Smart radio environments empowered by reconfigurable AI meta-surfaces: an idea whose time has come
Future wireless networks are expected to constitute a distributed intelligent wireless communications, sensing, and computing platform, which will have the challenging requirement of interconnecting the physical and digital worlds in a seamless and sustainable manner. Currently, two main factors pre...
Saved in:
| Published in: | EURASIP journal on wireless communications and networking Vol. 2019; no. 1; pp. 1 - 20 |
|---|---|
| Main Authors: | , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Cham
Springer International Publishing
23.05.2019
Springer Nature B.V SpringerOpen |
| Subjects: | |
| ISSN: | 1687-1499, 1687-1472, 1687-1499 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Future wireless networks are expected to constitute a distributed intelligent wireless communications, sensing, and computing platform, which will have the challenging requirement of interconnecting the physical and digital worlds in a seamless and sustainable manner. Currently, two main factors prevent wireless network operators from building such networks: (1) the lack of control of the wireless environment, whose impact on the radio waves cannot be customized, and (2) the current operation of wireless radios, which consume a lot of power because new signals are generated whenever data has to be transmitted. In this paper, we challenge the usual “more data needs more power and emission of radio waves” status quo, and motivate that future wireless networks necessitate a smart radio environment: a transformative wireless concept, where the environmental objects are coated with artificial thin films of electromagnetic and reconfigurable material (that are referred to as reconfigurable intelligent meta-surfaces), which are capable of sensing the environment and of applying customized transformations to the radio waves. Smart radio environments have the potential to provide future wireless networks with uninterrupted wireless connectivity, and with the capability of transmitting data without generating new signals but recycling existing radio waves. We will discuss, in particular, two major types of reconfigurable intelligent meta-surfaces applied to wireless networks. The first type of meta-surfaces will be embedded into, e.g., walls, and will be directly controlled by the wireless network operators via a software controller in order to shape the radio waves for, e.g., improving the network coverage. The second type of meta-surfaces will be embedded into objects, e.g., smart t-shirts with sensors for health monitoring, and will backscatter the radio waves generated by cellular base stations in order to report their sensed data to mobile phones. These functionalities will enable wireless network operators to offer new services without the emission of additional radio waves, but by recycling those already existing for other purposes. This paper overviews the current research efforts on smart radio environments, the enabling technologies to realize them in practice, the need of new communication-theoretic models for their analysis and design, and the long-term and open research issues to be solved towards their massive deployment. In a nutshell, this paper is focused on discussing how the availability of reconfigurable intelligent meta-surfaces will allow wireless network operators to redesign common and well-known network communication paradigms. |
|---|---|
| AbstractList | Future wireless networks are expected to constitute a distributed intelligent wireless communications, sensing, and computing platform, which will have the challenging requirement of interconnecting the physical and digital worlds in a seamless and sustainable manner. Currently, two main factors prevent wireless network operators from building such networks: (1) the lack of control of the wireless environment, whose impact on the radio waves cannot be customized, and (2) the current operation of wireless radios, which consume a lot of power because new signals are generated whenever data has to be transmitted. In this paper, we challenge the usual "more data needs more power and emission of radio waves" status quo, and motivate that future wireless networks necessitate a smart radio environment: a transformative wireless concept, where the environmental objects are coated with artificial thin films of electromagnetic and reconfigurable material (that are referred to as reconfigurable intelligent meta-surfaces), which are capable of sensing the environment and of applying customized transformations to the radio waves. Smart radio environments have the potential to provide future wireless networks with uninterrupted wireless connectivity, and with the capability of transmitting data without generating new signals but recycling existing radio waves. We will discuss, in particular, two major types of reconfigurable intelligent meta-surfaces applied to wireless networks. The first type of meta-surfaces will be embedded into, e.g., walls, and will be directly controlled by the wireless network operators via a software controller in order to shape the radio waves for, e.g., improving the network coverage. The second type of meta-surfaces will be embedded into objects, e.g., smart t-shirts with sensors for health monitoring, and will backscatter the radio waves generated by cellular base stations in order to report their sensed data to mobile phones. These functionalities will enable wireless network operators to offer new services without the emission of additional radio waves, but by recycling those already existing for other purposes. This paper overviews the current research efforts on smart radio environments, the enabling technologies to realize them in practice, the need of new communication-theoretic models for their analysis and design, and the long-term and open research issues to be solved towards their massive deployment. In a nutshell, this paper is focused on discussing how the availability of reconfigurable intelligent meta-surfaces will allow wireless network operators to redesign common and well-known network communication paradigms. Abstract Future wireless networks are expected to constitute a distributed intelligent wireless communications, sensing, and computing platform, which will have the challenging requirement of interconnecting the physical and digital worlds in a seamless and sustainable manner. Currently, two main factors prevent wireless network operators from building such networks: (1) the lack of control of the wireless environment, whose impact on the radio waves cannot be customized, and (2) the current operation of wireless radios, which consume a lot of power because new signals are generated whenever data has to be transmitted. In this paper, we challenge the usual “more data needs more power and emission of radio waves” status quo, and motivate that future wireless networks necessitate a smart radio environment: a transformative wireless concept, where the environmental objects are coated with artificial thin films of electromagnetic and reconfigurable material (that are referred to as reconfigurable intelligent meta-surfaces), which are capable of sensing the environment and of applying customized transformations to the radio waves. Smart radio environments have the potential to provide future wireless networks with uninterrupted wireless connectivity, and with the capability of transmitting data without generating new signals but recycling existing radio waves. We will discuss, in particular, two major types of reconfigurable intelligent meta-surfaces applied to wireless networks. The first type of meta-surfaces will be embedded into, e.g., walls, and will be directly controlled by the wireless network operators via a software controller in order to shape the radio waves for, e.g., improving the network coverage. The second type of meta-surfaces will be embedded into objects, e.g., smart t-shirts with sensors for health monitoring, and will backscatter the radio waves generated by cellular base stations in order to report their sensed data to mobile phones. These functionalities will enable wireless network operators to offer new services without the emission of additional radio waves, but by recycling those already existing for other purposes. This paper overviews the current research efforts on smart radio environments, the enabling technologies to realize them in practice, the need of new communication-theoretic models for their analysis and design, and the long-term and open research issues to be solved towards their massive deployment. In a nutshell, this paper is focused on discussing how the availability of reconfigurable intelligent meta-surfaces will allow wireless network operators to redesign common and well-known network communication paradigms. |
| ArticleNumber | 129 |
| Author | Gacanin, Haris Lerosey, Geoffroy Debbah, Merouane Rosny, Julien de Renzo, Marco Di Phan-Huy, Dinh-Thuy Sciancalepore, Vincenzo Zappone, Alessio Fink, Mathias Bounceur, Ahcene Alouini, Mohamed-Slim Hoydis, Jakob Yuen, Chau Alexandropoulos, George C. |
| Author_xml | – sequence: 1 givenname: Marco Di orcidid: 0000-0003-0772-8793 surname: Renzo fullname: Renzo, Marco Di email: marco.direnzo@l2s.centralesupelec.fr organization: Laboratoire des Signaux et Systèmes, CNRS, CentraleSupelec, Univ Paris-Sud, Université Paris-Saclay – sequence: 2 givenname: Merouane surname: Debbah fullname: Debbah, Merouane organization: Mathematical and Algorithmic Sciences Lab, Huawei France R&D – sequence: 3 givenname: Dinh-Thuy surname: Phan-Huy fullname: Phan-Huy, Dinh-Thuy organization: Orange Labs – sequence: 4 givenname: Alessio surname: Zappone fullname: Zappone, Alessio organization: Laboratoire des Signaux et Systèmes, CentraleSupelec, LANES Group – sequence: 5 givenname: Mohamed-Slim surname: Alouini fullname: Alouini, Mohamed-Slim organization: King Abdullah University of Science and Technology (KAUST) – sequence: 6 givenname: Chau surname: Yuen fullname: Yuen, Chau organization: Singapore University of Technology and Design (SUTD) – sequence: 7 givenname: Vincenzo surname: Sciancalepore fullname: Sciancalepore, Vincenzo organization: NEC Laboratories Europe – sequence: 8 givenname: George C. surname: Alexandropoulos fullname: Alexandropoulos, George C. organization: National and Kapodistrian University of Athens – sequence: 9 givenname: Jakob surname: Hoydis fullname: Hoydis, Jakob organization: Nokia Bell Labs – sequence: 10 givenname: Haris surname: Gacanin fullname: Gacanin, Haris organization: Nokia Bell Labs – sequence: 11 givenname: Julien de surname: Rosny fullname: Rosny, Julien de organization: Institut Langevin, ESPCI Paris – sequence: 12 givenname: Ahcene surname: Bounceur fullname: Bounceur, Ahcene organization: University of Brest – sequence: 13 givenname: Geoffroy surname: Lerosey fullname: Lerosey, Geoffroy organization: Greenerwave – sequence: 14 givenname: Mathias surname: Fink fullname: Fink, Mathias organization: Institut Langevin, ESPCI Paris |
| BackLink | https://hal.science/hal-02395877$$DView record in HAL |
| BookMark | eNp9kU1v1DAQhiNUJNrSH8DNEicOAX_Eic1tVQFdaSUObc_WxJ7sepXYi51t1X9fL0F8SXDyePw-73j0XlRnIQasqjeMvmdMtR8yE61QNWW6Zk0p9IvqnLWqKzetz36rX1UXOe8pFaLR_LzqbydIM0ngfCQYHnyKYcIwZ4LTIT5iQkf6J5LQxjD47TFBPyJZrcmEM9T5mAawmD8SCMQ7BPK4ixnJ7CckO8jExglfVy8HGDNe_Tgvq_vPn-6ub-rN1y_r69Wmto3Ucy2c0tg70QEwgL7ttVZI5QCuFz0oapUU5RmF6LizqpXKagkDd2IoMknFZbVefF2EvTkkXzZ7MhG8-d6IaWvKqt6OaFxfWM06x8E1VihoW-qE5VZ2DVM4FK93i9cOxj-sblYbc-pRLrRUXffAivbtoj2k-O2IeTb7eEyhrGo451pKJVRbVGxR2RRzTjj8tGXUnCI0S4SmRGhOERpdmO4vxvoZZh_DnMCP_yX5QuYyJWwx_frTv6Fn2SqyNw |
| CitedBy_id | crossref_primary_10_1109_TWC_2023_3348292 crossref_primary_10_1109_TCOMM_2023_3342217 crossref_primary_10_1109_TWC_2023_3246264 crossref_primary_10_1109_LCOMM_2022_3222173 crossref_primary_10_1109_TCOMM_2021_3064947 crossref_primary_10_1109_TWC_2023_3332945 crossref_primary_10_1109_TCOMM_2021_3064949 crossref_primary_10_1109_TAP_2024_3438940 crossref_primary_10_1109_TWC_2023_3342991 crossref_primary_10_1109_TWC_2024_3364048 crossref_primary_10_1109_LWC_2019_2961357 crossref_primary_10_1109_JIOT_2021_3070225 crossref_primary_10_1109_TCE_2022_3223441 crossref_primary_10_1109_JIOT_2021_3050612 crossref_primary_10_1109_LWC_2021_3120269 crossref_primary_10_1109_JSAC_2021_3087259 crossref_primary_10_3390_s23041921 crossref_primary_10_1109_TCOMM_2021_3096549 crossref_primary_10_1016_j_phycom_2021_101386 crossref_primary_10_1109_COMST_2024_3487068 crossref_primary_10_1109_JIOT_2023_3296319 crossref_primary_10_1109_JIOT_2022_3232360 crossref_primary_10_1109_TCOMM_2022_3179771 crossref_primary_10_1109_TVT_2022_3151191 crossref_primary_10_1109_LCOMM_2021_3054819 crossref_primary_10_1109_MVT_2021_3119282 crossref_primary_10_1109_TGCN_2021_3135437 crossref_primary_10_1109_TAP_2022_3177549 crossref_primary_10_1109_TWC_2021_3056154 crossref_primary_10_1186_s13634_025_01231_w crossref_primary_10_1109_ACCESS_2020_3007897 crossref_primary_10_1109_TAP_2022_3201700 crossref_primary_10_1109_TCOMM_2023_3321731 crossref_primary_10_1109_IOTM_001_2100117 crossref_primary_10_1109_TCOMM_2023_3286453 crossref_primary_10_1109_TVT_2020_2991547 crossref_primary_10_1109_LWC_2020_3043810 crossref_primary_10_1109_JETCAS_2020_2976165 crossref_primary_10_1109_TWC_2023_3341448 crossref_primary_10_1109_TSP_2022_3193626 crossref_primary_10_1109_TWC_2020_2990766 crossref_primary_10_1109_TWC_2021_3100148 crossref_primary_10_1109_TCOMM_2022_3193400 crossref_primary_10_1109_TAP_2023_3263929 crossref_primary_10_1109_COMST_2023_3249835 crossref_primary_10_1109_TCOMM_2022_3204828 crossref_primary_10_1109_TAP_2022_3151354 crossref_primary_10_1016_j_jiixd_2023_06_009 crossref_primary_10_1049_cmu2_12755 crossref_primary_10_1109_TCCN_2021_3072895 crossref_primary_10_1109_TWC_2021_3095939 crossref_primary_10_1109_TCOMM_2022_3145570 crossref_primary_10_1109_JPHOT_2023_3302409 crossref_primary_10_1109_TCOMM_2019_2945792 crossref_primary_10_1109_JSAC_2023_3288237 crossref_primary_10_1109_TNET_2022_3225883 crossref_primary_10_1109_TWC_2020_3028198 crossref_primary_10_1109_TWC_2024_3362068 crossref_primary_10_1109_TVT_2022_3190515 crossref_primary_10_1103_PhysRevApplied_21_014005 crossref_primary_10_1109_TWC_2024_3438874 crossref_primary_10_3390_app12147236 crossref_primary_10_1109_TGCN_2024_3524623 crossref_primary_10_3390_s25061811 crossref_primary_10_1109_TCOMM_2021_3074539 crossref_primary_10_3390_electronics13040735 crossref_primary_10_1109_LWC_2021_3134630 crossref_primary_10_1109_JSAC_2023_3288248 crossref_primary_10_1109_OJCOMS_2025_3573988 crossref_primary_10_1109_TCCN_2021_3084402 crossref_primary_10_1109_COMST_2022_3171135 crossref_primary_10_1109_ACCESS_2025_3549450 crossref_primary_10_1109_TWC_2021_3094869 crossref_primary_10_1109_TWC_2022_3141491 crossref_primary_10_1186_s13638_024_02372_6 crossref_primary_10_1109_TVT_2022_3211545 crossref_primary_10_1016_j_jksuci_2022_03_019 crossref_primary_10_1049_cmu2_12571 crossref_primary_10_1109_JSAC_2023_3288251 crossref_primary_10_1109_ACCESS_2022_3167841 crossref_primary_10_1109_JSAC_2025_3536556 crossref_primary_10_1109_TWC_2022_3199426 crossref_primary_10_1109_TCE_2023_3349153 crossref_primary_10_1109_TWC_2024_3355108 crossref_primary_10_1109_LCOMM_2021_3110865 crossref_primary_10_1109_TWC_2023_3339151 crossref_primary_10_1109_TWC_2024_3400882 crossref_primary_10_1007_s11276_022_03007_8 crossref_primary_10_1109_COMST_2022_3202813 crossref_primary_10_1109_TCOMM_2021_3051897 crossref_primary_10_1109_ACCESS_2022_3206013 crossref_primary_10_1109_LCOMM_2021_3082214 crossref_primary_10_1109_JSAC_2023_3288264 crossref_primary_10_1109_TWC_2024_3481494 crossref_primary_10_1109_TWC_2024_3363180 crossref_primary_10_1109_JSAC_2023_3288267 crossref_primary_10_1109_JIOT_2021_3131771 crossref_primary_10_3390_en14248219 crossref_primary_10_1109_ACCESS_2020_3031959 crossref_primary_10_1109_LCOMM_2021_3073981 crossref_primary_10_1109_LWC_2023_3316700 crossref_primary_10_1038_s41598_025_10257_x crossref_primary_10_1109_TWC_2022_3157808 crossref_primary_10_1109_MVT_2020_3017927 crossref_primary_10_1109_ACCESS_2020_2977772 crossref_primary_10_1109_ACCESS_2024_3397186 crossref_primary_10_1109_ACCESS_2024_3482564 crossref_primary_10_1186_s13634_025_01233_8 crossref_primary_10_1109_TWC_2021_3068754 crossref_primary_10_1109_LWC_2019_2950624 crossref_primary_10_1109_TWC_2021_3066333 crossref_primary_10_1109_TCOMM_2024_3443738 crossref_primary_10_1109_TWC_2024_3367953 crossref_primary_10_1016_j_phycom_2022_101826 crossref_primary_10_1109_TWC_2023_3237955 crossref_primary_10_1109_TMC_2025_3556326 crossref_primary_10_1109_COMST_2024_3423460 crossref_primary_10_1109_JSTSP_2022_3176140 crossref_primary_10_1109_TCOMM_2024_3358954 crossref_primary_10_1109_LWC_2019_2947445 crossref_primary_10_1109_TWC_2021_3133491 crossref_primary_10_1103_PhysRevApplied_17_044007 crossref_primary_10_1109_TCOMM_2022_3217516 crossref_primary_10_1109_TWC_2024_3469968 crossref_primary_10_3390_photonics10111210 crossref_primary_10_1109_LCOMM_2020_3025345 crossref_primary_10_1109_LWC_2022_3189272 crossref_primary_10_1109_TAP_2022_3146870 crossref_primary_10_1109_TSP_2020_3047474 crossref_primary_10_1109_TWC_2021_3054121 crossref_primary_10_1109_TWC_2020_2997332 crossref_primary_10_1109_TAP_2021_3076267 crossref_primary_10_1002_adfm_202403577 crossref_primary_10_1109_TWC_2020_2986438 crossref_primary_10_1109_TSP_2024_3420149 crossref_primary_10_1002_advs_202500796 crossref_primary_10_1109_LWC_2022_3154822 crossref_primary_10_1016_j_aeue_2025_155698 crossref_primary_10_1109_TCOMM_2022_3196061 crossref_primary_10_1109_LWC_2021_3100479 crossref_primary_10_1109_TWC_2025_3555946 crossref_primary_10_3390_electronics13101826 crossref_primary_10_1109_TVT_2020_2973073 crossref_primary_10_1109_JPROC_2022_3174140 crossref_primary_10_1155_2021_2036778 crossref_primary_10_1109_TWC_2021_3133272 crossref_primary_10_1109_COMST_2022_3221119 crossref_primary_10_1109_TVT_2024_3520232 crossref_primary_10_1109_LCOMM_2020_3025320 crossref_primary_10_1109_TWC_2024_3363141 crossref_primary_10_1109_MSP_2024_3496395 crossref_primary_10_1109_ACCESS_2022_3223447 crossref_primary_10_1109_MWC_001_1900534 crossref_primary_10_1109_LWC_2022_3219017 crossref_primary_10_1109_TWC_2021_3052370 crossref_primary_10_1109_TWC_2022_3195683 crossref_primary_10_3390_photonics10020128 crossref_primary_10_1109_ACCESS_2025_3575583 crossref_primary_10_1109_TWC_2020_2970061 crossref_primary_10_1109_TVT_2020_3024756 crossref_primary_10_3390_s22228719 crossref_primary_10_1109_JSAC_2022_3196119 crossref_primary_10_1016_j_phycom_2025_102798 crossref_primary_10_1109_TWC_2022_3212537 crossref_primary_10_1109_LWC_2021_3126852 crossref_primary_10_3390_s25154549 crossref_primary_10_1109_JSTSP_2022_3179840 crossref_primary_10_1109_TVT_2021_3129308 crossref_primary_10_1109_TWC_2020_3049047 crossref_primary_10_1109_ACCESS_2021_3053486 crossref_primary_10_1109_ACCESS_2019_2935192 crossref_primary_10_1109_LCOMM_2023_3255410 crossref_primary_10_1109_TWC_2023_3244279 crossref_primary_10_1109_LWC_2020_2976934 crossref_primary_10_1109_MAP_2023_3236278 crossref_primary_10_3390_app122211605 crossref_primary_10_1109_LWC_2021_3056620 crossref_primary_10_1109_LAWP_2024_3428318 crossref_primary_10_1109_JIOT_2023_3252587 crossref_primary_10_3390_electronics11192977 crossref_primary_10_1109_JSAC_2021_3118405 crossref_primary_10_1109_TWC_2020_3028371 crossref_primary_10_1109_ACCESS_2020_2995358 crossref_primary_10_1109_JPROC_2022_3171921 crossref_primary_10_3390_photonics11090830 crossref_primary_10_1109_ACCESS_2021_3125461 crossref_primary_10_1109_MWC_001_1900308 crossref_primary_10_1109_ACCESS_2025_3590964 crossref_primary_10_1109_JPROC_2021_3061778 crossref_primary_10_1109_TVT_2023_3241928 crossref_primary_10_1007_s12243_024_01037_1 crossref_primary_10_1109_MWC_001_2000256 crossref_primary_10_1109_LCOMM_2022_3146583 crossref_primary_10_1109_LWC_2022_3147250 crossref_primary_10_1109_OJCOMS_2025_3594049 crossref_primary_10_1109_TSP_2022_3192584 crossref_primary_10_1109_TIV_2022_3168159 crossref_primary_10_1038_s41467_024_46916_2 crossref_primary_10_1016_j_comcom_2024_01_020 crossref_primary_10_1109_LCOMM_2020_2965532 crossref_primary_10_1109_LSP_2022_3181532 crossref_primary_10_1109_TVT_2020_3005402 crossref_primary_10_1016_j_phycom_2025_102800 crossref_primary_10_1109_TVT_2022_3222917 crossref_primary_10_1109_TWC_2022_3172885 crossref_primary_10_1109_MWC_102_2100363 crossref_primary_10_1109_JSAC_2023_3287612 crossref_primary_10_1109_TAP_2023_3298134 crossref_primary_10_1109_COMST_2021_3066905 crossref_primary_10_1109_COMST_2023_3309529 crossref_primary_10_1038_s41598_025_03468_9 crossref_primary_10_1155_2024_2960447 crossref_primary_10_1109_TCCN_2023_3333351 crossref_primary_10_1109_TCOMM_2021_3127924 crossref_primary_10_3390_electronics13091689 crossref_primary_10_3390_electronics13091688 crossref_primary_10_1109_TWC_2023_3296076 crossref_primary_10_1109_TGCN_2021_3120834 crossref_primary_10_1109_TCCN_2020_3023139 crossref_primary_10_1109_TWC_2023_3277334 crossref_primary_10_1007_s11831_024_10118_2 crossref_primary_10_1002_adfm_202005310 crossref_primary_10_3390_electronics11010018 crossref_primary_10_1109_TAP_2024_3349685 crossref_primary_10_1109_JPROC_2024_3496775 crossref_primary_10_1109_LAWP_2020_3025333 crossref_primary_10_1109_TCCN_2021_3056707 crossref_primary_10_4018_IJBDCN_339889 crossref_primary_10_1109_TCOMM_2020_3029617 crossref_primary_10_1038_s41467_025_56209_x crossref_primary_10_1109_TCOMM_2020_3013030 crossref_primary_10_1109_TWC_2024_3497599 crossref_primary_10_1109_LSP_2022_3224681 crossref_primary_10_1109_JSAC_2022_3180787 crossref_primary_10_3390_sym12040676 crossref_primary_10_1109_TAP_2021_3130167 crossref_primary_10_1186_s43593_022_00013_3 crossref_primary_10_1186_s13638_023_02317_5 crossref_primary_10_1109_JSYST_2023_3296598 crossref_primary_10_1109_TCOMM_2023_3282952 crossref_primary_10_1109_LWC_2021_3050826 crossref_primary_10_1109_ACCESS_2024_3355140 crossref_primary_10_1109_JSAC_2022_3155548 crossref_primary_10_3390_info16010031 crossref_primary_10_1109_JIOT_2025_3526765 crossref_primary_10_1109_TCOMM_2020_3047098 crossref_primary_10_1109_TAP_2024_3430108 crossref_primary_10_1109_TAP_2022_3184540 crossref_primary_10_1109_TWC_2023_3309323 crossref_primary_10_1109_JIOT_2023_3289772 crossref_primary_10_1051_jnwpu_20213920454 crossref_primary_10_1109_LWC_2020_2980225 crossref_primary_10_1038_s41928_019_0355_6 crossref_primary_10_1109_ACCESS_2022_3206831 crossref_primary_10_1109_TWC_2023_3262272 crossref_primary_10_1109_TAP_2021_3111665 crossref_primary_10_1016_j_phycom_2024_102572 crossref_primary_10_1002_ett_70164 crossref_primary_10_1109_TWC_2024_3480984 crossref_primary_10_1109_TAP_2024_3426072 crossref_primary_10_1155_2021_6673807 crossref_primary_10_1109_LAWP_2022_3232814 crossref_primary_10_1109_TMTT_2024_3506218 crossref_primary_10_1109_LCOMM_2022_3206392 crossref_primary_10_1007_s42452_025_07105_y crossref_primary_10_1109_LWC_2020_2991116 crossref_primary_10_1109_LWC_2020_3000892 crossref_primary_10_1109_TCCN_2021_3133839 crossref_primary_10_1109_TSP_2021_3135603 crossref_primary_10_1109_TVT_2021_3136676 crossref_primary_10_1109_JETCAS_2020_2970077 crossref_primary_10_1109_JSAC_2025_3543523 crossref_primary_10_1109_TCOMM_2022_3193152 crossref_primary_10_1109_TVT_2023_3323659 crossref_primary_10_1109_TCOMM_2021_3066587 crossref_primary_10_26636_jtit_2023_171723 crossref_primary_10_1109_TWC_2022_3196834 crossref_primary_10_1109_TWC_2023_3297396 crossref_primary_10_1016_j_cosrev_2024_100668 crossref_primary_10_1007_s11432_022_3471_9 crossref_primary_10_1109_TCOMM_2023_3293859 crossref_primary_10_1109_COMST_2019_2962526 crossref_primary_10_1109_JSAC_2025_3531533 crossref_primary_10_1109_TWC_2024_3358291 crossref_primary_10_1109_LCOMM_2020_2980510 crossref_primary_10_1109_LWC_2023_3275204 crossref_primary_10_1109_TVT_2022_3172229 crossref_primary_10_1109_TCOMM_2021_3100621 crossref_primary_10_1002_lpor_202400062 crossref_primary_10_1109_JIOT_2021_3108894 crossref_primary_10_1109_TCOMM_2025_3525568 crossref_primary_10_1109_TIFS_2023_3318941 crossref_primary_10_1109_COMST_2022_3203578 crossref_primary_10_1109_TCOMM_2024_3484937 crossref_primary_10_3390_app13137407 crossref_primary_10_1002_inf2_12168 crossref_primary_10_1109_JSTSP_2021_3089423 crossref_primary_10_3390_s21082765 crossref_primary_10_1063_5_0271341 crossref_primary_10_1109_TWC_2024_3413022 crossref_primary_10_1016_j_jksuci_2022_07_019 crossref_primary_10_1109_TWC_2022_3151702 crossref_primary_10_1109_TCOMM_2023_3235915 crossref_primary_10_1186_s13634_021_00781_z crossref_primary_10_1109_TWC_2020_3047632 crossref_primary_10_1109_TCOMM_2022_3159658 crossref_primary_10_1109_TCOMM_2019_2924010 crossref_primary_10_1109_TMC_2024_3405076 crossref_primary_10_1109_OJCOMS_2025_3572723 crossref_primary_10_1109_TWC_2022_3232072 crossref_primary_10_3390_electronics11091411 crossref_primary_10_1109_MWC_001_2100204 crossref_primary_10_1109_TCOMM_2022_3146344 crossref_primary_10_1109_TCOMM_2023_3321909 crossref_primary_10_12677_MOS_2023_123284 crossref_primary_10_1109_MWC_101_2100233 crossref_primary_10_1109_MWC_001_2200192 crossref_primary_10_1109_LWC_2021_3082841 crossref_primary_10_1109_TGCN_2023_3325385 crossref_primary_10_1109_JIOT_2023_3279357 crossref_primary_10_1109_TVT_2021_3102212 crossref_primary_10_1109_TVT_2022_3224926 crossref_primary_10_1109_LWC_2021_3107319 crossref_primary_10_1109_TWC_2020_3004330 crossref_primary_10_1109_LWC_2021_3067474 crossref_primary_10_1109_TSP_2023_3300633 crossref_primary_10_1109_JSAC_2021_3088634 crossref_primary_10_1109_TWC_2022_3147825 crossref_primary_10_1109_TCOMM_2020_2971486 crossref_primary_10_1109_LCOMM_2020_3042344 crossref_primary_10_1109_LWC_2020_3012664 crossref_primary_10_1109_JSEN_2024_3459690 crossref_primary_10_1109_ACCESS_2022_3226264 crossref_primary_10_1109_TCOMM_2021_3129926 crossref_primary_10_1016_j_comcom_2020_07_016 crossref_primary_10_1109_TCOMM_2021_3104878 crossref_primary_10_1007_s11277_023_10837_y crossref_primary_10_1109_JIOT_2025_3575455 crossref_primary_10_1016_j_icte_2023_07_004 crossref_primary_10_1109_ACCESS_2024_3455998 crossref_primary_10_1109_TVT_2020_3004598 crossref_primary_10_1109_TWC_2022_3188350 crossref_primary_10_1109_LCOMM_2024_3380741 crossref_primary_10_1109_TVT_2022_3168392 crossref_primary_10_1109_LWC_2024_3367028 crossref_primary_10_1109_OJVT_2025_3583545 crossref_primary_10_1109_TVT_2021_3140084 crossref_primary_10_1109_LAWP_2023_3288123 crossref_primary_10_1109_LWC_2020_2990431 crossref_primary_10_1038_s44172_023_00118_8 crossref_primary_10_1007_s11235_025_01310_1 crossref_primary_10_1016_j_dsp_2019_06_007 crossref_primary_10_1109_JPROC_2022_3170498 crossref_primary_10_1109_TIFS_2024_3471185 crossref_primary_10_1109_TWC_2022_3226442 crossref_primary_10_1109_LWC_2020_3034686 crossref_primary_10_1186_s13638_021_01973_9 crossref_primary_10_1016_j_jece_2023_111212 crossref_primary_10_1109_TCOMM_2020_2981458 crossref_primary_10_1109_LCOMM_2022_3226621 crossref_primary_10_1109_MWC_007_00345 crossref_primary_10_1002_adma_202401716 crossref_primary_10_1109_TWC_2022_3176123 crossref_primary_10_3390_telecom3010011 crossref_primary_10_37391_ijeer_130216 crossref_primary_10_1109_ACCESS_2024_3361835 crossref_primary_10_1109_TWC_2021_3112819 crossref_primary_10_1109_TAP_2020_3016479 crossref_primary_10_1109_JPROC_2022_3170247 crossref_primary_10_1109_LWC_2020_3000490 crossref_primary_10_1109_TCOMM_2022_3220319 crossref_primary_10_1109_TCOMM_2021_3102640 crossref_primary_10_1109_ACCESS_2021_3124812 crossref_primary_10_1109_TCOMM_2021_3063236 crossref_primary_10_1109_ACCESS_2024_3467702 crossref_primary_10_1038_s41566_025_01642_z crossref_primary_10_1109_LCOMM_2022_3152320 crossref_primary_10_1109_TWC_2020_3048780 crossref_primary_10_1002_advs_202201458 crossref_primary_10_1109_TWC_2024_3428338 crossref_primary_10_1109_JRFID_2020_3031380 crossref_primary_10_1109_JSEN_2024_3478366 crossref_primary_10_1109_TIFS_2020_3038994 crossref_primary_10_1109_TWC_2020_3006915 crossref_primary_10_1631_FITEE_2200666 crossref_primary_10_1109_JPROC_2022_3195536 crossref_primary_10_1109_TCOMM_2021_3073028 crossref_primary_10_1109_LCOMM_2021_3079322 crossref_primary_10_1109_ACCESS_2022_3157651 crossref_primary_10_1109_TCOMM_2020_3020838 crossref_primary_10_1109_TWC_2022_3154372 crossref_primary_10_1109_ACCESS_2019_2933355 crossref_primary_10_1109_ACCESS_2020_3047450 crossref_primary_10_1109_ACCESS_2025_3525562 crossref_primary_10_1109_TAP_2022_3233714 crossref_primary_10_1109_JSAC_2022_3227032 crossref_primary_10_1109_TCOMM_2021_3062376 crossref_primary_10_1109_TWC_2022_3144340 crossref_primary_10_1109_JSAC_2023_3345399 crossref_primary_10_1049_cmu2_12873 crossref_primary_10_1109_TVT_2021_3126374 crossref_primary_10_1007_s13369_023_08603_0 crossref_primary_10_1109_JIOT_2021_3068492 crossref_primary_10_1109_TMC_2022_3200998 crossref_primary_10_1109_TCCN_2021_3058670 crossref_primary_10_1109_LCOMM_2021_3098750 crossref_primary_10_1109_LCOMM_2021_3058063 crossref_primary_10_1109_TCOMM_2021_3097755 crossref_primary_10_1109_TCOMM_2020_3018179 crossref_primary_10_1109_TWC_2021_3081447 crossref_primary_10_1007_s11432_020_3261_5 crossref_primary_10_1109_TWC_2022_3152499 crossref_primary_10_1109_ACCESS_2022_3220682 crossref_primary_10_1109_JSAC_2020_3041401 crossref_primary_10_1109_TWC_2023_3271365 crossref_primary_10_1109_JSAC_2020_3018823 crossref_primary_10_1109_MWC_021_2000376 crossref_primary_10_1109_JIOT_2023_3272674 crossref_primary_10_1109_TWC_2020_3044302 crossref_primary_10_1109_JIOT_2023_3331737 crossref_primary_10_1109_JSAC_2020_3018829 crossref_primary_10_3390_s22020681 crossref_primary_10_1109_TAP_2025_3529203 crossref_primary_10_1109_JIOT_2023_3321931 crossref_primary_10_1109_TWC_2022_3181822 crossref_primary_10_1109_TVT_2022_3187050 crossref_primary_10_1109_ACCESS_2023_3339644 crossref_primary_10_1109_TVT_2022_3203818 crossref_primary_10_1109_TWC_2022_3225969 crossref_primary_10_1109_LWC_2021_3087495 crossref_primary_10_1109_TVT_2024_3405947 crossref_primary_10_1109_LCOMM_2021_3119522 crossref_primary_10_1109_TCOMM_2021_3128544 crossref_primary_10_1109_JIOT_2022_3142206 crossref_primary_10_1109_LCOMM_2021_3097208 crossref_primary_10_1109_TWC_2020_3021434 crossref_primary_10_1109_TSP_2021_3049652 crossref_primary_10_1109_TCCN_2021_3058683 crossref_primary_10_1109_TVT_2022_3187066 crossref_primary_10_1109_TCOMM_2024_3454704 crossref_primary_10_1109_ACCESS_2022_3219871 crossref_primary_10_1109_TSP_2023_3265887 crossref_primary_10_1109_TVT_2024_3402648 crossref_primary_10_1049_cmu2_12432 crossref_primary_10_1109_JSAC_2020_3018808 crossref_primary_10_1109_TMC_2020_3044603 crossref_primary_10_1109_TIFS_2025_3583242 crossref_primary_10_1515_nanoph_2023_0869 crossref_primary_10_3390_e24081078 crossref_primary_10_1109_TWC_2022_3194070 crossref_primary_10_1109_TCCN_2021_3070587 crossref_primary_10_1109_TAP_2023_3281073 crossref_primary_10_1109_TCOMM_2024_3362973 crossref_primary_10_1109_TWC_2022_3144403 crossref_primary_10_1049_smc2_70003 crossref_primary_10_1109_JIOT_2022_3231356 crossref_primary_10_1109_COMST_2023_3347172 crossref_primary_10_1109_TAP_2023_3274300 crossref_primary_10_1109_TVT_2022_3147859 crossref_primary_10_1109_TWC_2021_3066263 crossref_primary_10_1109_LSP_2020_2998357 crossref_primary_10_1109_TWC_2022_3187773 crossref_primary_10_1109_LCOMM_2022_3225585 crossref_primary_10_1109_TVT_2021_3072643 crossref_primary_10_1109_TCOMM_2021_3070043 crossref_primary_10_1109_TVT_2024_3414850 crossref_primary_10_1016_j_comnet_2023_109581 crossref_primary_10_1109_TCOMM_2020_3034259 crossref_primary_10_3390_fi15080249 crossref_primary_10_1109_TWC_2022_3153792 crossref_primary_10_1109_TWC_2023_3257053 crossref_primary_10_1109_TIT_2023_3332425 crossref_primary_10_1186_s13638_024_02384_2 crossref_primary_10_1109_JMMCT_2021_3121300 crossref_primary_10_1109_LWC_2020_3040607 crossref_primary_10_1088_2515_7647_ad1a3b crossref_primary_10_1109_LWC_2020_3008910 crossref_primary_10_1109_JSTSP_2022_3177925 crossref_primary_10_1007_s11277_023_10467_4 crossref_primary_10_1109_LCOMM_2020_3036534 crossref_primary_10_1109_TCCN_2020_2992604 crossref_primary_10_1109_TWC_2021_3081419 crossref_primary_10_1109_ACCESS_2023_3261547 crossref_primary_10_3390_app14072866 crossref_primary_10_1109_LCOMM_2023_3265703 crossref_primary_10_1017_S1759078723000466 crossref_primary_10_1109_TCOMM_2024_3350970 crossref_primary_10_1016_j_sysarc_2021_102180 crossref_primary_10_1109_ACCESS_2024_3381967 crossref_primary_10_3390_urbansci9070249 crossref_primary_10_1109_LWC_2023_3289985 crossref_primary_10_1109_COMST_2020_3004197 crossref_primary_10_1109_TVT_2021_3095943 crossref_primary_10_1109_TVT_2024_3471869 crossref_primary_10_1109_LCOMM_2020_2993961 crossref_primary_10_1016_j_sigpro_2024_109710 crossref_primary_10_1109_TWC_2022_3212466 crossref_primary_10_1109_TVT_2022_3143841 crossref_primary_10_1109_LCOMM_2020_3023056 crossref_primary_10_1109_TWC_2021_3107520 crossref_primary_10_1109_LCOMM_2023_3278683 crossref_primary_10_1109_TGCN_2021_3058657 crossref_primary_10_1109_TWC_2021_3052053 crossref_primary_10_1007_s11227_024_06819_x crossref_primary_10_1109_ACCESS_2024_3480275 crossref_primary_10_1109_TIFS_2021_3138612 crossref_primary_10_1016_j_phycom_2023_102074 crossref_primary_10_1109_TCOMM_2022_3198117 crossref_primary_10_1016_j_jfranklin_2020_06_030 crossref_primary_10_1109_TVT_2021_3055237 crossref_primary_10_1016_j_dcan_2025_01_003 crossref_primary_10_1109_TAP_2022_3164169 crossref_primary_10_1109_TWC_2020_3042977 crossref_primary_10_1002_adom_202000783 crossref_primary_10_1109_LWC_2020_3016592 crossref_primary_10_3390_jsan9010015 crossref_primary_10_1109_LWC_2020_3010809 crossref_primary_10_1109_TMTT_2023_3311952 crossref_primary_10_1093_nsr_nwad140 crossref_primary_10_1109_MWC_001_2000162 crossref_primary_10_1007_s11235_023_01024_2 crossref_primary_10_1109_TMC_2021_3114167 crossref_primary_10_1109_TVT_2021_3090255 crossref_primary_10_1016_j_vehcom_2024_100859 crossref_primary_10_1109_JPROC_2022_3169917 crossref_primary_10_1109_JPROC_2022_3174030 crossref_primary_10_1109_LCOMM_2022_3173614 crossref_primary_10_1109_TCCN_2021_3064973 crossref_primary_10_1109_MCOM_001_2001117 crossref_primary_10_1109_TGCN_2024_3401192 crossref_primary_10_1109_ACCESS_2020_3019590 crossref_primary_10_1109_TCOMM_2022_3207804 crossref_primary_10_1155_2021_9614520 crossref_primary_10_1109_ACCESS_2020_2995435 crossref_primary_10_1109_JIOT_2023_3242864 crossref_primary_10_1109_TWC_2021_3059945 crossref_primary_10_1109_LCOMM_2020_2969870 crossref_primary_10_1109_ACCESS_2021_3115596 crossref_primary_10_1109_TVT_2022_3233066 crossref_primary_10_1016_j_phycom_2023_102056 crossref_primary_10_1109_JPROC_2022_3187339 crossref_primary_10_1038_s41467_023_39818_2 crossref_primary_10_1109_LWC_2019_2960779 crossref_primary_10_7717_peerj_cs_2852 crossref_primary_10_1109_TVT_2024_3438692 crossref_primary_10_1109_JSAC_2022_3145908 crossref_primary_10_1007_s11432_019_2789_y crossref_primary_10_1007_s12243_023_00955_w crossref_primary_10_1109_JPROC_2021_3120888 crossref_primary_10_1109_TAP_2024_3407964 crossref_primary_10_3390_drones9060437 crossref_primary_10_1109_TWC_2021_3087354 crossref_primary_10_1109_COMST_2021_3104581 crossref_primary_10_1109_TCOMM_2020_3032695 crossref_primary_10_1109_MNET_010_2100740 crossref_primary_10_1109_TCOMM_2024_3508257 crossref_primary_10_1109_TCOMM_2021_3139020 crossref_primary_10_1109_TCOMM_2022_3178762 crossref_primary_10_1109_MCOM_001_2001146 crossref_primary_10_1109_COMST_2022_3225859 crossref_primary_10_1109_TAP_2022_3164125 crossref_primary_10_1109_TITS_2024_3374872 crossref_primary_10_1109_MVT_2019_2921627 crossref_primary_10_1109_MWC_019_2200583 crossref_primary_10_1109_TAP_2021_3076194 crossref_primary_10_1109_JSAC_2020_3007056 crossref_primary_10_1109_JSAC_2020_3007055 crossref_primary_10_1109_TAP_2024_3476926 crossref_primary_10_1109_LCOMM_2020_2978394 crossref_primary_10_3390_mi14061259 crossref_primary_10_1364_AO_502663 crossref_primary_10_1109_JSAC_2020_3007048 crossref_primary_10_1109_LWC_2019_2961656 crossref_primary_10_1002_adfm_202101748 crossref_primary_10_1109_TCOMM_2019_2958916 crossref_primary_10_1109_TWC_2021_3064024 crossref_primary_10_1109_TCOMM_2023_3282592 crossref_primary_10_1109_JSAC_2020_3007060 crossref_primary_10_1109_TCOMM_2020_3033575 crossref_primary_10_1109_JSAC_2020_3007059 crossref_primary_10_1038_s41598_021_99722_x crossref_primary_10_1109_MSP_2023_3279986 crossref_primary_10_1109_JSAC_2021_3078492 crossref_primary_10_1109_TVT_2022_3182379 crossref_primary_10_1109_TWC_2022_3191046 crossref_primary_10_1109_TWC_2025_3562853 crossref_primary_10_1049_cmu2_12194 crossref_primary_10_1109_TWC_2020_3022297 crossref_primary_10_1109_TWC_2023_3321133 crossref_primary_10_1109_TWC_2021_3108458 crossref_primary_10_1109_TVT_2024_3442574 crossref_primary_10_1109_TWC_2023_3255406 crossref_primary_10_1109_JSAC_2020_3007044 crossref_primary_10_1109_JSAC_2020_3007043 crossref_primary_10_1109_JSAC_2020_3007041 crossref_primary_10_1109_MAP_2022_3149187 crossref_primary_10_1109_ACCESS_2020_3000424 crossref_primary_10_1109_TVT_2023_3243489 crossref_primary_10_1109_TWC_2024_3351755 crossref_primary_10_1049_sil2_12209 crossref_primary_10_1109_JSAC_2020_3007039 crossref_primary_10_1109_JSAC_2020_3007038 crossref_primary_10_1109_TWC_2021_3136925 crossref_primary_10_1109_JSAC_2020_3007036 crossref_primary_10_1109_JSAC_2020_3007035 crossref_primary_10_1002_dac_6024 crossref_primary_10_1109_TWC_2023_3296191 crossref_primary_10_1109_ACCESS_2022_3202300 crossref_primary_10_1109_TSP_2022_3158026 crossref_primary_10_1109_TSP_2022_3158024 crossref_primary_10_1109_TWC_2023_3253699 crossref_primary_10_1109_JSAC_2023_3322805 crossref_primary_10_1109_LWC_2023_3328456 crossref_primary_10_1109_TVT_2021_3121698 crossref_primary_10_1109_TAP_2022_3225593 crossref_primary_10_1109_TCOMM_2022_3161688 crossref_primary_10_1109_JSAC_2023_3322801 crossref_primary_10_1109_LWC_2020_2994930 crossref_primary_10_1109_TAP_2024_3418517 crossref_primary_10_1109_LWC_2021_3062992 crossref_primary_10_1002_dac_6058 crossref_primary_10_1109_MAP_2024_3389488 crossref_primary_10_1109_TWC_2020_2994455 crossref_primary_10_1186_s13638_023_02295_8 crossref_primary_10_1016_j_procs_2021_09_018 crossref_primary_10_1109_JPROC_2024_3397910 crossref_primary_10_1109_TCOMM_2022_3175833 crossref_primary_10_1109_TVT_2021_3050046 crossref_primary_10_3390_electronics11193076 crossref_primary_10_1109_LAWP_2023_3291868 crossref_primary_10_1109_LWC_2024_3400127 crossref_primary_10_1155_2021_9989098 crossref_primary_10_1109_TWC_2021_3095174 crossref_primary_10_1109_TAP_2023_3297193 crossref_primary_10_1109_MNET_011_1900579 crossref_primary_10_1109_OJCOMS_2025_3581735 crossref_primary_10_1109_TCOMM_2020_3028875 crossref_primary_10_1109_TWC_2021_3078853 crossref_primary_10_1109_TVT_2021_3073158 crossref_primary_10_1109_TVT_2020_3024005 crossref_primary_10_5515_KJKIEES_2025_36_8_737 crossref_primary_10_1109_JSTSP_2024_3417356 crossref_primary_10_1109_ACCESS_2023_3273297 crossref_primary_10_1109_JPROC_2022_3169771 crossref_primary_10_1109_TWC_2021_3104059 crossref_primary_10_1109_ACCESS_2023_3240775 crossref_primary_10_1109_JIOT_2023_3299210 crossref_primary_10_1038_s41467_020_17808_y crossref_primary_10_1109_TWC_2023_3265420 crossref_primary_10_1109_TCOMM_2022_3182369 crossref_primary_10_1109_TWC_2023_3310664 crossref_primary_10_1109_COMST_2022_3155305 crossref_primary_10_1109_ACCESS_2021_3120725 crossref_primary_10_1109_TCOMM_2022_3162580 crossref_primary_10_1109_TAP_2025_3570549 crossref_primary_10_1109_JSTSP_2022_3195671 crossref_primary_10_1109_TCCN_2024_3414395 crossref_primary_10_1109_TWC_2022_3203413 crossref_primary_10_1109_JSAC_2020_3000814 crossref_primary_10_1002_ett_70010 crossref_primary_10_1002_admt_202400006 crossref_primary_10_1109_JSAC_2022_3143230 crossref_primary_10_1109_LCOMM_2020_2974196 crossref_primary_10_1109_TWC_2020_3029743 crossref_primary_10_29026_oea_2022_210147 crossref_primary_10_1109_LWC_2020_2989134 crossref_primary_10_1109_TCOMM_2021_3124958 crossref_primary_10_1109_TCOMM_2023_3303957 crossref_primary_10_1109_JSAC_2020_3000811 crossref_primary_10_1002_lpor_202500057 crossref_primary_10_1109_JSAC_2020_3000813 crossref_primary_10_26636_jtit_2024_1_1326 crossref_primary_10_1109_TAP_2023_3301654 crossref_primary_10_1109_TCCN_2024_3384495 crossref_primary_10_1109_LWC_2021_3058637 crossref_primary_10_1109_JIOT_2021_3089500 crossref_primary_10_3390_s23020984 crossref_primary_10_1109_JSAC_2020_3000826 crossref_primary_10_1109_TMC_2024_3371534 crossref_primary_10_1109_JSAC_2020_3007211 crossref_primary_10_1109_TCOMM_2020_3026654 crossref_primary_10_1109_TCOMM_2024_3361554 crossref_primary_10_1109_TCOMM_2024_3383107 crossref_primary_10_1109_TCOMM_2023_3320700 crossref_primary_10_1007_s11432_022_3626_5 crossref_primary_10_1109_LWC_2020_3031084 crossref_primary_10_4218_etrij_2023_0418 crossref_primary_10_1007_s11235_022_00898_y crossref_primary_10_1109_TCCN_2021_3114184 crossref_primary_10_1109_TCOMM_2025_3541108 crossref_primary_10_1109_OJCOMS_2025_3567256 crossref_primary_10_1109_TVT_2021_3102315 crossref_primary_10_1109_TAP_2024_3491420 crossref_primary_10_1109_JSAC_2020_3000807 crossref_primary_10_1109_TVT_2021_3049257 crossref_primary_10_1109_ACCESS_2020_2992613 crossref_primary_10_1109_TWC_2020_3024887 crossref_primary_10_1186_s13638_021_02048_5 crossref_primary_10_1109_LWC_2020_3021058 crossref_primary_10_1109_JIOT_2023_3278384 crossref_primary_10_1109_TCCN_2024_3417625 crossref_primary_10_1109_LWC_2021_3139043 crossref_primary_10_1109_JSAC_2020_3000802 crossref_primary_10_1109_TCOMM_2021_3087794 crossref_primary_10_1109_TWC_2024_3439774 crossref_primary_10_3390_app15063252 crossref_primary_10_1109_ACCESS_2023_3236909 crossref_primary_10_1063_5_0076022 crossref_primary_10_1109_LWC_2020_2987798 crossref_primary_10_1109_TSP_2022_3229945 crossref_primary_10_1002_adom_202203114 crossref_primary_10_1109_TCCN_2021_3068414 crossref_primary_10_1109_JIOT_2024_3427425 crossref_primary_10_1109_TWC_2022_3154041 crossref_primary_10_1109_COMST_2021_3077737 crossref_primary_10_1109_TWC_2021_3070064 crossref_primary_10_1109_JIOT_2022_3222039 crossref_primary_10_1109_TVT_2022_3229494 crossref_primary_10_3390_app132111750 crossref_primary_10_1109_TAP_2022_3177284 crossref_primary_10_1109_TAP_2024_3375659 crossref_primary_10_1109_TCOMM_2020_3035391 crossref_primary_10_1109_TCOMM_2024_3361549 crossref_primary_10_1109_TWC_2021_3122959 crossref_primary_10_1109_JSTSP_2023_3304846 crossref_primary_10_1109_TWC_2020_3023578 crossref_primary_10_1109_TCOMM_2022_3220692 crossref_primary_10_1109_ACCESS_2022_3217204 crossref_primary_10_1109_LWC_2020_3044178 crossref_primary_10_1109_TVT_2024_3414933 crossref_primary_10_1109_TCOMM_2020_3008402 crossref_primary_10_1109_TVT_2023_3287250 crossref_primary_10_1155_2023_9970205 crossref_primary_10_1109_LWC_2022_3165427 crossref_primary_10_1109_LCOMM_2020_3035751 crossref_primary_10_1109_TWC_2023_3239371 crossref_primary_10_1109_LSP_2021_3071981 crossref_primary_10_1109_JPROC_2020_3040589 crossref_primary_10_1109_TCCN_2022_3212427 crossref_primary_10_1109_TAP_2025_3562760 crossref_primary_10_1109_JSTSP_2022_3172788 crossref_primary_10_1109_ACCESS_2022_3174082 crossref_primary_10_1109_MAP_2022_3169396 crossref_primary_10_1109_TWC_2021_3087912 crossref_primary_10_1109_MAP_2022_3169395 crossref_primary_10_1103_PhysRevApplied_17_024027 crossref_primary_10_1109_TWC_2021_3071332 crossref_primary_10_1109_ACCESS_2022_3209823 crossref_primary_10_1109_TVT_2022_3172763 crossref_primary_10_1109_TAP_2024_3451162 crossref_primary_10_1109_MVT_2021_3136832 crossref_primary_10_1109_JIOT_2023_3245288 crossref_primary_10_1109_TGCN_2021_3100009 crossref_primary_10_1109_ACCESS_2022_3192971 crossref_primary_10_1109_TCOMM_2021_3111022 crossref_primary_10_1109_MCOM_001_201097 crossref_primary_10_1109_MWC_005_2100401 crossref_primary_10_1109_LWC_2020_3003400 crossref_primary_10_1109_TAP_2022_3149660 crossref_primary_10_1109_TWC_2021_3073746 crossref_primary_10_1109_TCOMM_2020_3040761 crossref_primary_10_1109_LWC_2019_2943559 crossref_primary_10_1109_JPROC_2023_3286172 crossref_primary_10_1016_j_aeue_2025_155849 crossref_primary_10_1109_LWC_2024_3378455 crossref_primary_10_1109_TCOMM_2022_3223706 crossref_primary_10_1109_TSP_2024_3413017 crossref_primary_10_1109_TVT_2022_3221720 crossref_primary_10_1109_TAP_2019_2935131 crossref_primary_10_1109_LWC_2020_3035661 crossref_primary_10_3390_e24010099 crossref_primary_10_1109_TWC_2022_3188240 crossref_primary_10_1007_s11276_023_03326_4 crossref_primary_10_1109_MSP_2021_3130549 crossref_primary_10_1109_ACCESS_2021_3058151 crossref_primary_10_3390_e25050728 crossref_primary_10_1109_TWC_2022_3178445 crossref_primary_10_1002_advs_202309826 crossref_primary_10_1109_TCOMM_2023_3242365 crossref_primary_10_1109_ACCESS_2020_2981745 crossref_primary_10_1109_LWC_2020_3024781 crossref_primary_10_1109_TSIPN_2023_3239652 crossref_primary_10_1109_TWC_2022_3187156 crossref_primary_10_1109_TWC_2021_3070014 crossref_primary_10_1109_JPROC_2024_3449807 |
| Cites_doi | 10.1109/WCNC.2013.6555350 10.1109/TAP.2017.2772022 10.1145/3152434.3152456 10.1109/ACCESS.2017.2737528 10.1109/TWC.2017.2773058 10.1109/EuCAP.2012.6206517 10.1103/PhysRevLett.90.014301 10.1109/ISWCS.2015.7454307 10.1109/MSP.2018.2848361 10.1364/OE.26.033732 10.1109/MAP.2012.6230714 10.1109/MCOM.2018.1601068 10.1109/MNET.2018.1700096 10.1038/nmat4338 10.1109/TWC.2016.2574852 10.1109/ACCESS.2017.2693267 10.1109/JSAC.2008.080813 10.1103/PhysRevB.87.161110 10.1049/iet-com.2010.0544 10.1109/TWC.2013.100113.130220 10.1109/ISCAS.2018.8351874 10.1109/TWC.2018.2838597 10.1109/INFOCOM.2018.8485965 10.1109/TCOMM.2017.2731768 10.1002/adom.201500156 10.1109/MCOM.2011.6094024 10.1109/SURV.2013.052213.00000 10.1126/science.1210713 10.1109/WCL.2013.112313.130696 10.1109/TWC.2018.2825351 10.1109/JSAC.2009.090902 10.1109/TWC.2014.2331971 10.2528/PIER15032005 10.1109/GLOCOM.2015.7417557 10.1109/TWC.2014.2332335 10.1109/TCOMM.2017.2767605 10.1561/1300000032 10.1109/TIT.2005.858939 10.1145/3130242.3131494 10.1109/JMMCT.2018.2829871 10.1109/TSP.2018.2795547 10.1109/TWC.2014.2364267 10.1103/PhysRevB.97.035439 10.1109/GLOCOM.2017.8254903 10.1109/TWC.2018.2846734 10.1109/TCOM.1978.1093993 10.1109/INFOCOM.2015.7218450 10.1109/TKDE.2009.191 10.1109/NOCARC.2018.8541148 10.1109/TVT.2015.2442754 10.1364/OE.21.027438 10.1109/MILCOM.2017.8170856 10.1109/TIT.2005.862098 10.1364/OE.22.018881 10.1109/TIT.2009.2025543 10.1002/bltj.20354 10.1109/LWC.2014.2357444 10.1063/1.5035442 10.1109/MCOM.2010.5621983 10.1109/TAP.2018.2793958 10.1109/TCOMM.2015.2456016 10.1109/JSAC.2009.090908 10.1109/ISCAS.2018.8351672 10.1109/MCOM.2016.7432147 10.1109/TWC.2015.2431689 10.1109/18.165447 10.1109/TWC.2015.2498926 10.1088/1367-2630/aacba1 10.1109/ISCAS.2018.8351865 10.1109/TMC.2015.2506583 10.1109/49.895048 10.1002/2015RS005659 10.1109/MCOM.2018.1700659 10.1023/A:1019172312328 10.1109/TWC.2016.2607206 10.1109/LWC.2018.2836438 10.1109/TCOMM.2011.100411.100541 10.1126/science.1242818 10.1109/ICC.2016.7510962 10.1109/INFOCOM.2018.8485924 10.1109/TWC.2018.2850310 10.1021/acs.nanolett.6b00732 10.1126/science.aac9411 10.1109/TCOMM.2015.2477498 10.1109/49.56383 10.1109/TWC.2013.040413.121174 10.1002/j.1538-7305.1948.tb01338.x 10.1109/JSAC.2012.120405 10.1109/TSP.2018.2816577 10.1109/MCOM.2016.7588290 10.1109/ACCESS.2018.2872781 10.1109/TCOMM.2014.2387170 10.1088/1361-6633/aa8732 10.1145/3192336 10.1109/JPROC.2013.2287851 10.1109/26.61388 10.1109/IWAT.2017.7915281 10.1109/TWC.2015.2496273 10.1007/978-3-030-00244-2_6 10.1109/TCOMM.2010.093010.090478 10.1145/3109453.3109469 10.1109/TWC.2018.2797264 10.1016/j.adhoc.2018.11.001 10.1109/TWC.2015.2503391 10.1109/TAP.2015.2423700 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2019 EURASIP Journal on Wireless Communications and Networking is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. licence_http://creativecommons.org/publicdomain/zero |
| Copyright_xml | – notice: The Author(s) 2019 – notice: EURASIP Journal on Wireless Communications and Networking is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: licence_http://creativecommons.org/publicdomain/zero |
| DBID | C6C AAYXX CITATION 3V. 7SC 7SP 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 1XC VOOES DOA |
| DOI | 10.1186/s13638-019-1438-9 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Electronics & Communications Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1687-1499 |
| EndPage | 20 |
| ExternalDocumentID | oai_doaj_org_article_dbc95917d2ad4c38a660d3c2c57418ef oai:HAL:hal-02395877v1 10_1186_s13638_019_1438_9 |
| GroupedDBID | -A0 .4S .DC 0R~ 29G 2WC 3V. 4.4 40G 5GY 5VS 6OB 8FE 8FG 8R4 8R5 AAFWJ AAJSJ AAKKN AAKPC ABDBF ABEEZ ABFTD ABUWG ACACY ACGFS ACUHS ACULB ADBBV ADDVE ADINQ ADMLS AENEX AFGXO AFKRA AFPKN AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS ARCSS AZQEC BCNDV BENPR BGLVJ BPHCQ C24 C6C CCPQU CS3 DU5 DWQXO E3Z EAD EAP EAS EBLON EBS EDO EJD EMK ESX GNUQQ GROUPED_DOAJ HCIFZ HZ~ I-F K6V K7- KQ8 M0N M~E OK1 P2P P62 PIMPY PQQKQ PROAC Q2X RHU RNS RSV SEG SOJ TUS U2A XSB AASML AAYXX CITATION OVT 7SC 7SP 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PHGZM PHGZT PKEHL PQEST PQGLB PQUKI PRINS Q9U 1XC VOOES |
| ID | FETCH-LOGICAL-c459t-3d89ebd37aa1aab6b998e05fadb3ba80c853bd3e3372dc8658c95af2d3fe05503 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 913 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000468981000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1687-1499 1687-1472 |
| IngestDate | Tue Oct 14 18:54:31 EDT 2025 Sat Nov 15 06:26:27 EST 2025 Sat Oct 11 05:43:55 EDT 2025 Sat Nov 29 01:43:52 EST 2025 Tue Nov 18 22:18:40 EST 2025 Fri Feb 21 02:35:32 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Reconfigurable intelligent meta-surfaces 6G wireless Smart radio environments Environmental AI |
| Language | English |
| License | licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c459t-3d89ebd37aa1aab6b998e05fadb3ba80c853bd3e3372dc8658c95af2d3fe05503 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Literature Review-2 |
| ORCID | 0000-0003-0772-8793 0000-0002-8494-7562 0000-0002-0043-7742 0000-0002-7087-5377 |
| OpenAccessLink | https://www.proquest.com/docview/2229558386?pq-origsite=%requestingapplication% |
| PQID | 2229558386 |
| PQPubID | 237293 |
| PageCount | 20 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_dbc95917d2ad4c38a660d3c2c57418ef hal_primary_oai_HAL_hal_02395877v1 proquest_journals_2229558386 crossref_primary_10_1186_s13638_019_1438_9 crossref_citationtrail_10_1186_s13638_019_1438_9 springer_journals_10_1186_s13638_019_1438_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-05-23 |
| PublicationDateYYYYMMDD | 2019-05-23 |
| PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-23 day: 23 |
| PublicationDecade | 2010 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: New York |
| PublicationTitle | EURASIP journal on wireless communications and networking |
| PublicationTitleAbbrev | J Wireless Com Network |
| PublicationYear | 2019 |
| Publisher | Springer International Publishing Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: SpringerOpen |
| References | BaccelliF.BlaszczyszynB.MuhlethalerP.An aloha protocol for multihop mobile wireless networksIEEE Trans. Inf. Theory200652242143622361661282.9400410.1109/TIT.2005.862098 TanX.SunZ.KoutsonikolasD.JornetK. M.Enabling indoor mobile millimeter-Wave Networks Based on Smart Reflect-Arrays2018HonoluluIEEE Conference on Computer Communications10.1109/INFOCOM.2018.8485924 BaccelliF.KleinM.LebourgesM.ZuyevS. A.Stochastic geometry and architecture of communication networksTelecommun. Syst.199771-320922710.1023/A:1019172312328 K. Wu, P. Coquet, Q. J. Wang, P. Genevet, Modelling of free-form conformal metasurfaces. Nat. Commun.9: (2018). Article No. 3494. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6113266/. AndrewsJ. G.BaccelliF.GantiR. K.A tractable approach to coverage and rate in cellular networksIEEE Trans. Commun.201159113122313410.1109/TCOMM.2011.100411.100541 L. Spada, Metamaterials for Advanced Sensing Platforms. Res. J. Opt. Photon.1(1) (2017). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359273/. WeberS.AndrewsJ. G.Transmission capacity of wireless networksFound. Trends. Netw.201152-31092811243.6813110.1561/1300000032 E. Bastug, M. Bennis, M. Kountouris, M. Debbah, Cache-enabled small cell networks: modeling and tradeoffs. EURASIP J. Wirel. Commun. Netw.41: (2015). https://jwcn-eurasipjournals.springeropen.com/articles/10.1186/s13638-015-0250-4. C. Huang, G. C. Alexandropoulos, A. Zappone, M. Debbah, C. Yuen, Energy efficient multi-user MISO communication using low resolution large intelligent surfaces submitted (2018). https://arxiv.org/abs/1809.05397. O’LoneC. E.DhillonH. S.BuehrerR. M.A statistical characterization of localization performance in wireless networksIEEE Trans. Wirel. Commun.20181795841585610.1109/TWC.2018.2850310 J. Zhao, W. Gong, J. Liu, Spatial stream backscatter using commodity WiFi. ACM MobiSys (2018). https://dl.acm.org/citation.cfm?id=3210240.3210329. M. Jung, W. Saad, Y. Jang, G. Kong, S. Choi, Performance analysis of large intelligence surfaces (LISs): Asymptotic Data Rate and Channel Hardening Effects submitted (2018). https://arxiv.org/abs/1810.05667v1. DerodeA.TourinA.de RosnyJ.TanterM.YonS.FinkM.Taking advantage of multiple scattering to communicate with time reversal antennasPhys. Rev. Lett.20039001430110.1103/PhysRevLett.90.014301 AgarwalA.JagannathamA. K.Distributed estimation in homogenous Poisson wireless sensor networksIEEE Wirel. Commun. Lett.201431909310.1109/WCL.2013.112313.130696 AbariO.BharadiaD.DuffieldA.KatabiD.Enabling high-quality untethered virtual reality2017BostonUSENIX Symposium on Networked Systems Design and Implementation10.1145/3130242.3131494 P. Hu, P. Zhang, M. Rostami, D. Ganesan, Braidio: an integrated active-passive radio for mobile devices with asymmetric energy budgets (ACM SIGCOMM, Florianopolis, 2016). https://dl.acm.org/citation.cfm?id=2934902. BonodN.Large-Scale Dielectric MetasurfacesNat. Mater.20151466466510.1038/nmat4338 DhillonH. S.GantiR. K.BaccelliF.AndrewsJ. G.Modeling and analysis of K-tier downlink heterogeneous cellular networksIEEE J. Sel. Areas Commun.201230355056010.1109/JSAC.2012.120405 N. Kaina, M. Dupre’, G. Lerosey, M. Fink, Shaping complex microwave fields in reverberating media with binary tunable metasurfaces. Sci. Rep.4(Article ID 6693) (2014). https://www.nature.com/articles/srep06693. TsioliaridouA.LiaskosC.IoannidisS.Towards a Circular Economy via Intelligent Metamaterials2018BarcelonaIEEE International Conference on Computer-Aided Modeling Analysis and Design of Communication Links and Networks P. del Hougne, M. Fink, G. Lerosey, Optimally diverse communication channels in disordered environments with tuned randomness. Nat. Electron.2(1) (2019). Article ID 36. https://www.nature.com/articles/s41928-018-0190-1. SaeedT.SkitsasC.KouzapasD.LestasM.SoteriouV.PhilippouA.AbadalS.LiaskosC.PetrouL.GeorgiouJ.PitsillidesA.Fault Adaptive Routing in Metasurface Controller Networks2018FukuokaInternational Workshop on Network on Chip Architectures10.1109/NOCARC.2018.8541148 El-SawyH.HossainE.HaenggiM.Stochastic geometry for modeling, analysis, and design of multi-tier and cognitive cellular wireless networks: a surveyIEEE Commun. Surv. Tutor.2013153996101910.1109/SURV.2013.052213.00000 ClaussenH.Autonomous self-deployment of wireless access networksBell Labs Tech. J.2009141557110.1002/bltj.20354 Zangeneh-NejadFarzadFleuryRomainPerforming mathematical operations using high-index acoustic metamaterialsNew Journal of Physics201820707300110.1088/1367-2630/aacba1 GuptaAbhishek K.AndrewsJeffrey G.HeathRobert W.Macrodiversity in Cellular Networks With Random BlockagesIEEE Transactions on Wireless Communications2018172996101010.1109/TWC.2017.2773058 F. Liu, A. Pitilakis, M. S. Mirmoosa, O. Tsilipakos, X. Wang, A. C. Tasolamprou, S. Abadal, A. Cabellos-Aparicio, E. Alarcon, C. Liaskos, N. V. Kantartzis, M. Kafesaki, E. N. Economou, C. M. Soukoulis, S. Tretyakov, Programmable Metasurfaces: State of the art and Prospects (IEEE International Symposium on Circuits and Systems, Florence, 2018). https://ieeexplore.ieee.org/document/8351817. SedaghatM. A.BarousisV.MullerR. R.PapadiasC. B.Load modulated arrays: a low-complexity antennaIEEE Commun. Mag.2016543465210.1109/MCOM.2016.7432147 PorsAndersBozhevolnyiSergey I.Plasmonic metasurfaces for efficient phase control in reflectionOptics Express201321222743810.1364/OE.21.027438 N. Wiener, Cybernetics, or Control and Communication in the Animal and the Machine (Hermann & Cie and Cambridge Massachusetts (MIT Press), 1948). ISBN 978-0-262-73009-9. https://ieeexplore.ieee.org/document/1593093. Di RenzoM.HaasH.GrantP.Spatial modulation for multiple-antenna wireless systems - A SurveyIEEE Commun. Mag.2011491218219110.1109/MCOM.2011.6094024 A. Welkie, L. Shangguan, J. Gummeson, W. Hu, K. Jamieson, Programmable radio environments for smart spaces (ACM Workshop on Hot Topics in Networks, Palo Alto, 2017). https://dl.acm.org/citation.cfm?id=3152456. HaenggiM.AndrewsJ. G.BaccelliF.DousseO.FranceschettiM.Stochastic geometry and random graphs for the analysis and design of wireless NetworksIEEE J. Sel. Areas Commun.20092771029104610.1109/JSAC.2009.090902 YuN.GenevetP.KatsM. A.AietaF.TetienneJ. -P.CapassoF.GaburroZ.Light propagation with phase discontinuities: generalized laws of reflection and refractionScience2011334605433333710.1126/science.1210713 PopovskiP.TrillingsgaardK. F.SimeoneO.DurisiG.5G wireless network slicing for eMBB, URLLC, and mMTC: A Communication-Theoretic ViewIEEE Access20186557655577910.1109/ACCESS.2018.2872781 AbadalS.LiaskosC.TsioliaridouA.IoannidisS.PitsillidesA.Sole-ParetaJ.AlarconE.Cabellos-AparicioA.Computing and communications for the software-defined metamaterial paradigm: a context analysisIEEE Access201756225623510.1109/ACCESS.2017.2693267 GantiR. K.HaenggiM.Interference and outage in clustered wireless ad hoc networksIEEE Trans. Inf. Theory2009559406740861367.9402610.1109/TIT.2009.2025543 DengN.ZhouW.HaenggiM.The Ginibre point process as a model for wireless networks with repulsionIEEE Trans. Wirel. Commun.201514110712110.1109/TWC.2014.2332335 Y. Li, B. Liang, Z. -M. Gu, X. -Y. Zou, J. -C. Cheng, Reflected wavefront manipulation based on ultrathin planar acoustic Metasurfaces. Nat. Sci. Rep.3: (2013). Article No. 2546. H. Claussen, Autonomous self-deployment of wireless access networks in an airport environment, autonomic communication, lecture notes in computer science (LNCS). Springer. 3854:, 86–98 (2006). https://pdfs.semanticscholar.org/dad9/8df1687144a6f5666b9091493fb080117707.pdf. GantiR. K.HaenggiM.Asymptotics and approximation of the SIR distribution in general cellular networksIEEE Trans. Wirel. Commun.20161532130214310.1109/TWC.2015.2498926 BaccelliF.MuhlethalerP.BlaszczyszynB.Stochastic analysis of spatial and opportunistic alohaIEEE J. Sel. Areas Commun.20092771105111910.1109/JSAC.2009.090908 SousaE. S.Interference modeling in a direct-sequence spread spectrum packet radio networkIEEE Trans. Commun.19903891475148210.1109/26.61388 A. Gati, et al., in IEEE Communications Surveys & Tutorials, submitted for journal publication. Key Technologies to Accelerate the ICT Green Evolution: An Operator’s Point of View, (2018). https://arxiv.org/abs/1903.09627. Q. Wu, R. Zhang, Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming submitted (2018). https://arxiv.org/abs/1810.03961. V. S. Asadchy, M. Albooyeh, S. N. Tcvetkova, A. Diaz-Rubio, Y. Radi, S. A. Tretyakov, Perfect control of reflection and refraction using spatially dispersive metasurfaces. Phys. Rev. B. 94(7) (2016). https://journals.aps.org/prb/abstract/10.1103/PhysRevB.94.075142. TasolamprouA. C.MirmoosaM. S.TsilipakosO.PitilakisA.LiuF.AbadalS.Cabellos-AparicioA.AlarconE.LiaskosC.KantartzisN. V.TretyakovS.KafesakiM.EconomouE. N.SoukoulisC. M.Intercell Wireless Communication in Software-Defined Metasurfaces2018FlorenceIEEE International Symposium on Circuits and Systems10.1109/ISCAS.2018.8351865 TsioliaridouN. A.LiaskosC. K.PitsillidesA.IoannidisS. A.A Novel Protocol for Network-Controlled Metasurfaces2017Washington DCACM International Conference on Nanoscale Computing and Communication10.1145/3109453.3109469 BrownT. X.Cellular performance bounds via shotgun cellular systemsIEEE J. Sel. Areas Commun.200018112443245510.1109/49.895048 KongH. -B.FlintI.WangP.NiyatoD.PrivaultN.Fog radio access networks: Ginibre point process modeling and analysisIEEE Trans. Wirel. Commun.20181775564558010.1109/TWC.2018.2846734 A. K. Khandani, Media-based modulation: improving spectral efficiency beyond conventional MIMO (IEEE Communications Theory Workshop, Nafplio, 2016). Available: http://ctw2016.ieee-ctw.org/slides/ctw16_Khandani.pdf. H. Chu, Q. Li, B. Liu, J. Luo, S. Sun, Z. H. Hang, L. Zhou, Y. Lai, A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials. Nat. Light: Sci. Appl.7: (2018). Article No. 50. KouvarosP.KouzapasD.PhilippouA.GeorgiouJ.PetrouL.PitsillidesA.Formal verification of a programmable hyp A. Kalis (1438_CR63) 2008; 26 S. Singh (1438_CR42) 2013; 12 C. E. O’Lone (1438_CR114) 2018; 17 K. Achouri (1438_CR29) 2015; 63 A. K. Khandani (1438_CR61) 2014 Y. Li (1438_CR138) 2015; 63 A. Derode (1438_CR35) 2003; 90 1438_CR121 J. Schloemann (1438_CR113) 2016; 15 1438_CR122 C. Xu (1438_CR149) 2018; 35 N. Dabidian (1438_CR71) 2016; 16 X. Tan (1438_CR11) 2018 P. Popovski (1438_CR86) 2018; 6 A. C. Tasolamprou (1438_CR88) 2018 L. Petrou (1438_CR89) 2018 1438_CR68 X. Tan (1438_CR9) 2016 F. Baccelli (1438_CR108) 2009; 27 A. Narayanan (1438_CR129) 2017 1438_CR62 J. Lee (1438_CR134) 2016; 15 R. K. Ganti (1438_CR103) 2009; 55 1438_CR80 A. Guo (1438_CR136) 2013; 12 H. -B. Kong (1438_CR118) 2018; 17 S. Narayanan (1438_CR37) 2016; 65 E. S. Sousa (1438_CR98) 1992; 38 F. Baccelli (1438_CR99) 1997; 7 M. Di Renzo (1438_CR125) 2015; 14 J. G. Andrews (1438_CR43) 2016; 54 C. Liaskos (1438_CR2) 2018 E. S. Sousa (1438_CR96) 1990; 8 1438_CR115 1438_CR116 M. A. Sedaghat (1438_CR66) 2016; 54 T. Nakanishi (1438_CR22) 2013; 87 T. Bai (1438_CR124) 2015; 14 1438_CR79 1438_CR76 N. Bonod (1438_CR28) 2015; 14 1438_CR75 J. G. Andrews (1438_CR102) 2010; 48 Y. Vahabzadeh (1438_CR155) 2018; 66 C. -S. Choi (1438_CR140) 2018; 66 1438_CR72 S. Hu (1438_CR13) 2018; 66 1438_CR73 J. Kibilda (1438_CR139) 2016; 15 1438_CR92 Abhishek K. Gupta (1438_CR131) 2018; 17 1438_CR146 1438_CR147 1438_CR148 X. Ni (1438_CR77) 2015; 349 M. Haenggi (1438_CR93) 2009; 27 F. Fuschini (1438_CR157) 2015; 50 Christos Liaskos (1438_CR25) 2019; 87 J. G. Andrews (1438_CR47) 2017; 65 S. Weber (1438_CR105) 2010; 58 R. W. Heath Jr. (1438_CR46) 2016; 10 Anders Pors (1438_CR69) 2013; 21 R. K. Ganti (1438_CR143) 2016; 15 1438_CR82 1438_CR85 S. Musa (1438_CR95) 1978; 26 T. Saeed (1438_CR87) 2018 M. Di Renzo (1438_CR145) 2018; 17 P. Kouvaros (1438_CR91) 2018 1438_CR130 J. Lee (1438_CR135) 2018 H. S. Dhillon (1438_CR110) 2012; 30 A. Tsioliaridou (1438_CR26) 2018 Y. Vahabzadeh (1438_CR30) 2018; 3 1438_CR17 P. del Hougne (1438_CR23) 2018; 8 S. Hu (1438_CR53) 2018; 66 1438_CR19 S. P. Weber (1438_CR104) 2005; 51 J. G. Andrews (1438_CR109) 2011; 59 N. Kaina (1438_CR18) 2014; 22 M. Di Renzo (1438_CR127) 2016; 15 1438_CR12 X. Zhang (1438_CR133) 2015 N. A. Tsioliaridou (1438_CR34) 2017 C. Liaskos (1438_CR6) 2018; 56 1438_CR160 1438_CR161 1438_CR4 1438_CR163 1438_CR5 1438_CR3 S. Abadal (1438_CR90) 2018; 56 M. Ding (1438_CR128) 2018; 32 1438_CR1 O. Abari (1438_CR10) 2017 Raphaël Pestourie (1438_CR81) 2018; 26 N. Campbell (1438_CR94) 1909; 15 1438_CR24 1438_CR27 Toshihiro Nakanishi (1438_CR83) 2018; 112 1438_CR21 M. Di Renzo (1438_CR64) 2011; 49 1438_CR20 S. Abadal (1438_CR51) 2017; 5 T. X. Brown (1438_CR101) 2000; 18 S. J. Pan (1438_CR162) 2010; 22 L. Subrt (1438_CR8) 2012; 6 M. Ding (1438_CR126) 2016; 15 A. Guo (1438_CR142) 2015; 63 A. K. Khandani (1438_CR60) 2013 1438_CR150 F. Baccelli (1438_CR132) 2015 Y. Takahashi (1438_CR144) 2018; 7 1438_CR152 1438_CR153 1438_CR154 W. Lu (1438_CR48) 2015; 63 1438_CR156 C. E. Shannon (1438_CR38) 1948; 27 1438_CR158 1438_CR159 1438_CR39 1438_CR36 E. Basar (1438_CR67) 2017; 5 A. Agarwal (1438_CR119) 2014; 3 1438_CR32 L. Y. Hsu (1438_CR78) 2015; 152 G. Pastor (1438_CR120) 2015 1438_CR33 C. Mollen (1438_CR45) 2017 A. Shojaeifard (1438_CR49) 2017; 65 Fei Ding (1438_CR74) 2017; 81 H. Claussen (1438_CR40) 2006 F. Baccelli (1438_CR107) 2006; 52 1438_CR100 G. Lavigne (1438_CR31) 2018; 66 S. Weber (1438_CR106) 2011; 5 D. S. Dong (1438_CR70) 2015; 3 H. Claussen (1438_CR41) 2009; 14 C. L. Holloway (1438_CR16) 2012; 54 H. ElSawy (1438_CR112) 2017; 19 C. Liaskos (1438_CR14) 2018; 61 M. Di Renzo (1438_CR151) 2017 M. Haenggi (1438_CR141) 2014; 3 T. Bai (1438_CR123) 2014; 13 E. S. Sousa (1438_CR97) 1990; 38 M. Di Renzo (1438_CR44) 2018; 17 H. El-Sawy (1438_CR111) 2013; 15 Farzad Zangeneh-Nejad (1438_CR84) 2018; 20 M. Emara (1438_CR117) 2018; 17 L. Subrt (1438_CR7) 2012 1438_CR58 1438_CR57 N. Yu (1438_CR15) 2011; 334 1438_CR59 1438_CR54 N. Deng (1438_CR137) 2015; 14 1438_CR56 1438_CR55 1438_CR50 M. Di Renzo (1438_CR65) 2014; 102 1438_CR52 |
| References_xml | – reference: N. Kaina, M. Dupre’, G. Lerosey, M. Fink, Shaping complex microwave fields in reverberating media with binary tunable metasurfaces. Sci. Rep.4(Article ID 6693) (2014). https://www.nature.com/articles/srep06693. – reference: Di RenzoM.Spatial Modulation Based on Reconfigurable Antennas - A New Air Interface for the IoT2017BaltimoreIEEE Military Communications Conference10.1109/MILCOM.2017.8170856 – reference: SedaghatM. A.BarousisV.MullerR. R.PapadiasC. B.Load modulated arrays: a low-complexity antennaIEEE Commun. Mag.2016543465210.1109/MCOM.2016.7432147 – reference: MusaS.WasylkiwskyjW.Co-channel interference of spread spectrum systems in a multiple user environmentIEEE Trans. Commun.19782610140514130384.9400210.1109/TCOM.1978.1093993 – reference: HollowayC. L.KuesterE. F.GordonJ. A.O’HarJ.BoothJ.SmithD. R.An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterialsIEEE Antennas Propag. Mag.2012542103510.1109/MAP.2012.6230714 – reference: E. Bastug, M. Bennis, M. Kountouris, M. Debbah, Cache-enabled small cell networks: modeling and tradeoffs. EURASIP J. Wirel. Commun. Netw.41: (2015). https://jwcn-eurasipjournals.springeropen.com/articles/10.1186/s13638-015-0250-4. – reference: M. Dupre’, P. del Hougne, M. Fink, F. Lemoult, G. Lerosey, Wave-field shaping in cavities: waves trapped in a box with controllable boundaries. Phys. Rev. Lett.115(1) (2015). Article ID 017701. https://www.ncbi.nlm.nih.gov/pubmed/26182120. – reference: LiaskosC.TsioliaridouA.PitsillidesA.IoannidisS.AkyildizI. F.Using any surface to realize a new paradigm for wireless communicationsCommun. ACM20186111303310.1145/3192336 – reference: BrownT. X.Cellular performance bounds via shotgun cellular systemsIEEE J. Sel. Areas Commun.200018112443245510.1109/49.895048 – reference: D. -H. Phan-Huy, T. Sarrebourse, A. Gati, J. Wiart, M. Helard, Characterization of the confidentiality of a green time reversal communication system: experimental measurement of the spy BER Sink. IEEE Wirel. Commun. Netw. Conf., 4783–4788 (2013). – reference: AbariO.BharadiaD.DuffieldA.KatabiD.Enabling high-quality untethered virtual reality2017BostonUSENIX Symposium on Networked Systems Design and Implementation10.1145/3130242.3131494 – reference: J. Zhao, W. Gong, J. Liu, Spatial stream backscatter using commodity WiFi. ACM MobiSys (2018). https://dl.acm.org/citation.cfm?id=3210240.3210329. – reference: N. Wiener, Cybernetics, or Control and Communication in the Animal and the Machine (Hermann & Cie and Cambridge Massachusetts (MIT Press), 1948). ISBN 978-0-262-73009-9. https://ieeexplore.ieee.org/document/1593093. – reference: PopovskiP.TrillingsgaardK. F.SimeoneO.DurisiG.5G wireless network slicing for eMBB, URLLC, and mMTC: A Communication-Theoretic ViewIEEE Access20186557655577910.1109/ACCESS.2018.2872781 – reference: D. -T. Phan-Huy, Y. Kokar, K. Rachedi, P. Pajusco, A. Mokh, T. Magounaki, R. Masood, C. Buey, P. Ratajczak, N. Malhouroux-Gaffet, J. -M. Conrat, J. C. Prevotet, A. Ourir, J. de Rosny, M. Crussiere, M. Helard, A. Gati, T. Sarrebourse, M. Di Renzo, Single-carrier spatial modulation for the Internet of Things: design and performance evaluation by using real compact and reconfigurable antenna. IEEE Access (2019). accepted, to appear, https://arxiv.org/abs/1812.07514. – reference: EmaraM.ElsawyH.SorourS.Al-GhadhbanS.AlouiniM. -S.Al-NaffouriT. Y.Optimal caching in 5G networks with opportunistic spectrum accessIEEE Trans. Wirel. Commun.20181784447446110.1109/TWC.2018.2825351 – reference: DingFeiPorsAndersBozhevolnyiSergey IGradient metasurfaces: a review of fundamentals and applicationsReports on Progress in Physics201781202640110.1088/1361-6633/aa8732 – reference: TanX.SunZ.JornetJ. M.PadosD.Increasing Indoor Spectrum Sharing Capacity using Smart Reflect-Array2016Kuala LumpurIEEE International Conference on Communications10.1109/ICC.2016.7510962 – reference: M. Di Renzo, T. T. Lam, A. Zappone, M. Debbah, A tractable closed-form expression of the coverage probability in Poisson cellular networks. IEEE Wirel. Commun. Lett. (2018). to appear, https://10.1109/LWC.2018.2868753 (https://ieeexplore.ieee.org/document/8454463). – reference: F. Liu, A. Pitilakis, M. S. Mirmoosa, O. Tsilipakos, X. Wang, A. C. Tasolamprou, S. Abadal, A. Cabellos-Aparicio, E. Alarcon, C. Liaskos, N. V. Kantartzis, M. Kafesaki, E. N. Economou, C. M. Soukoulis, S. Tretyakov, Programmable Metasurfaces: State of the art and Prospects (IEEE International Symposium on Circuits and Systems, Florence, 2018). https://ieeexplore.ieee.org/document/8351817. – reference: VahabzadehY.ChamanaraN.CalozC.Generalized sheet transition condition FDTD simulation of metasurfaceIEEE Trans. Antennas Propag.201866127128010.1109/TAP.2017.2772022 – reference: P. Hu, P. Zhang, M. Rostami, D. Ganesan, Braidio: an integrated active-passive radio for mobile devices with asymmetric energy budgets (ACM SIGCOMM, Florianopolis, 2016). https://dl.acm.org/citation.cfm?id=2934902. – reference: HaenggiM.AndrewsJ. G.BaccelliF.DousseO.FranceschettiM.Stochastic geometry and random graphs for the analysis and design of wireless NetworksIEEE J. Sel. Areas Commun.20092771029104610.1109/JSAC.2009.090902 – reference: SousaE. S.Performance of a spread spectrum packet radio network link on a Poisson field of interferersIEEE Trans. Inf. Theory1992386174317540775.9402510.1109/18.165447 – reference: ITU-T Y., 3172 architectural framework for machine learning in future networks including IMT-2020, ITU-T SG13 plenary. Victoria Falls (2019). https://www.itu.int/md/T17-SG13-190304-TD-PLEN/en. – reference: Q. Wu, R. Zhang, Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming submitted (2018). https://arxiv.org/abs/1810.03961. – reference: J. Y. H. Teo, L. J. Wong, C. Molardi, P. Genevet, Controlling electromagnetic fields at boundaries of arbitrary geometries. Phys. Rev. A. 94: (2016). Article No. 023820. – reference: C. Huang, A. Zappone, G. C. Alexandropoulos, M. Debbah, C. Yuen, Large intelligent surfaces for energy efficiency in wireless Communication submitted (2018). https://arxiv.org/abs/1810.06934. – reference: ChoiC. -S.WooJ. O.AndrewsJ. G.An analytical framework for modeling a spatially repulsive cellular networkIEEE Trans. Commun.201866286287410.1109/TCOMM.2017.2767605 – reference: Di RenzoM.HaasH.GhrayebA.HanzoL.Spatial modulation for generalized MIMO: challenges, opportunities and implementationProc. IEEE201410215610310.1109/JPROC.2013.2287851 – reference: SchloemannJ.DhillonH. S.BuehrerR. M.Toward a tractable analysis of localization fundamentals in cellular networksIEEE Trans. Wirel. Commun.20161531768178210.1109/TWC.2015.2496273 – reference: 5GPPP Vision on Software Networks and 5G SN WG (2017). https://5g-ppp.eu/wp-content/uploads/2014/02/5G-PPP_SoftNets_WG_whitepaper_v20.pdf. – reference: ClaussenH.Autonomous self-deployment of wireless access networksBell Labs Tech. J.2009141557110.1002/bltj.20354 – reference: HuS.RusekF.EdforsO.Beyond massive MIMO: the potential of positioning with large intelligent surfacesIEEE Trans. Sig. Process.20186671761177437978330702097210.1109/TSP.2018.2795547 – reference: A. Zappone, M. Di Renzo, M. Debbah, T. T. Lam, X. Qian, Model-aided wireless artificial intelligence: embedding expert knowledge in deep neural networks towards wireless systems optimization, submitted for journal publication (2018). https://arxiv.org/abs/1808.01672. – reference: DabidianN.Dutta-GuptaS.KholmanovI.LaiK.LuF.LeeJ.JinM.TrendafilovS.KhanikaevA.FallahazadB.TutucE.BelkinM. A.ShvetsG.Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfacesNano Lett.20161663607361510.1021/acs.nanolett.6b00732 – reference: LiaskosChristosNieShuaiTsioliaridouAgelikiPitsillidesAndreasIoannidisSotirisAkyildizIanA novel communication paradigm for high capacity and security via programmable indoor wireless environments in next generation wireless systemsAd Hoc Networks20198711610.1016/j.adhoc.2018.11.001 – reference: A. Welkie, L. Shangguan, J. Gummeson, W. Hu, K. Jamieson, Programmable radio environments for smart spaces (ACM Workshop on Hot Topics in Networks, Palo Alto, 2017). https://dl.acm.org/citation.cfm?id=3152456. – reference: A. Diaz-Rubio, V. Asadchy, A. Elsakka, S. Tretyakov, Metasurfaces for Perfect Control of Reflection (International Workshop on Antenna Technology: Small Antennas, Innovative Structures, and Applications, Athens, 2017). https://ieeexplore.ieee.org/document/7915281/. – reference: J. Park, S. Samarakoon, M. Bennis, M. Debbah, Wireless network intelligence at the edge, submitted (2019). https://arxiv.org/abs/1812.02858. – reference: O’LoneC. E.DhillonH. S.BuehrerR. M.A statistical characterization of localization performance in wireless networksIEEE Trans. Wirel. Commun.20181795841585610.1109/TWC.2018.2850310 – reference: TsioliaridouN. A.LiaskosC. K.PitsillidesA.IoannidisS. A.A Novel Protocol for Network-Controlled Metasurfaces2017Washington DCACM International Conference on Nanoscale Computing and Communication10.1145/3109453.3109469 – reference: H. Claussen, Autonomous self-deployment of wireless access networks in an airport environment, autonomic communication, lecture notes in computer science (LNCS). Springer. 3854:, 86–98 (2006). https://pdfs.semanticscholar.org/dad9/8df1687144a6f5666b9091493fb080117707.pdf. – reference: SousaE. S.SilvesterJ. A.Optimum transmission ranges in a direct-sequence spread-spectrum multihop packet radio networkIEEE J. Sel. Areas Commun.1990857627110.1109/49.56383 – reference: DingM.WangP.Lopez-PerezD.MaoG.LinZ.Performance impact of LoS and NLoS transmissions in dense cellular networksIEEE Trans. Wirel. Commun.20161532365238010.1109/TWC.2015.2503391 – reference: H. Chu, Q. Li, B. Liu, J. Luo, S. Sun, Z. H. Hang, L. Zhou, Y. Lai, A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials. Nat. Light: Sci. Appl.7: (2018). Article No. 50. – reference: V. S. Asadchy, M. Albooyeh, S. N. Tcvetkova, A. Diaz-Rubio, Y. Radi, S. A. Tretyakov, Perfect control of reflection and refraction using spatially dispersive metasurfaces. Phys. Rev. B. 94(7) (2016). https://journals.aps.org/prb/abstract/10.1103/PhysRevB.94.075142. – reference: SubrtL.PechacP.Intelligent Walls as Autonomous Parts of Smart Indoor EnvironmentsIET Commun.2012681004101010.1049/iet-com.2010.0544 – reference: SinghS.DhillonH. S.AndrewsJ. G.Offloading in heterogeneous networks: modeling, analysis, and design InsightsIEEE Trans, Wirel. Commun.20131252484249710.1109/TWC.2013.040413.121174 – reference: Q. Wu, R. Zhang, Beamforming optimization for intelligent reflecting surface with discrete phase shifts submitted (2018). https://arxiv.org/abs/1810.10718. – reference: NakanishiToshihiroKitanoMasaoStorage and retrieval of electromagnetic waves using electromagnetically induced transparency in a nonlinear metamaterialApplied Physics Letters20181122020190510.1063/1.5035442 – reference: DerodeA.TourinA.de RosnyJ.TanterM.YonS.FinkM.Taking advantage of multiple scattering to communicate with time reversal antennasPhys. Rev. Lett.20039001430110.1103/PhysRevLett.90.014301 – reference: AbadalS.MestresA.TorrellasJ.AlarconE.Cabellos-AparicioA.Medium access control in wireless network-on-chip: a context analysisIEEE Commun. Mag.201856617217810.1109/MCOM.2018.1601068 – reference: KhandaniA. K.Media-based modulation: converting static Rayleigh fading to AWGN2014HonoluluIEEE International Symposium on Information Theory – reference: LiaskosC.NieS.TsioliaridouA.PitsillidesA.IoannidisS.AkyildizI. F.A New Wireless Communication Paradigm Through Software-Controlled MetasurfacesIEEE Commun. Mag.201856916216910.1109/MCOM.2018.1700659 – reference: ElSawyH.Sultan-SalemA. K.AlouiniM. -S.WinM. Z.Modeling and analysis of cellular networks using stochastic geometry: a tutorialProc. IEEE2017191167203 – reference: K. Wu, P. Coquet, Q. J. Wang, P. Genevet, Modelling of free-form conformal metasurfaces. Nat. Commun.9: (2018). Article No. 3494. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6113266/. – reference: V. Sciancalepore, M. Di Renzo, X. Costa-Perez, STORNS: Stochastic radio access network slicing IEEE International Conference on Communications (ICC),(submitted) (2019). https://arxiv.org/abs/1901.05336. – reference: NakanishiT.OtaniT.TamayamaY.KitanoM.Storage of electromagnetic waves in a metamaterial that mimics electromagnetically induced transparencyPhys. Rev. B20138716111010.1103/PhysRevB.87.161110 – reference: VahabzadehY.ChamanaraN.AchouriK.CalozC.Computational analysis of metasurfacesIEEE J. Multiscale Multiphysics Comput. Tech.20183374910.1109/JMMCT.2018.2829871 – reference: J. Cheng, S. Inampudi, H. Mosallaei, Design of phase gradient coding metasurfaces for broadband Wave modulating. Nature Scientific Reports. 7: (2017). Article No. 12228. – reference: NarayananA.VeetilS. T.GantiR. K.Coverage analysis in millimeter wave cellular networks with reflections2017SingaporeIEEE Global Communications Conference10.1109/GLOCOM.2017.8254903 – reference: ShannonC. E.A mathematical theory of communicationBell Syst. Tech. J.1948273379423262861154.9430310.1002/j.1538-7305.1948.tb01338.x – reference: AndrewsJ. G.ZhangX.DurginG. D.GuptaA. K.Are we approaching the fundamental limits of wireless network Densification?IEEE Commun. Mag.2016541018419010.1109/MCOM.2016.7588290 – reference: J. Li, C. Shen, A. Diaz-Rubio, S. A. Tretyakov, S. A. Cummer, Systematic design and experimental demonstration of Bianisotropic Metasurfaces for Scattering-Free Manipulation of Acoustic Wavefronts. Nat. Commun.9: (2018). Article No. 1342. https://www.nature.com/articles/s41467-018-03778-9. – reference: LavigneG.AchouriK.AsadchyV. S.TretyakovS. A.CalozC.Susceptibility derivation and experimental demonstration of refracting metasurfaces without spurious diffractionIEEE Trans. Antennas Propag.20186631321133010.1109/TAP.2018.2793958 – reference: D. Nguyen Viet, M. Di Renzo, V. Basavarajappa, B. Bedia Exposito, J. Basterrechea, D. -T. Phan-Huy, Spatial modulation based on reconfigurable antennas: performance evaluation by using the prototype of a reconfigurable antenna submitted for journal publication (2018). https://arxiv.org/abs/1901.01752. – reference: S. Colburn, Dielectric metasurface optics: a new platform for compact optical sensing (University of Washington, 2017). https://digital.lib.washington.edu/researchworks/handle/1773/40037. – reference: Y. Li, B. Liang, Z. -M. Gu, X. -Y. Zou, J. -C. Cheng, Reflected wavefront manipulation based on ultrathin planar acoustic Metasurfaces. Nat. Sci. Rep.3: (2013). Article No. 2546. – reference: HaenggiM.The mean interference-to-signal ratio and its key role in cellular and amorphous networksIEEE Wirel. Commun. Lett.20143659760010.1109/LWC.2014.2357444 – reference: BasarE.WenM.MeslehR.Di RenzoM.XiaoY.HaasH.Index modulation techniques for next-generation wireless networksIEEE Access20175166931674610.1109/ACCESS.2017.2737528 – reference: ClaussenH.HoL. T. W.KarimiH. R.MullanyF. J.SamuelL. G.I, Base Station: Cognisant Robots and Future Wireless Access Networks2006Las VegasIEEE Consumer Communications and Networking Conference – reference: KibildaJ.GalkinB.DaSilvaL. A.Modelling multi-operator base station deployment patterns in cellular networksIEEE Trans. Mob. Comput.201615123087309910.1109/TMC.2015.2506583 – reference: KalisA.KanatasA. G.PapadiasC. B.A novel approach to MIMO transmission using a single RF front endIEEE J. Sel. Areas Commun.200826697298010.1109/JSAC.2008.080813 – reference: PanS. J.YangQ.A Survey on Transfer LearningIEEE Trans. Knowl. Data Eng.201022101345135910.1109/TKDE.2009.191 – reference: MollenC.High-end performance with low-end hardware: analysis of massive MIMO base station transceivers, Doctoral Thesis2017SwedenLinkoping University – reference: DengN.ZhouW.HaenggiM.The Ginibre point process as a model for wireless networks with repulsionIEEE Trans. Wirel. Commun.201514110712110.1109/TWC.2014.2332335 – reference: C. Huang, G. C. Alexandropoulos, A. Zappone, M. Debbah, C. Yuen, Energy efficient multi-user MISO communication using low resolution large intelligent surfaces submitted (2018). https://arxiv.org/abs/1809.05397. – reference: ShojaeifardA.WongK. -K.RenzoM. D.ZhengG.HamdiK. A.TangJ.Massive MIMO-enabled full-duplex cellular networksIEEE Trans. Commun.201765114734475010.1109/TCOMM.2017.2731768 – reference: P. Fleming, A. L. Stolyar, B. Simon, Closed-Form Expressions for Other-Cell Interference in Cellular CDMA Technical Report (University of Colorado, Boulder, 1997). http://ccm.ucdenver.edu/reports/rep116.pdf. – reference: S. A. Aldalahmeh, M. Ghogho, Des McLernon, E. Nurellari, Optimal fusion rule for distributed detection in clustered wireless sensor networks. EURASIP J. Adv. Sig. Process.5: (2016). https://asp-eurasipjournals.springeropen.com/articles/10.1186/s13634-016-0303-9. – reference: BaccelliF.BlaszczyszynB.MuhlethalerP.An aloha protocol for multihop mobile wireless networksIEEE Trans. Inf. Theory200652242143622361661282.9400410.1109/TIT.2005.862098 – reference: LiY.BaccelliF.DhillonH.AndrewsJ. G.Statistical modeling and probabilistic analysis of cellular networks with determinantal point processesIEEE Trans. Commun.20156393405342210.1109/TCOMM.2015.2456016 – reference: BaiT.Heath Jr.R. W.Coverage and rate analysis for millimeter wave cellular networksIEEE Trans. Wirel. Commun.20151421100111410.1109/TWC.2014.2364267 – reference: TasolamprouA. C.MirmoosaM. S.TsilipakosO.PitilakisA.LiuF.AbadalS.Cabellos-AparicioA.AlarconE.LiaskosC.KantartzisN. V.TretyakovS.KafesakiM.EconomouE. N.SoukoulisC. M.Intercell Wireless Communication in Software-Defined Metasurfaces2018FlorenceIEEE International Symposium on Circuits and Systems10.1109/ISCAS.2018.8351865 – reference: A. K. Khandani, Media-based modulation: improving spectral efficiency beyond conventional MIMO (IEEE Communications Theory Workshop, Nafplio, 2016). Available: http://ctw2016.ieee-ctw.org/slides/ctw16_Khandani.pdf. – reference: M. Jung, W. Saad, Y. Jang, G. Kong, S. Choi, Performance analysis of large intelligence surfaces (LISs): Asymptotic Data Rate and Channel Hardening Effects submitted (2018). https://arxiv.org/abs/1810.05667v1. – reference: HougneP. delLeroseyG.Leveraging chaos for wave-based analog computation: demonstration with indoor wireless communication signalsPhys. Reviex X201884041037 – reference: K. M. Kossifos, M. A. Antoniades, J. Georgiou, A. H. Jaafar, N. T. Kemp, An optically-programmable absorbing metasurface (International Symposium on Circuits and Systems, Florence, 2018). https://ieeexplore.ieee.org/document/8351874/. – reference: LeeJ.ZhangX.BaccelliF.A 3-D spatial model for in-building wireless networks with correlated shadowingIEEE Trans. Wirel. Commun.201615117778779310.1109/TWC.2016.2607206 – reference: ZhangX.BaccelliF.Heath Jr.R. W.An indoor correlated shadowing model2015San DiegoIEEE Global Communications Conference10.1109/GLOCOM.2015.7417557 – reference: XuC.YangL.ZhangP.Practical backscatter communication systems for battery-free Internet of Things: a tutorial and survey of recent researchIEEE Sig. Process. Mag.2018355162710.1109/MSP.2018.2848361 – reference: Di RenzoM.LuW.GuanP.The intensity matching approach: a tractable stochastic geometry approximation to system-level analysis of cellular networksIEEE Trans. Wirel. Commun.20161595963598310.1109/TWC.2016.2574852 – reference: BaiT.VazeR.Heath Jr.R. W.Analysis of blockage effects on urban cellular networksIEEE Trans. Wirel. Commun.20141395070508310.1109/TWC.2014.2331971 – reference: GuoA.HaenggiM.Asymptotic deployment gain: a simple approach to characterize the SINR distribution in general cellular networksIEEE Trans. Commun.201563396297610.1109/TCOMM.2014.2387170 – reference: M. W. Matthes, P. del Hougne, J. de Rosny, G. Lerosey, S. M. Popoff, Turning optical complex media into universal reconfigurable linear operators by wavefront shaping submitted (2018). https://arxiv.org/abs/1810.05688. – reference: PastorG.NorrosI.JanttiR.CaamanoA. J.Compressive Data Aggregation from Poisson Point Process Observations2015BrusselsIEEE International Symposium on Wireless Communication Systems10.1109/ISWCS.2015.7454307 – reference: KainaN.Dupre’M.LeroseyG.FinkM.Hybridized resonances to design tunable binary phase metasurface unit cellsOpt. Express20142216188811888810.1364/OE.22.018881 – reference: TsioliaridouA.LiaskosC.IoannidisS.Towards a Circular Economy via Intelligent Metamaterials2018BarcelonaIEEE International Conference on Computer-Aided Modeling Analysis and Design of Communication Links and Networks – reference: AndrewsJ. G.GantiR. K.HaenggiM.JindalN.WeberS.A primer on spatial modeling and analysis in wireless networksIEEE Commun. Mag.2010481115616310.1109/MCOM.2010.5621983 – reference: BaccelliF.MuhlethalerP.BlaszczyszynB.Stochastic analysis of spatial and opportunistic alohaIEEE J. Sel. Areas Commun.20092771105111910.1109/JSAC.2009.090908 – reference: M. Di Renzo, A. Zappone, T. T. Lam, M. Debbah, Spectral-energy efficiency Pareto front in cellular networks: a stochastic geometry framework. IEEE Wirel. Commun. Lett. (2018). to appear, https://10.1109/LWC.2018.2874642 (https://ieeexplore.ieee.org/document/8486640). – reference: SubrtL.PechacP.Controlling propagation environments using intelligent Walls2012PragueEuropean Conference on Antennas and Propagation10.1109/EuCAP.2012.6206517 – reference: BaccelliF.ZhangX.A Correlated Shadowing Model for Urban Wireless Networks2015Hong KongIEEE International Conference on Computer Communications10.1109/INFOCOM.2015.7218450 – reference: SaeedT.SkitsasC.KouzapasD.LestasM.SoteriouV.PhilippouA.AbadalS.LiaskosC.PetrouL.GeorgiouJ.PitsillidesA.Fault Adaptive Routing in Metasurface Controller Networks2018FukuokaInternational Workshop on Network on Chip Architectures10.1109/NOCARC.2018.8541148 – reference: D. -H. Kwon, S. A. Tretyakov, Arbitrary beam control using passive lossless metasurfaces enabled by orthogonally polarized custom surface waves. Phys. Rev. B. 97(3) (2018). – reference: PorsAndersBozhevolnyiSergey I.Plasmonic metasurfaces for efficient phase control in reflectionOptics Express201321222743810.1364/OE.21.027438 – reference: Di RenzoM.HaasH.GrantP.Spatial modulation for multiple-antenna wireless systems - A SurveyIEEE Commun. Mag.2011491218219110.1109/MCOM.2011.6094024 – reference: PestourieRaphaëlPérez-ArancibiaCarlosLinZinShinWonseokCapassoFedericoJohnsonSteven G.Inverse design of large-area metasurfacesOptics Express201826263373210.1364/OE.26.033732 – reference: El-SawyH.HossainE.HaenggiM.Stochastic geometry for modeling, analysis, and design of multi-tier and cognitive cellular wireless networks: a surveyIEEE Commun. Surv. Tutor.2013153996101910.1109/SURV.2013.052213.00000 – reference: Di RenzoM.WangS.XiX.Modeling and analysis of cellular networks by using inhomogeneous Poisson point processesIEEE Trans. Wirel. Commun.20181785162518210.1109/TWC.2018.2838597 – reference: GantiR. K.HaenggiM.Interference and outage in clustered wireless ad hoc networksIEEE Trans. Inf. Theory2009559406740861367.9402610.1109/TIT.2009.2025543 – reference: TanX.SunZ.KoutsonikolasD.JornetK. M.Enabling indoor mobile millimeter-Wave Networks Based on Smart Reflect-Arrays2018HonoluluIEEE Conference on Computer Communications10.1109/INFOCOM.2018.8485924 – reference: LiaskosC.NieS.TsioliaridouA.PitsillidesA.IoannidisS.AkyildizI. F.Realizing Wireless Communication Through Software-Defined HyperSurface EnvironmentsIEEE International Symposium on a World of Wireless2018CreteMobile and Multimedia Networks – reference: A. Gati, et al., in IEEE Communications Surveys & Tutorials, submitted for journal publication. Key Technologies to Accelerate the ICT Green Evolution: An Operator’s Point of View, (2018). https://arxiv.org/abs/1903.09627. – reference: KongH. -B.FlintI.WangP.NiyatoD.PrivaultN.Fog radio access networks: Ginibre point process modeling and analysisIEEE Trans. Wirel. Commun.20181775564558010.1109/TWC.2018.2846734 – reference: LuW.Di RenzoM.Stochastic geometry modeling and system-level analysis and optimization of relay-aided downlink cellular networksIEEE Trans. Commun.201563114063408510.1109/TCOMM.2015.2477498 – reference: Network Motion (NEMO), ERC-2017-ADG - ERC Advanced Grant (2019). https://cordis.europa.eu/project/rcn/214933_fr.html. – reference: P. del Hougne, M. Fink, G. Lerosey, Optimally diverse communication channels in disordered environments with tuned randomness. Nat. Electron.2(1) (2019). Article ID 36. https://www.nature.com/articles/s41928-018-0190-1. – reference: GuptaAbhishek K.AndrewsJeffrey G.HeathRobert W.Macrodiversity in Cellular Networks With Random BlockagesIEEE Transactions on Wireless Communications2018172996101010.1109/TWC.2017.2773058 – reference: WeberS. P.YangX.AndrewsJ. G.De VecianaG.Transmission capacity of wireless ad hoc networks with outage constraintsIEEE Trans. Inf. Theory200551124091410222431451318.9401010.1109/TIT.2005.858939 – reference: NarayananS.Di RenzoM.GraziosiF.HaasH.Distributed spatial modulation: a cooperative diversity protocol for half-duplex relay-aided wireless networksIEEE Trans. Veh. Technol.20166552947296410.1109/TVT.2015.2442754 – reference: PetrouL.KarousiosP.GeorgiouJ.Asynchronous circuits as an enabler of scalable and programmable metasurfaces2018FlorenceInternational Symposium on Circuits and Systems10.1109/ISCAS.2018.8351672 – reference: Zangeneh-NejadFarzadFleuryRomainPerforming mathematical operations using high-index acoustic metamaterialsNew Journal of Physics201820707300110.1088/1367-2630/aacba1 – reference: TakahashiY.ChenY.KobayashiT.MiyoshiN.Simple and fast PPP-based approximation of SIR distributions in downlink cellular networksIEEE Wirel. Commun. Lett.20187689890110.1109/LWC.2018.2836438 – reference: S. Aditya, H. S. Dhillon, A. F. Molisch, H. Behairy, A tractable analysis of the blind spot probability in localization networks under correlated blocking. IEEE Trans. Wirel. Commun. (2018). to appear, https://arxiv.org/pdf/1801.08560.pdf. – reference: DongD. S.YangJ.ChengQ.ZhaoJ.GaoL. H.MaS. J.LiuS.ChenH. B.HeQ.LiuW. W.FangZ.ZhouL.CuiT. J.Terahertz Broadband low-reflection metasurface by controlling phase distributionsAdv. Opt. Mater.20153101405141010.1002/adom.201500156 – reference: DingM.Lopez-PerezD.ClaussenH.KaafarM. A.On the fundamental characteristics of ultra-dense small cell networksIEEE Netw.20183239210010.1109/MNET.2018.1700096 – reference: KhandaniA. K.Media-based modulation: a new approach to wireless transmission2013IstanbulIEEE International Symposium on Information Theory – reference: FuschiniF.VitucciE. M.BarbiroliM.FalciaseccaG.Degli-EspostiV.Ray tracing propagation modeling for future small-cell and indoor applications: a review of current techniquesRadio Sci.201550646948510.1002/2015RS005659 – reference: WeberS.AndrewsJ. G.Transmission capacity of wireless networksFound. Trends. Netw.201152-31092811243.6813110.1561/1300000032 – reference: AgarwalA.JagannathamA. K.Distributed estimation in homogenous Poisson wireless sensor networksIEEE Wirel. Commun. Lett.201431909310.1109/WCL.2013.112313.130696 – reference: AndrewsJ. G.BaiT.KulkarniM. N.AlkhateebA.GuptaA. K.Heath Jr.R. W.Modeling and analyzing millimeter wave cellular systemsIEEE Trans. Commun.2017651403430 – reference: NiX.WongZ. J.MrejenM.WangY.ZhangX.An ultrathin invisibility skin cloak for visible lightScience201534962541310131410.1126/science.aac9411 – reference: SousaE. S.Interference modeling in a direct-sequence spread spectrum packet radio networkIEEE Trans. Commun.19903891475148210.1109/26.61388 – reference: M. Di Renzo, J. Song, Reflection probability in wireless networks with metasurface-coated environmental objects: an approach Based on Random Spatial Processes. EURASIP J. Wirel. Commun. Netw. (2019). (to appear)https://arxiv.org/abs/1901.01046. – reference: AchouriK.SalemM. A.CalozC.General metasurface synthesis based on susceptibility tensorsIEEE Trans. Antennas Propag.20156372977299133673371373.7811410.1109/TAP.2015.2423700 – reference: Y. Vahabzadeh, N. Chamanara, C. Caloz, Efficient GSTC-FDTD simulation of dispersive bianisotropic metasurface IEEE Transactions on Antennas and Propagation, submitted (2018). https://arxiv.org/pdf/1710.00044.pdf. – reference: A. Zappone, M. Di Renzo, M. Debbah, Wireless networks design in the era of deep learning: model-based, AI-based, or both?IEEE Trans. Commun. submitted, 43 (2018). (invited paper) https://arxiv.org/abs/1902.02647. – reference: Heath Jr.R. W.Gonzalez-PrelcicN.RanganS.RohW.SayeedA.An overview of signal processing techniques for millimeter wave MIMO systemsIEEE J. Sel. Top. Sig. Process.201610343453 – reference: AndrewsJ. G.BaccelliF.GantiR. K.A tractable approach to coverage and rate in cellular networksIEEE Trans. Commun.201159113122313410.1109/TCOMM.2011.100411.100541 – reference: HuS.RusekF.EdforsO.Beyond Massive MIMO: The potential of data transmission with large intelligent surfacesIEEE. Trans. Sig. Process.201866102746275838119880702104110.1109/TSP.2018.2816577 – reference: BonodN.Large-Scale Dielectric MetasurfacesNat. Mater.20151466466510.1038/nmat4338 – reference: DhillonH. S.GantiR. K.BaccelliF.AndrewsJ. G.Modeling and analysis of K-tier downlink heterogeneous cellular networksIEEE J. Sel. Areas Commun.201230355056010.1109/JSAC.2012.120405 – reference: AbadalS.LiaskosC.TsioliaridouA.IoannidisS.PitsillidesA.Sole-ParetaJ.AlarconE.Cabellos-AparicioA.Computing and communications for the software-defined metamaterial paradigm: a context analysisIEEE Access201756225623510.1109/ACCESS.2017.2693267 – reference: HsuL. Y.LepetitT.Kante’B.Extremely thin dielectric metasurface for carpet cloakingProg. Electromagn. Res.2015152334010.2528/PIER15032005 – reference: CampbellN.The study of discontinuous phenomenaMath. Proc. Cambridge Philos. Soc.190915117136 – reference: GuoA.HaenggiM.Spatial stochastic models and metrics for the structure of base stations in cellular networksIEEE Trans. Wirel. Commun.201312115800581210.1109/TWC.2013.100113.130220 – reference: CupCarbon U-One 3.8, A Smart City & IoT wireless sensor network simulator. http://cupcarbon.com/. – reference: Di RenzoM.Stochastic geometry modeling and analysis of multi-tier millimeter wave cellular networksIEEE Trans. Wirel. Commun.20151495038505710.1109/TWC.2015.2431689 – reference: R. Chandra, K. Winstein, Programmable radio environments for smart spaces - HotNets-XVI Dialogue (ACM Workshop on Hot Topics in Networks, Palo Alto, 2017). https://conferences.sigcomm.org/hotnets/2017/dialogues/dialogue118.pdf. – reference: KouvarosP.KouzapasD.PhilippouA.GeorgiouJ.PetrouL.PitsillidesA.Formal verification of a programmable hypersurface2018IrelandInternational Conference on Formal Methods for Industrial Critical Systems10.1007/978-3-030-00244-2_6 – reference: BaccelliF.KleinM.LebourgesM.ZuyevS. A.Stochastic geometry and architecture of communication networksTelecommun. Syst.199771-320922710.1023/A:1019172312328 – reference: Di RenzoM.ZapponeA.LamT. T.DebbahM.System-level modeling and optimization of the energy efficiency in cellular networks—a stochastic geometry frameworkIEEE Trans. Wirel. Commun.20181742539255610.1109/TWC.2018.2797264 – reference: GantiR. K.HaenggiM.Asymptotics and approximation of the SIR distribution in general cellular networksIEEE Trans. Wirel. Commun.20161532130214310.1109/TWC.2015.2498926 – reference: L. Spada, Metamaterials for Advanced Sensing Platforms. Res. J. Opt. Photon.1(1) (2017). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359273/. – reference: H, 2020 VISORSURF project, A hardware platform for software-driven functional metasurfaces. http://www.visorsurf.eu/. – reference: Q. -U. -A. Nadeem, A. Kammoun, A. Chaaban, M. Debbah, M. -S. Alouini, Large Intelligent Surface Assisted Massive MIMO Communications submitted (2019). https://128.84.21.199/pdf/1903.08127.pdf. – reference: YuN.GenevetP.KatsM. A.AietaF.TetienneJ. -P.CapassoF.GaburroZ.Light propagation with phase discontinuities: generalized laws of reflection and refractionScience2011334605433333710.1126/science.1210713 – reference: C. Liaskos, A. Tsioliaridou, S. Nie, A. Pitsillides, S. Ioannidis, I. Akyildiz, Modeling, simulating and configuring programmable wireless environments for multi-user multi-objective networking, submitted for journal publication (2018). https://arxiv.org/abs/1812.11429. – reference: LeeJ.BaccelliF.On the effect of shadowing correlation on wireless network performance2018HonoluluIEEE International Conference on Computer Communications10.1109/INFOCOM.2018.8485965 – reference: A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alu, N. Engheta, Performing mathematical operations with metamaterials. 343(6167), 160–163 (2014). – reference: WeberS.AndrewsJ. G.JindalN.An overview of the transmission capacity of wireless networksIEEE Trans. Inf. Theory2010581235933604 – ident: 1438_CR36 doi: 10.1109/WCNC.2013.6555350 – volume: 66 start-page: 271 issue: 1 year: 2018 ident: 1438_CR155 publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/TAP.2017.2772022 – volume: 19 start-page: 167 issue: 1 year: 2017 ident: 1438_CR112 publication-title: Proc. IEEE – ident: 1438_CR32 – ident: 1438_CR4 doi: 10.1145/3152434.3152456 – volume: 5 start-page: 16693 year: 2017 ident: 1438_CR67 publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2737528 – volume: 17 start-page: 996 issue: 2 year: 2018 ident: 1438_CR131 publication-title: IEEE Transactions on Wireless Communications doi: 10.1109/TWC.2017.2773058 – volume-title: Controlling propagation environments using intelligent Walls year: 2012 ident: 1438_CR7 doi: 10.1109/EuCAP.2012.6206517 – volume: 90 start-page: 014301 year: 2003 ident: 1438_CR35 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.90.014301 – volume-title: Compressive Data Aggregation from Poisson Point Process Observations year: 2015 ident: 1438_CR120 doi: 10.1109/ISWCS.2015.7454307 – volume: 35 start-page: 16 issue: 5 year: 2018 ident: 1438_CR149 publication-title: IEEE Sig. Process. Mag. doi: 10.1109/MSP.2018.2848361 – volume: 26 start-page: 33732 issue: 26 year: 2018 ident: 1438_CR81 publication-title: Optics Express doi: 10.1364/OE.26.033732 – volume: 54 start-page: 10 issue: 2 year: 2012 ident: 1438_CR16 publication-title: IEEE Antennas Propag. Mag. doi: 10.1109/MAP.2012.6230714 – volume: 56 start-page: 172 issue: 6 year: 2018 ident: 1438_CR90 publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2018.1601068 – volume: 32 start-page: 92 issue: 3 year: 2018 ident: 1438_CR128 publication-title: IEEE Netw. doi: 10.1109/MNET.2018.1700096 – ident: 1438_CR17 – volume: 14 start-page: 664 year: 2015 ident: 1438_CR28 publication-title: Nat. Mater. doi: 10.1038/nmat4338 – ident: 1438_CR55 – volume: 15 start-page: 5963 issue: 9 year: 2016 ident: 1438_CR127 publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2016.2574852 – ident: 1438_CR1 – volume: 5 start-page: 6225 year: 2017 ident: 1438_CR51 publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2693267 – volume: 10 start-page: 43 issue: 3 year: 2016 ident: 1438_CR46 publication-title: IEEE J. Sel. Top. Sig. Process. – ident: 1438_CR75 – volume: 26 start-page: 972 issue: 6 year: 2008 ident: 1438_CR63 publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2008.080813 – volume: 87 start-page: 161110 year: 2013 ident: 1438_CR22 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.161110 – ident: 1438_CR163 – ident: 1438_CR146 – volume: 6 start-page: 1004 issue: 8 year: 2012 ident: 1438_CR8 publication-title: IET Commun. doi: 10.1049/iet-com.2010.0544 – ident: 1438_CR100 – ident: 1438_CR12 – volume: 8 start-page: 041037 issue: 4 year: 2018 ident: 1438_CR23 publication-title: Phys. Reviex X – volume: 12 start-page: 5800 issue: 11 year: 2013 ident: 1438_CR136 publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2013.100113.130220 – ident: 1438_CR76 doi: 10.1109/ISCAS.2018.8351874 – volume: 17 start-page: 5162 issue: 8 year: 2018 ident: 1438_CR145 publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2018.2838597 – ident: 1438_CR58 – ident: 1438_CR152 – ident: 1438_CR158 – volume-title: On the effect of shadowing correlation on wireless network performance year: 2018 ident: 1438_CR135 doi: 10.1109/INFOCOM.2018.8485965 – ident: 1438_CR72 – volume: 65 start-page: 4734 issue: 11 year: 2017 ident: 1438_CR49 publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2017.2731768 – volume: 3 start-page: 1405 issue: 10 year: 2015 ident: 1438_CR70 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201500156 – volume: 49 start-page: 182 issue: 12 year: 2011 ident: 1438_CR64 publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2011.6094024 – volume: 15 start-page: 996 issue: 3 year: 2013 ident: 1438_CR111 publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/SURV.2013.052213.00000 – volume-title: Media-based modulation: converting static Rayleigh fading to AWGN year: 2014 ident: 1438_CR61 – volume: 334 start-page: 333 issue: 6054 year: 2011 ident: 1438_CR15 publication-title: Science doi: 10.1126/science.1210713 – volume: 3 start-page: 90 issue: 1 year: 2014 ident: 1438_CR119 publication-title: IEEE Wirel. Commun. Lett. doi: 10.1109/WCL.2013.112313.130696 – volume-title: High-end performance with low-end hardware: analysis of massive MIMO base station transceivers, Doctoral Thesis year: 2017 ident: 1438_CR45 – ident: 1438_CR85 – ident: 1438_CR122 – volume: 17 start-page: 4447 issue: 8 year: 2018 ident: 1438_CR117 publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2018.2825351 – volume: 27 start-page: 1029 issue: 7 year: 2009 ident: 1438_CR93 publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2009.090902 – ident: 1438_CR57 – volume: 13 start-page: 5070 issue: 9 year: 2014 ident: 1438_CR123 publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2014.2331971 – volume: 152 start-page: 33 year: 2015 ident: 1438_CR78 publication-title: Prog. Electromagn. Res. doi: 10.2528/PIER15032005 – volume-title: IEEE International Symposium on a World of Wireless year: 2018 ident: 1438_CR2 – volume-title: An indoor correlated shadowing model year: 2015 ident: 1438_CR133 doi: 10.1109/GLOCOM.2015.7417557 – volume: 14 start-page: 107 issue: 1 year: 2015 ident: 1438_CR137 publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2014.2332335 – ident: 1438_CR52 – volume: 66 start-page: 862 issue: 2 year: 2018 ident: 1438_CR140 publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2017.2767605 – volume: 5 start-page: 109 issue: 2-3 year: 2011 ident: 1438_CR106 publication-title: Found. Trends. Netw. doi: 10.1561/1300000032 – ident: 1438_CR161 – ident: 1438_CR147 – volume: 15 start-page: 117 year: 1909 ident: 1438_CR94 publication-title: Math. Proc. Cambridge Philos. Soc. – volume: 51 start-page: 4091 issue: 12 year: 2005 ident: 1438_CR104 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2005.858939 – volume-title: Enabling high-quality untethered virtual reality year: 2017 ident: 1438_CR10 doi: 10.1145/3130242.3131494 – volume: 3 start-page: 37 year: 2018 ident: 1438_CR30 publication-title: IEEE J. Multiscale Multiphysics Comput. Tech. doi: 10.1109/JMMCT.2018.2829871 – ident: 1438_CR21 – volume: 66 start-page: 1761 issue: 7 year: 2018 ident: 1438_CR53 publication-title: IEEE Trans. Sig. Process. doi: 10.1109/TSP.2018.2795547 – volume-title: Towards a Circular Economy via Intelligent Metamaterials year: 2018 ident: 1438_CR26 – volume: 14 start-page: 1100 issue: 2 year: 2015 ident: 1438_CR124 publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2014.2364267 – ident: 1438_CR50 doi: 10.1103/PhysRevB.97.035439 – ident: 1438_CR116 – ident: 1438_CR150 – volume-title: Coverage analysis in millimeter wave cellular networks with reflections year: 2017 ident: 1438_CR129 doi: 10.1109/GLOCOM.2017.8254903 – volume: 17 start-page: 5564 issue: 7 year: 2018 ident: 1438_CR118 publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2018.2846734 – volume-title: Media-based modulation: a new approach to wireless transmission year: 2013 ident: 1438_CR60 – volume: 26 start-page: 1405 issue: 10 year: 1978 ident: 1438_CR95 publication-title: IEEE Trans. Commun. doi: 10.1109/TCOM.1978.1093993 – ident: 1438_CR68 – ident: 1438_CR80 – volume-title: A Correlated Shadowing Model for Urban Wireless Networks year: 2015 ident: 1438_CR132 doi: 10.1109/INFOCOM.2015.7218450 – volume: 22 start-page: 1345 issue: 10 year: 2010 ident: 1438_CR162 publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2009.191 – volume-title: Fault Adaptive Routing in Metasurface Controller Networks year: 2018 ident: 1438_CR87 doi: 10.1109/NOCARC.2018.8541148 – volume: 65 start-page: 2947 issue: 5 year: 2016 ident: 1438_CR37 publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2015.2442754 – volume: 21 start-page: 27438 issue: 22 year: 2013 ident: 1438_CR69 publication-title: Optics Express doi: 10.1364/OE.21.027438 – volume-title: Spatial Modulation Based on Reconfigurable Antennas - A New Air Interface for the IoT year: 2017 ident: 1438_CR151 doi: 10.1109/MILCOM.2017.8170856 – volume: 52 start-page: 421 issue: 2 year: 2006 ident: 1438_CR107 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2005.862098 – ident: 1438_CR130 – volume: 22 start-page: 18881 issue: 16 year: 2014 ident: 1438_CR18 publication-title: Opt. Express doi: 10.1364/OE.22.018881 – volume: 55 start-page: 4067 issue: 9 year: 2009 ident: 1438_CR103 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2009.2025543 – volume: 14 start-page: 55 issue: 1 year: 2009 ident: 1438_CR41 publication-title: Bell Labs Tech. J. doi: 10.1002/bltj.20354 – ident: 1438_CR59 – volume: 3 start-page: 597 issue: 6 year: 2014 ident: 1438_CR141 publication-title: IEEE Wirel. Commun. Lett. doi: 10.1109/LWC.2014.2357444 – volume: 112 start-page: 201905 issue: 20 year: 2018 ident: 1438_CR83 publication-title: Applied Physics Letters doi: 10.1063/1.5035442 – ident: 1438_CR153 – volume: 48 start-page: 156 issue: 11 year: 2010 ident: 1438_CR102 publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2010.5621983 – volume: 66 start-page: 1321 issue: 3 year: 2018 ident: 1438_CR31 publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/TAP.2018.2793958 – volume: 63 start-page: 3405 issue: 9 year: 2015 ident: 1438_CR138 publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2015.2456016 – ident: 1438_CR159 – volume: 27 start-page: 1105 issue: 7 year: 2009 ident: 1438_CR108 publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2009.090908 – ident: 1438_CR54 – ident: 1438_CR27 – volume-title: Asynchronous circuits as an enabler of scalable and programmable metasurfaces year: 2018 ident: 1438_CR89 doi: 10.1109/ISCAS.2018.8351672 – volume: 54 start-page: 46 issue: 3 year: 2016 ident: 1438_CR66 publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2016.7432147 – volume: 14 start-page: 5038 issue: 9 year: 2015 ident: 1438_CR125 publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2015.2431689 – volume: 38 start-page: 1743 issue: 6 year: 1992 ident: 1438_CR98 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/18.165447 – ident: 1438_CR121 – volume: 15 start-page: 2130 issue: 3 year: 2016 ident: 1438_CR143 publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2015.2498926 – volume: 20 start-page: 073001 issue: 7 year: 2018 ident: 1438_CR84 publication-title: New Journal of Physics doi: 10.1088/1367-2630/aacba1 – volume-title: Intercell Wireless Communication in Software-Defined Metasurfaces year: 2018 ident: 1438_CR88 doi: 10.1109/ISCAS.2018.8351865 – volume: 15 start-page: 3087 issue: 12 year: 2016 ident: 1438_CR139 publication-title: IEEE Trans. Mob. Comput. doi: 10.1109/TMC.2015.2506583 – volume: 18 start-page: 2443 issue: 11 year: 2000 ident: 1438_CR101 publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/49.895048 – volume: 50 start-page: 469 issue: 6 year: 2015 ident: 1438_CR157 publication-title: Radio Sci. doi: 10.1002/2015RS005659 – ident: 1438_CR33 – volume: 56 start-page: 162 issue: 9 year: 2018 ident: 1438_CR6 publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2018.1700659 – volume: 7 start-page: 209 issue: 1-3 year: 1997 ident: 1438_CR99 publication-title: Telecommun. Syst. doi: 10.1023/A:1019172312328 – ident: 1438_CR92 – volume: 15 start-page: 7778 issue: 11 year: 2016 ident: 1438_CR134 publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2016.2607206 – volume: 7 start-page: 898 issue: 6 year: 2018 ident: 1438_CR144 publication-title: IEEE Wirel. Commun. Lett. doi: 10.1109/LWC.2018.2836438 – volume: 59 start-page: 3122 issue: 11 year: 2011 ident: 1438_CR109 publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2011.100411.100541 – volume: 65 start-page: 403 issue: 1 year: 2017 ident: 1438_CR47 publication-title: IEEE Trans. Commun. – ident: 1438_CR24 doi: 10.1126/science.1242818 – ident: 1438_CR156 – ident: 1438_CR79 – volume-title: Increasing Indoor Spectrum Sharing Capacity using Smart Reflect-Array year: 2016 ident: 1438_CR9 doi: 10.1109/ICC.2016.7510962 – volume-title: Enabling indoor mobile millimeter-Wave Networks Based on Smart Reflect-Arrays year: 2018 ident: 1438_CR11 doi: 10.1109/INFOCOM.2018.8485924 – volume: 17 start-page: 5841 issue: 9 year: 2018 ident: 1438_CR114 publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2018.2850310 – ident: 1438_CR82 – volume: 16 start-page: 3607 issue: 6 year: 2016 ident: 1438_CR71 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b00732 – volume: 349 start-page: 1310 issue: 6254 year: 2015 ident: 1438_CR77 publication-title: Science doi: 10.1126/science.aac9411 – volume: 63 start-page: 4063 issue: 11 year: 2015 ident: 1438_CR48 publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2015.2477498 – volume: 8 start-page: 762 issue: 5 year: 1990 ident: 1438_CR96 publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/49.56383 – ident: 1438_CR160 – volume: 12 start-page: 2484 issue: 5 year: 2013 ident: 1438_CR42 publication-title: IEEE Trans, Wirel. Commun. doi: 10.1109/TWC.2013.040413.121174 – ident: 1438_CR62 – ident: 1438_CR148 – volume: 27 start-page: 379 issue: 3 year: 1948 ident: 1438_CR38 publication-title: Bell Syst. Tech. J. doi: 10.1002/j.1538-7305.1948.tb01338.x – volume: 30 start-page: 550 issue: 3 year: 2012 ident: 1438_CR110 publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2012.120405 – volume: 66 start-page: 2746 issue: 10 year: 2018 ident: 1438_CR13 publication-title: IEEE. Trans. Sig. Process. doi: 10.1109/TSP.2018.2816577 – ident: 1438_CR19 – ident: 1438_CR20 – volume: 54 start-page: 184 issue: 10 year: 2016 ident: 1438_CR43 publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2016.7588290 – volume: 6 start-page: 55765 year: 2018 ident: 1438_CR86 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2872781 – volume: 63 start-page: 962 issue: 3 year: 2015 ident: 1438_CR142 publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2014.2387170 – ident: 1438_CR115 – ident: 1438_CR5 – ident: 1438_CR3 – volume: 81 start-page: 026401 issue: 2 year: 2017 ident: 1438_CR74 publication-title: Reports on Progress in Physics doi: 10.1088/1361-6633/aa8732 – volume: 61 start-page: 30 issue: 11 year: 2018 ident: 1438_CR14 publication-title: Commun. ACM doi: 10.1145/3192336 – volume: 102 start-page: 56 issue: 1 year: 2014 ident: 1438_CR65 publication-title: Proc. IEEE doi: 10.1109/JPROC.2013.2287851 – volume: 38 start-page: 1475 issue: 9 year: 1990 ident: 1438_CR97 publication-title: IEEE Trans. Commun. doi: 10.1109/26.61388 – ident: 1438_CR73 doi: 10.1109/IWAT.2017.7915281 – volume: 15 start-page: 1768 issue: 3 year: 2016 ident: 1438_CR113 publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2015.2496273 – volume-title: Formal verification of a programmable hypersurface year: 2018 ident: 1438_CR91 doi: 10.1007/978-3-030-00244-2_6 – volume: 58 start-page: 3593 issue: 12 year: 2010 ident: 1438_CR105 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TCOMM.2010.093010.090478 – volume-title: A Novel Protocol for Network-Controlled Metasurfaces year: 2017 ident: 1438_CR34 doi: 10.1145/3109453.3109469 – ident: 1438_CR39 – volume-title: I, Base Station: Cognisant Robots and Future Wireless Access Networks year: 2006 ident: 1438_CR40 – volume: 17 start-page: 2539 issue: 4 year: 2018 ident: 1438_CR44 publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2018.2797264 – ident: 1438_CR56 – ident: 1438_CR154 – volume: 87 start-page: 1 year: 2019 ident: 1438_CR25 publication-title: Ad Hoc Networks doi: 10.1016/j.adhoc.2018.11.001 – volume: 15 start-page: 2365 issue: 3 year: 2016 ident: 1438_CR126 publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2015.2503391 – volume: 63 start-page: 2977 issue: 7 year: 2015 ident: 1438_CR29 publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/TAP.2015.2423700 |
| SSID | ssj0033492 |
| Score | 2.679894 |
| SecondaryResourceType | review_article |
| Snippet | Future wireless networks are expected to constitute a distributed intelligent wireless communications, sensing, and computing platform, which will have the... Abstract Future wireless networks are expected to constitute a distributed intelligent wireless communications, sensing, and computing platform, which will... |
| SourceID | doaj hal proquest crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | 6G wireless Backscattering Cellular radio Communications Engineering Computer Science Emerging Intelligent Algorithms for Edge-of-Things Computing Emission Engineering Environmental AI Environmental impact Information Systems Applications (incl.Internet) Information Theory Networks Object recognition Operators Power consumption Radio equipment Radio waves Radios Reconfigurable intelligent meta-surfaces Reconfiguration Redesign Review Signal,Image and Speech Processing Smart radio environments Smart sensors Thin films Wireless communications Wireless networks |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yeNCD-MTWVYJ4UsKmO93pxNsoLissi-CDvYXKyxnYnZHumV3891Z196yzgnrxmkeTrnxJVVGVrxh7GTNU1pS1kCZ5UbcgBaigRIRK6aRjHYdswq_H7cmJOT21H3dKfVFO2EgPPAruIPpgG_QpYgWxDsqA1jKqUIWGeFdSptsXrZ6tMzXewYo496YYZmn0QV8qxBm6zVZQuW9hr2mhgawfdcucUiF37MzfQqODxjm8y-5MpiKfjUu8x26k5X12e4dA8AHzn87xD3gHcbHiu2_WODFOXVIdTu5_8MHrzYtvm44eSvHZB36e1iD6TZcpI-sNhyVfxAT8cr7qE6d683wOPUc0pofsy-H7z--OxFQ1QYS6sWuhorHJR9UClABee3SokmwyRK88GBlQQWN3UqqtYjBogaCAIVdRZRzWSPWI7S1Xy_SY8Ua3VcZzCVmjm2KDqW2qUxuszzRfFkxupejCRClOlS3O3OBaGO1GwTsUvCPBO1uwV1dTvo98Gn8b_Ja25mogUWEPDQgQNwHE_QsgBXuBG3vtG0ezY0dt9LC3MW17URZsf7vvbjrEvRtKnVNYWRfs9RYLv7r_uOwn_2PZT9mtivAqG1Gpfba37jbpGbsZLtaLvns-oP0nvUABzA priority: 102 providerName: Directory of Open Access Journals – databaseName: SpringerLink Open Access Journals dbid: C24 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA9afdAHv8W1rQTxSQnuJrvZxLeztFQoRfCDvoXJV-_A3snuXYv_vZncbnsVFfQ1mSzD7Ewmw8z8hpBXPgLXqqpZqYJldQslA-EE88CFDNLXPlcTfj1qj4_VyYn-OPRx92O1-5iSzDd1Nmsl3_aVSLqSQl_NcGQ30zfJraZSGtV6D1sc1tevQLi9IX3522PXHFDG6U9uZYpVkBtPzF-yotnZHNz_LzYfkHvD25JO1srwkNwI80fk7gbi4GNiP50lXaEd-NmCbja5UYSousDBndT-oDlMjrPTVYedVXTygZ6FJbB-1UUs4XpHYU5nPgC9mC76QHFAPZ1CTxOL4Qn5crD_ee-QDWMWmKsbvWTCKx2sFy1ABWClTRFYKJsI3goLqnTJo6ftIETLvVPpyeJ0A5F7ERNZU4qnZGu-mIdnhDay5TEZMkSZ4hrtVK1DHVqnbcTzZUHKUfbGDRjkOArjm8mxiJJmLT6TxGdQfEYX5PXlke9rAI6_Eb_HH3pJiNjZeWHRnZrBFI23if8UpXoOvnZCgZSlF467BpF8QizIy6QO175xODkyuIadwI1q2_OqIDujtpjB6nuTZ6NjHloW5M2oHVfbf2T7-T9Rb5M7HNWrbBgXO2Rr2a3CLrntzpezvnuRjeEnMFEEbQ priority: 102 providerName: Springer Nature |
| Title | Smart radio environments empowered by reconfigurable AI meta-surfaces: an idea whose time has come |
| URI | https://link.springer.com/article/10.1186/s13638-019-1438-9 https://www.proquest.com/docview/2229558386 https://hal.science/hal-02395877 https://doaj.org/article/dbc95917d2ad4c38a660d3c2c57418ef |
| Volume | 2019 |
| WOSCitedRecordID | wos000468981000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1687-1499 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033492 issn: 1687-1499 databaseCode: DOA dateStart: 20040101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVAVX databaseName: SpringerLink Open Access Journals customDbUrl: eissn: 1687-1499 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033492 issn: 1687-1499 databaseCode: C24 dateStart: 20041201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoywEOvBEpZWUhTiCriZ04Nhe0rVq1oqxWvFS4WH6luxLdtMluK_49Hm_SbpHohUsOfkQjzTczHs94BqE3rtJUiiwnqfCG5KVOiWaWEacp45673MVswu9H5Wgkjo_luLtwa7u0yl4nRkXtagt35Nux7zTE-PiHs3MCXaMgutq10FhDGxmlGeD8Y0l6Tcyg8h44XDwIUpaXtItqZoJvtxkLyAuOtCTQAJzIG3Yplu8P1mYCyZErJ8-_gqXRBu0__F_qH6EH3ekTD5dweYzu-NkTdH-lJuFTZL6cBjThRrtpjVefwWEoYnUJrT2x-Y2jI11NTxYNvL3Cw0N86ueatIumgiSv91jP8NR5jS8ndesxtLDHE93iQK5_hr7t733dPSBdIwZi80LOCXNCeuNYqXWmteEm-Gg-LSrtDDNapDbY_DDtGSupsyIcaqwsdEUdq8KyImXP0fqsnvkXCBe8pFUQdV3x4PlIK3Lpc19aaSrYnyYo7dmgbFelHJpl_FLRWxFcLTmnAucUcE7JBL292nK2LNFx2-Id4O3VQqiuHQfq5kR1wqqcCfQHP9ZR7XLLhOY8dcxSW0CtH18l6HVAxo1_HAyPFIzBW-FClOVFlqCtHgqq0wutusZBgt71YLqe_ifZm7f_7CW6RwHKaUEo20Lr82bhX6G79mI-bZsB2tjZG40_D9DaLs0H8dZhEAUlfMfFzzA_Pvw0_vEHe1sXHQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGQGI8cEcLDLAQvICsJXbiCxJC5TK1aqmQGGhvnmM7ayXajqRdtT_Fb8QnTbYOib3tgdf4Isf-zjk-PjeEXrrCUCWTlMTS5yQVJiaGWUacoYx77lJXexP-GIjhUB4cqK8b6HcbCwNulS1PrBm1m1l4I9-t606DjY-_P_5FoGoUWFfbEhorWPT96TKobNW73qdwvq8o3fu8_7FLmqoCxKaZmhPmpPK5Y8KYxJic50Hh8HFWGJez3MjYBgEWmj1jgjorg4S2KjMFdawI3bKYhXmvoespkwJy9fcFaTk_g0x_oODxQLhJKmhjRU0k360SFpAeFHdFoOA4URfkYF0uIEi3EThjrt10_zLO1jJv787_tlt30e3mdo07K3K4hzb89D66tZZz8QHKv00CteDSuPEMr4f5YUjStYTSpTg_xfVDQTE-WpQQW4Y7PTzxc0OqRVmAE9tbbKZ47LzBy9Gs8ng-nng8MhUO2-Mfou9X8pOP0OZ0NvXbCGdc0CKwMlPwoNkpK1PlUy-sygsYH0cobo9d2yYLOxQD-alrbUxyvUKKDkjRgBStIvT6bMjxKgXJZZ0_AJbOOkL28PrDrDzSDTPSLg_rD3q6o8allknDeeyYpTaDXEa-iNCLgMQLc3Q7Aw3fIBY6k0KcJBHaaaGnG75X6XPcRehNC97z5n8u-_Hlkz1HN7v7XwZ60Bv2n6AtCmQUZ4SyHbQ5Lxf-KbphT-bjqnxWEyRGh1eN6T9funCY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ZbxMxELZKQYg-cKMGClgIXkBWd-29jIRQoESNEkWVONQ31-ujWYkkZTdp1L_Gr2Nms9umSPStD7z6ktf7zYzHcxHy2nrNZRZGLMhczqJUB0wLI5jVXCQusZGtvQl_DNPRKDs8lAcb5HcbC4NulS1PrBm1nRl8I9-t606jjS_Z9Y1bxMFe7-PJL4YVpNDS2pbTWEFk4M6WoL5VH_p78K_fcN778u3zPmsqDDATxXLOhM2ky61ItQ61zpMclA8XxF7bXOQ6CwwIM-h2QqTcmgyktZGx9twKD8PiQMC6N8hNkMIx0tggZa0UEJj1D5W9BIg4jFLeWFRD2H8VCkA9KPGSYfFxJi_JxLp0AEi6MTpmrt16_zLU1vKvd-9_Prn75G5z66bdFZk8IBtu-pBsreVifETyrxOgIlpqW8zoevgfxeRdSyxpSvMzWj8g-OJ4UWLMGe326cTNNasWpUfntvdUT2lhnabL8axydF5MHB3risJRucfk-7V85BOyOZ1N3TahcZJyDyxO-wQ0PmmySLrIpUbmHucHHRK0EFCmyc6ORUJ-qlpLyxK1Qo0C1ChEjZId8vZ8yskqNclVgz8hrs4HYlbxumFWHquGSSmbw_5Bf7dc28iITCdJYIXhJsYcR853yCtA5aU19rtDhW0YIx1naXoadshOC0PV8MNKXWCwQ961QL7o_ue2n1692EtyG6Cshv3R4Bm5w5GigphxsUM25-XCPSe3zOm8qMoXNW1ScnTdkP4DePF5Ug |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smart+radio+environments+empowered+by+reconfigurable+AI+meta-surfaces%3A+an+idea+whose+time+has+come&rft.jtitle=EURASIP+journal+on+wireless+communications+and+networking&rft.au=Renzo%2C+Marco+Di&rft.au=Debbah%2C+Merouane&rft.au=Phan-Huy%2C+Dinh-Thuy&rft.au=Zappone%2C+Alessio&rft.date=2019-05-23&rft.issn=1687-1499&rft.eissn=1687-1499&rft.volume=2019&rft.issue=1&rft_id=info:doi/10.1186%2Fs13638-019-1438-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13638_019_1438_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-1499&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-1499&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-1499&client=summon |