078_0432_CCR_18_0900
crossref_primary_10_1097_CM9_0000000000002919
crossref_primary_10_1186_s12964_023_01337_4
crossref_primary_10_1007_s00270_022_03288_8
crossref_primary_10_1016_j_canlet_2025_217865
crossref_primary_10_3390_cells10030627
crossref_primary_10_1002_cam4_4295
crossref_primary_10_1002_cam4_70960
crossref_primary_10_1002_cyto_a_24788
crossref_primary_10_1186_s12894_020_00665_8
crossref_primary_10_3390_cancers14071681
crossref_primary_10_3390_cells14060403
crossref_primary_10_1016_j_ejmech_2021_113812
crossref_primary_10_1002_adhm_202302714
crossref_primary_10_2147_IJGM_S312277
crossref_primary_10_1016_j_biopha_2024_117474
crossref_primary_10_3389_fcell_2023_1089068
crossref_primary_10_1186_s13148_021_01196_1
crossref_primary_10_3390_metabo10100384
crossref_primary_10_1155_2022_9443407
crossref_primary_10_3389_fimmu_2025_1530053
crossref_primary_10_3389_fimmu_2022_894021
crossref_primary_10_1002_1878_0261_12773
crossref_primary_10_1016_j_cellsig_2025_111822
crossref_primary_10_3390_biom13121803
crossref_primary_10_3390_genes12070975
crossref_primary_10_1038_s41417_021_00303_x
crossref_primary_10_1177_15330338211045820
crossref_primary_10_1158_0008_5472_CAN_22_0968
crossref_primary_10_1101_gad_348226_120
crossref_primary_10_3389_fgene_2025_1539745
crossref_primary_10_1038_s41420_022_01087_1
crossref_primary_10_3389_fimmu_2023_1297493
crossref_primary_10_3390_cancers16162863
crossref_primary_10_3390_jcm12123888
crossref_primary_10_1080_00365521_2022_2088247
crossref_primary_10_1016_j_tranon_2024_102224
crossref_primary_10_1186_s12885_024_13159_9
crossref_primary_10_1016_j_celrep_2023_112508
crossref_primary_10_1016_j_jaad_2023_03_058
crossref_primary_10_1007_s11596_024_2950_7
crossref_primary_10_3390_cancers14092178
crossref_primary_10_3390_cancers13225778
crossref_primary_10_1186_s12943_023_01885_w
crossref_primary_10_3389_fimmu_2025_1528084
crossref_primary_10_3390_cancers12051202
crossref_primary_10_1002_cam4_70899
crossref_primary_10_1242_jcs_247783
crossref_primary_10_1016_j_otorri_2023_07_005
crossref_primary_10_3390_ijms252111466
crossref_primary_10_3390_cells10113093
crossref_primary_10_3892_ol_2025_14977
crossref_primary_10_3389_fonc_2020_570113
crossref_primary_10_3390_life12020323
crossref_primary_10_1016_j_clim_2022_109216
crossref_primary_10_1186_s12885_023_11406_z
crossref_primary_10_1007_s10555_022_10024_8
crossref_primary_10_1016_j_semcancer_2021_12_011
crossref_primary_10_3390_ijms23010124
crossref_primary_10_3390_ijms232012578
crossref_primary_10_1016_j_transproceed_2024_12_020
crossref_primary_10_15212_AMM_2023_0005
crossref_primary_10_3389_fonc_2023_1155511
crossref_primary_10_1016_j_chom_2021_08_013
crossref_primary_10_1111_prd_12490
crossref_primary_10_3389_fonc_2021_635324
crossref_primary_10_3390_ijms241713269
crossref_primary_10_1016_j_pharmthera_2022_108274
crossref_primary_10_1186_s10020_022_00435_2
crossref_primary_10_1007_s00774_022_01396_6
crossref_primary_10_1016_j_microb_2025_100236
crossref_primary_10_1155_2022_4889616
crossref_primary_10_1016_j_molimm_2025_04_010
crossref_primary_10_3389_fgene_2022_972352
crossref_primary_10_1002_ctm2_1599
crossref_primary_10_3390_cancers13112832
crossref_primary_10_3390_cells12010121
crossref_primary_10_1016_j_cyto_2022_155917
crossref_primary_10_1038_s41392_022_00899_y
crossref_primary_10_1007_s12288_024_01839_2
crossref_primary_10_1080_07853890_2023_2279754
crossref_primary_10_1016_j_cyto_2020_155311
crossref_primary_10_1016_j_ijrobp_2023_09_027
crossref_primary_10_32074_1591_951X_1092
crossref_primary_10_3389_fimmu_2021_785222
crossref_primary_10_1007_s12032_025_02831_0
crossref_primary_10_1038_s41392_022_01102_y
crossref_primary_10_1515_biol_2022_0687
crossref_primary_10_1007_s10555_021_09970_6
crossref_primary_10_1016_j_cell_2023_03_007
crossref_primary_10_1038_s41389_020_00249_z
crossref_primary_10_3389_fimmu_2020_01749
crossref_primary_10_3390_cancers14205157
crossref_primary_10_1038_s41392_023_01462_z
crossref_primary_10_3390_cancers12113385
crossref_primary_10_3390_cells11050909
crossref_primary_10_1016_j_lfs_2021_119952
crossref_primary_10_31083_j_fbl2910345
crossref_primary_10_3390_cancers14040985
crossref_primary_10_3389_fonc_2023_1151373
crossref_primary_10_1002_adbi_202400735
crossref_primary_10_1002_cac2_12388
crossref_primary_10_3390_cancers16142507
crossref_primary_10_3389_fonc_2022_958720
crossref_primary_10_3390_cancers14010204
crossref_primary_10_3390_cells12151981
crossref_primary_10_1038_s41598_022_07726_y
crossref_primary_10_1002_mef2_23
crossref_primary_10_1016_j_critrevonc_2024_104311
crossref_primary_10_3389_fonc_2020_554331
crossref_primary_10_1016_j_imlet_2021_11_002
crossref_primary_10_3390_cancers14071710
crossref_primary_10_29252_ibj_25_1_1
crossref_primary_10_3389_fimmu_2024_1393173
crossref_primary_10_1002_JLB_3RU0222_087RRR
crossref_primary_10_1002_pros_24597
crossref_primary_10_3390_cells13121057
crossref_primary_10_1158_0008_5472_CAN_20_2870
crossref_primary_10_1039_D4NR05294C
crossref_primary_10_3390_ijms21124523
crossref_primary_10_1186_s12989_024_00583_9
crossref_primary_10_2147_CMAR_S500215
crossref_primary_10_3390_diagnostics14030328
crossref_primary_10_1016_j_jtho_2025_02_001
crossref_primary_10_1042_BST20221175
crossref_primary_10_3389_fimmu_2025_1623436
crossref_primary_10_3390_cancers13225625
crossref_primary_10_3390_cancers13225621
crossref_primary_10_1016_j_lfs_2023_122021
crossref_primary_10_1038_s41598_021_91947_0
crossref_primary_10_1007_s11605_021_04944_z
crossref_primary_10_3390_cancers15041282
crossref_primary_10_1016_j_envres_2023_116432
crossref_primary_10_22270_ijmspr_v11i2_142
crossref_primary_10_1007_s11427_024_2831_x
crossref_primary_10_3390_ijms26072923
crossref_primary_10_22270_ijmspr_v11i2_141
crossref_primary_10_3390_cancers15245790
crossref_primary_10_1038_s41598_024_81237_w
crossref_primary_10_1126_scitranslmed_abj5070
crossref_primary_10_3390_v15010218
crossref_primary_10_3390_ijms24043065
crossref_primary_10_3389_fonc_2023_1116016
crossref_primary_10_1016_j_critrevonc_2025_104702
crossref_primary_10_1016_j_cej_2024_153436
crossref_primary_10_1093_bbb_zbaa057
crossref_primary_10_3389_fimmu_2025_1543403
crossref_primary_10_1002_med_21727
crossref_primary_10_1016_j_molimm_2024_11_009
crossref_primary_10_1186_s12943_023_01843_6
crossref_primary_10_1186_s13045_024_01634_6
crossref_primary_10_1055_s_0044_1789207
crossref_primary_10_3390_ijms232012068
crossref_primary_10_1177_10732748221148912
crossref_primary_10_1097_JS9_0000000000002543
crossref_primary_10_1038_s41598_024_70855_z
crossref_primary_10_25259_SNI_849_2023
crossref_primary_10_3390_cells11071188
crossref_primary_10_1016_j_clinre_2022_101955
crossref_primary_10_1038_s41467_023_38624_0
crossref_primary_10_3390_cancers13071714
crossref_primary_10_3390_cells13231937
crossref_primary_10_1016_j_advms_2022_09_001
crossref_primary_10_1016_j_phrs_2025_107811
crossref_primary_10_3390_cancers16091626
crossref_primary_10_1111_ced_14988
crossref_primary_10_3389_fonc_2022_897968
crossref_primary_10_1007_s12032_023_02010_z
crossref_primary_10_3389_fimmu_2021_832886
crossref_primary_10_1097_CM9_0000000000002846
crossref_primary_10_1186_s12935_022_02727_3
crossref_primary_10_1371_journal_pone_0237947
crossref_primary_10_1016_j_addr_2021_05_001
crossref_primary_10_3389_fonc_2023_1117648
crossref_primary_10_3390_cells12192404
crossref_primary_10_1016_j_otoeng_2023_07_003
crossref_primary_10_3390_jpm11030233
crossref_primary_10_3390_vetsci10080495
crossref_primary_10_1016_j_isci_2024_110854
crossref_primary_10_3389_fcell_2024_1302490
crossref_primary_10_1016_j_fsi_2022_09_002
crossref_primary_10_1038_s41598_025_92417_7
crossref_primary_10_12968_hmed_2024_0270
crossref_primary_10_1371_journal_pcbi_1008257
crossref_primary_10_1111_imr_13107
crossref_primary_10_2147_JIR_S284941
crossref_primary_10_2340_1651_226X_2025_44327
crossref_primary_10_3390_cancers14041092
crossref_primary_10_1038_s41419_023_06119_x
crossref_primary_10_3389_fmed_2023_1174764
crossref_primary_10_3390_vaccines9101178
crossref_primary_10_1016_j_isci_2024_110632
crossref_primary_10_3389_fimmu_2025_1593156
crossref_primary_10_3390_vaccines9101184
crossref_primary_10_1016_j_addr_2021_114003
crossref_primary_10_1155_2023_2759679
crossref_primary_10_1186_s12957_022_02640_z
crossref_primary_10_1186_s13046_023_02886_9
crossref_primary_10_2217_fon_2021_1304
crossref_primary_10_1016_j_bbrep_2025_102149
crossref_primary_10_3390_biom15081149
crossref_primary_10_3390_ijms21217820
crossref_primary_10_3389_fimmu_2024_1498391
crossref_primary_10_1016_j_rvsc_2023_105024
crossref_primary_10_15252_embj_2021108647
crossref_primary_10_3389_fmed_2024_1481609
crossref_primary_10_2217_lmt_2020_0014
crossref_primary_10_1007_s12017_025_08830_8
crossref_primary_10_1016_j_acuroe_2023_01_001
crossref_primary_10_3390_cancers14194965
crossref_primary_10_3390_biomedicines13010095
crossref_primary_10_1186_s13045_021_01134_x
crossref_primary_10_1016_j_bbamcr_2023_119493
crossref_primary_10_1055_s_0040_1721799
crossref_primary_10_3389_fimmu_2025_1478092
crossref_primary_10_3892_etm_2024_12410
crossref_primary_10_1016_j_biopha_2021_111790
crossref_primary_10_1007_s10585_022_10170_x
crossref_primary_10_3389_fmolb_2021_762729
crossref_primary_10_1016_j_jare_2024_07_033
crossref_primary_10_3390_cancers14143366
crossref_primary_10_1002_jbio_202200079
crossref_primary_10_1039_D4RA05732E
crossref_primary_10_3390_brainsci14070687
crossref_primary_10_3389_fonc_2022_1010976
crossref_primary_10_1007_s12032_021_01602_x
crossref_primary_10_1186_s42269_023_01106_w
crossref_primary_10_1002_advs_202409260
crossref_primary_10_3389_fimmu_2022_850093
crossref_primary_10_1007_s00595_022_02637_x
crossref_primary_10_3389_fnut_2025_1611829
crossref_primary_10_1016_j_livres_2023_01_001
crossref_primary_10_3389_fonc_2021_596798
crossref_primary_10_1016_j_cpt_2024_01_001
crossref_primary_10_1007_s11912_020_00938_3
crossref_primary_10_3390_biom11060901
crossref_primary_10_1038_s44321_025_00261_z
crossref_primary_10_3389_fonc_2021_649004
crossref_primary_10_3390_ijms24020896
crossref_primary_10_3390_biomedicines10123035
crossref_primary_10_3390_biomedicines13061348
crossref_primary_10_1002_2211_5463_70099
crossref_primary_10_1155_2021_5598627
crossref_primary_10_1186_s12964_022_00951_y
crossref_primary_10_1016_j_biopha_2022_112949
crossref_primary_10_3389_fimmu_2024_1331641
crossref_primary_10_1007_s00432_021_03814_0
crossref_primary_10_1177_17246008211023515
crossref_primary_10_2147_IJGM_S340057
crossref_primary_10_1111_jop_13285
crossref_primary_10_1002_jev2_12480
crossref_primary_10_3892_ol_2024_14322
crossref_primary_10_1097_CMR_0000000000000938
crossref_primary_10_3390_cancers14246151
crossref_primary_10_3389_fonc_2021_684478
crossref_primary_10_3389_fimmu_2023_1259797
crossref_primary_10_1136_jitc_2022_004643
crossref_primary_10_1158_1078_0432_CCR_23_1421
crossref_primary_10_1097_MS9_0000000000003269
crossref_primary_10_1177_00368504241304195
crossref_primary_10_1186_s13058_021_01388_w
crossref_primary_10_1007_s00262_025_04049_5
crossref_primary_10_3390_cancers15020376
crossref_primary_10_1097_CM9_0000000000002573
crossref_primary_10_1186_s12885_021_07789_6
crossref_primary_10_1016_j_jconrel_2023_07_039
crossref_primary_10_1186_s12989_024_00611_8
crossref_primary_10_3389_fphar_2021_676399
crossref_primary_10_1002_wnan_1990
crossref_primary_10_3390_cancers14194755
crossref_primary_10_3389_fonc_2023_1130911
crossref_primary_10_1097_MEG_0000000000002528
crossref_primary_10_2147_IJN_S321416
crossref_primary_10_3389_fimmu_2020_553967
crossref_primary_10_3390_cancers13174495
crossref_primary_10_3389_fimmu_2023_1234142
crossref_primary_10_1093_oncolo_oyae212
crossref_primary_10_15252_embr_202153608
crossref_primary_10_3390_biology12060862
crossref_primary_10_1002_advs_202400370
crossref_primary_10_1186_s12957_023_03077_8
crossref_primary_10_1016_j_bioorg_2023_106608
crossref_primary_10_3390_cancers14041013
crossref_primary_10_3390_biomedicines11020533
crossref_primary_10_1016_j_imbio_2022_152247
crossref_primary_10_3390_biomedicines12010024
crossref_primary_10_1186_s12951_022_01346_4
crossref_primary_10_1016_j_bbrc_2022_08_062
crossref_primary_10_2147_TCRM_S532863
crossref_primary_10_1007_s12013_023_01192_7
crossref_primary_10_1155_2022_6837872
crossref_primary_10_3389_fimmu_2025_1568825
crossref_primary_10_1002_cti2_1397
crossref_primary_10_1021_acsami_4c05691
crossref_primary_10_3390_life13020333
crossref_primary_10_1111_imr_13176
crossref_primary_10_3390_biomedicines10071516
crossref_primary_10_3389_fimmu_2021_755856
crossref_primary_10_3390_ijms26062795
crossref_primary_10_1142_S0192415X22500604
crossref_primary_10_3389_fcell_2022_803947
crossref_primary_10_3390_genes13101897
crossref_primary_10_1016_j_bbadis_2025_167821
crossref_primary_10_3389_fonc_2025_1582788
crossref_primary_10_1002_btm2_10704
crossref_primary_10_1016_j_omto_2022_04_005
crossref_primary_10_3389_fimmu_2023_1177403
crossref_primary_10_3390_ijms22136744
crossref_primary_10_3390_vaccines11061028
crossref_primary_10_3892_mco_2024_2783
crossref_primary_10_1007_s10120_021_01197_2
crossref_primary_10_1186_s12974_024_03222_4
crossref_primary_10_4049_jimmunol_2300728
crossref_primary_10_1063_5_0160924
crossref_primary_10_3390_jcm11175096
crossref_primary_10_1016_j_bbcan_2020_188486
crossref_primary_10_3389_fimmu_2023_1169670
crossref_primary_10_3389_fimmu_2022_951406
crossref_primary_10_3390_biomedicines10030708
crossref_primary_10_3390_molecules28114413
crossref_primary_10_3390_pharmaceutics14081541
crossref_primary_10_1002_adtp_202400438
crossref_primary_10_3389_fimmu_2025_1590781
crossref_primary_10_3390_cells12060846
crossref_primary_10_3389_fonc_2023_1166860
crossref_primary_10_3390_biom12020291
crossref_primary_10_1016_j_canlet_2025_217466
crossref_primary_10_3389_fgene_2022_1029576
crossref_primary_10_1038_s41551_024_01180_z
crossref_primary_10_3390_genes14020474
crossref_primary_10_3892_ol_2023_14070
crossref_primary_10_1111_cas_15290
crossref_primary_10_1016_j_biomaterials_2022_121918
crossref_primary_10_1080_15384101_2024_2311501
crossref_primary_10_3390_cells10092257
crossref_primary_10_3390_ijms26125635
crossref_primary_10_1016_j_archoralbio_2021_105294
crossref_primary_10_1002_mco2_70063
crossref_primary_10_3390_cells13110977
crossref_primary_10_1007_s11864_022_01005_8
crossref_primary_10_3389_fneur_2023_1215876
crossref_primary_10_3390_ijms24010110
crossref_primary_10_1016_j_intimp_2021_107627
crossref_primary_10_3390_cells11213406
crossref_primary_10_1158_1541_7786_MCR_22_0623
crossref_primary_10_3390_cells9041018
crossref_primary_10_1158_1940_6207_CAPR_24_0085
crossref_primary_10_3389_fonc_2024_1400277
crossref_primary_10_1016_j_heliyon_2024_e36681
crossref_primary_10_3390_cancers14030510
crossref_primary_10_1007_s12672_025_02877_6
crossref_primary_10_1016_j_adcanc_2023_100107
crossref_primary_10_3390_biom14020205
crossref_primary_10_3390_immuno1020007
crossref_primary_10_3390_cells9020309
crossref_primary_10_1177_10732748231159313
crossref_primary_10_1002_ctm2_70368
crossref_primary_10_1038_s12276_022_00867_0
crossref_primary_10_3390_cells13242135
crossref_primary_10_3390_microorganisms11020288
crossref_primary_10_1186_s40364_024_00610_z
crossref_primary_10_3389_fcell_2022_840171
crossref_primary_10_1097_MD_0000000000034826
crossref_primary_10_1016_j_tice_2024_102679
crossref_primary_10_3390_cancers16203553
crossref_primary_10_3389_fbioe_2021_785937
crossref_primary_10_1016_j_omto_2023_09_001
crossref_primary_10_34172_aim_2022_74
crossref_primary_10_1016_j_bbcan_2021_188587
crossref_primary_10_3390_ijms24076689
crossref_primary_10_1016_j_radonc_2021_02_035
crossref_primary_10_3390_cells14151200
crossref_primary_10_1016_j_jrras_2024_100937
crossref_primary_10_1111_1754_9485_13399
crossref_primary_10_1038_s41571_023_00734_5
crossref_primary_10_3390_cells11121875
crossref_primary_10_3389_fimmu_2020_609961
crossref_primary_10_3390_cancers14051236
crossref_primary_10_3389_fonc_2022_925043
crossref_primary_10_3390_cancers13215333
crossref_primary_10_62347_QFHJ2430
crossref_primary_10_1016_j_jprot_2023_104865
crossref_primary_10_3390_cancers14051359
crossref_primary_10_1016_j_lungcan_2025_108726
crossref_primary_10_3390_cancers14030536
crossref_primary_10_3839_jabc_2022_050
crossref_primary_10_3390_ijms22179260
crossref_primary_10_3390_cancers17071232
crossref_primary_10_1007_s00262_022_03248_8
crossref_primary_10_3389_fonc_2022_947183
crossref_primary_10_3390_cimb46030139
crossref_primary_10_1016_j_surg_2021_11_022
crossref_primary_10_2147_CMAR_S251427
crossref_primary_10_3390_cancers13236027
crossref_primary_10_1038_s41419_024_06976_0
crossref_primary_10_1186_s13045_024_01561_6
crossref_primary_10_1016_j_nut_2025_112697
crossref_primary_10_3390_ijms21218363
crossref_primary_10_1159_000506975
crossref_primary_10_3390_cancers14143391
crossref_primary_10_1097_MD_0000000000033806
crossref_primary_10_3389_frhem_2024_1377806
crossref_primary_10_3390_cancers15133327
crossref_primary_10_3390_cancers17101638
crossref_primary_10_3390_molecules26216367
crossref_primary_10_1111_vco_12679
crossref_primary_10_1016_j_cpt_2025_02_004
crossref_primary_10_3389_fimmu_2025_1544137
crossref_primary_10_1007_s00520_020_05979_9
crossref_primary_10_3390_cancers14102406
crossref_primary_10_3389_fimmu_2023_1170603
crossref_primary_10_3390_cancers14102529
crossref_primary_10_1016_j_lfs_2022_121361
crossref_primary_10_1016_j_ijbiomac_2023_128018
crossref_primary_10_1016_j_jormas_2023_101738
crossref_primary_10_1021_acsnano_4c14487
crossref_primary_10_1016_j_lfs_2022_121125
crossref_primary_10_3390_jcm10194444
crossref_primary_10_3390_cells11111824
crossref_primary_10_1124_pharmrev_123_000901
crossref_primary_10_1038_s41598_024_70916_3
crossref_primary_10_3390_cancers15133339
crossref_primary_10_1080_1061186X_2020_1757102
crossref_primary_10_2217_bmm_2023_0629
crossref_primary_10_1016_j_intimp_2025_114173
crossref_primary_10_3389_fimmu_2023_1292166
crossref_primary_10_1007_s12672_025_02391_9
crossref_primary_10_23736_S0393_0564_24_00017_7
crossref_primary_10_3390_medicina58030365
crossref_primary_10_1016_j_clineuro_2023_107629
crossref_primary_10_1093_pcmedi_pbae020
Cites_doi 10.4049/jimmunol.1500709
10.1016/j.ccr.2011.08.012
10.1023/A:1015997001657
10.1007/s00262-014-1606-z
10.1136/gutjnl-2016-313075
10.1002/jso.24996
10.1155/2015/983698
10.1038/nri2808
10.1136/gut.2007.141556
10.18632/oncotarget.5638
10.1371/journal.pone.0112183
10.1007/s10555-015-9594-9
10.1152/ajpcell.2001.280.4.C814
10.1098/rsob.170006
10.1159/000071561
10.1155/2017/1506824
10.1182/blood-2014-03-453217
10.4161/auto.7.9.16521
10.1189/jlb.72.1.167
10.1038/nri3399
10.1073/pnas.1507294112
10.1387/ijdb.041796go
10.1371/journal.pone.0199740
10.1016/j.coi.2010.01.021
10.1038/nature14407
10.1158/2326-6066.CIR-15-0313
10.1016/j.jhep.2014.08.023
10.4049/jimmunol.149.1.113
10.1007/s10147-018-1250-2
10.1155/2012/720768
10.1038/ncb2788
10.1093/carcin/bgt397
10.1016/j.molcel.2010.09.023
10.1038/sj.onc.1209237
10.1038/nm.2084
10.1016/j.ajpath.2011.05.031
10.1158/1078-0432.CCR-13-1279
10.1016/j.semcancer.2013.02.003
10.18632/oncotarget.2181
10.4049/jimmunol.164.5.2769
10.1158/0008-5472.CAN-09-4442
10.1126/sciimmunol.aaf8943
10.1111/j.1349-7006.2006.00278.x
10.1038/nrc2621
10.1038/ncomms8064
10.3892/ijo.2016.3616
10.1002/ijc.29945
10.1016/j.cca.2014.10.012
10.1016/j.ccr.2004.09.028
10.1002/ijc.28957
10.1158/0008-5472.CAN-08-1921
10.1073/pnas.0706438104
10.1186/s13046-015-0256-0
10.1016/j.ccr.2009.08.014
10.1158/0008-5472.CAN-15-0054
10.3389/fonc.2019.00082
10.1016/j.yexcr.2009.09.003
10.1002/ijc.10775
10.1371/journal.pone.0031524
10.1093/carcin/bgs123
10.15252/embj.201490147
10.1016/j.trecan.2016.12.006
10.1002/ijc.28551
10.1146/annurev-immunol-020711-074942
10.1158/0008-5472.CAN-10-2583
10.1186/1476-4598-12-154
10.1016/j.canlet.2015.07.027
10.1371/journal.pone.0033655
10.1093/jnci/dju124
10.1016/S1040-8428(01)00119-6
10.1002/hep.25907
10.1002/ijc.24448
10.18632/oncotarget.1631
10.1158/1078-0432.CCR-16-2748
10.3892/or.17.1.161
10.1038/nri3175
10.1371/journal.pone.0098259
10.3389/fimmu.2017.00443
10.1016/j.jhep.2015.03.024
10.1002/ijc.25892
10.1016/j.neo.2014.08.013
10.1007/s13277-015-4349-3
10.1038/nri3024
10.1111/j.1365-2613.2009.00641.x
10.1007/s004280000327
10.4049/jimmunol.161.1.342
10.1093/mutage/gep053
10.1016/j.ccr.2006.06.001
10.1038/nm0598-615
10.1038/nature14282
10.1002/ijc.25991
10.1158/2159-8290.CD-15-1157
10.18632/oncotarget.3328
10.1016/j.it.2015.11.008
10.1038/nm.3394
10.1097/00029330-200710020-00007
10.1016/j.critrevonc.2011.06.004
10.1016/j.imbio.2010.01.002
10.1007/s13277-015-3484-1
10.1186/s12943-017-0707-7
10.18632/oncotarget.4478
10.1080/2162402X.2017.1356965
10.1016/S0092-8674(00)00139-2
10.1371/journal.pone.0030806
10.1038/onc.2012.201
10.1038/nature13111
10.1146/annurev-pathol-020712-164023
10.1002/ijc.30076
10.1073/pnas.0601807103
10.1097/MD.0000000000004932
10.1038/bjc.1995.398
10.1038/ni.2109
10.1002/cncr.26511
10.3389/fimmu.2018.00527
10.1016/j.ccr.2009.06.017
10.1007/s10147-017-1180-4
10.1200/JCO.2008.18.9498
10.1038/bjc.2015.180
10.1016/j.celrep.2014.12.039
10.1093/mutage/gel032
10.1073/pnas.1424927112
10.1158/0008-5472.CAN-11-3873
10.1002/1097-0142(19820701)50:1<62::AID-CNCR2820500113>3.0.CO;2-0
10.1038/nnano.2017.54
10.1016/S0002-9440(10)63580-8
10.1097/01.MP.0000020391.98998.6B
10.1007/s00262-013-1476-9
10.1158/0008-5472.CAN-05-1734
10.1158/0008-5472.CAN-05-4128
10.1159/000362959
10.1016/j.yexcr.2004.09.027
10.18632/oncotarget.4106
10.1158/1078-0432.CCR-03-0760
10.1073/pnas.1113744109
10.1158/0008-5472.CAN-15-0125
10.1016/S0002-9440(10)64755-4
10.1002/path.2947
10.1016/j.jhep.2010.08.041
10.4161/15384101.2014.950163
10.1038/sj.neo.7900110
10.1016/j.cell.2019.05.047
10.1038/nature16140
10.1038/sj.onc.1203687
10.1038/cddis.2014.263
10.1038/nature06348
10.1016/j.immuni.2010.11.011
10.1177/039463201102400314
10.1158/2159-8290.CD-12-0527
10.1016/S0002-9440(10)62527-8
10.1007/s00277-018-3276-y
ContentType Journal Article
Copyright Copyright © 2019 Masucci, Minopoli and Carriero.
Copyright © 2019 Masucci, Minopoli and Carriero. 2019 Masucci, Minopoli and Carriero
Copyright_xml – notice: Copyright © 2019 Masucci, Minopoli and Carriero.
– notice: Copyright © 2019 Masucci, Minopoli and Carriero. 2019 Masucci, Minopoli and Carriero
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fonc.2019.01146
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2234-943X
ExternalDocumentID oai_doaj_org_article_688250aed36f486180d333f096ca1f0d
PMC6874146
31799175
10_3389_fonc_2019_01146
Genre Journal Article
Review
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EBS
EJD
EMOBN
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
ACXDI
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c459t-5ec687e71a273f097ad53b6f33c42eef4969a76970fadbdcd8a68553bc9b0a903
IEDL.DBID DOA
ISICitedReferencesCount 487
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000499840300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2234-943X
IngestDate Fri Oct 03 12:50:43 EDT 2025
Tue Sep 30 16:24:32 EDT 2025
Thu Sep 04 20:23:55 EDT 2025
Thu Apr 03 06:59:55 EDT 2025
Sat Nov 29 01:49:13 EST 2025
Tue Nov 18 22:02:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords tumor associated neutrophils
neutrophil-to-lymphocyte ratio
tumor microenvironment
tumorigenesis
angiogenesis
Language English
License Copyright © 2019 Masucci, Minopoli and Carriero.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-5ec687e71a273f097ad53b6f33c42eef4969a76970fadbdcd8a68553bc9b0a903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Edited by: Giovanna Schiavoni, National Institute of Health (ISS), Italy
Reviewed by: Maria Rosaria Galdiero, University of Naples Federico II, Italy; Xu Zhang, Jiangsu University, China
This article was submitted to Cancer Immunity and Immunotherapy, a section of the journal Frontiers in Oncology
OpenAccessLink https://doaj.org/article/688250aed36f486180d333f096ca1f0d
PMID 31799175
PQID 2321665233
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_688250aed36f486180d333f096ca1f0d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6874146
proquest_miscellaneous_2321665233
pubmed_primary_31799175
crossref_primary_10_3389_fonc_2019_01146
crossref_citationtrail_10_3389_fonc_2019_01146
PublicationCentury 2000
PublicationDate 2019-11-15
PublicationDateYYYYMMDD 2019-11-15
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-15
  day: 15
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in oncology
PublicationTitleAlternate Front Oncol
PublicationYear 2019
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References McCluney (B142) 2018; 117
Uribe-Querol (B6) 2015; 2015
Jaganjac (B63) 2010; 215
Nakaya (B139) 2018; 23
Benevides (B31) 2015; 75
Gerrard (B59) 1981; 66
Hu (B104) 2015; 36
Zhao (B135) 2012; 7
Gabrilovich (B49) 2012; 12
Mantovani (B8) 2009; 16
Zhang (B12) 2016; 49
Coffelt (B30) 2015; 522
Komura (B137) 2018; 23
Mayadas (B65) 2014; 9
Sandhu (B76) 2000; 156
Loffredo (B72) 2017; 8
Grégoire (B91) 2015; 6
Bodey (B47) 2001; 39
Trellakis (B131) 2011; 129
Riise (B69) 2015; 195
Belaaouaj (B147) 1998; 4
Galli (B48) 2011; 12
Kamohara (B148) 1997; 98
Jensen (B132) 2012; 118
Yao (B22) 2007; 120
Sceneay (B124) 2012; 72
Freisinger (B103) 2014; 9
Knaapen (B78) 2006; 21
Mantovani (B9) 2011; 11
Houghton (B85) 2010; 16
Amulic (B66) 2012; 30
Wislez (B130) 2003; 63
Hirose (B15) 1995; 72
Deryugina (B29) 2014; 16
Zhou (B27) 2012; 56
Fridlender (B51) 2012; 7
Lakritz (B83) 2015; 6
Powell (B74) 2016; 37
Moschetta (B138) 2017; 2017
Kolaczkowska (B67) 2013; 13
Katano (B60) 1982; 50
Scapini (B68) 2014; 124
Yang (B133) 2015; 439
Bodey (B45) 1996; 16
Jensen (B129) 2009; 27
Flavell (B50) 2010; 10
Van Coillie (B16) 2001; 159
Andzinski (B42) 2015; 136
Wu (B58) 2001; 280
Xue (B146) 2017; 12
Schaider (B19) 2003; 103
Campregher (B80) 2008; 57
Colombo (B61) 1992; 149
Andzinski (B154) 2016; 138
Inada (B149) 1997; 97
López-Lago (B70) 2013; 32
Trellakis (B36) 2011; 24
Tazzyman (B110) 2009; 90
Ocana (B155) 2017; 16
He (B128) 2015; 34
Gijsbers (B23) 2005; 303
Shen (B5) 2014; 9
Gregory (B13) 2011; 71
Zhu (B53) 2014; 5
Kuang (B32) 2011; 54
Zhang (B109) 2016; 37
Sparmann (B24) 2004; 6
Liang (B89) 2014; 20
Mishalian (B55) 2013; 62
Wada (B152) 2006; 97
El Rayes (B96) 2015; 112
Piccard (B11) 2012; 82
Ma (B87) 2015; 75
Tazzyman (B113) 2013; 23
Kroemer (B38) 2010; 40
Song (B90) 2015; 368
Templeton (B136) 2014; 106
Wada (B151) 2007; 17
Haqqani (B75) 2000; 2
Dumitru (B99) 2011; 129
Swierczak (B7) 2015; 34
Ardi (B115) 2007; 104
Huh (B107) 2010; 70
Lee (B20) 2000; 164
Albini (B112) 2018; 9
Wu (B98) 2011; 225
Rodriguez (B120) 2009; 69
Bellocq (B21) 1998; 152
Cortez-Retamozo (B33) 2012; 109
Coussens (B82) 2000; 103
Di Carlo (B26) 2003
Sun (B145) 2014; 5
Galdiero (B44) 2018; 13
Degenhardt (B39) 2006; 10
Lin (B100) 2015; 6
Tazawa (B95) 2003; 163
Schott (B156) 2017; 23
Loukinova (B17) 2000; 19
Bald (B34) 2014; 507
Eruslanov (B14) 2017; 3
Galdiero (B71) 2016; 139
Sun (B40) 2011; 7
Fridlender (B4) 2012; 33
Zhou (B28) 2014; 35
Satpathy (B35) 2015; 6
Hu (B54) 2014; 33
Finisguerra (B64) 2015; 522
Nozawa (B116) 2006; 103
Jablonska (B43) 2014; 134
Ponzetta (B73) 2019; 2
De Larco (B105) 2004; 10
Tao (B108) 2016; 95
Wculek (B153) 2015; 528
Granot (B10) 2011; 20
Spiegel (B125) 2016; 6
Condamine (B57) 2016; 1
Psaila (B94) 2009; 9
Liang (B93) 2016; 4
Grosse-Steffen (B102) 2012; 2012
Peranzoni (B122) 2010; 22
Sagiv (B56) 2015; 10
Quail (B143) 2013; 19
Yan (B62) 2014; 3
Gong (B86) 2013; 12
Borregaard (B1) 2010; 33
Güngör (B79) 2010; 25
Knaapen (B77) 2002
Antonio (B88) 2015; 34
Hattar (B84) 2014; 63
Shojaei (B114) 2007; 450
Ingangi (B123) 2019; 9
Li (B41) 2015; 62
Caruso (B46) 2002; 15
Ferrucci (B141) 2015; 112
Bekes (B117) 2011; 179
Pang (B144) 2013; 3
Aarbiou (B92) 2002; 72
Calì (B118) 2017; 7
Ji (B25) 2006; 25
Queen (B97) 2005; 65
Opdenakker (B18) 2004; 48
Song (B101) 2015; 6
Mentzel (B111) 2001; 438
Fioretti (B2) 1998; 161
Kim (B52) 2006; 66
Rao (B134) 2012; 7
Rotondo (B121) 2009; 125
Yan (B81) 2015; 63
Fridlender (B3) 2009; 16
Boya (B37) 2013; 15
Wang (B127) 2017; 66
Ho (B150) 2014; 5
Romano (B140) 2018; 97
Strell (B106) 2010; 316
Michaeli (B119) 2017; 6
Casbon (B126) 2015; 112
References_xml – volume: 195
  start-page: 1121
  year: 2015
  ident: B69
  article-title: TLR-stimulated neutrophils instruct NK cells To trigger dendritic cell maturation and promote adaptive T cell responses
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1500709
– volume: 20
  start-page: 300
  year: 2011
  ident: B10
  article-title: Tumor entrained neutrophils inhibit seeding in the premetastatic lung
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2011.08.012
– start-page: 143
  year: 2002
  ident: B77
  article-title: Mechanisms of neutrophil-induced DNA damage in respiratory tract epithelial cells
  publication-title: Mol Cell Biochem
  doi: 10.1023/A:1015997001657
– volume: 63
  start-page: 1297
  year: 2014
  ident: B84
  article-title: Interactions between neutrophils and non-small cell lung cancer cells: enhancement of tumor proliferation and inflammatory mediator synthesis
  publication-title: Cancer Immunol Immunother
  doi: 10.1007/s00262-014-1606-z
– volume: 66
  start-page: 1900
  year: 2017
  ident: B127
  article-title: Tumour-activated neutrophils in gastric cancer foster immune suppression and disease progression through GM-CSF-PD-L1 pathway
  publication-title: Gut
  doi: 10.1136/gutjnl-2016-313075
– volume: 117
  start-page: 1058
  year: 2018
  ident: B142
  article-title: Neutrophil: Lymphocyte ratio as a method of predicting complications following hepatic resection for colorectal liver metastasis
  publication-title: J Surg Oncol
  doi: 10.1002/jso.24996
– volume: 98
  start-page: 103
  year: 1997
  ident: B148
  article-title: Neutrophil elastase inhibitor (ONO-5046.Na) suppresses the proliferation, motility and chemotaxis of a pancreatic carcinoma cell line, Capan-1
  publication-title: Res Commun Mol Pathol Pharmacol
– volume: 2015
  start-page: 983698
  year: 2015
  ident: B6
  article-title: Neutrophils in cancer: two sides of the same coin
  publication-title: J Immunol Res.
  doi: 10.1155/2015/983698
– volume: 10
  start-page: 554
  year: 2010
  ident: B50
  article-title: The polarization of immune cells in the tumour environment by TGFbeta
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri2808
– volume: 57
  start-page: 780
  year: 2008
  ident: B80
  article-title: Activated neutrophils induce an hMSH2-dependent G2/M checkpoint arrest and replication errors at a (CA)13-repeat in colon epithelial cells
  publication-title: Gut
  doi: 10.1136/gut.2007.141556
– volume: 6
  start-page: 43081
  year: 2015
  ident: B100
  article-title: Infiltrating neutrophils increase bladder cancer cell invasion via modulation of androgen receptor (AR)/MMP13 signals
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.5638
– volume: 9
  start-page: e112183
  year: 2014
  ident: B103
  article-title: Live imaging and gene expression analysis in zebrafish identifies a link between neutrophils and epithelial to mesenchymal transition
  publication-title: PLoS ONE.
  doi: 10.1371/journal.pone.0112183
– volume: 34
  start-page: 735
  year: 2015
  ident: B7
  article-title: Neutrophils: important contributors to tumor progression and metastasis
  publication-title: Cancer Metastasis Rev
  doi: 10.1007/s10555-015-9594-9
– volume: 280
  start-page: C814
  year: 2001
  ident: B58
  article-title: Human neutrophils facilitate tumor cell transendothelial migration
  publication-title: Am J Physiol Cell Physiol
  doi: 10.1152/ajpcell.2001.280.4.C814
– volume: 7
  start-page: 170006
  year: 2017
  ident: B118
  article-title: Tuning cancer fate: the unremitting role of host immunity
  publication-title: Open Biol
  doi: 10.1098/rsob.170006
– start-page: 83182
  year: 2003
  ident: B26
  article-title: Neutrophils in the antitumoral immune response
  publication-title: Chem Immunol Allergy
  doi: 10.1159/000071561
– volume: 2017
  start-page: 1506824
  year: 2017
  ident: B138
  article-title: Dynamics of neutrophils-to-lymphocyte ratio predict outcomes of PD-1/PD-L1 blockade
  publication-title: Biomed Res Int.
  doi: 10.1155/2017/1506824
– volume: 124
  start-page: 710
  year: 2014
  ident: B68
  article-title: Social networking of human neutrophils within the immune system
  publication-title: Blood
  doi: 10.1182/blood-2014-03-453217
– volume: 7
  start-page: 1035
  year: 2011
  ident: B40
  article-title: Autophagy protects breast cancer cells from epirubicin-induced apoptosis and facilitates epirubicin-resistance development
  publication-title: Autophagy
  doi: 10.4161/auto.7.9.16521
– volume: 72
  start-page: 167
  year: 2002
  ident: B92
  article-title: Human neutrophil defensins induce lung epithelial cell proliferation in vitro
  publication-title: J Leukoc Biol
  doi: 10.1189/jlb.72.1.167
– volume: 13
  start-page: 159
  year: 2013
  ident: B67
  article-title: Neutrophil recruitment and function in health and inflammation
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri3399
– volume: 112
  start-page: 16000
  year: 2015
  ident: B96
  article-title: Lung inflammation promotes metastasis through neutrophil protease-mediated degradation of Tsp-1
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1507294112
– volume: 48
  start-page: 519
  year: 2004
  ident: B18
  article-title: The countercurrent principle in invasion and metastasis of cancer cells
  publication-title: Int J Dev Biol
  doi: 10.1387/ijdb.041796go
– volume: 13
  start-page: e0199740
  year: 2018
  ident: B44
  article-title: Potential involvement of neutrophils in human thyroid cancer
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0199740
– volume: 22
  start-page: 238
  year: 2010
  ident: B122
  article-title: Myeloid-derived suppressor cell heterogeneity and subset definition
  publication-title: Curr. Opin. Immunol.
  doi: 10.1016/j.coi.2010.01.021
– volume: 522
  start-page: 349
  year: 2015
  ident: B64
  article-title: MET is required for the recruitment of anti-tumoural neutrophils
  publication-title: Nature
  doi: 10.1038/nature14407
– volume: 4
  start-page: 83
  year: 2016
  ident: B93
  article-title: The complex role of neutrophils in tumor angiogenesis and metastasis
  publication-title: Cancer Immunol Res
  doi: 10.1158/2326-6066.CIR-15-0313
– volume: 62
  start-page: 131
  year: 2015
  ident: B41
  article-title: Increased autophagy sustains the survival and pro-tumourigenic effects of neutrophils in human hepatocellular carcinoma
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2014.08.023
– volume: 149
  start-page: 113
  year: 1992
  ident: B61
  article-title: Granulocyte colony-stimulating factor (G-CSF) gene transduction in murine adenocarcinoma drives neutrophil-mediated tumor inhibition in vivo
  publication-title: J Immunol
  doi: 10.4049/jimmunol.149.1.113
– volume: 23
  start-page: 634
  year: 2018
  ident: B139
  article-title: Neutrophil-to-lymphocyte ratio as an early marker of outcomes in patients with advanced non-small-cell lung cancer treated with nivolumab
  publication-title: Int J Clin Oncol
  doi: 10.1007/s10147-018-1250-2
– volume: 2012
  start-page: 720768
  year: 2012
  ident: B102
  article-title: Epithelial-to-mesenchymal transition in pancreatic ductal adenocarcinoma and pancreatic tumor cell lines: the role of neutrophils and neutrophil-derived elastase
  publication-title: Clin Dev Immunol
  doi: 10.1155/2012/720768
– volume: 15
  start-page: 713
  year: 2013
  ident: B37
  article-title: Emerging regulation and functions of autophagy
  publication-title: Nat Cell Biol.
  doi: 10.1038/ncb2788
– volume: 35
  start-page: 597
  year: 2014
  ident: B28
  article-title: CXCL5 contributes to tumor metastasis and recurrence of intrahepatic cholangiocarcinoma by recruiting infiltrative intratumoral neutrophils
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgt397
– volume: 40
  start-page: 280
  year: 2010
  ident: B38
  article-title: Autophagy and the integrated stress response
  publication-title: Mol Cell.
  doi: 10.1016/j.molcel.2010.09.023
– volume: 25
  start-page: 2105
  year: 2006
  ident: B25
  article-title: K-ras activation generates an inflammatory response in lung tumors
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1209237
– volume: 16
  start-page: 219
  year: 2010
  ident: B85
  article-title: Neutrophil elastase-mediated degradation of IRS-1 accelerates lung tumor growth
  publication-title: Nat Med
  doi: 10.1038/nm.2084
– volume: 179
  start-page: 1455
  year: 2011
  ident: B117
  article-title: Tumor-recruited neutrophils and neutrophil TIMP-free MMP-9 regulate coordinately the levels of tumor angiogenesis and efficiency of malignant cell intravasation
  publication-title: Am J Pathol
  doi: 10.1016/j.ajpath.2011.05.031
– volume: 20
  start-page: 187
  year: 2014
  ident: B89
  article-title: Neutrophils promote the malignant glioma phenotype through S100A4
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-13-1279
– volume: 23
  start-page: 149
  year: 2013
  ident: B113
  article-title: Neutrophil-mediated tumour angiogenesis: subversion of immune responses to promote tumour growth
  publication-title: Semin Cancer Biol
  doi: 10.1016/j.semcancer.2013.02.003
– volume: 5
  start-page: 12621
  year: 2014
  ident: B145
  article-title: Neutrophils with protumor potential could efficiently suppress tumor growth after cytokine priming and in presence of normal NK cells
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.2181
– volume: 164
  start-page: 2769
  year: 2000
  ident: B20
  article-title: IL-8 reduced tumorigenicity of human ovarian cancer in vivo due to neutrophil infiltration
  publication-title: J Immunol
  doi: 10.4049/jimmunol.164.5.2769
– volume: 70
  start-page: 6071
  year: 2010
  ident: B107
  article-title: Transiently entrapped circulating tumor cells interact with neutrophils to facilitate lung metastasis development
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-09-4442
– volume: 1
  start-page: aaf8943
  year: 2016
  ident: B57
  article-title: Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorphonuclear myeloid-derived suppressor cells in cancer patients
  publication-title: Sci Immunol
  doi: 10.1126/sciimmunol.aaf8943
– volume: 97
  start-page: 1037
  year: 2006
  ident: B152
  article-title: Sivelestat, a specific neutrophil elastase inhibitor, suppresses the growth of gastric carcinoma cells by preventing the release of transforming growth factor-alpha
  publication-title: Cancer Sci
  doi: 10.1111/j.1349-7006.2006.00278.x
– volume: 9
  start-page: 285
  year: 2009
  ident: B94
  article-title: The metastatic niche: adapting the foreign soil
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc2621
– volume: 6
  start-page: 7064
  year: 2015
  ident: B35
  article-title: Crystalline silica-induced leukotriene B4-dependent inflammation promotes lung tumour growth
  publication-title: Nat Commun.
  doi: 10.1038/ncomms8064
– volume: 49
  start-page: 857
  year: 2016
  ident: B12
  article-title: Neutrophils in cancer development and progression: roles, mechanisms, and implications (Review)
  publication-title: Int J Oncol
  doi: 10.3892/ijo.2016.3616
– volume: 138
  start-page: 1982
  year: 2016
  ident: B154
  article-title: Type I IFNs induce anti-tumor polarization of tumor associated neutrophils in mice and human
  publication-title: Int J Cancer
  doi: 10.1002/ijc.29945
– volume: 439
  start-page: 172
  year: 2015
  ident: B133
  article-title: Elevated levels of preoperative circulating CD44+ lymphocytes and neutrophils predict poor survival for non-small cell lung cancer patients
  publication-title: Clin Chim Acta
  doi: 10.1016/j.cca.2014.10.012
– volume: 97
  start-page: 229
  year: 1997
  ident: B149
  article-title: Neutrophil elastase inhibitor (ONO-5046-Na) inhibits the growth of human lung cancer cell lines transplanted into severe combined immunodeficiency (scid) mice
  publication-title: Res Commun Mol Pathol Pharmacol
– volume: 6
  start-page: 447
  year: 2004
  ident: B24
  article-title: Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2004.09.028
– volume: 136
  start-page: 572
  year: 2015
  ident: B42
  article-title: Delayed apoptosis of tumor associated neutrophils in the absence of endogenous IFN-β
  publication-title: Int J Cancer
  doi: 10.1002/ijc.28957
– volume: 69
  start-page: 1553
  year: 2009
  ident: B120
  article-title: Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-08-1921
– volume: 104
  start-page: 20262
  year: 2007
  ident: B115
  article-title: Human neutrophils uniquely release TIMP-free MMP-9 to provide a potent catalytic stimulator of angiogenesis
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0706438104
– volume: 34
  start-page: 141
  year: 2015
  ident: B128
  article-title: Peritumoural neutrophils negatively regulate adaptive immunity via the PD-L1/PD-1 signalling pathway in hepatocellular carcinoma
  publication-title: J Exp Clin Cancer Res
  doi: 10.1186/s13046-015-0256-0
– volume: 16
  start-page: 173
  year: 2009
  ident: B8
  article-title: The yin-yang of tumor-associated neutrophils
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2009.08.014
– volume: 75
  start-page: 3788
  year: 2015
  ident: B31
  article-title: IL17 promotes mammary tumor progression by changing the behavior of tumor cells and eliciting tumorigenic neutrophils recruitment
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-15-0054
– volume: 9
  start-page: 82
  year: 2019
  ident: B123
  article-title: Role of microenvironment on the fate of disseminating cancer stem cells
  publication-title: Front Oncol
  doi: 10.3389/fonc.2019.00082
– volume: 316
  start-page: 138
  year: 2010
  ident: B106
  article-title: Neutrophil granulocytes promote the migratory activity of MDA-MB-468 human breast carcinoma cells via ICAM-1
  publication-title: Exp Cell Res
  doi: 10.1016/j.yexcr.2009.09.003
– volume: 103
  start-page: 335
  year: 2003
  ident: B19
  article-title: Differential response of primary and metastatic melanomas to neutrophils attracted by IL-8
  publication-title: Int J Cancer.
  doi: 10.1002/ijc.10775
– volume: 7
  start-page: e31524
  year: 2012
  ident: B51
  article-title: Transcriptomic analysis comparing tumor-associated neutrophils with granulocytic myeloid-derived suppressor cells and normal neutrophils
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0031524
– volume: 33
  start-page: 949
  year: 2012
  ident: B4
  article-title: Tumor-associated neutrophils: friend or foe?
  publication-title: Carcinogenesis.
  doi: 10.1093/carcin/bgs123
– volume: 34
  start-page: 2219
  year: 2015
  ident: B88
  article-title: The wound inflammatory response exacerbates growth of pre-neoplastic cells and progression to cancer
  publication-title: EMBO J
  doi: 10.15252/embj.201490147
– volume: 3
  start-page: 149
  year: 2017
  ident: B14
  article-title: Mouse versus human neutrophilsin cancer: a major knowledge gap
  publication-title: Trends Cancer.
  doi: 10.1016/j.trecan.2016.12.006
– volume: 134
  start-page: 1346
  year: 2014
  ident: B43
  article-title: CXCR2-mediated tumor-associated neutrophil recruitment is regulated by IFN-β
  publication-title: Int J Cancer
  doi: 10.1002/ijc.28551
– volume: 30
  start-page: 459
  year: 2012
  ident: B66
  article-title: Neutrophil function: from mechanisms to disease
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev-immunol-020711-074942
– volume: 71
  start-page: 2411
  year: 2011
  ident: B13
  article-title: Tumor-associated neutrophils: new targets for cancer therapy
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-10-2583
– volume: 12
  start-page: 154
  year: 2013
  ident: B86
  article-title: Promoting effect of neutrophils on lung tumorigenesis is mediated by CXCR2 and neutrophil elastase
  publication-title: Mol Cancer
  doi: 10.1186/1476-4598-12-154
– volume: 368
  start-page: 71
  year: 2015
  ident: B90
  article-title: Infiltrating neutrophils promote renal cell carcinoma (RCC) proliferation via modulating androgen receptor (AR) → c-Myc signals
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2015.07.027
– volume: 7
  start-page: e33655
  year: 2012
  ident: B135
  article-title: The prognostic value of tumor-infiltrating neutrophils in gastric adenocarcinoma after resection
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0033655
– volume: 66
  start-page: 483
  year: 1981
  ident: B59
  article-title: Human neutrophil-mediated cytotoxicity to tumor cells
  publication-title: J Natl Cancer Inst
– volume: 106
  start-page: dju124
  year: 2014
  ident: B136
  article-title: Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: a systematic review and meta-analysis
  publication-title: J Natl Cancer Inst
  doi: 10.1093/jnci/dju124
– volume: 39
  start-page: 3
  year: 2001
  ident: B47
  article-title: Immunocytochemical detection of leukocyte-associated and apoptosis-related antigen expression in childhood brain tumors
  publication-title: Crit Rev Oncol Hematol
  doi: 10.1016/S1040-8428(01)00119-6
– volume: 56
  start-page: 2242
  year: 2012
  ident: B27
  article-title: Overexpression of CXCL5 mediates neutrophil infiltration and indicates poor prognosis for hepatocellular carcinoma
  publication-title: Hepatology
  doi: 10.1002/hep.25907
– volume: 125
  start-page: 887
  year: 2009
  ident: B121
  article-title: IL-8 induces exocytosis of arginase 1 by neutrophil polymorphonuclears in nonsmall cell lung cancer
  publication-title: Int J Cancer
  doi: 10.1002/ijc.24448
– volume: 5
  start-page: 473
  year: 2014
  ident: B150
  article-title: Neutrophil elastase as a diagnostic marker and therapeutic target in colorectal cancers
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.1631
– volume: 23
  start-page: 5358
  year: 2017
  ident: B156
  article-title: Phase Ib pilot study to evaluate reparixin in combination with weekly paclitaxel in patients with HER-2-negative metastatic breast cancer
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-16-2748
– volume: 17
  start-page: 161
  year: 2007
  ident: B151
  article-title: Neutrophil elastase induces cell proliferation and migration by the release of TGF-alpha, PDGF and VEGF in esophageal cell lines
  publication-title: Oncol Rep
  doi: 10.3892/or.17.1.161
– volume: 12
  start-page: 253
  year: 2012
  ident: B49
  article-title: Coordinated regulation of myeloid cells by tumours
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri3175
– volume: 9
  start-page: e98259
  year: 2014
  ident: B5
  article-title: Tumor-associated neutrophils as a new prognostic factor in cancer: a systematic review and meta-analysis
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0098259
– volume: 8
  start-page: 443
  year: 2017
  ident: B72
  article-title: Group V secreted phospholipase A2 induces the release of proangiogenic and antiangiogenic factors by human neutrophils
  publication-title: Front Immunol.
  doi: 10.3389/fimmu.2017.00443
– volume: 63
  start-page: 420
  year: 2015
  ident: B81
  article-title: Stimulation of hepatocarcinogenesis by neutrophils upon induction of oncogenic kras expression in transgenic zebrafish
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2015.03.024
– volume: 129
  start-page: 2183
  year: 2011
  ident: B131
  article-title: Polymorphonuclear granulocytes in human head and neck cancer: enhanced inflammatory activity, modulation by cancer cells and expansion in advanced disease
  publication-title: Int J Cancer
  doi: 10.1002/ijc.25892
– volume: 16
  start-page: 771
  year: 2014
  ident: B29
  article-title: Tissue-infiltrating neutrophils constitute the major in vivo source of angiogenesis-inducing MMP-9 in the tumor microenvironment
  publication-title: Neoplasia
  doi: 10.1016/j.neo.2014.08.013
– volume: 37
  start-page: 5397
  year: 2016
  ident: B109
  article-title: Circulating tumor-associated neutrophils (cTAN) contribute to circulating tumor cell survival by suppressing peripheral leukocyte activation
  publication-title: Tumour Biol
  doi: 10.1007/s13277-015-4349-3
– volume: 11
  start-page: 519
  year: 2011
  ident: B9
  article-title: Neutrophils in the activation and regulation of innate and adaptive immunity
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri3024
– volume: 90
  start-page: 222
  year: 2009
  ident: B110
  article-title: Neutrophils: key mediators of tumour angiogenesis
  publication-title: Int J Exp Pathol
  doi: 10.1111/j.1365-2613.2009.00641.x
– volume: 438
  start-page: 13
  year: 2001
  ident: B111
  article-title: The association between tumour progression and vascularity in myxofibrosarcoma and myxoid/round cell liposarcoma
  publication-title: Virchows Arch
  doi: 10.1007/s004280000327
– volume: 161
  start-page: 342
  year: 1998
  ident: B2
  article-title: Reduced tumorigenicity and augmented leukocyte infiltration after monocyte chemotactic protein-3 (MCP-3) gene transfer: perivascular accumulation of dendritic cells in peritumoral tissue and neutrophil recruitment within the tumor
  publication-title: J Immunol
  doi: 10.4049/jimmunol.161.1.342
– volume: 25
  start-page: 149
  year: 2010
  ident: B79
  article-title: Genotoxic effects of neutrophils and hypochlorous acid
  publication-title: Mutagenesis
  doi: 10.1093/mutage/gep053
– volume: 10
  start-page: 51
  year: 2006
  ident: B39
  article-title: Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2006.06.001
– volume: 4
  start-page: 615
  year: 1998
  ident: B147
  article-title: Mice lacking neutrophil elastase reveal impaired host defense against gram negative bacterial sepsis
  publication-title: Nat Med.
  doi: 10.1038/nm0598-615
– volume: 522
  start-page: 345
  year: 2015
  ident: B30
  article-title: IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis
  publication-title: Nature
  doi: 10.1038/nature14282
– volume: 129
  start-page: 859
  year: 2011
  ident: B99
  article-title: Tumor-derived macrophage migration inhibitory factor modulates the biology of head and neck cancer cells via neutrophil activation
  publication-title: Int J Cancer
  doi: 10.1002/ijc.25991
– volume: 6
  start-page: 630
  year: 2016
  ident: B125
  article-title: Neutrophils suppress intraluminal NK cell-mediated tumor cell clearance and enhance extravasation of disseminated carcinoma cells
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-15-1157
– volume: 6
  start-page: 9387
  year: 2015
  ident: B83
  article-title: Gut bacteria require neutrophils to promote mammary tumorigenesis
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.3328
– volume: 37
  start-page: 41
  year: 2016
  ident: B74
  article-title: Neutrophils in the tumor microenvironment
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2015.11.008
– volume: 19
  start-page: 1423
  year: 2013
  ident: B143
  article-title: Microenvironmental regulation of tumor progression and metastasis
  publication-title: Nat Med
  doi: 10.1038/nm.3394
– volume: 120
  start-page: 1766
  year: 2007
  ident: B22
  article-title: Role of interleukin-8 in the progression of estrogen receptor-negative breast cancer
  publication-title: Chin Med J
  doi: 10.1097/00029330-200710020-00007
– volume: 82
  start-page: 296
  year: 2012
  ident: B11
  article-title: On the dual roles and polarized phenotypes of neutrophils in tumor development and progression
  publication-title: Crit Rev Oncol Hematol
  doi: 10.1016/j.critrevonc.2011.06.004
– volume: 215
  start-page: 1015
  year: 2010
  ident: B63
  article-title: Granulocytes as effective anticancer agent in experimental solid tumor models
  publication-title: Immunobiology
  doi: 10.1016/j.imbio.2010.01.002
– volume: 36
  start-page: 7789
  year: 2015
  ident: B104
  article-title: Intratumoral neutrophil granulocytes contribute to epithelial-mesenchymal transition in lung adenocarcinoma cells
  publication-title: Tumour Biol
  doi: 10.1007/s13277-015-3484-1
– volume: 16
  start-page: 137
  year: 2017
  ident: B155
  article-title: Neutrophils in cancer: prognostic role and therapeutic strategies
  publication-title: Mol Cancer
  doi: 10.1186/s12943-017-0707-7
– volume: 6
  start-page: 19290
  year: 2015
  ident: B101
  article-title: Infiltrating neutrophils promote renal cell carcinoma progression via VEGFa/HIF2α and estrogen receptor β signals
  publication-title: Oncotarget.
  doi: 10.18632/oncotarget.4478
– volume: 6
  start-page: e1356965
  year: 2017
  ident: B119
  article-title: Tumor-associated neutrophils induce apoptosis of non-activated CD8 T-cells in a TNFα and NO-dependent mechanism, promoting a tumor-supportive environment
  publication-title: Oncoimmunology
  doi: 10.1080/2162402X.2017.1356965
– volume: 103
  start-page: 481
  year: 2000
  ident: B82
  article-title: MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)00139-2
– volume: 7
  start-page: e30806
  year: 2012
  ident: B134
  article-title: Increased intratumoral neutrophil in colorectal carcinomas correlates closely with malignant phenotype and predicts patients' adverse prognosis
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0030806
– volume: 32
  start-page: 1752
  year: 2013
  ident: B70
  article-title: Neutrophil chemokines secreted by tumor cells mount a lung antimetastatic response during renal cell carcinoma progression
  publication-title: Oncogene
  doi: 10.1038/onc.2012.201
– volume: 507
  start-page: 109
  year: 2014
  ident: B34
  article-title: Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma
  publication-title: Nature.
  doi: 10.1038/nature13111
– volume: 9
  start-page: 181
  year: 2014
  ident: B65
  article-title: The multifaceted functions of neutrophils
  publication-title: Annu Rev Pathol
  doi: 10.1146/annurev-pathol-020712-164023
– volume: 139
  start-page: 446
  year: 2016
  ident: B71
  article-title: Occurrence and significance of tumor-associated neutrophils in patients with colorectal cancer
  publication-title: Int J Cancer.
  doi: 10.1002/ijc.30076
– volume: 103
  start-page: 12493
  year: 2006
  ident: B116
  article-title: Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0601807103
– volume: 95
  start-page: e4932
  year: 2016
  ident: B108
  article-title: Neutrophils assist the metastasis of circulating tumor cells in pancreatic ductal adenocarcinoma: A new hypothesis and a new predictor for distant metastasis
  publication-title: Medicine (Baltimore)
  doi: 10.1097/MD.0000000000004932
– volume: 72
  start-page: 708
  year: 1995
  ident: B15
  article-title: Chemokine gene transfection into tumour cells reduced tumorigenicity in nude mice in association with neutrophilic infiltration
  publication-title: Br J Cancer
  doi: 10.1038/bjc.1995.398
– volume: 12
  start-page: 1035
  year: 2011
  ident: B48
  article-title: Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils
  publication-title: Nat Immunol
  doi: 10.1038/ni.2109
– volume: 118
  start-page: 2476
  year: 2012
  ident: B132
  article-title: Intratumoral neutrophils and plasmacytoid dendritic cells indicate poor prognosis and are associated with pSTAT3 expression in AJCC stage I/II melanoma
  publication-title: Cancer
  doi: 10.1002/cncr.26511
– volume: 9
  start-page: 527
  year: 2018
  ident: B112
  article-title: Contribution to tumor angiogenesis from innate immune cells within the tumor microenvironment: implications for immunotherapy
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2018.00527
– volume: 16
  start-page: 183
  year: 2009
  ident: B3
  article-title: Polarization of tumor-associated neutrophil phenotype by TGF-beta: N1 versus N2 TAN
  publication-title: Cancer Cell.
  doi: 10.1016/j.ccr.2009.06.017
– volume: 23
  start-page: 104
  year: 2018
  ident: B137
  article-title: Comparison of clinical utility between neutrophil count and neutrophil-lymphocyte ratio in patients with ovarian cancer: a single institutional experience and a literature review
  publication-title: Int J Clin Oncol
  doi: 10.1007/s10147-017-1180-4
– volume: 27
  start-page: 4709
  year: 2009
  ident: B129
  article-title: Presence of intratumoral neutrophils is an independent prognostic factor in localized renal cell carcinoma
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2008.18.9498
– volume: 112
  start-page: 1904
  year: 2015
  ident: B141
  article-title: Baseline neutrophil-to-lymphocyte ratio is associated with outcome of ipilimumab-treated metastatic melanoma patients
  publication-title: Br J Cancer
  doi: 10.1038/bjc.2015.180
– volume: 10
  start-page: 562
  year: 2015
  ident: B56
  article-title: Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2014.12.039
– volume: 21
  start-page: 225
  year: 2006
  ident: B78
  article-title: Neutrophils and respiratory tract DNA damage and mutagenesis: a review
  publication-title: Mutagenesis
  doi: 10.1093/mutage/gel032
– volume: 112
  start-page: E566
  year: 2015
  ident: B126
  article-title: Invasive breast cancer reprograms early myeloid differentiation in the bone marrow to generate immunosuppressive neutrophils
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1424927112
– volume: 72
  start-page: 3906
  year: 2012
  ident: B124
  article-title: Primary tumor hypoxia recruits CD11b+/Ly6Cmed/Ly6G+ immune suppressor cells and compromises NK cell cytotoxicity in the premetastatic niche
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-11-3873
– volume: 50
  start-page: 62
  year: 1982
  ident: B60
  article-title: Neutrophil-mediated tumor cell destruction in cancer ascites
  publication-title: Cancer.
  doi: 10.1002/1097-0142(19820701)50:1<62::AID-CNCR2820500113>3.0.CO;2-0
– volume: 12
  start-page: 692
  year: 2017
  ident: B146
  article-title: Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence
  publication-title: Nat Nanotechnol
  doi: 10.1038/nnano.2017.54
– volume: 163
  start-page: 2221
  year: 2003
  ident: B95
  article-title: Infiltration of neutrophils is required for acquisition of metastatic phenotype of benign murine fibrosarcoma cells: implication of inflammation-associated carcinogenesis and tumor progression
  publication-title: Am J Pathol.
  doi: 10.1016/S0002-9440(10)63580-8
– volume: 15
  start-page: 831
  year: 2002
  ident: B46
  article-title: Prognostic value of intratumoral neutrophils in advanced gastric carcinoma in a high-risk area in northern Italy
  publication-title: Mod Pathol
  doi: 10.1097/01.MP.0000020391.98998.6B
– volume: 62
  start-page: 1745
  year: 2013
  ident: B55
  article-title: Tumor-associated neutrophils (TAN) develop pro-tumorigenic properties during tumor progression
  publication-title: Cancer Immunol Immunother
  doi: 10.1007/s00262-013-1476-9
– volume: 65
  start-page: 8896
  year: 2005
  ident: B97
  article-title: Breast cancer cells stimulate neutrophils to produce oncostatin M: potential implications for tumor progression
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-05-1734
– volume: 66
  start-page: 5527
  year: 2006
  ident: B52
  article-title: Tumor-driven evolution of immunosuppressive networks during malignant progression
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-05-4128
– volume: 33
  start-page: 1802
  year: 2014
  ident: B54
  article-title: Programming of the development of tumor-promoting neutrophils by mesenchymal stromal cells
  publication-title: Cell Physiol Biochem
  doi: 10.1159/000362959
– volume: 303
  start-page: 331
  year: 2005
  ident: B23
  article-title: GCP-2/CXCL6 synergizes with other endothelial cell-derived chemokines in neutrophil mobilization and is associated with angiogenesis in gastrointestinal tumors
  publication-title: Exp Cell Res
  doi: 10.1016/j.yexcr.2004.09.027
– volume: 152
  start-page: 83
  year: 1998
  ident: B21
  article-title: Neutrophil alveolitis in bronchioloalveolar carcinoma: induction by tumor-derived interleukin-8 and relation to clinical outcome
  publication-title: Am J Pathol
– volume: 6
  start-page: 16471
  year: 2015
  ident: B91
  article-title: Neutrophils trigger a NF-κB dependent polarization of tumor-supportive stromal cells in germinal center B-cell lymphomas
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.4106
– volume: 10
  start-page: 4895
  year: 2004
  ident: B105
  article-title: The potential role of neutrophils in promoting the metastatic phenotype of tumors releasing interleukin-8
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-03-0760
– volume: 109
  start-page: 2491
  year: 2012
  ident: B33
  article-title: Origins of tumor-associated macrophages and neutrophils
  publication-title: Proc Natl Acad Sci USA.
  doi: 10.1073/pnas.1113744109
– volume: 75
  start-page: 2822
  year: 2015
  ident: B87
  article-title: Definition of prostaglandin E2-EP2 signals in the colon tumor microenvironment that amplify inflammation and tumor growth
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-15-0125
– volume: 156
  start-page: 509
  year: 2000
  ident: B76
  article-title: Neutrophils, nitric oxide synthase, and mutations in the mutatect murine tumor model
  publication-title: Am J Pathol
  doi: 10.1016/S0002-9440(10)64755-4
– volume: 225
  start-page: 438
  year: 2011
  ident: B98
  article-title: Neutrophils promote motility of cancer cells via a hyaluronan-mediated TLR4/PI3K activation loop
  publication-title: J Pathol
  doi: 10.1002/path.2947
– volume: 54
  start-page: 948
  year: 2011
  ident: B32
  article-title: Peritumoral neutrophils link inflammatory response to disease progression by fostering angiogenesis in hepatocellular carcinoma
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2010.08.041
– volume: 3
  start-page: e950163
  year: 2014
  ident: B62
  article-title: Human polymorphonuclear neutrophils specifically recognize and kill cancerous cells
  publication-title: Oncoimmunology
  doi: 10.4161/15384101.2014.950163
– volume: 2
  start-page: 561
  year: 2000
  ident: B75
  article-title: Expression of interleukin-8 promotes neutrophil infiltration and genetic instability in mutatect tumors
  publication-title: Neoplasia
  doi: 10.1038/sj.neo.7900110
– volume: 2
  start-page: 346
  year: 2019
  ident: B73
  article-title: Neutrophils driving unconventional T cells mediate resistance against murine sarcomas and selected human tumors
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.047
– volume: 528
  start-page: 413
  year: 2015
  ident: B153
  article-title: Neutrophils support lung colonization of metastasis-initiating breast cancer cells
  publication-title: Nature
  doi: 10.1038/nature16140
– volume: 19
  start-page: 3477
  year: 2000
  ident: B17
  article-title: Growth regulated oncogene-alpha expression by murine squamous cell carcinoma promotes tumor growth, metastasis, leukocyte infiltration and angiogenesis by a host CXC receptor-2 dependent mechanism
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1203687
– volume: 5
  start-page: e1295
  year: 2014
  ident: B53
  article-title: The IL-6-STAT3 axis mediates a reciprocal crosstalk between cancer-derived mesenchymal stem cells and neutrophils to synergistically prompt gastric cancer progression
  publication-title: Cell Death Dis
  doi: 10.1038/cddis.2014.263
– volume: 450
  start-page: 825
  year: 2007
  ident: B114
  article-title: Bv8 regulates myeloid-cell-dependent tumour angiogenesis
  publication-title: Nature
  doi: 10.1038/nature06348
– volume: 33
  start-page: 657
  year: 2010
  ident: B1
  article-title: Neutrophils, from marrow to microbes
  publication-title: Immunity
  doi: 10.1016/j.immuni.2010.11.011
– volume: 24
  start-page: 683
  year: 2011
  ident: B36
  article-title: Peripheral blood neutrophil granulocytes from patients with head and neck squamous cell carcinoma functionally differ from their counterparts in healthy donors
  publication-title: Int J Immunopathol Pharmacol
  doi: 10.1177/039463201102400314
– volume: 16
  start-page: 3439
  year: 1996
  ident: B45
  article-title: Immunophenotypic characterization of human primary and metastatic melanoma infiltrating leukocytes
  publication-title: Anticancer Res
– volume: 63
  start-page: 1405
  year: 2003
  ident: B130
  article-title: Hepatocyte growth factor production by neutrophils infiltrating bronchioloalveolar subtype pulmonary adenocarcinoma: role in tumor progression and death
  publication-title: Cancer Res
– volume: 3
  start-page: 936
  year: 2013
  ident: B144
  article-title: TGF-β signaling in myeloid cells is required for tumor metastasis
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-12-0527
– volume: 159
  start-page: 1405
  year: 2001
  ident: B16
  article-title: Tumor angiogenesis induced by granulocyte chemotactic protein-2 as a countercurrent principle
  publication-title: Am J Pathol
  doi: 10.1016/S0002-9440(10)62527-8
– volume: 97
  start-page: 1009
  year: 2018
  ident: B140
  article-title: Prognostic meaning of neutrophil to lymphocyte ratio (NLR) and lymphocyte to monocyte ration (LMR) in newly diagnosed Hodgkin lymphoma patients treated upfront with a PET-2 based strategy
  publication-title: Ann Hematol
  doi: 10.1007/s00277-018-3276-y
SSID ssj0000650103
Score 2.6522863
SecondaryResourceType review_article
Snippet Tumor Associated Neutrophils (TANs) are engaged into the tumor microenvironment by cytokines and chemokines, can be distinguished according to their activation...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1146
SubjectTerms angiogenesis
neutrophil-to-lymphocyte ratio
Oncology
tumor associated neutrophils
tumor microenvironment
tumorigenesis
Title Tumor Associated Neutrophils. Their Role in Tumorigenesis, Metastasis, Prognosis and Therapy
URI https://www.ncbi.nlm.nih.gov/pubmed/31799175
https://www.proquest.com/docview/2321665233
https://pubmed.ncbi.nlm.nih.gov/PMC6874146
https://doaj.org/article/688250aed36f486180d333f096ca1f0d
Volume 9
WOSCitedRecordID wos000499840300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2234-943X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000650103
  issn: 2234-943X
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2234-943X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000650103
  issn: 2234-943X
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEG50EfGy-Da7urTgwYOZTdJJP44qu3iZYZER5iCEfrKBMVmSzB73t29VkhlmRPHiJYSkOmm-qu58RXe-IuSDkCblic1jB-lVnBfSwJAqdGxEMFnqIILUWGxCLBZytVJXe6W-cE_YKA88AnfOgQIWifaO8ZBLnsrEMcYCMG-r05A4nH2B9ewlU-McXGABg1HLB7IwdR6aGhULUzXDFIAffIYGtf4_Uczfd0rufXoun5LjiTPSz2Nfn5EHvn5OHs-nVfEX5Ody86tp6RZp7-jCb_q2ubmu1t2MLnEtgH5v1p5WNR1sUYLTd1X3ic59r4EgDudXbYPb7qqO6tphM9QbeEl-XF4sv36Lp6oJsc0L1ceFt1wKL1INzARwEtoVzPDAmM0z70OuuNKCK5EE7YyzTmouCzCxyiRaJewVOaqb2r8hVAV4hDVA8nSWa5aYDNitcUFLnQVmdERmWxBLO0mKY2WLdQmpBaJeIuolol4OqEfk467Bzaim8XfTL-iVnRnKYA8XIDjKKTjKfwVHRN5vfVrCsMG1EF37ZtOVQCRTziELZxF5Pfp49yqGKnlAqyIiDrx_0JfDO3V1PUhzA_I5dP7kf3T-lDxBOPDHx7R4S476duPfkUf2tq-69ow8FCt5NkQ9HOd3F_fGfwf4
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tumor+Associated+Neutrophils.+Their+Role+in+Tumorigenesis%2C+Metastasis%2C+Prognosis+and+Therapy&rft.jtitle=Frontiers+in+oncology&rft.au=Masucci%2C+Maria+Teresa&rft.au=Minopoli%2C+Michele&rft.au=Carriero%2C+Maria+Vincenza&rft.date=2019-11-15&rft.issn=2234-943X&rft.eissn=2234-943X&rft.volume=9&rft_id=info:doi/10.3389%2Ffonc.2019.01146&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fonc_2019_01146
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2234-943X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2234-943X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2234-943X&client=summon