Stochastic optimization of a multi-feedstock lignocellulosic-based bioethanol supply chain under multiple uncertainties
An integrated multi-feedstock (i.e. switchgrass and crop residue) lignocellulosic-based bioethanol supply chain is studied under jointly occurring uncertainties in switchgrass yield, crop residue purchase price, bioethanol demand and sales price. A two-stage stochastic mathematical model is proposed...
Gespeichert in:
| Veröffentlicht in: | Energy (Oxford) Jg. 59; S. 157 - 172 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Kidlington
Elsevier Ltd
15.09.2013
Elsevier |
| Schlagworte: | |
| ISSN: | 0360-5442 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | An integrated multi-feedstock (i.e. switchgrass and crop residue) lignocellulosic-based bioethanol supply chain is studied under jointly occurring uncertainties in switchgrass yield, crop residue purchase price, bioethanol demand and sales price. A two-stage stochastic mathematical model is proposed to maximize expected profit by optimizing the strategic and tactical decisions. A case study based on ND (North Dakota) state in the U.S. demonstrates that in a stochastic environment it is cost effective to meet 100% of ND's annual gasoline demand from bioethanol by using switchgrass as a primary and crop residue as a secondary biomass feedstock. Although results show that the financial performance is degraded as variability of the uncertain parameters increases, the proposed stochastic model increasingly outperforms the deterministic model under uncertainties. The locations of biorefineries (i.e. first-stage integer variables) are insensitive to the uncertainties. Sensitivity analysis shows that “mean” value of stochastic parameters has a significant impact on the expected profit and optimal values of first-stage continuous variables. Increase in level of mean ethanol demand and mean sale price results in higher bioethanol production. When mean switchgrass yield is at low level and mean crop residue price is at high level, all the available marginal land is used for switchgrass cultivation.
•Two-stage stochastic MILP model for maximizing profit of a multi-feedstock lignocellulosic-based bioethanol supply chain.•Multiple uncertainties in switchgrass yield, crop residue purchase price, bioethanol demand, and bioethanol sale price.•Proposed stochastic model outperforms the traditional deterministic model under uncertainties.•Stochastic parameters significantly affect marginal land allocation for switchgrass cultivation and bioethanol production.•Location of biorefineries is found to be insensitive to the stochastic environment. |
|---|---|
| AbstractList | An integrated multi-feedstock (i.e. switchgrass and crop residue) lignocellulosic-based bioethanol supply chain is studied under jointly occurring uncertainties in switchgrass yield, crop residue purchase price, bioethanol demand and sales price. A two-stage stochastic mathematical model is proposed to maximize expected profit by optimizing the strategic and tactical decisions. A case study based on ND (North Dakota) state in the U.S. demonstrates that in a stochastic environment it is cost effective to meet 100% of ND's annual gasoline demand from bioethanol by using switchgrass as a primary and crop residue as a secondary biomass feedstock. Although results show that the financial performance is degraded as variability of the uncertain parameters increases, the proposed stochastic model increasingly outperforms the deterministic model under uncertainties. The locations of biorefineries (i.e. first-stage integer variables) are insensitive to the uncertainties. Sensitivity analysis shows that “mean” value of stochastic parameters has a significant impact on the expected profit and optimal values of first-stage continuous variables. Increase in level of mean ethanol demand and mean sale price results in higher bioethanol production. When mean switchgrass yield is at low level and mean crop residue price is at high level, all the available marginal land is used for switchgrass cultivation.
•Two-stage stochastic MILP model for maximizing profit of a multi-feedstock lignocellulosic-based bioethanol supply chain.•Multiple uncertainties in switchgrass yield, crop residue purchase price, bioethanol demand, and bioethanol sale price.•Proposed stochastic model outperforms the traditional deterministic model under uncertainties.•Stochastic parameters significantly affect marginal land allocation for switchgrass cultivation and bioethanol production.•Location of biorefineries is found to be insensitive to the stochastic environment. An integrated multi-feedstock (i.e. switchgrass and crop residue) lignocellulosic-based bioethanol supply chain is studied under jointly occurring uncertainties in switchgrass yield, crop residue purchase price, bioethanol demand and sales price. A two-stage stochastic mathematical model is proposed to maximize expected profit by optimizing the strategic and tactical decisions. A case study based on ND (North Dakota) state in the U.S. demonstrates that in a stochastic environment it is cost effective to meet 100% of ND's annual gasoline demand from bioethanol by using switchgrass as a primary and crop residue as a secondary biomass feedstock. Although results show that the financial performance is degraded as variability of the uncertain parameters increases, the proposed stochastic model increasingly outperforms the deterministic model under uncertainties. The locations of biorefineries (i.e. first-stage integer variables) are insensitive to the uncertainties. Sensitivity analysis shows that “mean” value of stochastic parameters has a significant impact on the expected profit and optimal values of first-stage continuous variables. Increase in level of mean ethanol demand and mean sale price results in higher bioethanol production. When mean switchgrass yield is at low level and mean crop residue price is at high level, all the available marginal land is used for switchgrass cultivation. An integrated multi-feedstock (i.e. switchgrass and crop residue) lignocellulosic-based bioethanol supply chain is studied under jointly occurring uncertainties in switchgrass yield, crop residue purchase price, bioethanol demand and sales price. A two-stage stochastic mathematical model is proposed to maximize expected profit by optimizing the strategic and tactical decisions. A case study based on ND (North Dakota) state in the U.S. demonstrates that in a stochastic environment it is cost effective to meet 100% of ND's annual gasoline demand from bioethanol by using switchgrass as a primary and crop residue as a secondary biomass feedstock. Although results show that the financial performance is degraded as variability of the uncertain parameters increases, the proposed stochastic model increasingly out-performs the deterministic model under uncertainties. The locations of biorefineries (i.e. first-stage integer variables) are insensitive to the uncertainties. Sensitivity analysis shows that "mean" value of stochastic parameters has a significant impact on the expected profit and optimal values of first-stage continuous variables. Increase in level of mean ethanol demand and mean sale price results in higher bioethanol production. When mean switchgrass yield is at low level and mean crop residue price is at high level, all the available marginal land is used for switchgrass cultivation. An integrated multi-feedstock (i.e. switchgrass and crop residue) lignocellulosic-based bioethanol supply chain is studied under jointly occurring uncertainties in switchgrass yield, crop residue purchase price, bioethanol demand and sales price. A two-stage stochastic mathematical model is proposed to maximize expected profit by optimizing the strategic and tactical decisions. A case study based on ND (North Dakota) state in the U.S. demonstrates that in a stochastic environment it is cost effective to meet 100% of ND's annual gasoline demand from bioethanol by using switchgrass as a primary and crop residue as a secondary biomass feedstock. Although results show that the financial performance is degraded as variability of the uncertain parameters increases, the proposed stochastic model increasingly outperforms the deterministic model under uncertainties. The locations of biorefineries (i.e. first-stage integer variables) are insensitive to the uncertainties. Sensitivity analysis shows that ameana value of stochastic parameters has a significant impact on the expected profit and optimal values of first-stage continuous variables. Increase in level of mean ethanol demand and mean sale price results in higher bioethanol production. When mean switchgrass yield is at low level and mean crop residue price is at high level, all the available marginal land is used for switchgrass cultivation. |
| Author | Zhang, Jun Osmani, Atif |
| Author_xml | – sequence: 1 givenname: Atif surname: Osmani fullname: Osmani, Atif email: atif.osmani@ndsu.edu, at.osmani@gmail.com – sequence: 2 givenname: Jun surname: Zhang fullname: Zhang, Jun email: jun.zhang@ndsu.edu |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27712858$$DView record in Pascal Francis |
| BookMark | eNqFkUtv1DAUhbMoEm3hHyCRDRKbhBs_8mCBhCpokSqxaFlbjnM99eCxg-2Ahl-P05QNC2ZlWf7OOdf3XBRnzjssilcN1A007bt9jQ7D7lgTaGgNXQ2MnhXnQFuoOGPkeXER4x4AeD8M58Wvu-TVg4zJqNLPyRzMb5mMd6XXpSwPi02m0ohTzNj30pqd8wqtXayPRlWjjDiVo_GYHqTztozLPNtjmR2NKxc3Ydg8Zov5qjCk_JAMxhfFMy1txJdP52Vx__nT_dVNdfv1-svVx9tKMT6kimqmAMmokNNporpXQDjr9NRS3UwdHRkZe0kpYx1RGgap-lEOHeWyRWgpvSzebrZz8D8WjEkcTFw_IB36JQoC6yYYh_4k2vCGMkL6lp1GWcs47xlbB3jzhMqopNVBOmWimIM5yHAUpOsa0vM1_f3GqeBjDKiFMumxiRSksaIBsdYr9mKrV6z1CugEPIawf8R__U_IXm8yLb2Qu5Dn-naXgTbvpOUAQyY-bATmin4aDCIqg7nHyQRUSUze_D_iD3gU0Ps |
| CODEN | ENEYDS |
| CitedBy_id | crossref_primary_10_1016_j_jclepro_2019_02_188 crossref_primary_10_1016_j_renene_2015_07_045 crossref_primary_10_3141_2628_04 crossref_primary_10_1016_j_apenergy_2020_115606 crossref_primary_10_1002_bbb_2590 crossref_primary_10_1016_j_cie_2024_110270 crossref_primary_10_1002_aic_14511 crossref_primary_10_1016_j_apenergy_2024_123794 crossref_primary_10_1016_j_apenergy_2023_121652 crossref_primary_10_3390_en16124761 crossref_primary_10_1016_j_biosystemseng_2024_03_011 crossref_primary_10_15446_dyna_v84n201_50467 crossref_primary_10_1016_j_energy_2014_04_043 crossref_primary_10_1007_s10668_023_03761_5 crossref_primary_10_1016_j_biortech_2020_123191 crossref_primary_10_1016_j_tre_2018_08_008 crossref_primary_10_1007_s13399_020_00639_8 crossref_primary_10_1007_s40095_022_00513_5 crossref_primary_10_1016_j_compchemeng_2022_107724 crossref_primary_10_1016_j_ecmx_2025_101105 crossref_primary_10_1016_j_energy_2016_02_151 crossref_primary_10_1016_j_rser_2015_12_123 crossref_primary_10_1016_j_spc_2018_02_004 crossref_primary_10_1111_jiec_70027 crossref_primary_10_3390_en18081958 crossref_primary_10_1016_j_apenergy_2020_115653 crossref_primary_10_1016_j_biortech_2013_10_074 crossref_primary_10_1016_j_apenergy_2022_118569 crossref_primary_10_1007_s10098_019_01773_2 crossref_primary_10_1016_j_compchemeng_2020_107131 crossref_primary_10_1016_j_cie_2015_04_025 crossref_primary_10_1016_j_biombioe_2020_105888 crossref_primary_10_1016_j_apenergy_2015_05_047 crossref_primary_10_1016_j_compchemeng_2019_05_032 crossref_primary_10_1016_j_ijpe_2017_09_019 crossref_primary_10_1016_j_omega_2015_12_010 crossref_primary_10_1007_s11356_023_28044_4 crossref_primary_10_1016_j_enpol_2019_111222 crossref_primary_10_1016_j_indcrop_2022_115848 crossref_primary_10_1155_2021_5335625 crossref_primary_10_1016_j_cie_2019_07_001 crossref_primary_10_1016_j_tre_2015_02_008 crossref_primary_10_1016_j_biteb_2025_102218 crossref_primary_10_1016_j_energy_2014_07_073 crossref_primary_10_1080_00207543_2019_1566665 crossref_primary_10_1016_j_biombioe_2020_105777 crossref_primary_10_1287_trsc_2017_0766 crossref_primary_10_1016_j_compchemeng_2018_07_011 crossref_primary_10_1016_j_compchemeng_2018_07_012 crossref_primary_10_1016_j_energy_2014_10_019 crossref_primary_10_1016_j_fss_2015_06_009 crossref_primary_10_1016_j_energy_2015_12_069 crossref_primary_10_3390_en14164763 crossref_primary_10_1016_j_compchemeng_2025_109047 crossref_primary_10_1016_j_enpol_2020_111737 crossref_primary_10_1016_j_jclepro_2022_133889 crossref_primary_10_1016_j_compchemeng_2022_107940 crossref_primary_10_1016_j_energy_2014_08_048 crossref_primary_10_1016_j_jclepro_2017_12_218 crossref_primary_10_1007_s11356_023_29331_w crossref_primary_10_1016_j_trb_2021_09_006 crossref_primary_10_1016_j_cie_2024_110823 crossref_primary_10_1109_ACCESS_2024_3483842 crossref_primary_10_1016_j_ejor_2015_02_039 crossref_primary_10_1016_j_rser_2016_11_088 crossref_primary_10_1155_2016_1087845 crossref_primary_10_3390_logistics7010005 crossref_primary_10_1016_j_indcrop_2016_09_027 crossref_primary_10_1016_j_wasman_2016_11_004 crossref_primary_10_1016_j_apenergy_2021_117119 crossref_primary_10_1016_j_energy_2015_05_131 crossref_primary_10_1080_24725854_2020_1869870 crossref_primary_10_1016_j_renene_2015_12_022 crossref_primary_10_1016_j_energy_2014_07_023 crossref_primary_10_1016_j_segan_2022_100714 crossref_primary_10_1080_00207543_2018_1475766 crossref_primary_10_1016_j_coche_2020_100666 crossref_primary_10_1016_j_cie_2025_111294 crossref_primary_10_1016_j_ecolecon_2023_107781 crossref_primary_10_1016_j_tre_2018_01_015 crossref_primary_10_1016_j_energy_2016_06_025 crossref_primary_10_1016_j_apenergy_2013_10_024 crossref_primary_10_1016_j_renene_2017_09_020 crossref_primary_10_1002_aic_15255 crossref_primary_10_1016_j_jclepro_2019_04_369 crossref_primary_10_1016_j_compchemeng_2014_08_010 crossref_primary_10_1016_j_cie_2019_106013 |
| Cites_doi | 10.1016/j.apenergy.2004.10.004 10.1021/es102091a 10.2489/jswc.64.4.286 10.1002/bbb.129 10.1016/j.energy.2010.02.007 10.1016/j.compchemeng.2011.02.008 10.1016/j.energy.2011.07.024 10.1186/1754-6834-1-13 10.1016/j.cherd.2011.07.013 10.1016/j.energy.2011.08.013 10.1016/j.energy.2009.11.017 10.1021/ie9504516 10.1016/j.tre.2011.08.004 10.1016/j.apenergy.2012.06.054 10.1016/j.apenergy.2009.08.024 10.1016/j.energy.2009.07.018 10.1016/j.biombioe.2011.01.060 10.13031/2013.29946 10.1016/j.biortech.2011.09.111 10.1016/j.compchemeng.2011.05.011 10.1016/j.biombioe.2010.10.006 10.1109/99.714603 10.1016/j.biombioe.2010.10.023 10.1016/j.energy.2011.08.017 10.2135/cropsci2005.04-0003 10.1016/j.energy.2011.10.031 10.1016/j.biombioe.2010.06.007 10.1016/j.energy.2008.07.003 10.1016/j.energy.2012.01.040 10.1016/j.rser.2011.10.016 10.1016/j.energy.2010.10.009 10.1016/j.biortech.2011.08.121 10.1016/j.biosystemseng.2009.06.022 10.1016/j.biombioe.2004.05.006 10.1002/aic.12637 10.1016/j.compchemeng.2003.09.017 10.1016/j.enpol.2011.04.036 10.1016/j.energy.2012.03.074 10.1021/es103252s 10.1016/j.biombioe.2010.08.049 |
| ContentType | Journal Article |
| Copyright | 2013 Elsevier Ltd 2015 INIST-CNRS |
| Copyright_xml | – notice: 2013 Elsevier Ltd – notice: 2015 INIST-CNRS |
| DBID | FBQ AAYXX CITATION IQODW 7SP 7TA 7TB 8FD F28 FR3 JG9 KR7 L7M 7S9 L.6 |
| DOI | 10.1016/j.energy.2013.07.043 |
| DatabaseName | AGRIS CrossRef Pascal-Francis Electronics & Communications Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Materials Business File AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Materials Research Database AGRICOLA Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences Applied Sciences |
| EndPage | 172 |
| ExternalDocumentID | 27712858 10_1016_j_energy_2013_07_043 US201600065009 S036054421300649X |
| GeographicLocations | North Dakota |
| GeographicLocations_xml | – name: North Dakota |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAHBH AAQXK AATTM AAXKI ABDPE ABFNM ABWVN ACRPL ADMUD ADNMO AEIPS AFJKZ AHHHB AKRWK ANKPU ASPBG AVWKF AZFZN BNPGV FBQ FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW SSH WUQ 9DU AAYWO AAYXX ACLOT ACVFH ADCNI ADXHL AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS ~HD IQODW 7SP 7TA 7TB 8FD F28 FR3 JG9 KR7 L7M 7S9 L.6 |
| ID | FETCH-LOGICAL-c459t-3f4c0e2bce53dd3f8c02547fd63f1d73b42b8a334472cf09ac8ba9735a6e0633 |
| ISICitedReferencesCount | 103 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000324787600016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-5442 |
| IngestDate | Sun Nov 09 09:30:08 EST 2025 Sun Sep 28 02:38:57 EDT 2025 Sun Sep 28 06:20:08 EDT 2025 Wed Apr 02 07:15:09 EDT 2025 Sat Nov 29 07:24:55 EST 2025 Tue Nov 18 20:47:30 EST 2025 Thu Apr 03 09:45:08 EDT 2025 Fri Feb 23 02:16:17 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Facility location Lignocellulosic-based bioethanol supply chain Sustainability Switchgrass Stochastic mixed integer linear programming Stochastic model Monocotyledones Gramineae Angiospermae Supply Spermatophyta Biofuel Biomass Panicum virgatum |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c459t-3f4c0e2bce53dd3f8c02547fd63f1d73b42b8a334472cf09ac8ba9735a6e0633 |
| Notes | http://dx.doi.org/10.1016/j.energy.2013.07.043 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| PQID | 1464558443 |
| PQPubID | 23500 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_2000054508 proquest_miscellaneous_1513422864 proquest_miscellaneous_1464558443 pascalfrancis_primary_27712858 crossref_citationtrail_10_1016_j_energy_2013_07_043 crossref_primary_10_1016_j_energy_2013_07_043 fao_agris_US201600065009 elsevier_sciencedirect_doi_10_1016_j_energy_2013_07_043 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-09-15 |
| PublicationDateYYYYMMDD | 2013-09-15 |
| PublicationDate_xml | – month: 09 year: 2013 text: 2013-09-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington |
| PublicationTitle | Energy (Oxford) |
| PublicationYear | 2013 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Zhang, Osmani, Awudu, Gonela (bib6) 2013; 102 Lee, Boe (bib31) 2005; 45 Sharma, Sarker, Romagnoli (bib33) 2011; 35 Chen, Fan (bib27) 2010; 48 Morey, Kaliyan, Tiffany, Schmidt (bib11) 2010; 26 Papapostolou, Kondili, Kaldellis (bib19) 2011; 36 Parker, Tittmann, Hart, Nelson, Skog, Schmidt (bib8) 2010; 34 Kou, Zhao (bib16) 2011; 36 Spatari, Maclean (bib30) 2010; 44 Carriquiry, Du, Timilsina (bib5) 2011; 39 Li, Liu, Liao, Chen, Zemetra (bib15) 2011; 35 Sarkar, Kumar, Sultana (bib47) 2011; 36 You, Tao, Graziano, Snyder (bib38) 2012; 58 Scott, Ho, Dey (bib43) 2012; 42 North Dakota annual 1981-2010 precipitation. O’Brien, Woolverton (bib37) 2009 Sahinidis (bib21) 2004; 28 Dal-Mas, Giarola, Zamboni, Bezzo (bib25) 2011; 35 Cucek, Varbanov, Klemes, Kravanja (bib46) 2012; 44 Czyzyk, Mesnier, More (bib41) 1998; 5 Van Dyken, Bakken, Skjelbred (bib18) 2010; 35 Kou, Zhao (bib9) 2011; 35 Liu, Sahinidis (bib23) 1996; 35 McLaughlin, Kszos (bib28) 2005; 28 Leduc, Starfelt, Dotzauer, Kindermann, McCallum, Obersteiner (bib17) 2010; 35 Kostin, Guillen-Gosalbez, Mele, Bagajewicz, Jimenez (bib24) 2012; 90 Cruse, Herndl (bib35) 2009; 64 Tyndall, Berg, Colletti (bib32) 2011; 35 CRS adaptation of Energy Information Administration. Annual energy review 2009. Kim, Realff, Lee (bib26) 2011; 35 Birge J, Louveaux F. Introduction to stochastic programming. 1st ed. Springer: New York. Sokhansanj, Mani, Turhollow, Kumar, Bransby, Lynd (bib3) 2009; 3 United States Department of Agriculture. National Agricultural Statistics Service: 2011 county rents & values. Ren, Zhou, Nakagami, Gao (bib45) 2010; 35 Zhu, Yao (bib10) 2011; 102 U.S. Energy Information Administration. State energy data 2009: consumption. Awudu, Zhang (bib20) 2012; 16 Dunnett, Adjiman, Shah (bib39) 2008; 1 Cosic, Stanic, Duic (bib34) 2011; 36 Energy Information Administration (bib1) 2011 Murphy, McCarthy (bib13) 2005; 82 U.S. energy independence and security act of 2007 (EISA). United States Department of Agriculture. National Agricultural Statistics Service: 2007 census of agriculture. [accessed 20.10.2012]. Rand McNally. Palander (bib42) 2011; 36 United States Census Bureau: 2010 county population within ND. Judd, Sarin, Cundiff (bib29) 2012; 103 Gallagher, Hockaday, Masiello, Snapp, McSwiney, Baldock (bib14) 2011; 45 Houwing, Ajah, Heijnen, Bouwmans, Herder (bib44) 2008; 33 Adapaa, Tabila, Schoenau (bib12) 2009; 104 Cherubini, Ulgiati (bib7) 2010; 87 O’Brien (10.1016/j.energy.2013.07.043_bib37) 2009 10.1016/j.energy.2013.07.043_bib22 Zhu (10.1016/j.energy.2013.07.043_bib10) 2011; 102 Morey (10.1016/j.energy.2013.07.043_bib11) 2010; 26 Dunnett (10.1016/j.energy.2013.07.043_bib39) 2008; 1 Sarkar (10.1016/j.energy.2013.07.043_bib47) 2011; 36 Zhang (10.1016/j.energy.2013.07.043_bib6) 2013; 102 Sokhansanj (10.1016/j.energy.2013.07.043_bib3) 2009; 3 Carriquiry (10.1016/j.energy.2013.07.043_bib5) 2011; 39 Adapaa (10.1016/j.energy.2013.07.043_bib12) 2009; 104 Kostin (10.1016/j.energy.2013.07.043_bib24) 2012; 90 Ren (10.1016/j.energy.2013.07.043_bib45) 2010; 35 Lee (10.1016/j.energy.2013.07.043_bib31) 2005; 45 Czyzyk (10.1016/j.energy.2013.07.043_bib41) 1998; 5 Kou (10.1016/j.energy.2013.07.043_bib16) 2011; 36 Gallagher (10.1016/j.energy.2013.07.043_bib14) 2011; 45 10.1016/j.energy.2013.07.043_bib36 Dal-Mas (10.1016/j.energy.2013.07.043_bib25) 2011; 35 Awudu (10.1016/j.energy.2013.07.043_bib20) 2012; 16 Cucek (10.1016/j.energy.2013.07.043_bib46) 2012; 44 10.1016/j.energy.2013.07.043_bib40 McLaughlin (10.1016/j.energy.2013.07.043_bib28) 2005; 28 Liu (10.1016/j.energy.2013.07.043_bib23) 1996; 35 Palander (10.1016/j.energy.2013.07.043_bib42) 2011; 36 Kou (10.1016/j.energy.2013.07.043_bib9) 2011; 35 10.1016/j.energy.2013.07.043_bib48 10.1016/j.energy.2013.07.043_bib49 10.1016/j.energy.2013.07.043_bib2 Judd (10.1016/j.energy.2013.07.043_bib29) 2012; 103 Leduc (10.1016/j.energy.2013.07.043_bib17) 2010; 35 10.1016/j.energy.2013.07.043_bib4 Cruse (10.1016/j.energy.2013.07.043_bib35) 2009; 64 Papapostolou (10.1016/j.energy.2013.07.043_bib19) 2011; 36 Scott (10.1016/j.energy.2013.07.043_bib43) 2012; 42 Houwing (10.1016/j.energy.2013.07.043_bib44) 2008; 33 Tyndall (10.1016/j.energy.2013.07.043_bib32) 2011; 35 10.1016/j.energy.2013.07.043_bib50 10.1016/j.energy.2013.07.043_bib51 Chen (10.1016/j.energy.2013.07.043_bib27) 2010; 48 Spatari (10.1016/j.energy.2013.07.043_bib30) 2010; 44 Cherubini (10.1016/j.energy.2013.07.043_bib7) 2010; 87 Murphy (10.1016/j.energy.2013.07.043_bib13) 2005; 82 Kim (10.1016/j.energy.2013.07.043_bib26) 2011; 35 Cosic (10.1016/j.energy.2013.07.043_bib34) 2011; 36 Energy Information Administration (10.1016/j.energy.2013.07.043_bib1) 2011 Sharma (10.1016/j.energy.2013.07.043_bib33) 2011; 35 Li (10.1016/j.energy.2013.07.043_bib15) 2011; 35 Parker (10.1016/j.energy.2013.07.043_bib8) 2010; 34 You (10.1016/j.energy.2013.07.043_bib38) 2012; 58 Sahinidis (10.1016/j.energy.2013.07.043_bib21) 2004; 28 Van Dyken (10.1016/j.energy.2013.07.043_bib18) 2010; 35 |
| References_xml | – volume: 16 start-page: 1359 year: 2012 end-page: 1368 ident: bib20 article-title: Uncertainties and sustainability concepts in biofuel supply chain management: a review publication-title: Renewable and Sustainable Energy Reviews – volume: 5 start-page: 68 year: 1998 end-page: 75 ident: bib41 article-title: The NEOS server publication-title: IEEE Journal on Computational Science and Engineering – reference: Birge J, Louveaux F. Introduction to stochastic programming. 1st ed. Springer: New York. – volume: 102 start-page: 1205 year: 2013 end-page: 1217 ident: bib6 article-title: An integrated optimization model for switchgrass-based bioethanol supply chain publication-title: Applied Energy – volume: 36 start-page: 6745 year: 2011 end-page: 6752 ident: bib16 article-title: Techno-economical analysis of a thermo-chemical biofuel plant with feedstock and product flexibility under external disturbances publication-title: Energy – volume: 58 start-page: 1157 year: 2012 end-page: 1180 ident: bib38 article-title: Optimal design of sustainable cellulosic biofuel supply chains: multiobjective optimization coupled with life cycle assessment and input–output analysis publication-title: AIChE Journal – volume: 28 start-page: 971 year: 2004 end-page: 983 ident: bib21 article-title: Optimization under uncertainty: state-of-the-art and opportunities publication-title: Computers and Chemical Engineering – reference: North Dakota annual 1981-2010 precipitation. – volume: 39 start-page: 4222 year: 2011 end-page: 4234 ident: bib5 article-title: Second generation biofuels: economics & policies publication-title: Energy Policy – volume: 34 start-page: 1597 year: 2010 end-page: 1607 ident: bib8 article-title: Development of a biorefinery optimized biofuel supply curve for the Western United States publication-title: Biomass and Bioenergy – volume: 36 start-page: 5984 year: 2011 end-page: 5993 ident: bib42 article-title: Modelling renewable supply chain for electricity generation with forest, fossil, and wood-waste fuels publication-title: Energy – volume: 36 start-page: 2017 year: 2011 end-page: 2028 ident: bib34 article-title: Geographic distribution of economic potential of agricultural and forest biomass residual for energy use: case study Croatia publication-title: Energy – volume: 35 start-page: 1338 year: 2010 end-page: 1350 ident: bib18 article-title: Linear mixed-integer models for biomass supply chains with transport, storage and processing publication-title: Energy – volume: 48 start-page: 150 year: 2010 end-page: 164 ident: bib27 article-title: Bioethanol supply chain system planning under supply and demand uncertainties publication-title: Transportation Research Part E – volume: 44 start-page: 8773 year: 2010 end-page: 8780 ident: bib30 article-title: Characterizing model uncertainties in the life cycle of lignocellulose-based ethanol fuels publication-title: Environmental Science & Technology – reference: . [accessed 20.10.2012]. – reference: . [accessed 20.10.2012]. – volume: 33 start-page: 1518 year: 2008 end-page: 1536 ident: bib44 article-title: Uncertainties in the design and operation of distributed energy resources: the case of micro-CHP systems publication-title: Energy – volume: 3 start-page: 124 year: 2009 end-page: 141 ident: bib3 article-title: Large-scale production, harvest and logistics of switchgrass – current technology and envisioning a mature technology publication-title: Biofuels, Bioproducts and Biorefining – volume: 103 start-page: 209 year: 2012 end-page: 218 ident: bib29 article-title: Design, modeling, and analysis of feedstock logistics system publication-title: Bioresource Technology – volume: 104 start-page: 335 year: 2009 end-page: 344 ident: bib12 article-title: Compaction characteristics of barley, canola, oat and wheat straw publication-title: Biosystems Engineering – volume: 35 start-page: 1767 year: 2011 end-page: 1781 ident: bib33 article-title: A decision support tool for strategic analysis of sustainable biorefineries publication-title: Computers and Chemical Engineering – volume: 35 start-page: 2059 year: 2011 end-page: 2071 ident: bib25 article-title: Strategic design and investment capacity planning of the ethanol supply chain under price uncertainty publication-title: Biomass and Bioenergy – volume: 82 start-page: 148 year: 2005 end-page: 166 ident: bib13 article-title: Ethanol production from energy crops and wastes for use as a transport fuel in Ireland publication-title: Applied Energy – volume: 35 start-page: 4154 year: 1996 end-page: 4165 ident: bib23 article-title: Optimization in process planning under uncertainty publication-title: Industrial & Engineering Chemistry Research – volume: 87 start-page: 47 year: 2010 end-page: 57 ident: bib7 article-title: Crop residues as raw materials for biorefinery systems – a LCA case study publication-title: Applied Energy – volume: 28 start-page: 515 year: 2005 end-page: 535 ident: bib28 article-title: Development of switchgrass ( publication-title: Biomass and Bioenergy – volume: 64 start-page: 286 year: 2009 end-page: 291 ident: bib35 article-title: Balancing corn stover harvest for biofuels with soil and water conservation publication-title: Journal of Soil and Water Conservation – volume: 45 start-page: 2013 year: 2011 end-page: 2020 ident: bib14 article-title: Biochemical suitability of crop residues for cellulosic ethanol: disincentives to nitrogen fertilization in corn agriculture publication-title: Environmental Science & Technology – volume: 35 start-page: 1485 year: 2011 end-page: 1495 ident: bib32 article-title: Corn stover as a biofuel feedstock in Iowa's bio-economy: an Iowa farmer survey publication-title: Biomass and Bioenergy – volume: 26 start-page: 455 year: 2010 end-page: 461 ident: bib11 article-title: A corn stover supply logistics system publication-title: Applied Engineering in Agriculture – volume: 102 start-page: 10936 year: 2011 end-page: 10945 ident: bib10 article-title: Logistics system design for biomass-to-bioenergy industry with multiple types of feedstocks publication-title: Bioresource Technology – volume: 35 start-page: 2210 year: 2010 end-page: 2222 ident: bib45 article-title: Integrated design and evaluation of biomass energy system taking into consideration demand side characteristics publication-title: Energy – reference: U.S. energy independence and security act of 2007 (EISA). – reference: [accessed 20.10.2012]. – volume: 35 start-page: 2709 year: 2010 end-page: 2716 ident: bib17 article-title: Optimal location of lignocellulosic ethanol refineries with polygeneration in Sweden publication-title: Energy – volume: 35 start-page: 1738 year: 2011 end-page: 1751 ident: bib26 article-title: Optimal design and global sensitivity analysis of biomass supply chain networks for biofuels under uncertainty publication-title: Computers and Chemical Engineering – volume: 44 start-page: 135 year: 2012 end-page: 145 ident: bib46 article-title: Total footprints-based multi-criteria optimisation of regional biomass energy supply chains publication-title: Energy – volume: 90 start-page: 359 year: 2012 end-page: 376 ident: bib24 article-title: Design and planning of infrastructures for bioethanol and sugar production under demand uncertainty publication-title: Chemical Engineering Research and Design – reference: United States Department of Agriculture. National Agricultural Statistics Service: 2007 census of agriculture. – volume: 36 start-page: 6019 year: 2011 end-page: 6026 ident: bib19 article-title: Development and implementation of an optimisation model for biofuels supply chain publication-title: Energy – reference: CRS adaptation of Energy Information Administration. Annual energy review 2009. – reference: U.S. Energy Information Administration. State energy data 2009: consumption. – reference: United States Department of Agriculture. National Agricultural Statistics Service: 2011 county rents & values. – volume: 1 start-page: 13 year: 2008 ident: bib39 article-title: A spatially explicit whole-system model of the lignocellulosic bioethanol supply chain: an assessment of decentralised processing potential publication-title: Biotechnology for Biofuels – year: 2011 ident: bib1 article-title: Annual energy outlook 2011 – reference: Rand McNally. – year: 2009 ident: bib37 article-title: The relationship of ethanol, gasoline and oil prices – volume: 36 start-page: 6251 year: 2011 end-page: 6262 ident: bib47 article-title: Biofuels and biochemicals production from forest biomass in Western Canada publication-title: Energy – volume: 42 start-page: 146 year: 2012 end-page: 156 ident: bib43 article-title: A review of multi-criteria decision-making methods for bioenergy systems publication-title: Energy – volume: 35 start-page: 542 year: 2011 end-page: 548 ident: bib15 article-title: Bioethanol production using genetically modified and mutant wheat and barley straws publication-title: Biomass and Bioenergy – volume: 35 start-page: 608 year: 2011 end-page: 616 ident: bib9 article-title: Effect of multiple-feedstock strategy on the economic and environmental performance of thermochemical ethanol production under extreme weather conditions publication-title: Biomass and Bioenergy – volume: 45 start-page: 2583 year: 2005 end-page: 2590 ident: bib31 article-title: Biomass production of switchgrass in Central South Dakota publication-title: Crop Science – reference: United States Census Bureau: 2010 county population within ND. – volume: 82 start-page: 148 issue: 2 year: 2005 ident: 10.1016/j.energy.2013.07.043_bib13 article-title: Ethanol production from energy crops and wastes for use as a transport fuel in Ireland publication-title: Applied Energy doi: 10.1016/j.apenergy.2004.10.004 – volume: 44 start-page: 8773 year: 2010 ident: 10.1016/j.energy.2013.07.043_bib30 article-title: Characterizing model uncertainties in the life cycle of lignocellulose-based ethanol fuels publication-title: Environmental Science & Technology doi: 10.1021/es102091a – volume: 64 start-page: 286 issue: 4 year: 2009 ident: 10.1016/j.energy.2013.07.043_bib35 article-title: Balancing corn stover harvest for biofuels with soil and water conservation publication-title: Journal of Soil and Water Conservation doi: 10.2489/jswc.64.4.286 – volume: 3 start-page: 124 year: 2009 ident: 10.1016/j.energy.2013.07.043_bib3 article-title: Large-scale production, harvest and logistics of switchgrass – current technology and envisioning a mature technology publication-title: Biofuels, Bioproducts and Biorefining doi: 10.1002/bbb.129 – ident: 10.1016/j.energy.2013.07.043_bib40 – volume: 35 start-page: 2210 year: 2010 ident: 10.1016/j.energy.2013.07.043_bib45 article-title: Integrated design and evaluation of biomass energy system taking into consideration demand side characteristics publication-title: Energy doi: 10.1016/j.energy.2010.02.007 – volume: 35 start-page: 1738 year: 2011 ident: 10.1016/j.energy.2013.07.043_bib26 article-title: Optimal design and global sensitivity analysis of biomass supply chain networks for biofuels under uncertainty publication-title: Computers and Chemical Engineering doi: 10.1016/j.compchemeng.2011.02.008 – volume: 36 start-page: 6251 year: 2011 ident: 10.1016/j.energy.2013.07.043_bib47 article-title: Biofuels and biochemicals production from forest biomass in Western Canada publication-title: Energy doi: 10.1016/j.energy.2011.07.024 – volume: 1 start-page: 13 year: 2008 ident: 10.1016/j.energy.2013.07.043_bib39 article-title: A spatially explicit whole-system model of the lignocellulosic bioethanol supply chain: an assessment of decentralised processing potential publication-title: Biotechnology for Biofuels doi: 10.1186/1754-6834-1-13 – ident: 10.1016/j.energy.2013.07.043_bib50 – volume: 90 start-page: 359 year: 2012 ident: 10.1016/j.energy.2013.07.043_bib24 article-title: Design and planning of infrastructures for bioethanol and sugar production under demand uncertainty publication-title: Chemical Engineering Research and Design doi: 10.1016/j.cherd.2011.07.013 – volume: 36 start-page: 6019 year: 2011 ident: 10.1016/j.energy.2013.07.043_bib19 article-title: Development and implementation of an optimisation model for biofuels supply chain publication-title: Energy doi: 10.1016/j.energy.2011.08.013 – volume: 35 start-page: 1338 year: 2010 ident: 10.1016/j.energy.2013.07.043_bib18 article-title: Linear mixed-integer models for biomass supply chains with transport, storage and processing publication-title: Energy doi: 10.1016/j.energy.2009.11.017 – ident: 10.1016/j.energy.2013.07.043_bib2 – volume: 35 start-page: 4154 year: 1996 ident: 10.1016/j.energy.2013.07.043_bib23 article-title: Optimization in process planning under uncertainty publication-title: Industrial & Engineering Chemistry Research doi: 10.1021/ie9504516 – volume: 48 start-page: 150 year: 2010 ident: 10.1016/j.energy.2013.07.043_bib27 article-title: Bioethanol supply chain system planning under supply and demand uncertainties publication-title: Transportation Research Part E doi: 10.1016/j.tre.2011.08.004 – volume: 102 start-page: 1205 year: 2013 ident: 10.1016/j.energy.2013.07.043_bib6 article-title: An integrated optimization model for switchgrass-based bioethanol supply chain publication-title: Applied Energy doi: 10.1016/j.apenergy.2012.06.054 – volume: 87 start-page: 47 issue: 1 year: 2010 ident: 10.1016/j.energy.2013.07.043_bib7 article-title: Crop residues as raw materials for biorefinery systems – a LCA case study publication-title: Applied Energy doi: 10.1016/j.apenergy.2009.08.024 – volume: 35 start-page: 2709 year: 2010 ident: 10.1016/j.energy.2013.07.043_bib17 article-title: Optimal location of lignocellulosic ethanol refineries with polygeneration in Sweden publication-title: Energy doi: 10.1016/j.energy.2009.07.018 – ident: 10.1016/j.energy.2013.07.043_bib48 – volume: 35 start-page: 2059 year: 2011 ident: 10.1016/j.energy.2013.07.043_bib25 article-title: Strategic design and investment capacity planning of the ethanol supply chain under price uncertainty publication-title: Biomass and Bioenergy doi: 10.1016/j.biombioe.2011.01.060 – volume: 26 start-page: 455 issue: 3 year: 2010 ident: 10.1016/j.energy.2013.07.043_bib11 article-title: A corn stover supply logistics system publication-title: Applied Engineering in Agriculture doi: 10.13031/2013.29946 – volume: 103 start-page: 209 year: 2012 ident: 10.1016/j.energy.2013.07.043_bib29 article-title: Design, modeling, and analysis of feedstock logistics system publication-title: Bioresource Technology doi: 10.1016/j.biortech.2011.09.111 – ident: 10.1016/j.energy.2013.07.043_bib51 – volume: 35 start-page: 1767 year: 2011 ident: 10.1016/j.energy.2013.07.043_bib33 article-title: A decision support tool for strategic analysis of sustainable biorefineries publication-title: Computers and Chemical Engineering doi: 10.1016/j.compchemeng.2011.05.011 – ident: 10.1016/j.energy.2013.07.043_bib36 – volume: 35 start-page: 542 year: 2011 ident: 10.1016/j.energy.2013.07.043_bib15 article-title: Bioethanol production using genetically modified and mutant wheat and barley straws publication-title: Biomass and Bioenergy doi: 10.1016/j.biombioe.2010.10.006 – volume: 5 start-page: 68 year: 1998 ident: 10.1016/j.energy.2013.07.043_bib41 article-title: The NEOS server publication-title: IEEE Journal on Computational Science and Engineering doi: 10.1109/99.714603 – volume: 35 start-page: 608 year: 2011 ident: 10.1016/j.energy.2013.07.043_bib9 article-title: Effect of multiple-feedstock strategy on the economic and environmental performance of thermochemical ethanol production under extreme weather conditions publication-title: Biomass and Bioenergy doi: 10.1016/j.biombioe.2010.10.023 – volume: 36 start-page: 5984 year: 2011 ident: 10.1016/j.energy.2013.07.043_bib42 article-title: Modelling renewable supply chain for electricity generation with forest, fossil, and wood-waste fuels publication-title: Energy doi: 10.1016/j.energy.2011.08.017 – volume: 45 start-page: 2583 year: 2005 ident: 10.1016/j.energy.2013.07.043_bib31 article-title: Biomass production of switchgrass in Central South Dakota publication-title: Crop Science doi: 10.2135/cropsci2005.04-0003 – volume: 36 start-page: 6745 year: 2011 ident: 10.1016/j.energy.2013.07.043_bib16 article-title: Techno-economical analysis of a thermo-chemical biofuel plant with feedstock and product flexibility under external disturbances publication-title: Energy doi: 10.1016/j.energy.2011.10.031 – year: 2009 ident: 10.1016/j.energy.2013.07.043_bib37 – volume: 34 start-page: 1597 year: 2010 ident: 10.1016/j.energy.2013.07.043_bib8 article-title: Development of a biorefinery optimized biofuel supply curve for the Western United States publication-title: Biomass and Bioenergy doi: 10.1016/j.biombioe.2010.06.007 – volume: 33 start-page: 1518 year: 2008 ident: 10.1016/j.energy.2013.07.043_bib44 article-title: Uncertainties in the design and operation of distributed energy resources: the case of micro-CHP systems publication-title: Energy doi: 10.1016/j.energy.2008.07.003 – ident: 10.1016/j.energy.2013.07.043_bib49 – volume: 44 start-page: 135 year: 2012 ident: 10.1016/j.energy.2013.07.043_bib46 article-title: Total footprints-based multi-criteria optimisation of regional biomass energy supply chains publication-title: Energy doi: 10.1016/j.energy.2012.01.040 – year: 2011 ident: 10.1016/j.energy.2013.07.043_bib1 – volume: 16 start-page: 1359 year: 2012 ident: 10.1016/j.energy.2013.07.043_bib20 article-title: Uncertainties and sustainability concepts in biofuel supply chain management: a review publication-title: Renewable and Sustainable Energy Reviews doi: 10.1016/j.rser.2011.10.016 – volume: 36 start-page: 2017 year: 2011 ident: 10.1016/j.energy.2013.07.043_bib34 article-title: Geographic distribution of economic potential of agricultural and forest biomass residual for energy use: case study Croatia publication-title: Energy doi: 10.1016/j.energy.2010.10.009 – volume: 102 start-page: 10936 year: 2011 ident: 10.1016/j.energy.2013.07.043_bib10 article-title: Logistics system design for biomass-to-bioenergy industry with multiple types of feedstocks publication-title: Bioresource Technology doi: 10.1016/j.biortech.2011.08.121 – ident: 10.1016/j.energy.2013.07.043_bib4 – volume: 104 start-page: 335 year: 2009 ident: 10.1016/j.energy.2013.07.043_bib12 article-title: Compaction characteristics of barley, canola, oat and wheat straw publication-title: Biosystems Engineering doi: 10.1016/j.biosystemseng.2009.06.022 – volume: 28 start-page: 515 year: 2005 ident: 10.1016/j.energy.2013.07.043_bib28 article-title: Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States publication-title: Biomass and Bioenergy doi: 10.1016/j.biombioe.2004.05.006 – volume: 58 start-page: 1157 issue: 4 year: 2012 ident: 10.1016/j.energy.2013.07.043_bib38 article-title: Optimal design of sustainable cellulosic biofuel supply chains: multiobjective optimization coupled with life cycle assessment and input–output analysis publication-title: AIChE Journal doi: 10.1002/aic.12637 – volume: 28 start-page: 971 year: 2004 ident: 10.1016/j.energy.2013.07.043_bib21 article-title: Optimization under uncertainty: state-of-the-art and opportunities publication-title: Computers and Chemical Engineering doi: 10.1016/j.compchemeng.2003.09.017 – volume: 39 start-page: 4222 year: 2011 ident: 10.1016/j.energy.2013.07.043_bib5 article-title: Second generation biofuels: economics & policies publication-title: Energy Policy doi: 10.1016/j.enpol.2011.04.036 – ident: 10.1016/j.energy.2013.07.043_bib22 – volume: 42 start-page: 146 year: 2012 ident: 10.1016/j.energy.2013.07.043_bib43 article-title: A review of multi-criteria decision-making methods for bioenergy systems publication-title: Energy doi: 10.1016/j.energy.2012.03.074 – volume: 45 start-page: 2013 year: 2011 ident: 10.1016/j.energy.2013.07.043_bib14 article-title: Biochemical suitability of crop residues for cellulosic ethanol: disincentives to nitrogen fertilization in corn agriculture publication-title: Environmental Science & Technology doi: 10.1021/es103252s – volume: 35 start-page: 1485 year: 2011 ident: 10.1016/j.energy.2013.07.043_bib32 article-title: Corn stover as a biofuel feedstock in Iowa's bio-economy: an Iowa farmer survey publication-title: Biomass and Bioenergy doi: 10.1016/j.biombioe.2010.08.049 |
| SSID | ssj0005899 |
| Score | 2.4225948 |
| Snippet | An integrated multi-feedstock (i.e. switchgrass and crop residue) lignocellulosic-based bioethanol supply chain is studied under jointly occurring... |
| SourceID | proquest pascalfrancis crossref fao elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 157 |
| SubjectTerms | Applied sciences bioethanol Biomass biorefining case studies cost effectiveness crop residues Crops Demand Energy ethanol ethanol production Exact sciences and technology Facility location feedstocks finance gasoline Lignocellulosic-based bioethanol supply chain Mathematical analysis Mathematical models Natural energy North Dakota Optimization Panicum virgatum prices Residues sales Stochastic mixed integer linear programming stochastic processes Stochasticity supply chain Sustainability Switchgrass Uncertainty |
| Title | Stochastic optimization of a multi-feedstock lignocellulosic-based bioethanol supply chain under multiple uncertainties |
| URI | https://dx.doi.org/10.1016/j.energy.2013.07.043 https://www.proquest.com/docview/1464558443 https://www.proquest.com/docview/1513422864 https://www.proquest.com/docview/2000054508 |
| Volume | 59 |
| WOSCitedRecordID | wos000324787600016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0360-5442 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0005899 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELagQ2IvCAbTyo_JSLxVQUmc1MljhYpgDxPSitQ3y3HskdElU5NC-e-5s5NmXakGD7xUVeSkVu_L-e5033eEvEP9FRPxzDNZDAlKHBsv40GEcnca4gPUwMvssAl-fp7M5-mXlkJQ23ECvCyT9Tq9-a-mhmtgbKTO_oO5Nw-FC_AdjA6fYHb4_CvDXzSV-iZRfnlUgT-4bomWjghp-wc9A0cWBH3q-2hRXJYVFu9Xiwrs5eGhBiFpUWksqVeLUY1TP38hP7go7czcZd-DCEeiayhouk7ErsTvCIWoZLp2zfN9Mbe-dlOkRpOmMDtl67NVebsOgTMhUs8xMV1xrCPI9N1IjpTle3EUbTncVgLceczA6VO3h2_g5vjs-HVXYrh6r-3-sSOPWc1VJ_F0RzH760WIunk2-kRu50HI4zQZkIPJ5-n8rG8ASux00c0WO2Kl7f7b_aF9gctDIyvsqJU1vFTGTUPZOdhttDJ7Sp60aQadOHg8Iw90eUQedyz0-ogcT3uGIyxsXXz9nPzs8UNv44dWhkp6Bz_0j_ihPX6oww-1-KEWP7TDD93Czwsy-zidffjktdM5PBXFaeMxEylfh5nSMctzZhKFwgrc5GNmgpyzLAqzRDJUlAyV8VOpkkymnMVyrCEuZsdkUFalPiHUpBweIyGTyPJISp36eQJZjOKwTkF8PiSs--eFapXrcYDKQnQtilfC2UugvYTPBdhrSLzNXTdOueWe9bwzqmijTxdVCgDhPXeeAAaEvIRjWWyDb0hOt4Cx2UnIOUSGcTIkbzukCHDsaDBZ6mpVY04OrjOJ8Pl718QBQw2_cbR_DXLxIC-DROzl_n2-Iof9O_2aDJrlSr8hj9SPpqiXp-2b8xvG-9vZ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+optimization+of+a+multi-feedstock+lignocellulosic-based+bioethanol+supply+chain+under+multiple+uncertainties&rft.jtitle=Energy+%28Oxford%29&rft.au=Osmani%2C+Atif&rft.au=Zhang%2C+Jun&rft.date=2013-09-15&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=59&rft.spage=157&rft.epage=172&rft_id=info:doi/10.1016%2Fj.energy.2013.07.043&rft.externalDocID=US201600065009 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |