Phishing Webpage Classification via Deep Learning-Based Algorithms: An Empirical Study

Phishing detection with high-performance accuracy and low computational complexity has always been a topic of great interest. New technologies have been developed to improve the phishing detection rate and reduce computational constraints in recent years. However, one solution is insufficient to add...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Sciences Jg. 11; H. 19; S. 9210
Hauptverfasser: Do, Nguyet Quang, Selamat, Ali, Krejcar, Ondrej, Yokoi, Takeru, Fujita, Hamido
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 03.10.2021
Schlagworte:
ISSN:2076-3417, 2076-3417
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Phishing detection with high-performance accuracy and low computational complexity has always been a topic of great interest. New technologies have been developed to improve the phishing detection rate and reduce computational constraints in recent years. However, one solution is insufficient to address all problems caused by attackers in cyberspace. Therefore, the primary objective of this paper is to analyze the performance of various deep learning algorithms in detecting phishing activities. This analysis will help organizations or individuals select and adopt the proper solution according to their technological needs and specific applications’ requirements to fight against phishing attacks. In this regard, an empirical study was conducted using four different deep learning algorithms, including deep neural network (DNN), convolutional neural network (CNN), Long Short-Term Memory (LSTM), and gated recurrent unit (GRU). To analyze the behaviors of these deep learning architectures, extensive experiments were carried out to examine the impact of parameter tuning on the performance accuracy of the deep learning models. In addition, various performance metrics were measured to evaluate the effectiveness and feasibility of DL models in detecting phishing activities. The results obtained from the experiments showed that no single DL algorithm achieved the best measures across all performance metrics. The empirical findings from this paper also manifest several issues and suggest future research directions related to deep learning in the phishing detection domain.
AbstractList Phishing detection with high-performance accuracy and low computational complexity has always been a topic of great interest. New technologies have been developed to improve the phishing detection rate and reduce computational constraints in recent years. However, one solution is insufficient to address all problems caused by attackers in cyberspace. Therefore, the primary objective of this paper is to analyze the performance of various deep learning algorithms in detecting phishing activities. This analysis will help organizations or individuals select and adopt the proper solution according to their technological needs and specific applications’ requirements to fight against phishing attacks. In this regard, an empirical study was conducted using four different deep learning algorithms, including deep neural network (DNN), convolutional neural network (CNN), Long Short-Term Memory (LSTM), and gated recurrent unit (GRU). To analyze the behaviors of these deep learning architectures, extensive experiments were carried out to examine the impact of parameter tuning on the performance accuracy of the deep learning models. In addition, various performance metrics were measured to evaluate the effectiveness and feasibility of DL models in detecting phishing activities. The results obtained from the experiments showed that no single DL algorithm achieved the best measures across all performance metrics. The empirical findings from this paper also manifest several issues and suggest future research directions related to deep learning in the phishing detection domain.
Author Hamido Fujita
Takeru Yokoi
Nguyet Quang Do
Ali Selamat
Ondrej Krejcar
Author_xml – sequence: 1
  givenname: Nguyet Quang
  surname: Do
  fullname: Do, Nguyet Quang
– sequence: 2
  givenname: Ali
  orcidid: 0000-0001-9746-8459
  surname: Selamat
  fullname: Selamat, Ali
– sequence: 3
  givenname: Ondrej
  orcidid: 0000-0002-5992-2574
  surname: Krejcar
  fullname: Krejcar, Ondrej
– sequence: 4
  givenname: Takeru
  orcidid: 0000-0002-2694-7564
  surname: Yokoi
  fullname: Yokoi, Takeru
– sequence: 5
  givenname: Hamido
  orcidid: 0000-0001-5256-210X
  surname: Fujita
  fullname: Fujita, Hamido
BackLink https://cir.nii.ac.jp/crid/1871147690606122880$$DView record in CiNii
BookMark eNptkd1rFDEUxYNUsNY--Q8M6JuM5uZjkvi2bqsWFhT8egx3ksxultnJmMwK_e9NuwpFzENyCb9zONzzlJxNaQqEPAf6mnND3-A8A4AxDOgjcs6o6louQJ09mJ-Qy1L2tB4DXAM9J98_72LZxWnb_Aj9jNvQrEcsJQ7R4RLT1PyK2FyFMDebgHmqYPsOS_DNatymHJfdobxtVlNzfZhjrpqx-bIc_e0z8njAsYTLP-8F-fb--uv6Y7v59OFmvdq0TkiztLKGCk70XgdwAAMisEFz51QwEsDpnkvVU-aYwb7rmRfBBWRIUTAUFPkFuTn5-oR7O-d4wHxrE0Z7_5Hy1mJeohuDVUJ71RvlZfBCeo89dZwPg_FQY_S0er04ec05_TyGsth9OuapxrdMamqk1EZWCk6Uy6mUHAbr4nK_qiVjHC1Qe9eGfdBG1bz6R_M36f_plyd6irGa392gFYBQnaEd7YAxrSn_Da8jlps
CitedBy_id crossref_primary_10_1002_cpe_7287
crossref_primary_10_1109_ACCESS_2024_3351946
crossref_primary_10_2478_cait_2022_0004
crossref_primary_10_3390_sym16020248
crossref_primary_10_3233_IDT_220307
crossref_primary_10_3390_asi5040073
crossref_primary_10_3390_electronics12010232
crossref_primary_10_1109_ACCESS_2022_3168235
crossref_primary_10_1016_j_compeleceng_2024_109494
crossref_primary_10_3390_s23094403
crossref_primary_10_3390_app13020710
crossref_primary_10_3390_computers12060118
crossref_primary_10_1155_2021_2470897
crossref_primary_10_3390_app13095275
Cites_doi 10.3390/electronics9071177
10.1080/19393555.2018.1456577
10.1016/j.eswa.2020.114170
10.1155/2018/4678746
10.1016/j.knosys.2019.105124
10.1016/j.comcom.2020.01.016
10.1109/TrustCom/BigDataSE.2019.00024
10.1016/j.neucom.2019.02.056
10.1109/COMPSAC.2019.10211
10.1109/ICICS49469.2020.239536
10.1016/j.neunet.2020.02.013
10.1109/ITNEC48623.2020.9084799
10.1155/2020/8872923
10.1007/s12046-020-01392-4
10.1109/ACCESS.2019.2895751
10.1109/ACCESS.2020.3043188
10.1016/j.scs.2020.102655
10.1109/IJCNN.2019.8852416
10.1007/s42979-021-00535-6
10.1109/BigData47090.2019.9006352
10.1007/978-3-030-19353-9
10.1109/CDS49703.2020.00009
10.1016/j.comnet.2020.107275
10.1109/ICEA.2019.8858300
10.1109/ICECA49313.2020.9297395
10.1088/1742-6596/1738/1/012131
10.1007/s00521-020-04830-w
10.1007/978-3-030-62582-5
10.1109/KST.2019.8687615
10.1109/ACCESS.2019.2892066
10.20532/cit.2019.1004702
10.1109/SKIMA47702.2019.8982427
10.5121/csit.2018.81705
10.1155/2019/2595794
10.5121/ijcnc.2020.12503
10.1109/INOCON50539.2020.9298298
10.1109/ICCAIS48893.2020.9096869
10.1007/978-3-030-41579-2
10.1142/S021821301960008X
10.1145/3381991.3395602
10.2139/ssrn.3922446
10.1007/s10489-019-01433-4
10.3390/info10040122
10.1007/s12652-020-02630-7
10.1109/ICSSIT48917.2020.9214132
10.1016/j.pmcj.2019.101084
10.1109/ICCAIS48893.2020.9096821
10.3390/electronics9091514
10.1145/3270101.3270105
10.1016/j.iot.2021.100365
10.3390/app9204396
10.1007/s10922-021-09587-8
10.1109/ACCESS.2019.2913705
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID RYH
AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app11199210
DatabaseName CiNii Complete
CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Scholarly Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Scholarly Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Sciences (General)
Physics
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_748d7b97d5ed45ddab0c33ff9d1534b0
10_3390_app11199210
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
RYH
TUS
AAYXX
CITATION
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c459t-5341ec4bd8e1c11faa12f83cc7e9511c8b357b02c29ab6b2d4ecea2a0a42a40a3
IEDL.DBID BENPR
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000707768100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Fri Oct 03 12:43:45 EDT 2025
Mon Jun 30 07:28:15 EDT 2025
Sat Nov 29 07:10:57 EST 2025
Tue Nov 18 21:08:21 EST 2025
Mon Nov 10 09:10:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-5341ec4bd8e1c11faa12f83cc7e9511c8b357b02c29ab6b2d4ecea2a0a42a40a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2694-7564
0000-0003-1826-1092
0000-0001-5256-210X
0000-0002-5992-2574
0000-0001-9746-8459
OpenAccessLink https://www.proquest.com/docview/2580955895?pq-origsite=%requestingapplication%
PQID 2580955895
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_748d7b97d5ed45ddab0c33ff9d1534b0
proquest_journals_2580955895
crossref_citationtrail_10_3390_app11199210
crossref_primary_10_3390_app11199210
nii_cinii_1871147690606122880
PublicationCentury 2000
PublicationDate 2021-10-03
PublicationDateYYYYMMDD 2021-10-03
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-03
  day: 03
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied Sciences
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Feng (ref_10) 2020; 8
Chen (ref_39) 2021; 66
Wei (ref_24) 2020; 178
Yi (ref_49) 2018; 2018
Wang (ref_32) 2019; 2019
ref_58
ref_13
ref_57
ref_12
ref_56
ref_11
Rasymas (ref_30) 2020; 8
ref_55
Sohn (ref_51) 2021; 167
ref_54
ref_52
ref_19
ref_15
ref_59
Yang (ref_33) 2019; 7
Wang (ref_29) 2019; 49
ref_61
Wang (ref_47) 2020; 2020
Fang (ref_53) 2019; 7
Zhang (ref_38) 2021; 1738
ref_25
ref_21
Somesha (ref_42) 2020; 45
ref_65
ref_63
ref_62
Bello (ref_5) 2020; 12
Digwal (ref_60) 2020; 3
ref_28
Ahmad (ref_1) 2021; 14
ref_26
Yang (ref_34) 2019; 7
Fister (ref_64) 2019; 28
Mahdavifar (ref_17) 2019; 347
ref_36
ref_35
ref_31
Mahdavifar (ref_18) 2020; 32
Rao (ref_46) 2019; 60
ref_37
Khan (ref_20) 2021; 12
Wu (ref_16) 2020; 2020
Afzal (ref_45) 2021; 29
Aldweesh (ref_23) 2020; 189
ref_44
ref_43
ref_41
ref_40
ref_3
Amanullah (ref_2) 2020; 151
Selvaganapathy (ref_22) 2018; 27
ref_48
ref_9
ref_8
Xiao (ref_27) 2020; 125
ref_4
Sarker (ref_14) 2021; 2
ref_7
ref_6
References_xml – ident: ref_4
  doi: 10.3390/electronics9071177
– volume: 27
  start-page: 145
  year: 2018
  ident: ref_22
  article-title: Deep belief network based detection and categorization of malicious URLs
  publication-title: Inf. Secur. J. Glob. Perspect.
  doi: 10.1080/19393555.2018.1456577
– volume: 167
  start-page: 114170
  year: 2021
  ident: ref_51
  article-title: Deep belief network based intrusion detection techniques: A survey
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114170
– volume: 2018
  start-page: e4678746
  year: 2018
  ident: ref_49
  article-title: Web Phishing Detection Using a Deep Learning Framework
  publication-title: Wirel. Commun. Mob. Comput.
  doi: 10.1155/2018/4678746
– volume: 189
  start-page: 105124
  year: 2020
  ident: ref_23
  article-title: Deep learning approaches for anomaly-based intrusion detection systems: A survey, taxonomy, and open issues
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.105124
– volume: 3
  start-page: 331
  year: 2020
  ident: ref_60
  article-title: Detection of Phishing Website Based on Deep Learning
  publication-title: Int. J. Res. Eng. Sci. Manag.
– volume: 151
  start-page: 495
  year: 2020
  ident: ref_2
  article-title: Deep learning and big data technologies for IoT security
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2020.01.016
– ident: ref_65
– ident: ref_11
  doi: 10.1109/TrustCom/BigDataSE.2019.00024
– volume: 347
  start-page: 149
  year: 2019
  ident: ref_17
  article-title: Application of deep learning to cybersecurity: A survey
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.02.056
– ident: ref_55
  doi: 10.1109/COMPSAC.2019.10211
– ident: ref_8
  doi: 10.1109/ICICS49469.2020.239536
– volume: 125
  start-page: 303
  year: 2020
  ident: ref_27
  article-title: CNN–MHSA: A Convolutional Neural Network and multi-head self-attention combined approach for detecting phishing websites
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2020.02.013
– ident: ref_43
  doi: 10.1109/ITNEC48623.2020.9084799
– volume: 2020
  start-page: e8872923
  year: 2020
  ident: ref_16
  article-title: Network Attacks Detection Methods Based on Deep Learning Techniques: A Survey
  publication-title: Secur. Commun. Netw.
  doi: 10.1155/2020/8872923
– volume: 45
  start-page: 165
  year: 2020
  ident: ref_42
  article-title: Efficient deep learning techniques for the detection of phishing websites
  publication-title: Sādhanā
  doi: 10.1007/s12046-020-01392-4
– volume: 7
  start-page: 29891
  year: 2019
  ident: ref_34
  article-title: Detecting Malicious URLs via a Keyword-Based Convolutional Gated-Recurrent-Unit Neural Network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2895751
– volume: 8
  start-page: 221214
  year: 2020
  ident: ref_10
  article-title: Web2Vec: Phishing Webpage Detection Method Based on Multidimensional Features Driven by Deep Learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3043188
– volume: 66
  start-page: 102655
  year: 2021
  ident: ref_39
  article-title: Cyber security in smart cities: A review of deep learning-based applications and case studies
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2020.102655
– ident: ref_58
  doi: 10.1109/IJCNN.2019.8852416
– ident: ref_56
– volume: 2
  start-page: 154
  year: 2021
  ident: ref_14
  article-title: Deep Cybersecurity: A Comprehensive Overview from Neural Network and Deep Learning Perspective
  publication-title: SN Comput. Sci.
  doi: 10.1007/s42979-021-00535-6
– ident: ref_50
  doi: 10.1109/BigData47090.2019.9006352
– ident: ref_21
  doi: 10.1007/978-3-030-19353-9
– ident: ref_12
  doi: 10.1109/CDS49703.2020.00009
– volume: 178
  start-page: 107275
  year: 2020
  ident: ref_24
  article-title: Accurate and fast URL phishing detector: A convolutional neural network approach
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2020.107275
– ident: ref_25
  doi: 10.1109/ICEA.2019.8858300
– volume: 8
  start-page: 471
  year: 2020
  ident: ref_30
  article-title: Detection of phishing URLs by using deep learning approach and multiple features combinations
  publication-title: Balt. J. Mod. Comput.
– ident: ref_13
– ident: ref_62
– ident: ref_61
  doi: 10.1109/ICECA49313.2020.9297395
– volume: 2020
  start-page: e8694796
  year: 2020
  ident: ref_47
  article-title: Deep Learning-Based Efficient Model Development for Phishing Detection Using Random Forest and BLSTM Classifiers
  publication-title: Complexity
– volume: 1738
  start-page: 012131
  year: 2021
  ident: ref_38
  article-title: Research on phishing webpage detection technology based on CNN-BiLSTM algorithm
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1738/1/012131
– volume: 32
  start-page: 14753
  year: 2020
  ident: ref_18
  article-title: DeNNeS: Deep embedded neural network expert system for detecting cyber attacks
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-04830-w
– ident: ref_31
  doi: 10.1007/978-3-030-62582-5
– ident: ref_26
  doi: 10.1109/KST.2019.8687615
– volume: 7
  start-page: 15196
  year: 2019
  ident: ref_33
  article-title: Phishing Website Detection Based on Multidimensional Features Driven by Deep Learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2892066
– ident: ref_9
  doi: 10.20532/cit.2019.1004702
– ident: ref_59
  doi: 10.1109/SKIMA47702.2019.8982427
– ident: ref_19
  doi: 10.5121/csit.2018.81705
– volume: 2019
  start-page: e2595794
  year: 2019
  ident: ref_32
  article-title: PDRCNN: Precise Phishing Detection with Recurrent Convolutional Neural Networks
  publication-title: Secur. Commun. Netw.
  doi: 10.1155/2019/2595794
– ident: ref_37
  doi: 10.5121/ijcnc.2020.12503
– ident: ref_35
  doi: 10.1109/INOCON50539.2020.9298298
– ident: ref_28
  doi: 10.1109/ICCAIS48893.2020.9096869
– ident: ref_40
– ident: ref_48
  doi: 10.1007/978-3-030-41579-2
– ident: ref_63
– volume: 28
  start-page: 1960008
  year: 2019
  ident: ref_64
  article-title: Parameter Setting for Deep Neural Networks Using Swarm Intelligence on Phishing Websites Classification
  publication-title: Int. J. Artif. Intell. Tools
  doi: 10.1142/S021821301960008X
– ident: ref_41
  doi: 10.1145/3381991.3395602
– ident: ref_6
  doi: 10.2139/ssrn.3922446
– volume: 49
  start-page: 3016
  year: 2019
  ident: ref_29
  article-title: Bidirectional LSTM Malicious webpages detection algorithm based on convolutional neural network and independent recurrent neural network
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-019-01433-4
– ident: ref_54
  doi: 10.3390/info10040122
– volume: 12
  start-page: 8699
  year: 2020
  ident: ref_5
  article-title: Detecting ransomware attacks using intelligent algorithms: Recent development and next direction from deep learning and big data perspectives
  publication-title: J. Ambient Intell. Humaniz. Comput.
  doi: 10.1007/s12652-020-02630-7
– ident: ref_57
  doi: 10.1109/ICSSIT48917.2020.9214132
– volume: 60
  start-page: 101084
  year: 2019
  ident: ref_46
  article-title: PhishDump: A multi-model ensemble based technique for the detection of phishing sites in mobile devices
  publication-title: Pervasive Mob. Comput.
  doi: 10.1016/j.pmcj.2019.101084
– ident: ref_52
  doi: 10.1109/ICCAIS48893.2020.9096821
– ident: ref_7
  doi: 10.3390/electronics9091514
– ident: ref_15
– ident: ref_36
– ident: ref_44
  doi: 10.1145/3270101.3270105
– volume: 14
  start-page: 100365
  year: 2021
  ident: ref_1
  article-title: Machine learning approaches to IoT security: A systematic literature review
  publication-title: Internet Things
  doi: 10.1016/j.iot.2021.100365
– volume: 12
  start-page: 3880
  year: 2021
  ident: ref_20
  article-title: Detection of Phishing Websites Using Deep Learning Techniques
  publication-title: Turk. J. Comput. Math. Educ. TURCOMAT
– ident: ref_3
  doi: 10.3390/app9204396
– volume: 29
  start-page: 21
  year: 2021
  ident: ref_45
  article-title: URLdeepDetect: A Deep Learning Approach for Detecting Malicious URLs Using Semantic Vector Models
  publication-title: J. Netw. Syst. Manag.
  doi: 10.1007/s10922-021-09587-8
– volume: 7
  start-page: 56329
  year: 2019
  ident: ref_53
  article-title: Phishing Email Detection Using Improved RCNN Model With Multilevel Vectors and Attention Mechanism
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2913705
SSID ssj0000913810
ssib023169898
ssib045317060
ssib045318793
ssib045318197
ssib045321406
ssib045321407
ssib045316253
ssib030194696
ssib045320369
ssib045316688
ssib045318623
ssib045318831
ssib045321377
ssib045320582
ssib045318927
Score 2.3713355
Snippet Phishing detection with high-performance accuracy and low computational complexity has always been a topic of great interest. New technologies have been...
SourceID doaj
proquest
crossref
nii
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9210
SubjectTerms Accuracy
Algorithms
Biology (General)
Business metrics
Chemistry
Convolutional neural network (CNN)
Cybersecurity
Deep learning
deep learning (DL)
deep neural network (DNN)
Engineering (General). Civil engineering (General)
Gated Recurrent Unit (GRU)
Internet of Things
Literature reviews
Long Short Term Memory (LSTM)
Machine learning
Neural networks
Optimization
Phishing detection
Physics
QA75 Electronic computers. Computer science
QC1-999
QD1-999
QH301-705.5
T
T Technology (General)
T58.5-58.64 Information technology
TA1-2040
Technology
Websites
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LSxxBEIALkRzMQeIjuMmu9MGDEYZMP-bRua1G8SDiwRhvQ79mHdBx2d0I_nurekYZSCAXL3MYmqapR1fXTPVXAAfW2LTm2ie5cxITFKUTXds8cTm1Myu5MZGzfXNRXF6Wt7f6atDqi2rCOjxwJ7jvhSp9YXXhs-BV5j3O7aSsa-3RV5WN2Xpa6EEyFfdgzQld1V3Ik5jX0_9gdGutBd2VHYSgSOrHwNI2zV_bcYwxZ59gsz8csmm3qC1YC-02fBwgA7dhq3fGJTvsidHfduDm6q77lMR-EyxpFljsdUlVQFHw7Kkx7GcIc9bjVGfJMUYvz6b3s8dFs7p7WP5g05adPsybiAxhVF74vAu_zk6vT86TvmFC4lSmVwkKhAenrC8Dd5zXxnBRl9K5IuBBirvSyqywqXBCG5tb4VVwwQiTGiWMSo38DOvtYxv2gHluZeoznWeYAlpvdS58kKg57zRNNIKjVxlWrqeJU1OL-wqzChJ4NRD4CA7eBs87iMa_hx2TMt6GEPk6vkB7qHp7qP5nDyOYoCpxTfTkmA5yVRCMmY5yAjerEYxflVz17rqsRFYSiq_U2Zf3WMNX2BBU-kJ1BnIM66vFnzCBD-5p1SwX-9FSXwALNevV
  priority: 102
  providerName: Directory of Open Access Journals
Title Phishing Webpage Classification via Deep Learning-Based Algorithms: An Empirical Study
URI https://cir.nii.ac.jp/crid/1871147690606122880
https://www.proquest.com/docview/2580955895
https://doaj.org/article/748d7b97d5ed45ddab0c33ff9d1534b0
Volume 11
WOSCitedRecordID wos000707768100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Scholarly Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BywEOhRYQKW21hx4AycL78GO5oARSgQSRhaCUk7Uvp5ZaJ8ShEv-emc0mRAJx4WLJ9mq10nwzszM7-w0hp0abtGHKJbm1AgIUqRLVmDyxObYzK5nWgWf7_EMxmZQXF6qKCbc-llWubWIw1G5mMUf-kmclsqWVKns9_55g1yg8XY0tNG6TXWQqA5zvjsaT6tMmy4KslyVLVxfzBMT3eC4M6q0UxzuzW64oMPaDg-na9g-zHHzN2f3_XeUDshd3mXS4gsU-ueW7A3Jvi3vwgOxHre7ps0g9_fwhOa8uVzkp-hVZl6aehqaZWE4UJEhvWk3fej-nkZd1mozADTo6vJrCMpaX1_0rOuzo-HreBu4RinWKPx-RL2fjz2_eJbHzQmJlppZJBr7NW2lc6ZllrNGa8aYU1hYedmTMlkZkhUm55Uqb3HAnvfWa61RLrmWqxWOy0806_4RQx4xIXabyDGJJ44zKufMCIOCswokG5MVaCLWNtOTYHeOqhvAEJVZvSWxATjeD5ys2jr8PG6E0N0OQQjt8mC2mddTIupClK4wqXOadzJwD0FohmkY5cALSwCTHgAVYEz4ZxJVMFsjqjHtCDlZvQI7WEKij3vf1b_kf_vv3U3KXY3UMliKII7KzXPzwx-SOvVm2_eIkwvgkZAjgrXr_sfr2C9fc_SM
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFIlyAFpADbTgQ5EAacX6sQ8jIZTSVo2aRjmU0p4WvzaN1CYhG4r6p_iNePYRIoG49cBlD7uWtbY_f-Oxx98A7Gilw5xKG8TGcO-gCBnIXMeBiTGdWUqVKnW2T3tJv5-encnBCvxs7sJgWGXDiSVR24nBPfJ3LEpRLS2V0cfptwCzRuHpapNCo4LFkbv54V224kN3z4_vK8YO9k8-HQZ1VoHAiEjOg8jztjNC29RRQ2muFGV5yo1JnF9tUJNqHiU6ZIZJpWPNrHDGKaZCJZgSoeK-3juwKhDsLVgddI8H54tdHVTZTGlYXQTkXIZ4Du3pREqGd3SXTF-ZIcAbtPFo9IcZKG3bwcP_rVcewYN6FU06FezXYcWNN-D-krbiBqzXrFWQ17W09pvHcDq4qPbcyBdUlRo6UiYFxXCpEqHkeqTInnNTUuvODoNdb-Yt6VwOfbPnF1fFe9IZk_2r6ajUViEYh3nzBD7fSmufQms8GbtNIJZqHtpIxpH3lbXVMmbWcQ9xayRW1Ia3zaBnppZdx-wfl5l3vxAh2RJC2rCzKDyt1Eb-XmwX0bMoghLh5YvJbJjVjJMlIrWJlomNnBWRtX5SGs7zXFpv5IT2lWx77Pl_wif1fjMVCapW45qXeVZvw1YDuazmtSL7jbdn__78Eu4dnhz3sl63f_Qc1hhGAmHYBd-C1nz23W3DXXM9HxWzF_UUIvD1tvH5C-cEWaA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCE4AC0gAi3soUiAZNX78GOREEpJK6KWKAco7cnsy2mkNglJKOpf49cx4zghEohbD1x8sFcrr_3tNzO7s98A7Fhj45JrH6XOSQxQlI50adPIpVTOLOfGVDrbx0dZt5ufnOjeGvxcnIWhtMoFJ1ZE7UeO1sh3RZKTWlquk92yTovotQ_ejb9FVEGKdloX5TTmEDkMVz8wfJu-7bTxX78Q4mD_0_sPUV1hIHIq0bMoQQ4PTlmfB-44L43hosylc1lAz4O73Moks7FwQhubWuFVcMEIExsljIqNxH5vwDq65Eo0YL3X-dg7Xa7wkOJmzuP5oUApdUx70kgtWgs6r7tiBqtqAWjchoPBHyahsnMH9_7nL3Qf7tbeNWvNp8MGrIXhJtxZ0VzchI2azabsZS25_eoBHPfO5mtx7AupTfUDq4qFUhpVhVx2OTCsHcKY1Xq0_WgPzb9nrfM-Dnt2djF9w1pDtn8xHlSaK4zyM68ewudrGe0jaAxHw_AYmOdWxj7RaYIxtPVWp8IHidD3TlNHTXi9AEDhajl2qgpyXmBYRmgpVtDShJ1l4_FcheTvzfYIScsmJB1e3RhN-kXNREWmcp9ZnfkkeJV4j5PVSVmW2qPxUxY72UYc4jvRlWM8zVVGatbkCwtk-yZsLeBX1Hw3LX5j78m_Hz-HWwjK4qjTPXwKtwUlCFE2htyCxmzyPWzDTXc5G0wnz-rZxODrdcPzF6u-YmA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phishing+Webpage+Classification+via+Deep+Learning-Based+Algorithms%3A+An+Empirical+Study&rft.jtitle=Applied+sciences&rft.au=Do%2C+Nguyet+Quang&rft.au=Selamat%2C+Ali&rft.au=Krejcar%2C+Ondrej&rft.au=Yokoi%2C+Takeru&rft.date=2021-10-03&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=11&rft.issue=19&rft.spage=9210&rft_id=info:doi/10.3390%2Fapp11199210&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon