Distributed optimal power flow for smart grid transmission system with renewable energy sources
Utilizing renewable energy sources to reduce carbon emission and minimizing the fuel cost for energy saving in the OPF (optimal power flow) problem will contribute to reducing the global warming effect from the power generation sector. In this paper, we propose a DPOPF (distributed and parallel OPF)...
Uložené v:
| Vydané v: | Energy (Oxford) Ročník 56; s. 184 - 192 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Kidlington
Elsevier Ltd
01.07.2013
Elsevier |
| Predmet: | |
| ISSN: | 0360-5442 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Utilizing renewable energy sources to reduce carbon emission and minimizing the fuel cost for energy saving in the OPF (optimal power flow) problem will contribute to reducing the global warming effect from the power generation sector. In this paper, we propose a DPOPF (distributed and parallel OPF) algorithm for the smart grid transmission system with renewable energy sources to account for the fast variation of the power generated by renewable energy sources. The proposed DPOPF algorithm is a combination of the recursive quadratic programming method and the Lagrange projected gradient method; it can achieve the complete decomposition and can be executed in the smart grid transmission system to make distributed and parallel computation possible. We also propose Petri nets to control the computational synchronization of the DPOPF algorithm under the asynchronous data arrival in the smart grid transmission system.
The proposed DPOPF algorithm is applied to solve OPF problems in a smart grid transmission system with renewable energy sources on a 26-bus test system. The test results demonstrate the computational efficiency of the proposed DPOPF algorithm, which is fast enough to cope with the fast variation of the power generated by renewable energy sources, and justify the accuracy of the obtained solutions.
•Distributed optimal power flow (DOPF) algorithm for smart grid with renewable energy sources.•DOPF algorithm achieves distributed and parallel computation.•DOPF algorithm is executed in smart grid to exploit its great computing and communication power.•Petri net model controls the computational synchronization of DOPF algorithm in smart grid.•Speed up factor of DOPF algorithm vs. COPF algorithm is 55 times in single PC and 2000 times, ideally. |
|---|---|
| AbstractList | Utilizing renewable energy sources to reduce carbon emission and minimizing the fuel cost for energy saving in the OPF (optimal power flow) problem will contribute to reducing the global warming effect from the power generation sector. In this paper, we propose a DPOPF (distributed and parallel OPF) algorithm for the smart grid transmission system with renewable energy sources to account for the fast variation of the power generated by renewable energy sources. The proposed DPOPF algorithm is a combination of the recursive quadratic programming method and the Lagrange projected gradient method; it can achieve the complete decomposition and can be executed in the smart grid transmission system to make distributed and parallel computation possible. We also propose Petri nets to control the computational synchronization of the DPOPF algorithm under the asynchronous data arrival in the smart grid transmission system.
The proposed DPOPF algorithm is applied to solve OPF problems in a smart grid transmission system with renewable energy sources on a 26-bus test system. The test results demonstrate the computational efficiency of the proposed DPOPF algorithm, which is fast enough to cope with the fast variation of the power generated by renewable energy sources, and justify the accuracy of the obtained solutions.
•Distributed optimal power flow (DOPF) algorithm for smart grid with renewable energy sources.•DOPF algorithm achieves distributed and parallel computation.•DOPF algorithm is executed in smart grid to exploit its great computing and communication power.•Petri net model controls the computational synchronization of DOPF algorithm in smart grid.•Speed up factor of DOPF algorithm vs. COPF algorithm is 55 times in single PC and 2000 times, ideally. Utilizing renewable energy sources to reduce carbon emission and minimizing the fuel cost for energy saving in the OPF (optimal power flow) problem will contribute to reducing the global warming effect from the power generation sector. In this paper, we propose a DPOPF (distributed and parallel OPF) algorithm for the smart grid transmission system with renewable energy sources to account for the fast variation of the power generated by renewable energy sources. The proposed DPOPF algorithm is a combination of the recursive quadratic programming method and the Lagrange projected gradient method; it can achieve the complete decomposition and can be executed in the smart grid transmission system to make distributed and parallel computation possible. We also propose Petri nets to control the computational synchronization of the DPOPF algorithm under the asynchronous data arrival in the smart grid transmission system. The proposed DPOPF algorithm is applied to solve OPF problems in a smart grid transmission system with renewable energy sources on a 26-bus test system. The test results demonstrate the computational efficiency of the proposed DPOPF algorithm, which is fast enough to cope with the fast variation of the power generated by renewable energy sources, and justify the accuracy of the obtained solutions. Utilizing renewable energy sources to reduce carbon emission and minimizing the fuel cost for energy saving in the OPF (optimal power flow) problem will contribute to reducing the global warming effect from the power generation sector. In this paper, we propose a DPOPF (distributed and parallel OPF) algorithm for the smart grid transmission system with renewable energy sources to account for the fast variation of the power generated by renewable energy sources. The proposed DPOPF algorithm is a combination of the recursive quadratic programming method and the Lagrange projected gradient method; it can achieve the complete decomposition and can be executed in the smart grid transmission system to make distributed and parallel computation possible. We also propose Petri nets to control the computational synchronization of the DPOPF algorithm under the asynchronous data arrival in the smart grid transmission system. |
| Author | Chen, Jyun-Fu Lin, Shin-Yeu |
| Author_xml | – sequence: 1 givenname: Shin-Yeu surname: Lin fullname: Lin, Shin-Yeu email: shinylin@mail.cgu.edu.tw – sequence: 2 givenname: Jyun-Fu surname: Chen fullname: Chen, Jyun-Fu email: nba200318@yahoo.com.tw |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27461893$$DView record in Pascal Francis |
| BookMark | eNqFkTtv3DAQhFU4gB_JPwgQNgHSnLKUKEpMESBwnoCBFLZrYkWtHB504oXL8-H-fXiW06TIVWy-mVnOXBZnc5ipKF5LKCVI_X5d0kzx4VBWIOsSVAlSnhUXUGtYNUpV58Ul8xoAms6Yi8J-9pyi73eJBhG2yW9wEtuwpyjGKezFGKLgDcYkHqIfRIo488Yz-zALPnCijdj79EvEnLrHfiKxxAsOu-iIXxYvRpyYXj2_V8X91y93199XNz-__bj-dLNyqjFp1bi6VZ1UCAoRNVS6cTDUSoIbsNJjbVyvqwYGpZG6ytUGdE-N6XHsNXZQXxXvFt9tDL93xMnmKx1NE84Udmyr_GPQXWuak6hsADKnTH0aVZUxsm1bk9G3zyiyw2nMRTnPdhtzo_Fgq1Zp2T1Zflg4FwNzpNE6nzDlPnO3frIS7HFHu7ZLkfa4owVl845ZrP4R__U_IXuzyEYMFvOQbO9vM6CPnahWH6__uBCUN3r0FC07T7OjwUdyyQ7B_z_iDyXAx2k |
| CODEN | ENEYDS |
| CitedBy_id | crossref_primary_10_1109_TEM_2020_2974797 crossref_primary_10_1016_j_epsr_2017_07_014 crossref_primary_10_1016_j_apenergy_2013_11_069 crossref_primary_10_1109_TSG_2016_2593911 crossref_primary_10_3233_JIFS_169350 crossref_primary_10_17533_udea_redin_20200579 crossref_primary_10_1007_s42835_020_00456_z crossref_primary_10_1007_s11708_016_0418_6 crossref_primary_10_1080_15325008_2015_1080769 crossref_primary_10_3390_math10193450 crossref_primary_10_1016_j_apenergy_2018_04_067 crossref_primary_10_1016_j_renene_2016_06_049 crossref_primary_10_1109_ACCESS_2020_2986895 crossref_primary_10_1016_j_conengprac_2022_105381 crossref_primary_10_1016_j_rser_2017_07_045 crossref_primary_10_1016_j_heliyon_2024_e40691 crossref_primary_10_1016_j_rser_2016_05_037 crossref_primary_10_1155_2020_3297050 crossref_primary_10_1016_j_energy_2013_11_065 crossref_primary_10_1177_0309524X17723202 crossref_primary_10_1109_TII_2019_2909328 crossref_primary_10_1007_s40722_017_0092_8 crossref_primary_10_1016_j_conengprac_2020_104695 crossref_primary_10_1016_j_energy_2015_06_063 crossref_primary_10_1016_j_rser_2013_08_072 crossref_primary_10_1155_2017_9539506 crossref_primary_10_1016_j_energy_2014_10_007 crossref_primary_10_1016_j_energy_2016_07_035 crossref_primary_10_1016_j_enbuild_2017_10_011 crossref_primary_10_1016_j_energy_2016_02_015 crossref_primary_10_1080_15325008_2017_1378773 crossref_primary_10_3390_en11113142 crossref_primary_10_1016_j_renene_2018_07_146 crossref_primary_10_1016_j_energy_2016_07_155 crossref_primary_10_1049_iet_rpg_2019_1305 crossref_primary_10_3390_math11071757 crossref_primary_10_1016_j_jclepro_2022_134138 crossref_primary_10_3390_en11071855 crossref_primary_10_1016_j_apenergy_2017_08_062 crossref_primary_10_1016_j_rser_2016_12_102 crossref_primary_10_1016_j_enconman_2015_06_048 crossref_primary_10_1016_j_energy_2017_10_087 crossref_primary_10_1016_j_ijepes_2016_04_004 crossref_primary_10_1177_0142331219841418 crossref_primary_10_1016_j_energy_2014_02_045 crossref_primary_10_1016_j_energy_2023_130165 crossref_primary_10_1155_2022_3358795 crossref_primary_10_1016_j_energy_2015_05_050 crossref_primary_10_1002_etep_2623 crossref_primary_10_1016_j_energy_2015_12_116 crossref_primary_10_1016_j_energy_2014_06_026 crossref_primary_10_1016_j_energy_2014_04_039 crossref_primary_10_1109_TSG_2016_2549560 crossref_primary_10_3390_en15124320 crossref_primary_10_3390_app142311112 crossref_primary_10_1016_j_scs_2020_102049 |
| Cites_doi | 10.1016/j.energy.2012.10.001 10.1016/j.energy.2010.01.036 10.1109/TIE.2011.2106099 10.1016/j.energy.2012.06.034 10.1016/j.energy.2012.08.017 10.1016/j.energy.2012.07.053 10.1109/TPWRS.2008.926695 10.1016/j.energy.2011.09.027 10.1109/JPROC.2010.2080250 10.1016/j.energy.2011.11.028 10.1109/59.317660 10.1109/59.65896 10.1109/TPAS.1979.319296 10.1016/j.energy.2012.06.051 10.1016/j.energy.2012.04.003 10.1109/59.589777 10.1109/59.627874 10.1016/j.energy.2011.07.054 10.1016/j.energy.2010.12.006 10.1016/j.energy.2011.08.041 10.1109/TPAS.1984.318284 10.1109/TPWRS.2002.1007898 10.1109/TPAS.1984.318568 10.1023/A:1023374312364 10.1093/ietfec/e89-a.1.260 10.1016/j.apenergy.2010.10.013 10.1016/j.energy.2012.09.031 10.1109/59.141723 |
| ContentType | Journal Article |
| Copyright | 2013 Elsevier Ltd 2015 INIST-CNRS |
| Copyright_xml | – notice: 2013 Elsevier Ltd – notice: 2015 INIST-CNRS |
| DBID | FBQ AAYXX CITATION IQODW 7ST 7TV 7U6 C1K SOI 7S9 L.6 |
| DOI | 10.1016/j.energy.2013.04.011 |
| DatabaseName | AGRIS CrossRef Pascal-Francis Environment Abstracts Pollution Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Pollution Abstracts Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Pollution Abstracts Pollution Abstracts AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences Applied Sciences |
| EndPage | 192 |
| ExternalDocumentID | 27461893 10_1016_j_energy_2013_04_011 US201600064769 S0360544213003113 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAQXK ABFNM ABPIF ABPTK ADMUD AHHHB ASPBG AVWKF AZFZN FBQ FEDTE FGOYB G-2 G8K HVGLF HZ~ R2- SAC SEW WUQ 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD BNPGV IQODW SSH 7ST 7TV 7U6 C1K SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c459t-5c374814a04aaa60265c0d3410cda26f39cb6250d46ae82c3906be59bafb6a803 |
| ISICitedReferencesCount | 69 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000321230800020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-5442 |
| IngestDate | Sun Sep 28 11:37:56 EDT 2025 Tue Oct 07 09:35:15 EDT 2025 Tue Oct 07 09:48:45 EDT 2025 Wed Apr 02 07:18:35 EDT 2025 Tue Nov 18 22:39:07 EST 2025 Sat Nov 29 02:04:48 EST 2025 Wed Dec 27 19:20:27 EST 2023 Fri Feb 23 02:16:13 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Computational synchronization Distributed and parallel computation Renewable energy source Optimal power flow Smart grid Petri net Energy source Electric energy transportation Renewable energy |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c459t-5c374814a04aaa60265c0d3410cda26f39cb6250d46ae82c3906be59bafb6a803 |
| Notes | http://dx.doi.org/10.1016/j.energy.2013.04.011 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1429917779 |
| PQPubID | 23462 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_2000068795 proquest_miscellaneous_1500795493 proquest_miscellaneous_1429917779 pascalfrancis_primary_27461893 crossref_citationtrail_10_1016_j_energy_2013_04_011 crossref_primary_10_1016_j_energy_2013_04_011 fao_agris_US201600064769 elsevier_sciencedirect_doi_10_1016_j_energy_2013_04_011 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-07-01 |
| PublicationDateYYYYMMDD | 2013-07-01 |
| PublicationDate_xml | – month: 07 year: 2013 text: 2013-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington |
| PublicationTitle | Energy (Oxford) |
| PublicationYear | 2013 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Mathiesen, Duic, Stadler, Rizzo, Guzovic (bib2) 2012; 48 National Energy Technology Laboratory (bib25) 2009 Varaiya, Wu, Bialek (bib8) 2011; 99 Welsch, Howells, Bazilian, Decrolis, Hermann, Rogner (bib5) 2012; 46 Niknam, Narimani, Jabbari, Malekpour (bib14) 2011; 36 Narimani, Azizipanah-Abarghooee, Zoghdar-Moghadam-Shahrekohne, Gholami (bib13) 2013; 49 Bertsekas, Tsitsiklis (bib31) 1989 Yasar, Ozyon (bib9) 2011; 36 Lin, Lin (bib22) 1997; 12 Lin, Lin, Lin (bib23) 2002; 17 Tong, Gao, Tong, Luo, Zhang (bib26) 2012 Nogales, Prieto, Conejo (bib28) 2003; 120 Mohammadi-ivatloo, Rabiee, Soroudi, Ehsan (bib10) 2012; 44 Saadat (bib34) 2004 Blumsack, Fernandez (bib7) 2012; 37 Stott, Marinho (bib16) 1979; 98 Salgado, Rangel (bib12) 2012; 42 Bruno, Lamonaca, Rotondo, Stecchi, La Scala (bib24) 2011; 58 Monticelli, Liu (bib20) 1992; 7 Alsac, Bright, Prais, Stott (bib17) 1990; 5 Chang, Lin (bib29) 2006; E89-A Lund, Ostergaard, Stadler (bib3) 2011; 88 Luenberger (bib33) 2003 Liao (bib11) 2011; 36 Niknam, Azizipanah-Abarghooee, Narimani (bib15) 2012; 47 Burchett, Happ, Vierth (bib18) 1985; 103 Sun, Ashly, Brewer, Hughes, Tinney (bib19) 1984; 103 Kim, Baldick (bib27) 1997; 12 Alagoz, Kaygusuz, Karabiber (bib6) 2012; 44 Cassandras, Lafortune (bib32) 1999 Lin, Lin (bib30) 2008; 23 Lund (bib4) 2010; 35 Lund, Andersen, Ostergaard, Mathiesen, Connolly (bib1) 2012; 42 Wu, Debs, Marsten (bib21) 1994; 9 Lin (10.1016/j.energy.2013.04.011_bib23) 2002; 17 Burchett (10.1016/j.energy.2013.04.011_bib18) 1985; 103 Bruno (10.1016/j.energy.2013.04.011_bib24) 2011; 58 Nogales (10.1016/j.energy.2013.04.011_bib28) 2003; 120 Varaiya (10.1016/j.energy.2013.04.011_bib8) 2011; 99 Lund (10.1016/j.energy.2013.04.011_bib1) 2012; 42 Wu (10.1016/j.energy.2013.04.011_bib21) 1994; 9 Bertsekas (10.1016/j.energy.2013.04.011_bib31) 1989 Salgado (10.1016/j.energy.2013.04.011_bib12) 2012; 42 Alsac (10.1016/j.energy.2013.04.011_bib17) 1990; 5 Liao (10.1016/j.energy.2013.04.011_bib11) 2011; 36 Welsch (10.1016/j.energy.2013.04.011_bib5) 2012; 46 Sun (10.1016/j.energy.2013.04.011_bib19) 1984; 103 Lund (10.1016/j.energy.2013.04.011_bib3) 2011; 88 Chang (10.1016/j.energy.2013.04.011_bib29) 2006; E89-A Lund (10.1016/j.energy.2013.04.011_bib4) 2010; 35 Lin (10.1016/j.energy.2013.04.011_bib30) 2008; 23 Monticelli (10.1016/j.energy.2013.04.011_bib20) 1992; 7 Narimani (10.1016/j.energy.2013.04.011_bib13) 2013; 49 Niknam (10.1016/j.energy.2013.04.011_bib15) 2012; 47 Mohammadi-ivatloo (10.1016/j.energy.2013.04.011_bib10) 2012; 44 Stott (10.1016/j.energy.2013.04.011_bib16) 1979; 98 Alagoz (10.1016/j.energy.2013.04.011_bib6) 2012; 44 Cassandras (10.1016/j.energy.2013.04.011_bib32) 1999 Yasar (10.1016/j.energy.2013.04.011_bib9) 2011; 36 Kim (10.1016/j.energy.2013.04.011_bib27) 1997; 12 Blumsack (10.1016/j.energy.2013.04.011_bib7) 2012; 37 Saadat (10.1016/j.energy.2013.04.011_bib34) 2004 Niknam (10.1016/j.energy.2013.04.011_bib14) 2011; 36 Luenberger (10.1016/j.energy.2013.04.011_bib33) 2003 Tong (10.1016/j.energy.2013.04.011_bib26) 2012 Mathiesen (10.1016/j.energy.2013.04.011_bib2) 2012; 48 National Energy Technology Laboratory (10.1016/j.energy.2013.04.011_bib25) 2009 Lin (10.1016/j.energy.2013.04.011_bib22) 1997; 12 |
| References_xml | – volume: 42 start-page: 96 year: 2012 end-page: 102 ident: bib1 article-title: From electricity smart grids to smart energy systems – a market operation based approach and understanding publication-title: Energy – volume: 58 start-page: 4504 year: 2011 end-page: 4513 ident: bib24 article-title: Unbalanced three-phase optimal power flow for smart grids publication-title: IEEE Trans Indust Electron – volume: 44 start-page: 167 year: 2012 end-page: 177 ident: bib6 article-title: A user-mode distributed energy management architecture for smart grid applications publication-title: Energy – volume: 99 start-page: 40 year: 2011 end-page: 57 ident: bib8 article-title: Smart operation of smart grid: risk limiting dispatch publication-title: Proc IEEE – volume: 5 start-page: 697 year: 1990 end-page: 711 ident: bib17 article-title: Further development in LP-based optimal power flow publication-title: IEEE Trans Power Syst – volume: 17 start-page: 315 year: 2002 end-page: 323 ident: bib23 article-title: Improvements on the duality based method used in solving optimal power flow problems publication-title: IEEE Trans Power Syst – volume: 12 start-page: 932 year: 1997 end-page: 939 ident: bib27 article-title: Coarse-grained distributed optimal power flow publication-title: IEEE Trans Power Syst – volume: 9 start-page: 876 year: 1994 end-page: 882 ident: bib21 article-title: A direct nonlinear predictor-corrector primal-dual interior point algorithm for optimal power flow publication-title: IEEE Trans Power Syst – volume: 103 start-page: 2864 year: 1984 end-page: 2880 ident: bib19 article-title: Optimal power flow by Newton approach publication-title: IEEE Trans Power App Syst – year: 2004 ident: bib34 article-title: Power systems analysis – volume: 36 start-page: 5838 year: 2011 end-page: 5845 ident: bib9 article-title: A new hybrid approach for nonconvex economic dispatch problem with valve-point effect publication-title: Energy – start-page: 1 year: 2012 end-page: 10 ident: bib26 article-title: Dynamic lighting protection of smart grid transmission system publication-title: 2012 international conference on lighting protection – volume: 48 start-page: 2 year: 2012 end-page: 4 ident: bib2 article-title: The interaction between intermittent renewable energy and the electricity, heating and transport sectors publication-title: Energy – volume: 36 start-page: 1018 year: 2011 end-page: 1029 ident: bib11 article-title: A novel evolutionary algorithm for dynamic economic dispatch with energy saving and emission reduction in power system integrated wind power publication-title: Energy – volume: 103 start-page: 3267 year: 1985 end-page: 3275 ident: bib18 article-title: Quadratically convergent optimal power flow publication-title: IEEE Trans Power App Syst – year: 1999 ident: bib32 article-title: Introduction to discrete event systems – volume: 49 start-page: 119 year: 2013 end-page: 136 ident: bib13 article-title: A novel approach to multi-objective optimal power flow by a new hybrid optimization algorithm considering generator constraints and multi-fuel type publication-title: Energy – volume: 98 start-page: 837 year: 1979 end-page: 848 ident: bib16 article-title: Linear programming for power system network security applications publication-title: IEEE Trans Power App Syst – volume: 23 start-page: 1383 year: 2008 end-page: 1392 ident: bib30 article-title: Distributed optimal power flow with discrete control variables of large distributed power systems publication-title: IEEE Trans Power Syst – volume: 36 start-page: 6420 year: 2011 end-page: 6432 ident: bib14 article-title: A modified shuffle frog leaping algorithm for multi-objective optimal power flow publication-title: Energy – volume: 44 start-page: 228 year: 2012 end-page: 240 ident: bib10 article-title: Imperialist competitive algorithm for solving non-convex dynamic economic power dispatch publication-title: Energy – volume: 46 start-page: 337 year: 2012 end-page: 350 ident: bib5 article-title: Modelling elements of smart grids – enhancing the OSeMOSYS (open source energy modeling system) code publication-title: Energy – volume: 37 start-page: 61 year: 2012 end-page: 68 ident: bib7 article-title: Ready or not, here comes the smart grid! publication-title: Energy – volume: 120 start-page: 99 year: 2003 end-page: 116 ident: bib28 article-title: A decomposition methodology applied to the multi-area optimal power flow problem publication-title: Ann Oper Res – volume: 47 start-page: 451 year: 2012 end-page: 464 ident: bib15 article-title: Reserve constrained dynamic optimal power flow subject to valve-point effects, prohibited zones and multi-fuel constraints publication-title: Energy – year: 2009 ident: bib25 article-title: The transmission smart grid imperative – volume: E89-A start-page: 260 year: 2006 end-page: 269 ident: bib29 article-title: A MPBSG technique based parallel dual-type method for solving distributed optimal power flow problems publication-title: IEJCE Trans Fundam Electron Commun – year: 2003 ident: bib33 article-title: Linear and nonlinear programming – volume: 7 start-page: 334 year: 1992 end-page: 340 ident: bib20 article-title: Adaptive movement penalty method for the Newton optimal power flow publication-title: IEEE Trans Power Syst – year: 1989 ident: bib31 article-title: Prallel and distributed computations: numerical methods – volume: 88 start-page: 419 year: 2011 end-page: 421 ident: bib3 article-title: Towards 100% renewable energy systems publication-title: Appl Energy – volume: 42 start-page: 35 year: 2012 end-page: 45 ident: bib12 article-title: Optimal power flow solutions through multi-objective programming publication-title: Energy – volume: 35 start-page: 4003 year: 2010 end-page: 4009 ident: bib4 article-title: The implementation of renewable energy system. Lessons learned from Danish case publication-title: Energy – volume: 12 start-page: 1667 year: 1997 end-page: 1675 ident: bib22 article-title: A new dual-type method used in solving optimal power flow problems publication-title: IEEE Trans Power Syst – volume: 48 start-page: 2 issue: 1 year: 2012 ident: 10.1016/j.energy.2013.04.011_bib2 article-title: The interaction between intermittent renewable energy and the electricity, heating and transport sectors publication-title: Energy doi: 10.1016/j.energy.2012.10.001 – volume: 35 start-page: 4003 issue: 10 year: 2010 ident: 10.1016/j.energy.2013.04.011_bib4 article-title: The implementation of renewable energy system. Lessons learned from Danish case publication-title: Energy doi: 10.1016/j.energy.2010.01.036 – volume: 58 start-page: 4504 issue: 10 year: 2011 ident: 10.1016/j.energy.2013.04.011_bib24 article-title: Unbalanced three-phase optimal power flow for smart grids publication-title: IEEE Trans Indust Electron doi: 10.1109/TIE.2011.2106099 – volume: 44 start-page: 228 issue: 1 year: 2012 ident: 10.1016/j.energy.2013.04.011_bib10 article-title: Imperialist competitive algorithm for solving non-convex dynamic economic power dispatch publication-title: Energy doi: 10.1016/j.energy.2012.06.034 – volume: 46 start-page: 337 issue: 1 year: 2012 ident: 10.1016/j.energy.2013.04.011_bib5 article-title: Modelling elements of smart grids – enhancing the OSeMOSYS (open source energy modeling system) code publication-title: Energy doi: 10.1016/j.energy.2012.08.017 – year: 2004 ident: 10.1016/j.energy.2013.04.011_bib34 – volume: 47 start-page: 451 issue: 1 year: 2012 ident: 10.1016/j.energy.2013.04.011_bib15 article-title: Reserve constrained dynamic optimal power flow subject to valve-point effects, prohibited zones and multi-fuel constraints publication-title: Energy doi: 10.1016/j.energy.2012.07.053 – year: 2009 ident: 10.1016/j.energy.2013.04.011_bib25 – volume: 23 start-page: 1383 issue: 3 year: 2008 ident: 10.1016/j.energy.2013.04.011_bib30 article-title: Distributed optimal power flow with discrete control variables of large distributed power systems publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2008.926695 – volume: 36 start-page: 6420 issue: 11 year: 2011 ident: 10.1016/j.energy.2013.04.011_bib14 article-title: A modified shuffle frog leaping algorithm for multi-objective optimal power flow publication-title: Energy doi: 10.1016/j.energy.2011.09.027 – volume: 99 start-page: 40 issue: 1 year: 2011 ident: 10.1016/j.energy.2013.04.011_bib8 article-title: Smart operation of smart grid: risk limiting dispatch publication-title: Proc IEEE doi: 10.1109/JPROC.2010.2080250 – volume: 42 start-page: 35 issue: 1 year: 2012 ident: 10.1016/j.energy.2013.04.011_bib12 article-title: Optimal power flow solutions through multi-objective programming publication-title: Energy doi: 10.1016/j.energy.2011.11.028 – volume: 9 start-page: 876 issue: 2 year: 1994 ident: 10.1016/j.energy.2013.04.011_bib21 article-title: A direct nonlinear predictor-corrector primal-dual interior point algorithm for optimal power flow publication-title: IEEE Trans Power Syst doi: 10.1109/59.317660 – volume: 5 start-page: 697 issue: 3 year: 1990 ident: 10.1016/j.energy.2013.04.011_bib17 article-title: Further development in LP-based optimal power flow publication-title: IEEE Trans Power Syst doi: 10.1109/59.65896 – volume: 98 start-page: 837 issue: 3 year: 1979 ident: 10.1016/j.energy.2013.04.011_bib16 article-title: Linear programming for power system network security applications publication-title: IEEE Trans Power App Syst doi: 10.1109/TPAS.1979.319296 – volume: 44 start-page: 167 issue: 1 year: 2012 ident: 10.1016/j.energy.2013.04.011_bib6 article-title: A user-mode distributed energy management architecture for smart grid applications publication-title: Energy doi: 10.1016/j.energy.2012.06.051 – volume: 42 start-page: 96 issue: 1 year: 2012 ident: 10.1016/j.energy.2013.04.011_bib1 article-title: From electricity smart grids to smart energy systems – a market operation based approach and understanding publication-title: Energy doi: 10.1016/j.energy.2012.04.003 – year: 2003 ident: 10.1016/j.energy.2013.04.011_bib33 – volume: 12 start-page: 932 issue: 2 year: 1997 ident: 10.1016/j.energy.2013.04.011_bib27 article-title: Coarse-grained distributed optimal power flow publication-title: IEEE Trans Power Syst doi: 10.1109/59.589777 – volume: 12 start-page: 1667 issue: 4 year: 1997 ident: 10.1016/j.energy.2013.04.011_bib22 article-title: A new dual-type method used in solving optimal power flow problems publication-title: IEEE Trans Power Syst doi: 10.1109/59.627874 – volume: 37 start-page: 61 issue: 1 year: 2012 ident: 10.1016/j.energy.2013.04.011_bib7 article-title: Ready or not, here comes the smart grid! publication-title: Energy doi: 10.1016/j.energy.2011.07.054 – volume: 36 start-page: 1018 issue: 2 year: 2011 ident: 10.1016/j.energy.2013.04.011_bib11 article-title: A novel evolutionary algorithm for dynamic economic dispatch with energy saving and emission reduction in power system integrated wind power publication-title: Energy doi: 10.1016/j.energy.2010.12.006 – volume: 36 start-page: 5838 issue: 10 year: 2011 ident: 10.1016/j.energy.2013.04.011_bib9 article-title: A new hybrid approach for nonconvex economic dispatch problem with valve-point effect publication-title: Energy doi: 10.1016/j.energy.2011.08.041 – volume: 103 start-page: 2864 issue: 10 year: 1984 ident: 10.1016/j.energy.2013.04.011_bib19 article-title: Optimal power flow by Newton approach publication-title: IEEE Trans Power App Syst doi: 10.1109/TPAS.1984.318284 – volume: 17 start-page: 315 issue: 2 year: 2002 ident: 10.1016/j.energy.2013.04.011_bib23 article-title: Improvements on the duality based method used in solving optimal power flow problems publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2002.1007898 – volume: 103 start-page: 3267 issue: 11 year: 1985 ident: 10.1016/j.energy.2013.04.011_bib18 article-title: Quadratically convergent optimal power flow publication-title: IEEE Trans Power App Syst doi: 10.1109/TPAS.1984.318568 – volume: 120 start-page: 99 issue: 4 year: 2003 ident: 10.1016/j.energy.2013.04.011_bib28 article-title: A decomposition methodology applied to the multi-area optimal power flow problem publication-title: Ann Oper Res doi: 10.1023/A:1023374312364 – volume: E89-A start-page: 260 issue: 1 year: 2006 ident: 10.1016/j.energy.2013.04.011_bib29 article-title: A MPBSG technique based parallel dual-type method for solving distributed optimal power flow problems publication-title: IEJCE Trans Fundam Electron Commun doi: 10.1093/ietfec/e89-a.1.260 – year: 1999 ident: 10.1016/j.energy.2013.04.011_bib32 – volume: 88 start-page: 419 issue: 2 year: 2011 ident: 10.1016/j.energy.2013.04.011_bib3 article-title: Towards 100% renewable energy systems publication-title: Appl Energy doi: 10.1016/j.apenergy.2010.10.013 – volume: 49 start-page: 119 issue: 1 year: 2013 ident: 10.1016/j.energy.2013.04.011_bib13 article-title: A novel approach to multi-objective optimal power flow by a new hybrid optimization algorithm considering generator constraints and multi-fuel type publication-title: Energy doi: 10.1016/j.energy.2012.09.031 – year: 1989 ident: 10.1016/j.energy.2013.04.011_bib31 – volume: 7 start-page: 334 issue: 1 year: 1992 ident: 10.1016/j.energy.2013.04.011_bib20 article-title: Adaptive movement penalty method for the Newton optimal power flow publication-title: IEEE Trans Power Syst doi: 10.1109/59.141723 – start-page: 1 year: 2012 ident: 10.1016/j.energy.2013.04.011_bib26 article-title: Dynamic lighting protection of smart grid transmission system |
| SSID | ssj0005899 |
| Score | 2.3517036 |
| Snippet | Utilizing renewable energy sources to reduce carbon emission and minimizing the fuel cost for energy saving in the OPF (optimal power flow) problem will... |
| SourceID | proquest pascalfrancis crossref fao elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 184 |
| SubjectTerms | algorithms Applied sciences carbon Computational synchronization Distributed and parallel computation Energy energy conservation energy costs Exact sciences and technology global warming Optimal power flow Petri net power generation Renewable energy source renewable energy sources Smart grid |
| Title | Distributed optimal power flow for smart grid transmission system with renewable energy sources |
| URI | https://dx.doi.org/10.1016/j.energy.2013.04.011 https://www.proquest.com/docview/1429917779 https://www.proquest.com/docview/1500795493 https://www.proquest.com/docview/2000068795 |
| Volume | 56 |
| WOSCitedRecordID | wos000321230800020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0360-5442 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0005899 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbKhgQvCAbTyo_JSLxNQXHixM7jBJ0YQhNSN6k8WY6TQKcunZp2K_89d7aTtqrYAImXqEqdH873xTmf7-4j5J3JmWZRJYO4YDzglQiDPM1NwLOY5zEzrGS5FZsQZ2dyNMq-9nqnbS7MzUTUtVwus-v_CjXsA7AxdfYv4O5OCjvgN4AOW4Adtn8E_EcshYsqVmBKTmFAuMJcK9RCO6om01sbVthcwXFH32fjAiUi6gawRqeZL-vsfLNY6vLW5lWVLj3QufmbDVe--wcrli5dkHznVvjiahMMf4zr4Fu5WEUR-GSQn4s6OFms-xxQ_0Gs-xy6ZJhV5JFLwAqDhPONwTVZHx2ZU4PzH1rmRPC2xnDnTrh873qH0XexrUbrB-XN6thDvCpeFJflYob6xbuRSDK5Q3aPTwejz6t4H2nFRLu7bPMobbDf9rV-Z6c8qPQUA2h1A-9Q5cRPtr7j1jg5f0qe-FkFPXZseEZ6Zb1HHrVJ580e2R-sEhqhoR_Rm-dErdGFerpQSxeKdKEAK7V0oUgXuk4X6uhCkS60owt1naSeLi_Ixcng_MOnwItuBIYn2TxIDBYkYlyHXGuNAmWJCQuwdUJT6Cit4szkMGcOC57qUkYmzsI0L5Ms11WeahnG-2SnntblAaGhiU0BMwyDNfsiLaWOCiFZVVVFIUrG-yRuH7EyviI9CqNMVBt6eKncPSsERoVcATB9EnRHXbuKLPe0Fy16yluVzlpUQLh7jjwAsJWG59uoi2GExRhtcnaa9cnhBgO6O4kETxnMAfrkbUsJBajgKpyuy-migbk2WIBMCJHd0SYB0x0X4O84T2RNTQnNXv5zD1-Rx6vX-zXZmc8W5Rvy0NzMx83s0L9BvwDYXNdV |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+optimal+power+flow+for+smart+grid+transmission+system+with+renewable+energy+sources&rft.jtitle=Energy+%28Oxford%29&rft.au=Lin%2C+Shin-Yeu&rft.au=Chen%2C+Jyun-Fu&rft.date=2013-07-01&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=56&rft.spage=184&rft.epage=192&rft_id=info:doi/10.1016%2Fj.energy.2013.04.011&rft.externalDocID=S0360544213003113 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |