Phishing Webpage Classification via Deep Learning-Based Algorithms: An Empirical Study
Phishing detection with high-performance accuracy and low computational complexity has always been a topic of great interest. New technologies have been developed to improve the phishing detection rate and reduce computational constraints in recent years. However, one solution is insufficient to add...
Gespeichert in:
| Veröffentlicht in: | Applied Sciences Jg. 11; H. 19; S. 9210 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
03.10.2021
|
| Schlagworte: | |
| ISSN: | 2076-3417, 2076-3417 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Phishing detection with high-performance accuracy and low computational complexity has always been a topic of great interest. New technologies have been developed to improve the phishing detection rate and reduce computational constraints in recent years. However, one solution is insufficient to address all problems caused by attackers in cyberspace. Therefore, the primary objective of this paper is to analyze the performance of various deep learning algorithms in detecting phishing activities. This analysis will help organizations or individuals select and adopt the proper solution according to their technological needs and specific applications’ requirements to fight against phishing attacks. In this regard, an empirical study was conducted using four different deep learning algorithms, including deep neural network (DNN), convolutional neural network (CNN), Long Short-Term Memory (LSTM), and gated recurrent unit (GRU). To analyze the behaviors of these deep learning architectures, extensive experiments were carried out to examine the impact of parameter tuning on the performance accuracy of the deep learning models. In addition, various performance metrics were measured to evaluate the effectiveness and feasibility of DL models in detecting phishing activities. The results obtained from the experiments showed that no single DL algorithm achieved the best measures across all performance metrics. The empirical findings from this paper also manifest several issues and suggest future research directions related to deep learning in the phishing detection domain. |
|---|---|
| AbstractList | Phishing detection with high-performance accuracy and low computational complexity has always been a topic of great interest. New technologies have been developed to improve the phishing detection rate and reduce computational constraints in recent years. However, one solution is insufficient to address all problems caused by attackers in cyberspace. Therefore, the primary objective of this paper is to analyze the performance of various deep learning algorithms in detecting phishing activities. This analysis will help organizations or individuals select and adopt the proper solution according to their technological needs and specific applications’ requirements to fight against phishing attacks. In this regard, an empirical study was conducted using four different deep learning algorithms, including deep neural network (DNN), convolutional neural network (CNN), Long Short-Term Memory (LSTM), and gated recurrent unit (GRU). To analyze the behaviors of these deep learning architectures, extensive experiments were carried out to examine the impact of parameter tuning on the performance accuracy of the deep learning models. In addition, various performance metrics were measured to evaluate the effectiveness and feasibility of DL models in detecting phishing activities. The results obtained from the experiments showed that no single DL algorithm achieved the best measures across all performance metrics. The empirical findings from this paper also manifest several issues and suggest future research directions related to deep learning in the phishing detection domain. |
| Author | Hamido Fujita Takeru Yokoi Nguyet Quang Do Ali Selamat Ondrej Krejcar |
| Author_xml | – sequence: 1 givenname: Nguyet Quang surname: Do fullname: Do, Nguyet Quang – sequence: 2 givenname: Ali orcidid: 0000-0001-9746-8459 surname: Selamat fullname: Selamat, Ali – sequence: 3 givenname: Ondrej orcidid: 0000-0002-5992-2574 surname: Krejcar fullname: Krejcar, Ondrej – sequence: 4 givenname: Takeru orcidid: 0000-0002-2694-7564 surname: Yokoi fullname: Yokoi, Takeru – sequence: 5 givenname: Hamido orcidid: 0000-0001-5256-210X surname: Fujita fullname: Fujita, Hamido |
| BackLink | https://cir.nii.ac.jp/crid/1871147690606122880$$DView record in CiNii |
| BookMark | eNptkd1rFDEUxYNUsNY--Q8M6JuM5uZjkvi2bqsWFhT8egx3ksxultnJmMwK_e9NuwpFzENyCb9zONzzlJxNaQqEPAf6mnND3-A8A4AxDOgjcs6o6louQJ09mJ-Qy1L2tB4DXAM9J98_72LZxWnb_Aj9jNvQrEcsJQ7R4RLT1PyK2FyFMDebgHmqYPsOS_DNatymHJfdobxtVlNzfZhjrpqx-bIc_e0z8njAsYTLP-8F-fb--uv6Y7v59OFmvdq0TkiztLKGCk70XgdwAAMisEFz51QwEsDpnkvVU-aYwb7rmRfBBWRIUTAUFPkFuTn5-oR7O-d4wHxrE0Z7_5Hy1mJeohuDVUJ71RvlZfBCeo89dZwPg_FQY_S0er04ec05_TyGsth9OuapxrdMamqk1EZWCk6Uy6mUHAbr4nK_qiVjHC1Qe9eGfdBG1bz6R_M36f_plyd6irGa392gFYBQnaEd7YAxrSn_Da8jlps |
| CitedBy_id | crossref_primary_10_1002_cpe_7287 crossref_primary_10_1109_ACCESS_2024_3351946 crossref_primary_10_2478_cait_2022_0004 crossref_primary_10_3390_sym16020248 crossref_primary_10_3233_IDT_220307 crossref_primary_10_3390_asi5040073 crossref_primary_10_3390_electronics12010232 crossref_primary_10_1109_ACCESS_2022_3168235 crossref_primary_10_1016_j_compeleceng_2024_109494 crossref_primary_10_3390_s23094403 crossref_primary_10_3390_app13020710 crossref_primary_10_3390_computers12060118 crossref_primary_10_1155_2021_2470897 crossref_primary_10_3390_app13095275 |
| Cites_doi | 10.3390/electronics9071177 10.1080/19393555.2018.1456577 10.1016/j.eswa.2020.114170 10.1155/2018/4678746 10.1016/j.knosys.2019.105124 10.1016/j.comcom.2020.01.016 10.1109/TrustCom/BigDataSE.2019.00024 10.1016/j.neucom.2019.02.056 10.1109/COMPSAC.2019.10211 10.1109/ICICS49469.2020.239536 10.1016/j.neunet.2020.02.013 10.1109/ITNEC48623.2020.9084799 10.1155/2020/8872923 10.1007/s12046-020-01392-4 10.1109/ACCESS.2019.2895751 10.1109/ACCESS.2020.3043188 10.1016/j.scs.2020.102655 10.1109/IJCNN.2019.8852416 10.1007/s42979-021-00535-6 10.1109/BigData47090.2019.9006352 10.1007/978-3-030-19353-9 10.1109/CDS49703.2020.00009 10.1016/j.comnet.2020.107275 10.1109/ICEA.2019.8858300 10.1109/ICECA49313.2020.9297395 10.1088/1742-6596/1738/1/012131 10.1007/s00521-020-04830-w 10.1007/978-3-030-62582-5 10.1109/KST.2019.8687615 10.1109/ACCESS.2019.2892066 10.20532/cit.2019.1004702 10.1109/SKIMA47702.2019.8982427 10.5121/csit.2018.81705 10.1155/2019/2595794 10.5121/ijcnc.2020.12503 10.1109/INOCON50539.2020.9298298 10.1109/ICCAIS48893.2020.9096869 10.1007/978-3-030-41579-2 10.1142/S021821301960008X 10.1145/3381991.3395602 10.2139/ssrn.3922446 10.1007/s10489-019-01433-4 10.3390/info10040122 10.1007/s12652-020-02630-7 10.1109/ICSSIT48917.2020.9214132 10.1016/j.pmcj.2019.101084 10.1109/ICCAIS48893.2020.9096821 10.3390/electronics9091514 10.1145/3270101.3270105 10.1016/j.iot.2021.100365 10.3390/app9204396 10.1007/s10922-021-09587-8 10.1109/ACCESS.2019.2913705 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | RYH AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/app11199210 |
| DatabaseName | CiNii Complete CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) Publicly Available Scholarly Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Scholarly Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry Sciences (General) Physics |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_748d7b97d5ed45ddab0c33ff9d1534b0 10_3390_app11199210 |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC RYH TUS AAYXX CITATION ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c459t-5341ec4bd8e1c11faa12f83cc7e9511c8b357b02c29ab6b2d4ecea2a0a42a40a3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000707768100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2076-3417 |
| IngestDate | Fri Oct 03 12:43:45 EDT 2025 Mon Jun 30 07:28:15 EDT 2025 Sat Nov 29 07:10:57 EST 2025 Tue Nov 18 21:08:21 EST 2025 Mon Nov 10 09:10:02 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 19 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c459t-5341ec4bd8e1c11faa12f83cc7e9511c8b357b02c29ab6b2d4ecea2a0a42a40a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2694-7564 0000-0003-1826-1092 0000-0001-5256-210X 0000-0002-5992-2574 0000-0001-9746-8459 |
| OpenAccessLink | https://www.proquest.com/docview/2580955895?pq-origsite=%requestingapplication% |
| PQID | 2580955895 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_748d7b97d5ed45ddab0c33ff9d1534b0 proquest_journals_2580955895 crossref_citationtrail_10_3390_app11199210 crossref_primary_10_3390_app11199210 nii_cinii_1871147690606122880 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-10-03 |
| PublicationDateYYYYMMDD | 2021-10-03 |
| PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-03 day: 03 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied Sciences |
| PublicationYear | 2021 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_50 Feng (ref_10) 2020; 8 Chen (ref_39) 2021; 66 Wei (ref_24) 2020; 178 Yi (ref_49) 2018; 2018 Wang (ref_32) 2019; 2019 ref_58 ref_13 ref_57 ref_12 ref_56 ref_11 Rasymas (ref_30) 2020; 8 ref_55 Sohn (ref_51) 2021; 167 ref_54 ref_52 ref_19 ref_15 ref_59 Yang (ref_33) 2019; 7 Wang (ref_29) 2019; 49 ref_61 Wang (ref_47) 2020; 2020 Fang (ref_53) 2019; 7 Zhang (ref_38) 2021; 1738 ref_25 ref_21 Somesha (ref_42) 2020; 45 ref_65 ref_63 ref_62 Bello (ref_5) 2020; 12 Digwal (ref_60) 2020; 3 ref_28 Ahmad (ref_1) 2021; 14 ref_26 Yang (ref_34) 2019; 7 Fister (ref_64) 2019; 28 Mahdavifar (ref_17) 2019; 347 ref_36 ref_35 ref_31 Mahdavifar (ref_18) 2020; 32 Rao (ref_46) 2019; 60 ref_37 Khan (ref_20) 2021; 12 Wu (ref_16) 2020; 2020 Afzal (ref_45) 2021; 29 Aldweesh (ref_23) 2020; 189 ref_44 ref_43 ref_41 ref_40 ref_3 Amanullah (ref_2) 2020; 151 Selvaganapathy (ref_22) 2018; 27 ref_48 ref_9 ref_8 Xiao (ref_27) 2020; 125 ref_4 Sarker (ref_14) 2021; 2 ref_7 ref_6 |
| References_xml | – ident: ref_4 doi: 10.3390/electronics9071177 – volume: 27 start-page: 145 year: 2018 ident: ref_22 article-title: Deep belief network based detection and categorization of malicious URLs publication-title: Inf. Secur. J. Glob. Perspect. doi: 10.1080/19393555.2018.1456577 – volume: 167 start-page: 114170 year: 2021 ident: ref_51 article-title: Deep belief network based intrusion detection techniques: A survey publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.114170 – volume: 2018 start-page: e4678746 year: 2018 ident: ref_49 article-title: Web Phishing Detection Using a Deep Learning Framework publication-title: Wirel. Commun. Mob. Comput. doi: 10.1155/2018/4678746 – volume: 189 start-page: 105124 year: 2020 ident: ref_23 article-title: Deep learning approaches for anomaly-based intrusion detection systems: A survey, taxonomy, and open issues publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.105124 – volume: 3 start-page: 331 year: 2020 ident: ref_60 article-title: Detection of Phishing Website Based on Deep Learning publication-title: Int. J. Res. Eng. Sci. Manag. – volume: 151 start-page: 495 year: 2020 ident: ref_2 article-title: Deep learning and big data technologies for IoT security publication-title: Comput. Commun. doi: 10.1016/j.comcom.2020.01.016 – ident: ref_65 – ident: ref_11 doi: 10.1109/TrustCom/BigDataSE.2019.00024 – volume: 347 start-page: 149 year: 2019 ident: ref_17 article-title: Application of deep learning to cybersecurity: A survey publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.02.056 – ident: ref_55 doi: 10.1109/COMPSAC.2019.10211 – ident: ref_8 doi: 10.1109/ICICS49469.2020.239536 – volume: 125 start-page: 303 year: 2020 ident: ref_27 article-title: CNN–MHSA: A Convolutional Neural Network and multi-head self-attention combined approach for detecting phishing websites publication-title: Neural Netw. doi: 10.1016/j.neunet.2020.02.013 – ident: ref_43 doi: 10.1109/ITNEC48623.2020.9084799 – volume: 2020 start-page: e8872923 year: 2020 ident: ref_16 article-title: Network Attacks Detection Methods Based on Deep Learning Techniques: A Survey publication-title: Secur. Commun. Netw. doi: 10.1155/2020/8872923 – volume: 45 start-page: 165 year: 2020 ident: ref_42 article-title: Efficient deep learning techniques for the detection of phishing websites publication-title: Sādhanā doi: 10.1007/s12046-020-01392-4 – volume: 7 start-page: 29891 year: 2019 ident: ref_34 article-title: Detecting Malicious URLs via a Keyword-Based Convolutional Gated-Recurrent-Unit Neural Network publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2895751 – volume: 8 start-page: 221214 year: 2020 ident: ref_10 article-title: Web2Vec: Phishing Webpage Detection Method Based on Multidimensional Features Driven by Deep Learning publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3043188 – volume: 66 start-page: 102655 year: 2021 ident: ref_39 article-title: Cyber security in smart cities: A review of deep learning-based applications and case studies publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2020.102655 – ident: ref_58 doi: 10.1109/IJCNN.2019.8852416 – ident: ref_56 – volume: 2 start-page: 154 year: 2021 ident: ref_14 article-title: Deep Cybersecurity: A Comprehensive Overview from Neural Network and Deep Learning Perspective publication-title: SN Comput. Sci. doi: 10.1007/s42979-021-00535-6 – ident: ref_50 doi: 10.1109/BigData47090.2019.9006352 – ident: ref_21 doi: 10.1007/978-3-030-19353-9 – ident: ref_12 doi: 10.1109/CDS49703.2020.00009 – volume: 178 start-page: 107275 year: 2020 ident: ref_24 article-title: Accurate and fast URL phishing detector: A convolutional neural network approach publication-title: Comput. Netw. doi: 10.1016/j.comnet.2020.107275 – ident: ref_25 doi: 10.1109/ICEA.2019.8858300 – volume: 8 start-page: 471 year: 2020 ident: ref_30 article-title: Detection of phishing URLs by using deep learning approach and multiple features combinations publication-title: Balt. J. Mod. Comput. – ident: ref_13 – ident: ref_62 – ident: ref_61 doi: 10.1109/ICECA49313.2020.9297395 – volume: 2020 start-page: e8694796 year: 2020 ident: ref_47 article-title: Deep Learning-Based Efficient Model Development for Phishing Detection Using Random Forest and BLSTM Classifiers publication-title: Complexity – volume: 1738 start-page: 012131 year: 2021 ident: ref_38 article-title: Research on phishing webpage detection technology based on CNN-BiLSTM algorithm publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1738/1/012131 – volume: 32 start-page: 14753 year: 2020 ident: ref_18 article-title: DeNNeS: Deep embedded neural network expert system for detecting cyber attacks publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-04830-w – ident: ref_31 doi: 10.1007/978-3-030-62582-5 – ident: ref_26 doi: 10.1109/KST.2019.8687615 – volume: 7 start-page: 15196 year: 2019 ident: ref_33 article-title: Phishing Website Detection Based on Multidimensional Features Driven by Deep Learning publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2892066 – ident: ref_9 doi: 10.20532/cit.2019.1004702 – ident: ref_59 doi: 10.1109/SKIMA47702.2019.8982427 – ident: ref_19 doi: 10.5121/csit.2018.81705 – volume: 2019 start-page: e2595794 year: 2019 ident: ref_32 article-title: PDRCNN: Precise Phishing Detection with Recurrent Convolutional Neural Networks publication-title: Secur. Commun. Netw. doi: 10.1155/2019/2595794 – ident: ref_37 doi: 10.5121/ijcnc.2020.12503 – ident: ref_35 doi: 10.1109/INOCON50539.2020.9298298 – ident: ref_28 doi: 10.1109/ICCAIS48893.2020.9096869 – ident: ref_40 – ident: ref_48 doi: 10.1007/978-3-030-41579-2 – ident: ref_63 – volume: 28 start-page: 1960008 year: 2019 ident: ref_64 article-title: Parameter Setting for Deep Neural Networks Using Swarm Intelligence on Phishing Websites Classification publication-title: Int. J. Artif. Intell. Tools doi: 10.1142/S021821301960008X – ident: ref_41 doi: 10.1145/3381991.3395602 – ident: ref_6 doi: 10.2139/ssrn.3922446 – volume: 49 start-page: 3016 year: 2019 ident: ref_29 article-title: Bidirectional LSTM Malicious webpages detection algorithm based on convolutional neural network and independent recurrent neural network publication-title: Appl. Intell. doi: 10.1007/s10489-019-01433-4 – ident: ref_54 doi: 10.3390/info10040122 – volume: 12 start-page: 8699 year: 2020 ident: ref_5 article-title: Detecting ransomware attacks using intelligent algorithms: Recent development and next direction from deep learning and big data perspectives publication-title: J. Ambient Intell. Humaniz. Comput. doi: 10.1007/s12652-020-02630-7 – ident: ref_57 doi: 10.1109/ICSSIT48917.2020.9214132 – volume: 60 start-page: 101084 year: 2019 ident: ref_46 article-title: PhishDump: A multi-model ensemble based technique for the detection of phishing sites in mobile devices publication-title: Pervasive Mob. Comput. doi: 10.1016/j.pmcj.2019.101084 – ident: ref_52 doi: 10.1109/ICCAIS48893.2020.9096821 – ident: ref_7 doi: 10.3390/electronics9091514 – ident: ref_15 – ident: ref_36 – ident: ref_44 doi: 10.1145/3270101.3270105 – volume: 14 start-page: 100365 year: 2021 ident: ref_1 article-title: Machine learning approaches to IoT security: A systematic literature review publication-title: Internet Things doi: 10.1016/j.iot.2021.100365 – volume: 12 start-page: 3880 year: 2021 ident: ref_20 article-title: Detection of Phishing Websites Using Deep Learning Techniques publication-title: Turk. J. Comput. Math. Educ. TURCOMAT – ident: ref_3 doi: 10.3390/app9204396 – volume: 29 start-page: 21 year: 2021 ident: ref_45 article-title: URLdeepDetect: A Deep Learning Approach for Detecting Malicious URLs Using Semantic Vector Models publication-title: J. Netw. Syst. Manag. doi: 10.1007/s10922-021-09587-8 – volume: 7 start-page: 56329 year: 2019 ident: ref_53 article-title: Phishing Email Detection Using Improved RCNN Model With Multilevel Vectors and Attention Mechanism publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2913705 |
| SSID | ssj0000913810 ssib023169898 ssib045317060 ssib045318793 ssib045318197 ssib045321406 ssib045321407 ssib045316253 ssib030194696 ssib045320369 ssib045316688 ssib045318623 ssib045318831 ssib045321377 ssib045320582 ssib045318927 |
| Score | 2.3713355 |
| Snippet | Phishing detection with high-performance accuracy and low computational complexity has always been a topic of great interest. New technologies have been... |
| SourceID | doaj proquest crossref nii |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 9210 |
| SubjectTerms | Accuracy Algorithms Biology (General) Business metrics Chemistry Convolutional neural network (CNN) Cybersecurity Deep learning deep learning (DL) deep neural network (DNN) Engineering (General). Civil engineering (General) Gated Recurrent Unit (GRU) Internet of Things Literature reviews Long Short Term Memory (LSTM) Machine learning Neural networks Optimization Phishing detection Physics QA75 Electronic computers. Computer science QC1-999 QD1-999 QH301-705.5 T T Technology (General) T58.5-58.64 Information technology TA1-2040 Technology Websites |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LSxxBEIALkRzMQeIjuMmu9MGDEYZMP-bRua1G8SDiwRhvQ79mHdBx2d0I_nurekYZSCAXL3MYmqapR1fXTPVXAAfW2LTm2ie5cxITFKUTXds8cTm1Myu5MZGzfXNRXF6Wt7f6atDqi2rCOjxwJ7jvhSp9YXXhs-BV5j3O7aSsa-3RV5WN2Xpa6EEyFfdgzQld1V3Ik5jX0_9gdGutBd2VHYSgSOrHwNI2zV_bcYwxZ59gsz8csmm3qC1YC-02fBwgA7dhq3fGJTvsidHfduDm6q77lMR-EyxpFljsdUlVQFHw7Kkx7GcIc9bjVGfJMUYvz6b3s8dFs7p7WP5g05adPsybiAxhVF74vAu_zk6vT86TvmFC4lSmVwkKhAenrC8Dd5zXxnBRl9K5IuBBirvSyqywqXBCG5tb4VVwwQiTGiWMSo38DOvtYxv2gHluZeoznWeYAlpvdS58kKg57zRNNIKjVxlWrqeJU1OL-wqzChJ4NRD4CA7eBs87iMa_hx2TMt6GEPk6vkB7qHp7qP5nDyOYoCpxTfTkmA5yVRCMmY5yAjerEYxflVz17rqsRFYSiq_U2Zf3WMNX2BBU-kJ1BnIM66vFnzCBD-5p1SwX-9FSXwALNevV priority: 102 providerName: Directory of Open Access Journals |
| Title | Phishing Webpage Classification via Deep Learning-Based Algorithms: An Empirical Study |
| URI | https://cir.nii.ac.jp/crid/1871147690606122880 https://www.proquest.com/docview/2580955895 https://doaj.org/article/748d7b97d5ed45ddab0c33ff9d1534b0 |
| Volume | 11 |
| WOSCitedRecordID | wos000707768100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Scholarly Content Database customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BywEOhRYQKW21hx4AycL78GO5oARSgQSRhaCUk7Uvp5ZaJ8ShEv-emc0mRAJx4WLJ9mq10nwzszM7-w0hp0abtGHKJbm1AgIUqRLVmDyxObYzK5nWgWf7_EMxmZQXF6qKCbc-llWubWIw1G5mMUf-kmclsqWVKns9_55g1yg8XY0tNG6TXWQqA5zvjsaT6tMmy4KslyVLVxfzBMT3eC4M6q0UxzuzW64oMPaDg-na9g-zHHzN2f3_XeUDshd3mXS4gsU-ueW7A3Jvi3vwgOxHre7ps0g9_fwhOa8uVzkp-hVZl6aehqaZWE4UJEhvWk3fej-nkZd1mozADTo6vJrCMpaX1_0rOuzo-HreBu4RinWKPx-RL2fjz2_eJbHzQmJlppZJBr7NW2lc6ZllrNGa8aYU1hYedmTMlkZkhUm55Uqb3HAnvfWa61RLrmWqxWOy0806_4RQx4xIXabyDGJJ44zKufMCIOCswokG5MVaCLWNtOTYHeOqhvAEJVZvSWxATjeD5ys2jr8PG6E0N0OQQjt8mC2mddTIupClK4wqXOadzJwD0FohmkY5cALSwCTHgAVYEz4ZxJVMFsjqjHtCDlZvQI7WEKij3vf1b_kf_vv3U3KXY3UMliKII7KzXPzwx-SOvVm2_eIkwvgkZAjgrXr_sfr2C9fc_SM |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFIlyAFpADbTgQ5EAacX6sQ8jIZTSVo2aRjmU0p4WvzaN1CYhG4r6p_iNePYRIoG49cBlD7uWtbY_f-Oxx98A7Gilw5xKG8TGcO-gCBnIXMeBiTGdWUqVKnW2T3tJv5-encnBCvxs7sJgWGXDiSVR24nBPfJ3LEpRLS2V0cfptwCzRuHpapNCo4LFkbv54V224kN3z4_vK8YO9k8-HQZ1VoHAiEjOg8jztjNC29RRQ2muFGV5yo1JnF9tUJNqHiU6ZIZJpWPNrHDGKaZCJZgSoeK-3juwKhDsLVgddI8H54tdHVTZTGlYXQTkXIZ4Du3pREqGd3SXTF-ZIcAbtPFo9IcZKG3bwcP_rVcewYN6FU06FezXYcWNN-D-krbiBqzXrFWQ17W09pvHcDq4qPbcyBdUlRo6UiYFxXCpEqHkeqTInnNTUuvODoNdb-Yt6VwOfbPnF1fFe9IZk_2r6ajUViEYh3nzBD7fSmufQms8GbtNIJZqHtpIxpH3lbXVMmbWcQ9xayRW1Ia3zaBnppZdx-wfl5l3vxAh2RJC2rCzKDyt1Eb-XmwX0bMoghLh5YvJbJjVjJMlIrWJlomNnBWRtX5SGs7zXFpv5IT2lWx77Pl_wif1fjMVCapW45qXeVZvw1YDuazmtSL7jbdn__78Eu4dnhz3sl63f_Qc1hhGAmHYBd-C1nz23W3DXXM9HxWzF_UUIvD1tvH5C-cEWaA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCE4AC0gAi3soUiAZNX78GOREEpJK6KWKAco7cnsy2mkNglJKOpf49cx4zghEohbD1x8sFcrr_3tNzO7s98A7Fhj45JrH6XOSQxQlI50adPIpVTOLOfGVDrbx0dZt5ufnOjeGvxcnIWhtMoFJ1ZE7UeO1sh3RZKTWlquk92yTovotQ_ejb9FVEGKdloX5TTmEDkMVz8wfJu-7bTxX78Q4mD_0_sPUV1hIHIq0bMoQQ4PTlmfB-44L43hosylc1lAz4O73Moks7FwQhubWuFVcMEIExsljIqNxH5vwDq65Eo0YL3X-dg7Xa7wkOJmzuP5oUApdUx70kgtWgs6r7tiBqtqAWjchoPBHyahsnMH9_7nL3Qf7tbeNWvNp8MGrIXhJtxZ0VzchI2azabsZS25_eoBHPfO5mtx7AupTfUDq4qFUhpVhVx2OTCsHcKY1Xq0_WgPzb9nrfM-Dnt2djF9w1pDtn8xHlSaK4zyM68ewudrGe0jaAxHw_AYmOdWxj7RaYIxtPVWp8IHidD3TlNHTXi9AEDhajl2qgpyXmBYRmgpVtDShJ1l4_FcheTvzfYIScsmJB1e3RhN-kXNREWmcp9ZnfkkeJV4j5PVSVmW2qPxUxY72UYc4jvRlWM8zVVGatbkCwtk-yZsLeBX1Hw3LX5j78m_Hz-HWwjK4qjTPXwKtwUlCFE2htyCxmzyPWzDTXc5G0wnz-rZxODrdcPzF6u-YmA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phishing+Webpage+Classification+via+Deep+Learning-Based+Algorithms%3A+An+Empirical+Study&rft.jtitle=Applied+sciences&rft.au=Do%2C+Nguyet+Quang&rft.au=Selamat%2C+Ali&rft.au=Krejcar%2C+Ondrej&rft.au=Yokoi%2C+Takeru&rft.date=2021-10-03&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=11&rft.issue=19&rft.spage=9210&rft_id=info:doi/10.3390%2Fapp11199210&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |