Distributed optimal power flow for smart grid transmission system with renewable energy sources

Utilizing renewable energy sources to reduce carbon emission and minimizing the fuel cost for energy saving in the OPF (optimal power flow) problem will contribute to reducing the global warming effect from the power generation sector. In this paper, we propose a DPOPF (distributed and parallel OPF)...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Energy (Oxford) Ročník 56; s. 184 - 192
Hlavní autori: Lin, Shin-Yeu, Chen, Jyun-Fu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Kidlington Elsevier Ltd 01.07.2013
Elsevier
Predmet:
ISSN:0360-5442
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Utilizing renewable energy sources to reduce carbon emission and minimizing the fuel cost for energy saving in the OPF (optimal power flow) problem will contribute to reducing the global warming effect from the power generation sector. In this paper, we propose a DPOPF (distributed and parallel OPF) algorithm for the smart grid transmission system with renewable energy sources to account for the fast variation of the power generated by renewable energy sources. The proposed DPOPF algorithm is a combination of the recursive quadratic programming method and the Lagrange projected gradient method; it can achieve the complete decomposition and can be executed in the smart grid transmission system to make distributed and parallel computation possible. We also propose Petri nets to control the computational synchronization of the DPOPF algorithm under the asynchronous data arrival in the smart grid transmission system. The proposed DPOPF algorithm is applied to solve OPF problems in a smart grid transmission system with renewable energy sources on a 26-bus test system. The test results demonstrate the computational efficiency of the proposed DPOPF algorithm, which is fast enough to cope with the fast variation of the power generated by renewable energy sources, and justify the accuracy of the obtained solutions. •Distributed optimal power flow (DOPF) algorithm for smart grid with renewable energy sources.•DOPF algorithm achieves distributed and parallel computation.•DOPF algorithm is executed in smart grid to exploit its great computing and communication power.•Petri net model controls the computational synchronization of DOPF algorithm in smart grid.•Speed up factor of DOPF algorithm vs. COPF algorithm is 55 times in single PC and 2000 times, ideally.
AbstractList Utilizing renewable energy sources to reduce carbon emission and minimizing the fuel cost for energy saving in the OPF (optimal power flow) problem will contribute to reducing the global warming effect from the power generation sector. In this paper, we propose a DPOPF (distributed and parallel OPF) algorithm for the smart grid transmission system with renewable energy sources to account for the fast variation of the power generated by renewable energy sources. The proposed DPOPF algorithm is a combination of the recursive quadratic programming method and the Lagrange projected gradient method; it can achieve the complete decomposition and can be executed in the smart grid transmission system to make distributed and parallel computation possible. We also propose Petri nets to control the computational synchronization of the DPOPF algorithm under the asynchronous data arrival in the smart grid transmission system. The proposed DPOPF algorithm is applied to solve OPF problems in a smart grid transmission system with renewable energy sources on a 26-bus test system. The test results demonstrate the computational efficiency of the proposed DPOPF algorithm, which is fast enough to cope with the fast variation of the power generated by renewable energy sources, and justify the accuracy of the obtained solutions. •Distributed optimal power flow (DOPF) algorithm for smart grid with renewable energy sources.•DOPF algorithm achieves distributed and parallel computation.•DOPF algorithm is executed in smart grid to exploit its great computing and communication power.•Petri net model controls the computational synchronization of DOPF algorithm in smart grid.•Speed up factor of DOPF algorithm vs. COPF algorithm is 55 times in single PC and 2000 times, ideally.
Utilizing renewable energy sources to reduce carbon emission and minimizing the fuel cost for energy saving in the OPF (optimal power flow) problem will contribute to reducing the global warming effect from the power generation sector. In this paper, we propose a DPOPF (distributed and parallel OPF) algorithm for the smart grid transmission system with renewable energy sources to account for the fast variation of the power generated by renewable energy sources. The proposed DPOPF algorithm is a combination of the recursive quadratic programming method and the Lagrange projected gradient method; it can achieve the complete decomposition and can be executed in the smart grid transmission system to make distributed and parallel computation possible. We also propose Petri nets to control the computational synchronization of the DPOPF algorithm under the asynchronous data arrival in the smart grid transmission system. The proposed DPOPF algorithm is applied to solve OPF problems in a smart grid transmission system with renewable energy sources on a 26-bus test system. The test results demonstrate the computational efficiency of the proposed DPOPF algorithm, which is fast enough to cope with the fast variation of the power generated by renewable energy sources, and justify the accuracy of the obtained solutions.
Utilizing renewable energy sources to reduce carbon emission and minimizing the fuel cost for energy saving in the OPF (optimal power flow) problem will contribute to reducing the global warming effect from the power generation sector. In this paper, we propose a DPOPF (distributed and parallel OPF) algorithm for the smart grid transmission system with renewable energy sources to account for the fast variation of the power generated by renewable energy sources. The proposed DPOPF algorithm is a combination of the recursive quadratic programming method and the Lagrange projected gradient method; it can achieve the complete decomposition and can be executed in the smart grid transmission system to make distributed and parallel computation possible. We also propose Petri nets to control the computational synchronization of the DPOPF algorithm under the asynchronous data arrival in the smart grid transmission system.
Author Chen, Jyun-Fu
Lin, Shin-Yeu
Author_xml – sequence: 1
  givenname: Shin-Yeu
  surname: Lin
  fullname: Lin, Shin-Yeu
  email: shinylin@mail.cgu.edu.tw
– sequence: 2
  givenname: Jyun-Fu
  surname: Chen
  fullname: Chen, Jyun-Fu
  email: nba200318@yahoo.com.tw
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27461893$$DView record in Pascal Francis
BookMark eNqFkTtv3DAQhFU4gB_JPwgQNgHSnLKUKEpMESBwnoCBFLZrYkWtHB504oXL8-H-fXiW06TIVWy-mVnOXBZnc5ipKF5LKCVI_X5d0kzx4VBWIOsSVAlSnhUXUGtYNUpV58Ul8xoAms6Yi8J-9pyi73eJBhG2yW9wEtuwpyjGKezFGKLgDcYkHqIfRIo488Yz-zALPnCijdj79EvEnLrHfiKxxAsOu-iIXxYvRpyYXj2_V8X91y93199XNz-__bj-dLNyqjFp1bi6VZ1UCAoRNVS6cTDUSoIbsNJjbVyvqwYGpZG6ytUGdE-N6XHsNXZQXxXvFt9tDL93xMnmKx1NE84Udmyr_GPQXWuak6hsADKnTH0aVZUxsm1bk9G3zyiyw2nMRTnPdhtzo_Fgq1Zp2T1Zflg4FwNzpNE6nzDlPnO3frIS7HFHu7ZLkfa4owVl845ZrP4R__U_IXuzyEYMFvOQbO9vM6CPnahWH6__uBCUN3r0FC07T7OjwUdyyQ7B_z_iDyXAx2k
CODEN ENEYDS
CitedBy_id crossref_primary_10_1109_TEM_2020_2974797
crossref_primary_10_1016_j_epsr_2017_07_014
crossref_primary_10_1016_j_apenergy_2013_11_069
crossref_primary_10_1109_TSG_2016_2593911
crossref_primary_10_3233_JIFS_169350
crossref_primary_10_17533_udea_redin_20200579
crossref_primary_10_1007_s42835_020_00456_z
crossref_primary_10_1007_s11708_016_0418_6
crossref_primary_10_1080_15325008_2015_1080769
crossref_primary_10_3390_math10193450
crossref_primary_10_1016_j_apenergy_2018_04_067
crossref_primary_10_1016_j_renene_2016_06_049
crossref_primary_10_1109_ACCESS_2020_2986895
crossref_primary_10_1016_j_conengprac_2022_105381
crossref_primary_10_1016_j_rser_2017_07_045
crossref_primary_10_1016_j_heliyon_2024_e40691
crossref_primary_10_1016_j_rser_2016_05_037
crossref_primary_10_1155_2020_3297050
crossref_primary_10_1016_j_energy_2013_11_065
crossref_primary_10_1177_0309524X17723202
crossref_primary_10_1109_TII_2019_2909328
crossref_primary_10_1007_s40722_017_0092_8
crossref_primary_10_1016_j_conengprac_2020_104695
crossref_primary_10_1016_j_energy_2015_06_063
crossref_primary_10_1016_j_rser_2013_08_072
crossref_primary_10_1155_2017_9539506
crossref_primary_10_1016_j_energy_2014_10_007
crossref_primary_10_1016_j_energy_2016_07_035
crossref_primary_10_1016_j_enbuild_2017_10_011
crossref_primary_10_1016_j_energy_2016_02_015
crossref_primary_10_1080_15325008_2017_1378773
crossref_primary_10_3390_en11113142
crossref_primary_10_1016_j_renene_2018_07_146
crossref_primary_10_1016_j_energy_2016_07_155
crossref_primary_10_1049_iet_rpg_2019_1305
crossref_primary_10_3390_math11071757
crossref_primary_10_1016_j_jclepro_2022_134138
crossref_primary_10_3390_en11071855
crossref_primary_10_1016_j_apenergy_2017_08_062
crossref_primary_10_1016_j_rser_2016_12_102
crossref_primary_10_1016_j_enconman_2015_06_048
crossref_primary_10_1016_j_energy_2017_10_087
crossref_primary_10_1016_j_ijepes_2016_04_004
crossref_primary_10_1177_0142331219841418
crossref_primary_10_1016_j_energy_2014_02_045
crossref_primary_10_1016_j_energy_2023_130165
crossref_primary_10_1155_2022_3358795
crossref_primary_10_1016_j_energy_2015_05_050
crossref_primary_10_1002_etep_2623
crossref_primary_10_1016_j_energy_2015_12_116
crossref_primary_10_1016_j_energy_2014_06_026
crossref_primary_10_1016_j_energy_2014_04_039
crossref_primary_10_1109_TSG_2016_2549560
crossref_primary_10_3390_en15124320
crossref_primary_10_3390_app142311112
crossref_primary_10_1016_j_scs_2020_102049
Cites_doi 10.1016/j.energy.2012.10.001
10.1016/j.energy.2010.01.036
10.1109/TIE.2011.2106099
10.1016/j.energy.2012.06.034
10.1016/j.energy.2012.08.017
10.1016/j.energy.2012.07.053
10.1109/TPWRS.2008.926695
10.1016/j.energy.2011.09.027
10.1109/JPROC.2010.2080250
10.1016/j.energy.2011.11.028
10.1109/59.317660
10.1109/59.65896
10.1109/TPAS.1979.319296
10.1016/j.energy.2012.06.051
10.1016/j.energy.2012.04.003
10.1109/59.589777
10.1109/59.627874
10.1016/j.energy.2011.07.054
10.1016/j.energy.2010.12.006
10.1016/j.energy.2011.08.041
10.1109/TPAS.1984.318284
10.1109/TPWRS.2002.1007898
10.1109/TPAS.1984.318568
10.1023/A:1023374312364
10.1093/ietfec/e89-a.1.260
10.1016/j.apenergy.2010.10.013
10.1016/j.energy.2012.09.031
10.1109/59.141723
ContentType Journal Article
Copyright 2013 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2013 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
7ST
7TV
7U6
C1K
SOI
7S9
L.6
DOI 10.1016/j.energy.2013.04.011
DatabaseName AGRIS
CrossRef
Pascal-Francis
Environment Abstracts
Pollution Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Pollution Abstracts
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Pollution Abstracts
Pollution Abstracts

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
Applied Sciences
EndPage 192
ExternalDocumentID 27461893
10_1016_j_energy_2013_04_011
US201600064769
S0360544213003113
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
AAQXK
ABFNM
ABPIF
ABPTK
ADMUD
AHHHB
ASPBG
AVWKF
AZFZN
FBQ
FEDTE
FGOYB
G-2
G8K
HVGLF
HZ~
R2-
SAC
SEW
WUQ
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
BNPGV
IQODW
SSH
7ST
7TV
7U6
C1K
SOI
7S9
L.6
ID FETCH-LOGICAL-c459t-5c374814a04aaa60265c0d3410cda26f39cb6250d46ae82c3906be59bafb6a803
ISICitedReferencesCount 69
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000321230800020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-5442
IngestDate Sun Sep 28 11:37:56 EDT 2025
Tue Oct 07 09:35:15 EDT 2025
Tue Oct 07 09:48:45 EDT 2025
Wed Apr 02 07:18:35 EDT 2025
Tue Nov 18 22:39:07 EST 2025
Sat Nov 29 02:04:48 EST 2025
Wed Dec 27 19:20:27 EST 2023
Fri Feb 23 02:16:13 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Computational synchronization
Distributed and parallel computation
Renewable energy source
Optimal power flow
Smart grid
Petri net
Energy source
Electric energy transportation
Renewable energy
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c459t-5c374814a04aaa60265c0d3410cda26f39cb6250d46ae82c3906be59bafb6a803
Notes http://dx.doi.org/10.1016/j.energy.2013.04.011
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1429917779
PQPubID 23462
PageCount 9
ParticipantIDs proquest_miscellaneous_2000068795
proquest_miscellaneous_1500795493
proquest_miscellaneous_1429917779
pascalfrancis_primary_27461893
crossref_citationtrail_10_1016_j_energy_2013_04_011
crossref_primary_10_1016_j_energy_2013_04_011
fao_agris_US201600064769
elsevier_sciencedirect_doi_10_1016_j_energy_2013_04_011
PublicationCentury 2000
PublicationDate 2013-07-01
PublicationDateYYYYMMDD 2013-07-01
PublicationDate_xml – month: 07
  year: 2013
  text: 2013-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Energy (Oxford)
PublicationYear 2013
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Mathiesen, Duic, Stadler, Rizzo, Guzovic (bib2) 2012; 48
National Energy Technology Laboratory (bib25) 2009
Varaiya, Wu, Bialek (bib8) 2011; 99
Welsch, Howells, Bazilian, Decrolis, Hermann, Rogner (bib5) 2012; 46
Niknam, Narimani, Jabbari, Malekpour (bib14) 2011; 36
Narimani, Azizipanah-Abarghooee, Zoghdar-Moghadam-Shahrekohne, Gholami (bib13) 2013; 49
Bertsekas, Tsitsiklis (bib31) 1989
Yasar, Ozyon (bib9) 2011; 36
Lin, Lin (bib22) 1997; 12
Lin, Lin, Lin (bib23) 2002; 17
Tong, Gao, Tong, Luo, Zhang (bib26) 2012
Nogales, Prieto, Conejo (bib28) 2003; 120
Mohammadi-ivatloo, Rabiee, Soroudi, Ehsan (bib10) 2012; 44
Saadat (bib34) 2004
Blumsack, Fernandez (bib7) 2012; 37
Stott, Marinho (bib16) 1979; 98
Salgado, Rangel (bib12) 2012; 42
Bruno, Lamonaca, Rotondo, Stecchi, La Scala (bib24) 2011; 58
Monticelli, Liu (bib20) 1992; 7
Alsac, Bright, Prais, Stott (bib17) 1990; 5
Chang, Lin (bib29) 2006; E89-A
Lund, Ostergaard, Stadler (bib3) 2011; 88
Luenberger (bib33) 2003
Liao (bib11) 2011; 36
Niknam, Azizipanah-Abarghooee, Narimani (bib15) 2012; 47
Burchett, Happ, Vierth (bib18) 1985; 103
Sun, Ashly, Brewer, Hughes, Tinney (bib19) 1984; 103
Kim, Baldick (bib27) 1997; 12
Alagoz, Kaygusuz, Karabiber (bib6) 2012; 44
Cassandras, Lafortune (bib32) 1999
Lin, Lin (bib30) 2008; 23
Lund (bib4) 2010; 35
Lund, Andersen, Ostergaard, Mathiesen, Connolly (bib1) 2012; 42
Wu, Debs, Marsten (bib21) 1994; 9
Lin (10.1016/j.energy.2013.04.011_bib23) 2002; 17
Burchett (10.1016/j.energy.2013.04.011_bib18) 1985; 103
Bruno (10.1016/j.energy.2013.04.011_bib24) 2011; 58
Nogales (10.1016/j.energy.2013.04.011_bib28) 2003; 120
Varaiya (10.1016/j.energy.2013.04.011_bib8) 2011; 99
Lund (10.1016/j.energy.2013.04.011_bib1) 2012; 42
Wu (10.1016/j.energy.2013.04.011_bib21) 1994; 9
Bertsekas (10.1016/j.energy.2013.04.011_bib31) 1989
Salgado (10.1016/j.energy.2013.04.011_bib12) 2012; 42
Alsac (10.1016/j.energy.2013.04.011_bib17) 1990; 5
Liao (10.1016/j.energy.2013.04.011_bib11) 2011; 36
Welsch (10.1016/j.energy.2013.04.011_bib5) 2012; 46
Sun (10.1016/j.energy.2013.04.011_bib19) 1984; 103
Lund (10.1016/j.energy.2013.04.011_bib3) 2011; 88
Chang (10.1016/j.energy.2013.04.011_bib29) 2006; E89-A
Lund (10.1016/j.energy.2013.04.011_bib4) 2010; 35
Lin (10.1016/j.energy.2013.04.011_bib30) 2008; 23
Monticelli (10.1016/j.energy.2013.04.011_bib20) 1992; 7
Narimani (10.1016/j.energy.2013.04.011_bib13) 2013; 49
Niknam (10.1016/j.energy.2013.04.011_bib15) 2012; 47
Mohammadi-ivatloo (10.1016/j.energy.2013.04.011_bib10) 2012; 44
Stott (10.1016/j.energy.2013.04.011_bib16) 1979; 98
Alagoz (10.1016/j.energy.2013.04.011_bib6) 2012; 44
Cassandras (10.1016/j.energy.2013.04.011_bib32) 1999
Yasar (10.1016/j.energy.2013.04.011_bib9) 2011; 36
Kim (10.1016/j.energy.2013.04.011_bib27) 1997; 12
Blumsack (10.1016/j.energy.2013.04.011_bib7) 2012; 37
Saadat (10.1016/j.energy.2013.04.011_bib34) 2004
Niknam (10.1016/j.energy.2013.04.011_bib14) 2011; 36
Luenberger (10.1016/j.energy.2013.04.011_bib33) 2003
Tong (10.1016/j.energy.2013.04.011_bib26) 2012
Mathiesen (10.1016/j.energy.2013.04.011_bib2) 2012; 48
National Energy Technology Laboratory (10.1016/j.energy.2013.04.011_bib25) 2009
Lin (10.1016/j.energy.2013.04.011_bib22) 1997; 12
References_xml – volume: 42
  start-page: 96
  year: 2012
  end-page: 102
  ident: bib1
  article-title: From electricity smart grids to smart energy systems – a market operation based approach and understanding
  publication-title: Energy
– volume: 58
  start-page: 4504
  year: 2011
  end-page: 4513
  ident: bib24
  article-title: Unbalanced three-phase optimal power flow for smart grids
  publication-title: IEEE Trans Indust Electron
– volume: 44
  start-page: 167
  year: 2012
  end-page: 177
  ident: bib6
  article-title: A user-mode distributed energy management architecture for smart grid applications
  publication-title: Energy
– volume: 99
  start-page: 40
  year: 2011
  end-page: 57
  ident: bib8
  article-title: Smart operation of smart grid: risk limiting dispatch
  publication-title: Proc IEEE
– volume: 5
  start-page: 697
  year: 1990
  end-page: 711
  ident: bib17
  article-title: Further development in LP-based optimal power flow
  publication-title: IEEE Trans Power Syst
– volume: 17
  start-page: 315
  year: 2002
  end-page: 323
  ident: bib23
  article-title: Improvements on the duality based method used in solving optimal power flow problems
  publication-title: IEEE Trans Power Syst
– volume: 12
  start-page: 932
  year: 1997
  end-page: 939
  ident: bib27
  article-title: Coarse-grained distributed optimal power flow
  publication-title: IEEE Trans Power Syst
– volume: 9
  start-page: 876
  year: 1994
  end-page: 882
  ident: bib21
  article-title: A direct nonlinear predictor-corrector primal-dual interior point algorithm for optimal power flow
  publication-title: IEEE Trans Power Syst
– volume: 103
  start-page: 2864
  year: 1984
  end-page: 2880
  ident: bib19
  article-title: Optimal power flow by Newton approach
  publication-title: IEEE Trans Power App Syst
– year: 2004
  ident: bib34
  article-title: Power systems analysis
– volume: 36
  start-page: 5838
  year: 2011
  end-page: 5845
  ident: bib9
  article-title: A new hybrid approach for nonconvex economic dispatch problem with valve-point effect
  publication-title: Energy
– start-page: 1
  year: 2012
  end-page: 10
  ident: bib26
  article-title: Dynamic lighting protection of smart grid transmission system
  publication-title: 2012 international conference on lighting protection
– volume: 48
  start-page: 2
  year: 2012
  end-page: 4
  ident: bib2
  article-title: The interaction between intermittent renewable energy and the electricity, heating and transport sectors
  publication-title: Energy
– volume: 36
  start-page: 1018
  year: 2011
  end-page: 1029
  ident: bib11
  article-title: A novel evolutionary algorithm for dynamic economic dispatch with energy saving and emission reduction in power system integrated wind power
  publication-title: Energy
– volume: 103
  start-page: 3267
  year: 1985
  end-page: 3275
  ident: bib18
  article-title: Quadratically convergent optimal power flow
  publication-title: IEEE Trans Power App Syst
– year: 1999
  ident: bib32
  article-title: Introduction to discrete event systems
– volume: 49
  start-page: 119
  year: 2013
  end-page: 136
  ident: bib13
  article-title: A novel approach to multi-objective optimal power flow by a new hybrid optimization algorithm considering generator constraints and multi-fuel type
  publication-title: Energy
– volume: 98
  start-page: 837
  year: 1979
  end-page: 848
  ident: bib16
  article-title: Linear programming for power system network security applications
  publication-title: IEEE Trans Power App Syst
– volume: 23
  start-page: 1383
  year: 2008
  end-page: 1392
  ident: bib30
  article-title: Distributed optimal power flow with discrete control variables of large distributed power systems
  publication-title: IEEE Trans Power Syst
– volume: 36
  start-page: 6420
  year: 2011
  end-page: 6432
  ident: bib14
  article-title: A modified shuffle frog leaping algorithm for multi-objective optimal power flow
  publication-title: Energy
– volume: 44
  start-page: 228
  year: 2012
  end-page: 240
  ident: bib10
  article-title: Imperialist competitive algorithm for solving non-convex dynamic economic power dispatch
  publication-title: Energy
– volume: 46
  start-page: 337
  year: 2012
  end-page: 350
  ident: bib5
  article-title: Modelling elements of smart grids – enhancing the OSeMOSYS (open source energy modeling system) code
  publication-title: Energy
– volume: 37
  start-page: 61
  year: 2012
  end-page: 68
  ident: bib7
  article-title: Ready or not, here comes the smart grid!
  publication-title: Energy
– volume: 120
  start-page: 99
  year: 2003
  end-page: 116
  ident: bib28
  article-title: A decomposition methodology applied to the multi-area optimal power flow problem
  publication-title: Ann Oper Res
– volume: 47
  start-page: 451
  year: 2012
  end-page: 464
  ident: bib15
  article-title: Reserve constrained dynamic optimal power flow subject to valve-point effects, prohibited zones and multi-fuel constraints
  publication-title: Energy
– year: 2009
  ident: bib25
  article-title: The transmission smart grid imperative
– volume: E89-A
  start-page: 260
  year: 2006
  end-page: 269
  ident: bib29
  article-title: A MPBSG technique based parallel dual-type method for solving distributed optimal power flow problems
  publication-title: IEJCE Trans Fundam Electron Commun
– year: 2003
  ident: bib33
  article-title: Linear and nonlinear programming
– volume: 7
  start-page: 334
  year: 1992
  end-page: 340
  ident: bib20
  article-title: Adaptive movement penalty method for the Newton optimal power flow
  publication-title: IEEE Trans Power Syst
– year: 1989
  ident: bib31
  article-title: Prallel and distributed computations: numerical methods
– volume: 88
  start-page: 419
  year: 2011
  end-page: 421
  ident: bib3
  article-title: Towards 100% renewable energy systems
  publication-title: Appl Energy
– volume: 42
  start-page: 35
  year: 2012
  end-page: 45
  ident: bib12
  article-title: Optimal power flow solutions through multi-objective programming
  publication-title: Energy
– volume: 35
  start-page: 4003
  year: 2010
  end-page: 4009
  ident: bib4
  article-title: The implementation of renewable energy system. Lessons learned from Danish case
  publication-title: Energy
– volume: 12
  start-page: 1667
  year: 1997
  end-page: 1675
  ident: bib22
  article-title: A new dual-type method used in solving optimal power flow problems
  publication-title: IEEE Trans Power Syst
– volume: 48
  start-page: 2
  issue: 1
  year: 2012
  ident: 10.1016/j.energy.2013.04.011_bib2
  article-title: The interaction between intermittent renewable energy and the electricity, heating and transport sectors
  publication-title: Energy
  doi: 10.1016/j.energy.2012.10.001
– volume: 35
  start-page: 4003
  issue: 10
  year: 2010
  ident: 10.1016/j.energy.2013.04.011_bib4
  article-title: The implementation of renewable energy system. Lessons learned from Danish case
  publication-title: Energy
  doi: 10.1016/j.energy.2010.01.036
– volume: 58
  start-page: 4504
  issue: 10
  year: 2011
  ident: 10.1016/j.energy.2013.04.011_bib24
  article-title: Unbalanced three-phase optimal power flow for smart grids
  publication-title: IEEE Trans Indust Electron
  doi: 10.1109/TIE.2011.2106099
– volume: 44
  start-page: 228
  issue: 1
  year: 2012
  ident: 10.1016/j.energy.2013.04.011_bib10
  article-title: Imperialist competitive algorithm for solving non-convex dynamic economic power dispatch
  publication-title: Energy
  doi: 10.1016/j.energy.2012.06.034
– volume: 46
  start-page: 337
  issue: 1
  year: 2012
  ident: 10.1016/j.energy.2013.04.011_bib5
  article-title: Modelling elements of smart grids – enhancing the OSeMOSYS (open source energy modeling system) code
  publication-title: Energy
  doi: 10.1016/j.energy.2012.08.017
– year: 2004
  ident: 10.1016/j.energy.2013.04.011_bib34
– volume: 47
  start-page: 451
  issue: 1
  year: 2012
  ident: 10.1016/j.energy.2013.04.011_bib15
  article-title: Reserve constrained dynamic optimal power flow subject to valve-point effects, prohibited zones and multi-fuel constraints
  publication-title: Energy
  doi: 10.1016/j.energy.2012.07.053
– year: 2009
  ident: 10.1016/j.energy.2013.04.011_bib25
– volume: 23
  start-page: 1383
  issue: 3
  year: 2008
  ident: 10.1016/j.energy.2013.04.011_bib30
  article-title: Distributed optimal power flow with discrete control variables of large distributed power systems
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2008.926695
– volume: 36
  start-page: 6420
  issue: 11
  year: 2011
  ident: 10.1016/j.energy.2013.04.011_bib14
  article-title: A modified shuffle frog leaping algorithm for multi-objective optimal power flow
  publication-title: Energy
  doi: 10.1016/j.energy.2011.09.027
– volume: 99
  start-page: 40
  issue: 1
  year: 2011
  ident: 10.1016/j.energy.2013.04.011_bib8
  article-title: Smart operation of smart grid: risk limiting dispatch
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2010.2080250
– volume: 42
  start-page: 35
  issue: 1
  year: 2012
  ident: 10.1016/j.energy.2013.04.011_bib12
  article-title: Optimal power flow solutions through multi-objective programming
  publication-title: Energy
  doi: 10.1016/j.energy.2011.11.028
– volume: 9
  start-page: 876
  issue: 2
  year: 1994
  ident: 10.1016/j.energy.2013.04.011_bib21
  article-title: A direct nonlinear predictor-corrector primal-dual interior point algorithm for optimal power flow
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/59.317660
– volume: 5
  start-page: 697
  issue: 3
  year: 1990
  ident: 10.1016/j.energy.2013.04.011_bib17
  article-title: Further development in LP-based optimal power flow
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/59.65896
– volume: 98
  start-page: 837
  issue: 3
  year: 1979
  ident: 10.1016/j.energy.2013.04.011_bib16
  article-title: Linear programming for power system network security applications
  publication-title: IEEE Trans Power App Syst
  doi: 10.1109/TPAS.1979.319296
– volume: 44
  start-page: 167
  issue: 1
  year: 2012
  ident: 10.1016/j.energy.2013.04.011_bib6
  article-title: A user-mode distributed energy management architecture for smart grid applications
  publication-title: Energy
  doi: 10.1016/j.energy.2012.06.051
– volume: 42
  start-page: 96
  issue: 1
  year: 2012
  ident: 10.1016/j.energy.2013.04.011_bib1
  article-title: From electricity smart grids to smart energy systems – a market operation based approach and understanding
  publication-title: Energy
  doi: 10.1016/j.energy.2012.04.003
– year: 2003
  ident: 10.1016/j.energy.2013.04.011_bib33
– volume: 12
  start-page: 932
  issue: 2
  year: 1997
  ident: 10.1016/j.energy.2013.04.011_bib27
  article-title: Coarse-grained distributed optimal power flow
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/59.589777
– volume: 12
  start-page: 1667
  issue: 4
  year: 1997
  ident: 10.1016/j.energy.2013.04.011_bib22
  article-title: A new dual-type method used in solving optimal power flow problems
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/59.627874
– volume: 37
  start-page: 61
  issue: 1
  year: 2012
  ident: 10.1016/j.energy.2013.04.011_bib7
  article-title: Ready or not, here comes the smart grid!
  publication-title: Energy
  doi: 10.1016/j.energy.2011.07.054
– volume: 36
  start-page: 1018
  issue: 2
  year: 2011
  ident: 10.1016/j.energy.2013.04.011_bib11
  article-title: A novel evolutionary algorithm for dynamic economic dispatch with energy saving and emission reduction in power system integrated wind power
  publication-title: Energy
  doi: 10.1016/j.energy.2010.12.006
– volume: 36
  start-page: 5838
  issue: 10
  year: 2011
  ident: 10.1016/j.energy.2013.04.011_bib9
  article-title: A new hybrid approach for nonconvex economic dispatch problem with valve-point effect
  publication-title: Energy
  doi: 10.1016/j.energy.2011.08.041
– volume: 103
  start-page: 2864
  issue: 10
  year: 1984
  ident: 10.1016/j.energy.2013.04.011_bib19
  article-title: Optimal power flow by Newton approach
  publication-title: IEEE Trans Power App Syst
  doi: 10.1109/TPAS.1984.318284
– volume: 17
  start-page: 315
  issue: 2
  year: 2002
  ident: 10.1016/j.energy.2013.04.011_bib23
  article-title: Improvements on the duality based method used in solving optimal power flow problems
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2002.1007898
– volume: 103
  start-page: 3267
  issue: 11
  year: 1985
  ident: 10.1016/j.energy.2013.04.011_bib18
  article-title: Quadratically convergent optimal power flow
  publication-title: IEEE Trans Power App Syst
  doi: 10.1109/TPAS.1984.318568
– volume: 120
  start-page: 99
  issue: 4
  year: 2003
  ident: 10.1016/j.energy.2013.04.011_bib28
  article-title: A decomposition methodology applied to the multi-area optimal power flow problem
  publication-title: Ann Oper Res
  doi: 10.1023/A:1023374312364
– volume: E89-A
  start-page: 260
  issue: 1
  year: 2006
  ident: 10.1016/j.energy.2013.04.011_bib29
  article-title: A MPBSG technique based parallel dual-type method for solving distributed optimal power flow problems
  publication-title: IEJCE Trans Fundam Electron Commun
  doi: 10.1093/ietfec/e89-a.1.260
– year: 1999
  ident: 10.1016/j.energy.2013.04.011_bib32
– volume: 88
  start-page: 419
  issue: 2
  year: 2011
  ident: 10.1016/j.energy.2013.04.011_bib3
  article-title: Towards 100% renewable energy systems
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2010.10.013
– volume: 49
  start-page: 119
  issue: 1
  year: 2013
  ident: 10.1016/j.energy.2013.04.011_bib13
  article-title: A novel approach to multi-objective optimal power flow by a new hybrid optimization algorithm considering generator constraints and multi-fuel type
  publication-title: Energy
  doi: 10.1016/j.energy.2012.09.031
– year: 1989
  ident: 10.1016/j.energy.2013.04.011_bib31
– volume: 7
  start-page: 334
  issue: 1
  year: 1992
  ident: 10.1016/j.energy.2013.04.011_bib20
  article-title: Adaptive movement penalty method for the Newton optimal power flow
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/59.141723
– start-page: 1
  year: 2012
  ident: 10.1016/j.energy.2013.04.011_bib26
  article-title: Dynamic lighting protection of smart grid transmission system
SSID ssj0005899
Score 2.3517036
Snippet Utilizing renewable energy sources to reduce carbon emission and minimizing the fuel cost for energy saving in the OPF (optimal power flow) problem will...
SourceID proquest
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 184
SubjectTerms algorithms
Applied sciences
carbon
Computational synchronization
Distributed and parallel computation
Energy
energy conservation
energy costs
Exact sciences and technology
global warming
Optimal power flow
Petri net
power generation
Renewable energy source
renewable energy sources
Smart grid
Title Distributed optimal power flow for smart grid transmission system with renewable energy sources
URI https://dx.doi.org/10.1016/j.energy.2013.04.011
https://www.proquest.com/docview/1429917779
https://www.proquest.com/docview/1500795493
https://www.proquest.com/docview/2000068795
Volume 56
WOSCitedRecordID wos000321230800020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0360-5442
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0005899
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbKhgQvCAbTyo_JSLxNQXHixM7jBJ0YQhNSN6k8WY6TQKcunZp2K_89d7aTtqrYAImXqEqdH873xTmf7-4j5J3JmWZRJYO4YDzglQiDPM1NwLOY5zEzrGS5FZsQZ2dyNMq-9nqnbS7MzUTUtVwus-v_CjXsA7AxdfYv4O5OCjvgN4AOW4Adtn8E_EcshYsqVmBKTmFAuMJcK9RCO6om01sbVthcwXFH32fjAiUi6gawRqeZL-vsfLNY6vLW5lWVLj3QufmbDVe--wcrli5dkHznVvjiahMMf4zr4Fu5WEUR-GSQn4s6OFms-xxQ_0Gs-xy6ZJhV5JFLwAqDhPONwTVZHx2ZU4PzH1rmRPC2xnDnTrh873qH0XexrUbrB-XN6thDvCpeFJflYob6xbuRSDK5Q3aPTwejz6t4H2nFRLu7bPMobbDf9rV-Z6c8qPQUA2h1A-9Q5cRPtr7j1jg5f0qe-FkFPXZseEZ6Zb1HHrVJ580e2R-sEhqhoR_Rm-dErdGFerpQSxeKdKEAK7V0oUgXuk4X6uhCkS60owt1naSeLi_Ixcng_MOnwItuBIYn2TxIDBYkYlyHXGuNAmWJCQuwdUJT6Cit4szkMGcOC57qUkYmzsI0L5Ms11WeahnG-2SnntblAaGhiU0BMwyDNfsiLaWOCiFZVVVFIUrG-yRuH7EyviI9CqNMVBt6eKncPSsERoVcATB9EnRHXbuKLPe0Fy16yluVzlpUQLh7jjwAsJWG59uoi2GExRhtcnaa9cnhBgO6O4kETxnMAfrkbUsJBajgKpyuy-migbk2WIBMCJHd0SYB0x0X4O84T2RNTQnNXv5zD1-Rx6vX-zXZmc8W5Rvy0NzMx83s0L9BvwDYXNdV
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+optimal+power+flow+for+smart+grid+transmission+system+with+renewable+energy+sources&rft.jtitle=Energy+%28Oxford%29&rft.au=Lin%2C+Shin-Yeu&rft.au=Chen%2C+Jyun-Fu&rft.date=2013-07-01&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=56&rft.spage=184&rft.epage=192&rft_id=info:doi/10.1016%2Fj.energy.2013.04.011&rft.externalDocID=S0360544213003113
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon