Smart radio environments empowered by reconfigurable AI meta-surfaces: an idea whose time has come

Future wireless networks are expected to constitute a distributed intelligent wireless communications, sensing, and computing platform, which will have the challenging requirement of interconnecting the physical and digital worlds in a seamless and sustainable manner. Currently, two main factors pre...

Full description

Saved in:
Bibliographic Details
Published in:EURASIP journal on wireless communications and networking Vol. 2019; no. 1; pp. 1 - 20
Main Authors: Renzo, Marco Di, Debbah, Merouane, Phan-Huy, Dinh-Thuy, Zappone, Alessio, Alouini, Mohamed-Slim, Yuen, Chau, Sciancalepore, Vincenzo, Alexandropoulos, George C., Hoydis, Jakob, Gacanin, Haris, Rosny, Julien de, Bounceur, Ahcene, Lerosey, Geoffroy, Fink, Mathias
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 23.05.2019
Springer Nature B.V
SpringerOpen
Subjects:
ISSN:1687-1499, 1687-1472, 1687-1499
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Future wireless networks are expected to constitute a distributed intelligent wireless communications, sensing, and computing platform, which will have the challenging requirement of interconnecting the physical and digital worlds in a seamless and sustainable manner. Currently, two main factors prevent wireless network operators from building such networks: (1) the lack of control of the wireless environment, whose impact on the radio waves cannot be customized, and (2) the current operation of wireless radios, which consume a lot of power because new signals are generated whenever data has to be transmitted. In this paper, we challenge the usual “more data needs more power and emission of radio waves” status quo, and motivate that future wireless networks necessitate a smart radio environment: a transformative wireless concept, where the environmental objects are coated with artificial thin films of electromagnetic and reconfigurable material (that are referred to as reconfigurable intelligent meta-surfaces), which are capable of sensing the environment and of applying customized transformations to the radio waves. Smart radio environments have the potential to provide future wireless networks with uninterrupted wireless connectivity, and with the capability of transmitting data without generating new signals but recycling existing radio waves. We will discuss, in particular, two major types of reconfigurable intelligent meta-surfaces applied to wireless networks. The first type of meta-surfaces will be embedded into, e.g., walls, and will be directly controlled by the wireless network operators via a software controller in order to shape the radio waves for, e.g., improving the network coverage. The second type of meta-surfaces will be embedded into objects, e.g., smart t-shirts with sensors for health monitoring, and will backscatter the radio waves generated by cellular base stations in order to report their sensed data to mobile phones. These functionalities will enable wireless network operators to offer new services without the emission of additional radio waves, but by recycling those already existing for other purposes. This paper overviews the current research efforts on smart radio environments, the enabling technologies to realize them in practice, the need of new communication-theoretic models for their analysis and design, and the long-term and open research issues to be solved towards their massive deployment. In a nutshell, this paper is focused on discussing how the availability of reconfigurable intelligent meta-surfaces will allow wireless network operators to redesign common and well-known network communication paradigms.
AbstractList Future wireless networks are expected to constitute a distributed intelligent wireless communications, sensing, and computing platform, which will have the challenging requirement of interconnecting the physical and digital worlds in a seamless and sustainable manner. Currently, two main factors prevent wireless network operators from building such networks: (1) the lack of control of the wireless environment, whose impact on the radio waves cannot be customized, and (2) the current operation of wireless radios, which consume a lot of power because new signals are generated whenever data has to be transmitted. In this paper, we challenge the usual "more data needs more power and emission of radio waves" status quo, and motivate that future wireless networks necessitate a smart radio environment: a transformative wireless concept, where the environmental objects are coated with artificial thin films of electromagnetic and reconfigurable material (that are referred to as reconfigurable intelligent meta-surfaces), which are capable of sensing the environment and of applying customized transformations to the radio waves. Smart radio environments have the potential to provide future wireless networks with uninterrupted wireless connectivity, and with the capability of transmitting data without generating new signals but recycling existing radio waves. We will discuss, in particular, two major types of reconfigurable intelligent meta-surfaces applied to wireless networks. The first type of meta-surfaces will be embedded into, e.g., walls, and will be directly controlled by the wireless network operators via a software controller in order to shape the radio waves for, e.g., improving the network coverage. The second type of meta-surfaces will be embedded into objects, e.g., smart t-shirts with sensors for health monitoring, and will backscatter the radio waves generated by cellular base stations in order to report their sensed data to mobile phones. These functionalities will enable wireless network operators to offer new services without the emission of additional radio waves, but by recycling those already existing for other purposes. This paper overviews the current research efforts on smart radio environments, the enabling technologies to realize them in practice, the need of new communication-theoretic models for their analysis and design, and the long-term and open research issues to be solved towards their massive deployment. In a nutshell, this paper is focused on discussing how the availability of reconfigurable intelligent meta-surfaces will allow wireless network operators to redesign common and well-known network communication paradigms.
Abstract Future wireless networks are expected to constitute a distributed intelligent wireless communications, sensing, and computing platform, which will have the challenging requirement of interconnecting the physical and digital worlds in a seamless and sustainable manner. Currently, two main factors prevent wireless network operators from building such networks: (1) the lack of control of the wireless environment, whose impact on the radio waves cannot be customized, and (2) the current operation of wireless radios, which consume a lot of power because new signals are generated whenever data has to be transmitted. In this paper, we challenge the usual “more data needs more power and emission of radio waves” status quo, and motivate that future wireless networks necessitate a smart radio environment: a transformative wireless concept, where the environmental objects are coated with artificial thin films of electromagnetic and reconfigurable material (that are referred to as reconfigurable intelligent meta-surfaces), which are capable of sensing the environment and of applying customized transformations to the radio waves. Smart radio environments have the potential to provide future wireless networks with uninterrupted wireless connectivity, and with the capability of transmitting data without generating new signals but recycling existing radio waves. We will discuss, in particular, two major types of reconfigurable intelligent meta-surfaces applied to wireless networks. The first type of meta-surfaces will be embedded into, e.g., walls, and will be directly controlled by the wireless network operators via a software controller in order to shape the radio waves for, e.g., improving the network coverage. The second type of meta-surfaces will be embedded into objects, e.g., smart t-shirts with sensors for health monitoring, and will backscatter the radio waves generated by cellular base stations in order to report their sensed data to mobile phones. These functionalities will enable wireless network operators to offer new services without the emission of additional radio waves, but by recycling those already existing for other purposes. This paper overviews the current research efforts on smart radio environments, the enabling technologies to realize them in practice, the need of new communication-theoretic models for their analysis and design, and the long-term and open research issues to be solved towards their massive deployment. In a nutshell, this paper is focused on discussing how the availability of reconfigurable intelligent meta-surfaces will allow wireless network operators to redesign common and well-known network communication paradigms.
ArticleNumber 129
Author Gacanin, Haris
Lerosey, Geoffroy
Debbah, Merouane
Rosny, Julien de
Renzo, Marco Di
Phan-Huy, Dinh-Thuy
Sciancalepore, Vincenzo
Zappone, Alessio
Fink, Mathias
Bounceur, Ahcene
Alouini, Mohamed-Slim
Hoydis, Jakob
Yuen, Chau
Alexandropoulos, George C.
Author_xml – sequence: 1
  givenname: Marco Di
  orcidid: 0000-0003-0772-8793
  surname: Renzo
  fullname: Renzo, Marco Di
  email: marco.direnzo@l2s.centralesupelec.fr
  organization: Laboratoire des Signaux et Systèmes, CNRS, CentraleSupelec, Univ Paris-Sud, Université Paris-Saclay
– sequence: 2
  givenname: Merouane
  surname: Debbah
  fullname: Debbah, Merouane
  organization: Mathematical and Algorithmic Sciences Lab, Huawei France R&D
– sequence: 3
  givenname: Dinh-Thuy
  surname: Phan-Huy
  fullname: Phan-Huy, Dinh-Thuy
  organization: Orange Labs
– sequence: 4
  givenname: Alessio
  surname: Zappone
  fullname: Zappone, Alessio
  organization: Laboratoire des Signaux et Systèmes, CentraleSupelec, LANES Group
– sequence: 5
  givenname: Mohamed-Slim
  surname: Alouini
  fullname: Alouini, Mohamed-Slim
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 6
  givenname: Chau
  surname: Yuen
  fullname: Yuen, Chau
  organization: Singapore University of Technology and Design (SUTD)
– sequence: 7
  givenname: Vincenzo
  surname: Sciancalepore
  fullname: Sciancalepore, Vincenzo
  organization: NEC Laboratories Europe
– sequence: 8
  givenname: George C.
  surname: Alexandropoulos
  fullname: Alexandropoulos, George C.
  organization: National and Kapodistrian University of Athens
– sequence: 9
  givenname: Jakob
  surname: Hoydis
  fullname: Hoydis, Jakob
  organization: Nokia Bell Labs
– sequence: 10
  givenname: Haris
  surname: Gacanin
  fullname: Gacanin, Haris
  organization: Nokia Bell Labs
– sequence: 11
  givenname: Julien de
  surname: Rosny
  fullname: Rosny, Julien de
  organization: Institut Langevin, ESPCI Paris
– sequence: 12
  givenname: Ahcene
  surname: Bounceur
  fullname: Bounceur, Ahcene
  organization: University of Brest
– sequence: 13
  givenname: Geoffroy
  surname: Lerosey
  fullname: Lerosey, Geoffroy
  organization: Greenerwave
– sequence: 14
  givenname: Mathias
  surname: Fink
  fullname: Fink, Mathias
  organization: Institut Langevin, ESPCI Paris
BackLink https://hal.science/hal-02395877$$DView record in HAL
BookMark eNp9kU1v1DAQhiNUJNrSH8DNEicOAX_Eic1tVQFdaSUObc_WxJ7sepXYi51t1X9fL0F8SXDyePw-73j0XlRnIQasqjeMvmdMtR8yE61QNWW6Zk0p9IvqnLWqKzetz36rX1UXOe8pFaLR_LzqbydIM0ngfCQYHnyKYcIwZ4LTIT5iQkf6J5LQxjD47TFBPyJZrcmEM9T5mAawmD8SCMQ7BPK4ixnJ7CckO8jExglfVy8HGDNe_Tgvq_vPn-6ub-rN1y_r69Wmto3Ucy2c0tg70QEwgL7ttVZI5QCuFz0oapUU5RmF6LizqpXKagkDd2IoMknFZbVefF2EvTkkXzZ7MhG8-d6IaWvKqt6OaFxfWM06x8E1VihoW-qE5VZ2DVM4FK93i9cOxj-sblYbc-pRLrRUXffAivbtoj2k-O2IeTb7eEyhrGo451pKJVRbVGxR2RRzTjj8tGXUnCI0S4SmRGhOERpdmO4vxvoZZh_DnMCP_yX5QuYyJWwx_frTv6Fn2SqyNw
CitedBy_id crossref_primary_10_1109_TWC_2023_3348292
crossref_primary_10_1109_TCOMM_2023_3342217
crossref_primary_10_1109_TWC_2023_3246264
crossref_primary_10_1109_LCOMM_2022_3222173
crossref_primary_10_1109_TCOMM_2021_3064947
crossref_primary_10_1109_TWC_2023_3332945
crossref_primary_10_1109_TCOMM_2021_3064949
crossref_primary_10_1109_TAP_2024_3438940
crossref_primary_10_1109_TWC_2023_3342991
crossref_primary_10_1109_TWC_2024_3364048
crossref_primary_10_1109_LWC_2019_2961357
crossref_primary_10_1109_JIOT_2021_3070225
crossref_primary_10_1109_TCE_2022_3223441
crossref_primary_10_1109_JIOT_2021_3050612
crossref_primary_10_1109_LWC_2021_3120269
crossref_primary_10_1109_JSAC_2021_3087259
crossref_primary_10_3390_s23041921
crossref_primary_10_1109_TCOMM_2021_3096549
crossref_primary_10_1016_j_phycom_2021_101386
crossref_primary_10_1109_COMST_2024_3487068
crossref_primary_10_1109_JIOT_2023_3296319
crossref_primary_10_1109_JIOT_2022_3232360
crossref_primary_10_1109_TCOMM_2022_3179771
crossref_primary_10_1109_TVT_2022_3151191
crossref_primary_10_1109_LCOMM_2021_3054819
crossref_primary_10_1109_MVT_2021_3119282
crossref_primary_10_1109_TGCN_2021_3135437
crossref_primary_10_1109_TAP_2022_3177549
crossref_primary_10_1109_TWC_2021_3056154
crossref_primary_10_1186_s13634_025_01231_w
crossref_primary_10_1109_ACCESS_2020_3007897
crossref_primary_10_1109_TAP_2022_3201700
crossref_primary_10_1109_TCOMM_2023_3321731
crossref_primary_10_1109_IOTM_001_2100117
crossref_primary_10_1109_TCOMM_2023_3286453
crossref_primary_10_1109_TVT_2020_2991547
crossref_primary_10_1109_LWC_2020_3043810
crossref_primary_10_1109_JETCAS_2020_2976165
crossref_primary_10_1109_TWC_2023_3341448
crossref_primary_10_1109_TSP_2022_3193626
crossref_primary_10_1109_TWC_2020_2990766
crossref_primary_10_1109_TWC_2021_3100148
crossref_primary_10_1109_TCOMM_2022_3193400
crossref_primary_10_1109_TAP_2023_3263929
crossref_primary_10_1109_COMST_2023_3249835
crossref_primary_10_1109_TCOMM_2022_3204828
crossref_primary_10_1109_TAP_2022_3151354
crossref_primary_10_1016_j_jiixd_2023_06_009
crossref_primary_10_1049_cmu2_12755
crossref_primary_10_1109_TCCN_2021_3072895
crossref_primary_10_1109_TWC_2021_3095939
crossref_primary_10_1109_TCOMM_2022_3145570
crossref_primary_10_1109_JPHOT_2023_3302409
crossref_primary_10_1109_TCOMM_2019_2945792
crossref_primary_10_1109_JSAC_2023_3288237
crossref_primary_10_1109_TNET_2022_3225883
crossref_primary_10_1109_TWC_2020_3028198
crossref_primary_10_1109_TWC_2024_3362068
crossref_primary_10_1109_TVT_2022_3190515
crossref_primary_10_1103_PhysRevApplied_21_014005
crossref_primary_10_1109_TWC_2024_3438874
crossref_primary_10_3390_app12147236
crossref_primary_10_1109_TGCN_2024_3524623
crossref_primary_10_3390_s25061811
crossref_primary_10_1109_TCOMM_2021_3074539
crossref_primary_10_3390_electronics13040735
crossref_primary_10_1109_LWC_2021_3134630
crossref_primary_10_1109_JSAC_2023_3288248
crossref_primary_10_1109_OJCOMS_2025_3573988
crossref_primary_10_1109_TCCN_2021_3084402
crossref_primary_10_1109_COMST_2022_3171135
crossref_primary_10_1109_ACCESS_2025_3549450
crossref_primary_10_1109_TWC_2021_3094869
crossref_primary_10_1109_TWC_2022_3141491
crossref_primary_10_1186_s13638_024_02372_6
crossref_primary_10_1109_TVT_2022_3211545
crossref_primary_10_1016_j_jksuci_2022_03_019
crossref_primary_10_1049_cmu2_12571
crossref_primary_10_1109_JSAC_2023_3288251
crossref_primary_10_1109_ACCESS_2022_3167841
crossref_primary_10_1109_JSAC_2025_3536556
crossref_primary_10_1109_TWC_2022_3199426
crossref_primary_10_1109_TCE_2023_3349153
crossref_primary_10_1109_TWC_2024_3355108
crossref_primary_10_1109_LCOMM_2021_3110865
crossref_primary_10_1109_TWC_2023_3339151
crossref_primary_10_1109_TWC_2024_3400882
crossref_primary_10_1007_s11276_022_03007_8
crossref_primary_10_1109_COMST_2022_3202813
crossref_primary_10_1109_TCOMM_2021_3051897
crossref_primary_10_1109_ACCESS_2022_3206013
crossref_primary_10_1109_LCOMM_2021_3082214
crossref_primary_10_1109_JSAC_2023_3288264
crossref_primary_10_1109_TWC_2024_3481494
crossref_primary_10_1109_TWC_2024_3363180
crossref_primary_10_1109_JSAC_2023_3288267
crossref_primary_10_1109_JIOT_2021_3131771
crossref_primary_10_3390_en14248219
crossref_primary_10_1109_ACCESS_2020_3031959
crossref_primary_10_1109_LCOMM_2021_3073981
crossref_primary_10_1109_LWC_2023_3316700
crossref_primary_10_1038_s41598_025_10257_x
crossref_primary_10_1109_TWC_2022_3157808
crossref_primary_10_1109_MVT_2020_3017927
crossref_primary_10_1109_ACCESS_2020_2977772
crossref_primary_10_1109_ACCESS_2024_3397186
crossref_primary_10_1109_ACCESS_2024_3482564
crossref_primary_10_1186_s13634_025_01233_8
crossref_primary_10_1109_TWC_2021_3068754
crossref_primary_10_1109_LWC_2019_2950624
crossref_primary_10_1109_TWC_2021_3066333
crossref_primary_10_1109_TCOMM_2024_3443738
crossref_primary_10_1109_TWC_2024_3367953
crossref_primary_10_1016_j_phycom_2022_101826
crossref_primary_10_1109_TWC_2023_3237955
crossref_primary_10_1109_TMC_2025_3556326
crossref_primary_10_1109_COMST_2024_3423460
crossref_primary_10_1109_JSTSP_2022_3176140
crossref_primary_10_1109_TCOMM_2024_3358954
crossref_primary_10_1109_LWC_2019_2947445
crossref_primary_10_1109_TWC_2021_3133491
crossref_primary_10_1103_PhysRevApplied_17_044007
crossref_primary_10_1109_TCOMM_2022_3217516
crossref_primary_10_1109_TWC_2024_3469968
crossref_primary_10_3390_photonics10111210
crossref_primary_10_1109_LCOMM_2020_3025345
crossref_primary_10_1109_LWC_2022_3189272
crossref_primary_10_1109_TAP_2022_3146870
crossref_primary_10_1109_TSP_2020_3047474
crossref_primary_10_1109_TWC_2021_3054121
crossref_primary_10_1109_TWC_2020_2997332
crossref_primary_10_1109_TAP_2021_3076267
crossref_primary_10_1002_adfm_202403577
crossref_primary_10_1109_TWC_2020_2986438
crossref_primary_10_1109_TSP_2024_3420149
crossref_primary_10_1002_advs_202500796
crossref_primary_10_1109_LWC_2022_3154822
crossref_primary_10_1016_j_aeue_2025_155698
crossref_primary_10_1109_TCOMM_2022_3196061
crossref_primary_10_1109_LWC_2021_3100479
crossref_primary_10_1109_TWC_2025_3555946
crossref_primary_10_3390_electronics13101826
crossref_primary_10_1109_TVT_2020_2973073
crossref_primary_10_1109_JPROC_2022_3174140
crossref_primary_10_1155_2021_2036778
crossref_primary_10_1109_TWC_2021_3133272
crossref_primary_10_1109_COMST_2022_3221119
crossref_primary_10_1109_TVT_2024_3520232
crossref_primary_10_1109_LCOMM_2020_3025320
crossref_primary_10_1109_TWC_2024_3363141
crossref_primary_10_1109_MSP_2024_3496395
crossref_primary_10_1109_ACCESS_2022_3223447
crossref_primary_10_1109_MWC_001_1900534
crossref_primary_10_1109_LWC_2022_3219017
crossref_primary_10_1109_TWC_2021_3052370
crossref_primary_10_1109_TWC_2022_3195683
crossref_primary_10_3390_photonics10020128
crossref_primary_10_1109_ACCESS_2025_3575583
crossref_primary_10_1109_TWC_2020_2970061
crossref_primary_10_1109_TVT_2020_3024756
crossref_primary_10_3390_s22228719
crossref_primary_10_1109_JSAC_2022_3196119
crossref_primary_10_1016_j_phycom_2025_102798
crossref_primary_10_1109_TWC_2022_3212537
crossref_primary_10_1109_LWC_2021_3126852
crossref_primary_10_3390_s25154549
crossref_primary_10_1109_JSTSP_2022_3179840
crossref_primary_10_1109_TVT_2021_3129308
crossref_primary_10_1109_TWC_2020_3049047
crossref_primary_10_1109_ACCESS_2021_3053486
crossref_primary_10_1109_ACCESS_2019_2935192
crossref_primary_10_1109_LCOMM_2023_3255410
crossref_primary_10_1109_TWC_2023_3244279
crossref_primary_10_1109_LWC_2020_2976934
crossref_primary_10_1109_MAP_2023_3236278
crossref_primary_10_3390_app122211605
crossref_primary_10_1109_LWC_2021_3056620
crossref_primary_10_1109_LAWP_2024_3428318
crossref_primary_10_1109_JIOT_2023_3252587
crossref_primary_10_3390_electronics11192977
crossref_primary_10_1109_JSAC_2021_3118405
crossref_primary_10_1109_TWC_2020_3028371
crossref_primary_10_1109_ACCESS_2020_2995358
crossref_primary_10_1109_JPROC_2022_3171921
crossref_primary_10_3390_photonics11090830
crossref_primary_10_1109_ACCESS_2021_3125461
crossref_primary_10_1109_MWC_001_1900308
crossref_primary_10_1109_ACCESS_2025_3590964
crossref_primary_10_1109_JPROC_2021_3061778
crossref_primary_10_1109_TVT_2023_3241928
crossref_primary_10_1007_s12243_024_01037_1
crossref_primary_10_1109_MWC_001_2000256
crossref_primary_10_1109_LCOMM_2022_3146583
crossref_primary_10_1109_LWC_2022_3147250
crossref_primary_10_1109_OJCOMS_2025_3594049
crossref_primary_10_1109_TSP_2022_3192584
crossref_primary_10_1109_TIV_2022_3168159
crossref_primary_10_1038_s41467_024_46916_2
crossref_primary_10_1016_j_comcom_2024_01_020
crossref_primary_10_1109_LCOMM_2020_2965532
crossref_primary_10_1109_LSP_2022_3181532
crossref_primary_10_1109_TVT_2020_3005402
crossref_primary_10_1016_j_phycom_2025_102800
crossref_primary_10_1109_TVT_2022_3222917
crossref_primary_10_1109_TWC_2022_3172885
crossref_primary_10_1109_MWC_102_2100363
crossref_primary_10_1109_JSAC_2023_3287612
crossref_primary_10_1109_TAP_2023_3298134
crossref_primary_10_1109_COMST_2021_3066905
crossref_primary_10_1109_COMST_2023_3309529
crossref_primary_10_1038_s41598_025_03468_9
crossref_primary_10_1155_2024_2960447
crossref_primary_10_1109_TCCN_2023_3333351
crossref_primary_10_1109_TCOMM_2021_3127924
crossref_primary_10_3390_electronics13091689
crossref_primary_10_3390_electronics13091688
crossref_primary_10_1109_TWC_2023_3296076
crossref_primary_10_1109_TGCN_2021_3120834
crossref_primary_10_1109_TCCN_2020_3023139
crossref_primary_10_1109_TWC_2023_3277334
crossref_primary_10_1007_s11831_024_10118_2
crossref_primary_10_1002_adfm_202005310
crossref_primary_10_3390_electronics11010018
crossref_primary_10_1109_TAP_2024_3349685
crossref_primary_10_1109_JPROC_2024_3496775
crossref_primary_10_1109_LAWP_2020_3025333
crossref_primary_10_1109_TCCN_2021_3056707
crossref_primary_10_4018_IJBDCN_339889
crossref_primary_10_1109_TCOMM_2020_3029617
crossref_primary_10_1038_s41467_025_56209_x
crossref_primary_10_1109_TCOMM_2020_3013030
crossref_primary_10_1109_TWC_2024_3497599
crossref_primary_10_1109_LSP_2022_3224681
crossref_primary_10_1109_JSAC_2022_3180787
crossref_primary_10_3390_sym12040676
crossref_primary_10_1109_TAP_2021_3130167
crossref_primary_10_1186_s43593_022_00013_3
crossref_primary_10_1186_s13638_023_02317_5
crossref_primary_10_1109_JSYST_2023_3296598
crossref_primary_10_1109_TCOMM_2023_3282952
crossref_primary_10_1109_LWC_2021_3050826
crossref_primary_10_1109_ACCESS_2024_3355140
crossref_primary_10_1109_JSAC_2022_3155548
crossref_primary_10_3390_info16010031
crossref_primary_10_1109_JIOT_2025_3526765
crossref_primary_10_1109_TCOMM_2020_3047098
crossref_primary_10_1109_TAP_2024_3430108
crossref_primary_10_1109_TAP_2022_3184540
crossref_primary_10_1109_TWC_2023_3309323
crossref_primary_10_1109_JIOT_2023_3289772
crossref_primary_10_1051_jnwpu_20213920454
crossref_primary_10_1109_LWC_2020_2980225
crossref_primary_10_1038_s41928_019_0355_6
crossref_primary_10_1109_ACCESS_2022_3206831
crossref_primary_10_1109_TWC_2023_3262272
crossref_primary_10_1109_TAP_2021_3111665
crossref_primary_10_1016_j_phycom_2024_102572
crossref_primary_10_1002_ett_70164
crossref_primary_10_1109_TWC_2024_3480984
crossref_primary_10_1109_TAP_2024_3426072
crossref_primary_10_1155_2021_6673807
crossref_primary_10_1109_LAWP_2022_3232814
crossref_primary_10_1109_TMTT_2024_3506218
crossref_primary_10_1109_LCOMM_2022_3206392
crossref_primary_10_1007_s42452_025_07105_y
crossref_primary_10_1109_LWC_2020_2991116
crossref_primary_10_1109_LWC_2020_3000892
crossref_primary_10_1109_TCCN_2021_3133839
crossref_primary_10_1109_TSP_2021_3135603
crossref_primary_10_1109_TVT_2021_3136676
crossref_primary_10_1109_JETCAS_2020_2970077
crossref_primary_10_1109_JSAC_2025_3543523
crossref_primary_10_1109_TCOMM_2022_3193152
crossref_primary_10_1109_TVT_2023_3323659
crossref_primary_10_1109_TCOMM_2021_3066587
crossref_primary_10_26636_jtit_2023_171723
crossref_primary_10_1109_TWC_2022_3196834
crossref_primary_10_1109_TWC_2023_3297396
crossref_primary_10_1016_j_cosrev_2024_100668
crossref_primary_10_1007_s11432_022_3471_9
crossref_primary_10_1109_TCOMM_2023_3293859
crossref_primary_10_1109_COMST_2019_2962526
crossref_primary_10_1109_JSAC_2025_3531533
crossref_primary_10_1109_TWC_2024_3358291
crossref_primary_10_1109_LCOMM_2020_2980510
crossref_primary_10_1109_LWC_2023_3275204
crossref_primary_10_1109_TVT_2022_3172229
crossref_primary_10_1109_TCOMM_2021_3100621
crossref_primary_10_1002_lpor_202400062
crossref_primary_10_1109_JIOT_2021_3108894
crossref_primary_10_1109_TCOMM_2025_3525568
crossref_primary_10_1109_TIFS_2023_3318941
crossref_primary_10_1109_COMST_2022_3203578
crossref_primary_10_1109_TCOMM_2024_3484937
crossref_primary_10_3390_app13137407
crossref_primary_10_1002_inf2_12168
crossref_primary_10_1109_JSTSP_2021_3089423
crossref_primary_10_3390_s21082765
crossref_primary_10_1063_5_0271341
crossref_primary_10_1109_TWC_2024_3413022
crossref_primary_10_1016_j_jksuci_2022_07_019
crossref_primary_10_1109_TWC_2022_3151702
crossref_primary_10_1109_TCOMM_2023_3235915
crossref_primary_10_1186_s13634_021_00781_z
crossref_primary_10_1109_TWC_2020_3047632
crossref_primary_10_1109_TCOMM_2022_3159658
crossref_primary_10_1109_TCOMM_2019_2924010
crossref_primary_10_1109_TMC_2024_3405076
crossref_primary_10_1109_OJCOMS_2025_3572723
crossref_primary_10_1109_TWC_2022_3232072
crossref_primary_10_3390_electronics11091411
crossref_primary_10_1109_MWC_001_2100204
crossref_primary_10_1109_TCOMM_2022_3146344
crossref_primary_10_1109_TCOMM_2023_3321909
crossref_primary_10_12677_MOS_2023_123284
crossref_primary_10_1109_MWC_101_2100233
crossref_primary_10_1109_MWC_001_2200192
crossref_primary_10_1109_LWC_2021_3082841
crossref_primary_10_1109_TGCN_2023_3325385
crossref_primary_10_1109_JIOT_2023_3279357
crossref_primary_10_1109_TVT_2021_3102212
crossref_primary_10_1109_TVT_2022_3224926
crossref_primary_10_1109_LWC_2021_3107319
crossref_primary_10_1109_TWC_2020_3004330
crossref_primary_10_1109_LWC_2021_3067474
crossref_primary_10_1109_TSP_2023_3300633
crossref_primary_10_1109_JSAC_2021_3088634
crossref_primary_10_1109_TWC_2022_3147825
crossref_primary_10_1109_TCOMM_2020_2971486
crossref_primary_10_1109_LCOMM_2020_3042344
crossref_primary_10_1109_LWC_2020_3012664
crossref_primary_10_1109_JSEN_2024_3459690
crossref_primary_10_1109_ACCESS_2022_3226264
crossref_primary_10_1109_TCOMM_2021_3129926
crossref_primary_10_1016_j_comcom_2020_07_016
crossref_primary_10_1109_TCOMM_2021_3104878
crossref_primary_10_1007_s11277_023_10837_y
crossref_primary_10_1109_JIOT_2025_3575455
crossref_primary_10_1016_j_icte_2023_07_004
crossref_primary_10_1109_ACCESS_2024_3455998
crossref_primary_10_1109_TVT_2020_3004598
crossref_primary_10_1109_TWC_2022_3188350
crossref_primary_10_1109_LCOMM_2024_3380741
crossref_primary_10_1109_TVT_2022_3168392
crossref_primary_10_1109_LWC_2024_3367028
crossref_primary_10_1109_OJVT_2025_3583545
crossref_primary_10_1109_TVT_2021_3140084
crossref_primary_10_1109_LAWP_2023_3288123
crossref_primary_10_1109_LWC_2020_2990431
crossref_primary_10_1038_s44172_023_00118_8
crossref_primary_10_1007_s11235_025_01310_1
crossref_primary_10_1016_j_dsp_2019_06_007
crossref_primary_10_1109_JPROC_2022_3170498
crossref_primary_10_1109_TIFS_2024_3471185
crossref_primary_10_1109_TWC_2022_3226442
crossref_primary_10_1109_LWC_2020_3034686
crossref_primary_10_1186_s13638_021_01973_9
crossref_primary_10_1016_j_jece_2023_111212
crossref_primary_10_1109_TCOMM_2020_2981458
crossref_primary_10_1109_LCOMM_2022_3226621
crossref_primary_10_1109_MWC_007_00345
crossref_primary_10_1002_adma_202401716
crossref_primary_10_1109_TWC_2022_3176123
crossref_primary_10_3390_telecom3010011
crossref_primary_10_37391_ijeer_130216
crossref_primary_10_1109_ACCESS_2024_3361835
crossref_primary_10_1109_TWC_2021_3112819
crossref_primary_10_1109_TAP_2020_3016479
crossref_primary_10_1109_JPROC_2022_3170247
crossref_primary_10_1109_LWC_2020_3000490
crossref_primary_10_1109_TCOMM_2022_3220319
crossref_primary_10_1109_TCOMM_2021_3102640
crossref_primary_10_1109_ACCESS_2021_3124812
crossref_primary_10_1109_TCOMM_2021_3063236
crossref_primary_10_1109_ACCESS_2024_3467702
crossref_primary_10_1038_s41566_025_01642_z
crossref_primary_10_1109_LCOMM_2022_3152320
crossref_primary_10_1109_TWC_2020_3048780
crossref_primary_10_1002_advs_202201458
crossref_primary_10_1109_TWC_2024_3428338
crossref_primary_10_1109_JRFID_2020_3031380
crossref_primary_10_1109_JSEN_2024_3478366
crossref_primary_10_1109_TIFS_2020_3038994
crossref_primary_10_1109_TWC_2020_3006915
crossref_primary_10_1631_FITEE_2200666
crossref_primary_10_1109_JPROC_2022_3195536
crossref_primary_10_1109_TCOMM_2021_3073028
crossref_primary_10_1109_LCOMM_2021_3079322
crossref_primary_10_1109_ACCESS_2022_3157651
crossref_primary_10_1109_TCOMM_2020_3020838
crossref_primary_10_1109_TWC_2022_3154372
crossref_primary_10_1109_ACCESS_2019_2933355
crossref_primary_10_1109_ACCESS_2020_3047450
crossref_primary_10_1109_ACCESS_2025_3525562
crossref_primary_10_1109_TAP_2022_3233714
crossref_primary_10_1109_JSAC_2022_3227032
crossref_primary_10_1109_TCOMM_2021_3062376
crossref_primary_10_1109_TWC_2022_3144340
crossref_primary_10_1109_JSAC_2023_3345399
crossref_primary_10_1049_cmu2_12873
crossref_primary_10_1109_TVT_2021_3126374
crossref_primary_10_1007_s13369_023_08603_0
crossref_primary_10_1109_JIOT_2021_3068492
crossref_primary_10_1109_TMC_2022_3200998
crossref_primary_10_1109_TCCN_2021_3058670
crossref_primary_10_1109_LCOMM_2021_3098750
crossref_primary_10_1109_LCOMM_2021_3058063
crossref_primary_10_1109_TCOMM_2021_3097755
crossref_primary_10_1109_TCOMM_2020_3018179
crossref_primary_10_1109_TWC_2021_3081447
crossref_primary_10_1007_s11432_020_3261_5
crossref_primary_10_1109_TWC_2022_3152499
crossref_primary_10_1109_ACCESS_2022_3220682
crossref_primary_10_1109_JSAC_2020_3041401
crossref_primary_10_1109_TWC_2023_3271365
crossref_primary_10_1109_JSAC_2020_3018823
crossref_primary_10_1109_MWC_021_2000376
crossref_primary_10_1109_JIOT_2023_3272674
crossref_primary_10_1109_TWC_2020_3044302
crossref_primary_10_1109_JIOT_2023_3331737
crossref_primary_10_1109_JSAC_2020_3018829
crossref_primary_10_3390_s22020681
crossref_primary_10_1109_TAP_2025_3529203
crossref_primary_10_1109_JIOT_2023_3321931
crossref_primary_10_1109_TWC_2022_3181822
crossref_primary_10_1109_TVT_2022_3187050
crossref_primary_10_1109_ACCESS_2023_3339644
crossref_primary_10_1109_TVT_2022_3203818
crossref_primary_10_1109_TWC_2022_3225969
crossref_primary_10_1109_LWC_2021_3087495
crossref_primary_10_1109_TVT_2024_3405947
crossref_primary_10_1109_LCOMM_2021_3119522
crossref_primary_10_1109_TCOMM_2021_3128544
crossref_primary_10_1109_JIOT_2022_3142206
crossref_primary_10_1109_LCOMM_2021_3097208
crossref_primary_10_1109_TWC_2020_3021434
crossref_primary_10_1109_TSP_2021_3049652
crossref_primary_10_1109_TCCN_2021_3058683
crossref_primary_10_1109_TVT_2022_3187066
crossref_primary_10_1109_TCOMM_2024_3454704
crossref_primary_10_1109_ACCESS_2022_3219871
crossref_primary_10_1109_TSP_2023_3265887
crossref_primary_10_1109_TVT_2024_3402648
crossref_primary_10_1049_cmu2_12432
crossref_primary_10_1109_JSAC_2020_3018808
crossref_primary_10_1109_TMC_2020_3044603
crossref_primary_10_1109_TIFS_2025_3583242
crossref_primary_10_1515_nanoph_2023_0869
crossref_primary_10_3390_e24081078
crossref_primary_10_1109_TWC_2022_3194070
crossref_primary_10_1109_TCCN_2021_3070587
crossref_primary_10_1109_TAP_2023_3281073
crossref_primary_10_1109_TCOMM_2024_3362973
crossref_primary_10_1109_TWC_2022_3144403
crossref_primary_10_1049_smc2_70003
crossref_primary_10_1109_JIOT_2022_3231356
crossref_primary_10_1109_COMST_2023_3347172
crossref_primary_10_1109_TAP_2023_3274300
crossref_primary_10_1109_TVT_2022_3147859
crossref_primary_10_1109_TWC_2021_3066263
crossref_primary_10_1109_LSP_2020_2998357
crossref_primary_10_1109_TWC_2022_3187773
crossref_primary_10_1109_LCOMM_2022_3225585
crossref_primary_10_1109_TVT_2021_3072643
crossref_primary_10_1109_TCOMM_2021_3070043
crossref_primary_10_1109_TVT_2024_3414850
crossref_primary_10_1016_j_comnet_2023_109581
crossref_primary_10_1109_TCOMM_2020_3034259
crossref_primary_10_3390_fi15080249
crossref_primary_10_1109_TWC_2022_3153792
crossref_primary_10_1109_TWC_2023_3257053
crossref_primary_10_1109_TIT_2023_3332425
crossref_primary_10_1186_s13638_024_02384_2
crossref_primary_10_1109_JMMCT_2021_3121300
crossref_primary_10_1109_LWC_2020_3040607
crossref_primary_10_1088_2515_7647_ad1a3b
crossref_primary_10_1109_LWC_2020_3008910
crossref_primary_10_1109_JSTSP_2022_3177925
crossref_primary_10_1007_s11277_023_10467_4
crossref_primary_10_1109_LCOMM_2020_3036534
crossref_primary_10_1109_TCCN_2020_2992604
crossref_primary_10_1109_TWC_2021_3081419
crossref_primary_10_1109_ACCESS_2023_3261547
crossref_primary_10_3390_app14072866
crossref_primary_10_1109_LCOMM_2023_3265703
crossref_primary_10_1017_S1759078723000466
crossref_primary_10_1109_TCOMM_2024_3350970
crossref_primary_10_1016_j_sysarc_2021_102180
crossref_primary_10_1109_ACCESS_2024_3381967
crossref_primary_10_3390_urbansci9070249
crossref_primary_10_1109_LWC_2023_3289985
crossref_primary_10_1109_COMST_2020_3004197
crossref_primary_10_1109_TVT_2021_3095943
crossref_primary_10_1109_TVT_2024_3471869
crossref_primary_10_1109_LCOMM_2020_2993961
crossref_primary_10_1016_j_sigpro_2024_109710
crossref_primary_10_1109_TWC_2022_3212466
crossref_primary_10_1109_TVT_2022_3143841
crossref_primary_10_1109_LCOMM_2020_3023056
crossref_primary_10_1109_TWC_2021_3107520
crossref_primary_10_1109_LCOMM_2023_3278683
crossref_primary_10_1109_TGCN_2021_3058657
crossref_primary_10_1109_TWC_2021_3052053
crossref_primary_10_1007_s11227_024_06819_x
crossref_primary_10_1109_ACCESS_2024_3480275
crossref_primary_10_1109_TIFS_2021_3138612
crossref_primary_10_1016_j_phycom_2023_102074
crossref_primary_10_1109_TCOMM_2022_3198117
crossref_primary_10_1016_j_jfranklin_2020_06_030
crossref_primary_10_1109_TVT_2021_3055237
crossref_primary_10_1016_j_dcan_2025_01_003
crossref_primary_10_1109_TAP_2022_3164169
crossref_primary_10_1109_TWC_2020_3042977
crossref_primary_10_1002_adom_202000783
crossref_primary_10_1109_LWC_2020_3016592
crossref_primary_10_3390_jsan9010015
crossref_primary_10_1109_LWC_2020_3010809
crossref_primary_10_1109_TMTT_2023_3311952
crossref_primary_10_1093_nsr_nwad140
crossref_primary_10_1109_MWC_001_2000162
crossref_primary_10_1007_s11235_023_01024_2
crossref_primary_10_1109_TMC_2021_3114167
crossref_primary_10_1109_TVT_2021_3090255
crossref_primary_10_1016_j_vehcom_2024_100859
crossref_primary_10_1109_JPROC_2022_3169917
crossref_primary_10_1109_JPROC_2022_3174030
crossref_primary_10_1109_LCOMM_2022_3173614
crossref_primary_10_1109_TCCN_2021_3064973
crossref_primary_10_1109_MCOM_001_2001117
crossref_primary_10_1109_TGCN_2024_3401192
crossref_primary_10_1109_ACCESS_2020_3019590
crossref_primary_10_1109_TCOMM_2022_3207804
crossref_primary_10_1155_2021_9614520
crossref_primary_10_1109_ACCESS_2020_2995435
crossref_primary_10_1109_JIOT_2023_3242864
crossref_primary_10_1109_TWC_2021_3059945
crossref_primary_10_1109_LCOMM_2020_2969870
crossref_primary_10_1109_ACCESS_2021_3115596
crossref_primary_10_1109_TVT_2022_3233066
crossref_primary_10_1016_j_phycom_2023_102056
crossref_primary_10_1109_JPROC_2022_3187339
crossref_primary_10_1038_s41467_023_39818_2
crossref_primary_10_1109_LWC_2019_2960779
crossref_primary_10_7717_peerj_cs_2852
crossref_primary_10_1109_TVT_2024_3438692
crossref_primary_10_1109_JSAC_2022_3145908
crossref_primary_10_1007_s11432_019_2789_y
crossref_primary_10_1007_s12243_023_00955_w
crossref_primary_10_1109_JPROC_2021_3120888
crossref_primary_10_1109_TAP_2024_3407964
crossref_primary_10_3390_drones9060437
crossref_primary_10_1109_TWC_2021_3087354
crossref_primary_10_1109_COMST_2021_3104581
crossref_primary_10_1109_TCOMM_2020_3032695
crossref_primary_10_1109_MNET_010_2100740
crossref_primary_10_1109_TCOMM_2024_3508257
crossref_primary_10_1109_TCOMM_2021_3139020
crossref_primary_10_1109_TCOMM_2022_3178762
crossref_primary_10_1109_MCOM_001_2001146
crossref_primary_10_1109_COMST_2022_3225859
crossref_primary_10_1109_TAP_2022_3164125
crossref_primary_10_1109_TITS_2024_3374872
crossref_primary_10_1109_MVT_2019_2921627
crossref_primary_10_1109_MWC_019_2200583
crossref_primary_10_1109_TAP_2021_3076194
crossref_primary_10_1109_JSAC_2020_3007056
crossref_primary_10_1109_JSAC_2020_3007055
crossref_primary_10_1109_TAP_2024_3476926
crossref_primary_10_1109_LCOMM_2020_2978394
crossref_primary_10_3390_mi14061259
crossref_primary_10_1364_AO_502663
crossref_primary_10_1109_JSAC_2020_3007048
crossref_primary_10_1109_LWC_2019_2961656
crossref_primary_10_1002_adfm_202101748
crossref_primary_10_1109_TCOMM_2019_2958916
crossref_primary_10_1109_TWC_2021_3064024
crossref_primary_10_1109_TCOMM_2023_3282592
crossref_primary_10_1109_JSAC_2020_3007060
crossref_primary_10_1109_TCOMM_2020_3033575
crossref_primary_10_1109_JSAC_2020_3007059
crossref_primary_10_1038_s41598_021_99722_x
crossref_primary_10_1109_MSP_2023_3279986
crossref_primary_10_1109_JSAC_2021_3078492
crossref_primary_10_1109_TVT_2022_3182379
crossref_primary_10_1109_TWC_2022_3191046
crossref_primary_10_1109_TWC_2025_3562853
crossref_primary_10_1049_cmu2_12194
crossref_primary_10_1109_TWC_2020_3022297
crossref_primary_10_1109_TWC_2023_3321133
crossref_primary_10_1109_TWC_2021_3108458
crossref_primary_10_1109_TVT_2024_3442574
crossref_primary_10_1109_TWC_2023_3255406
crossref_primary_10_1109_JSAC_2020_3007044
crossref_primary_10_1109_JSAC_2020_3007043
crossref_primary_10_1109_JSAC_2020_3007041
crossref_primary_10_1109_MAP_2022_3149187
crossref_primary_10_1109_ACCESS_2020_3000424
crossref_primary_10_1109_TVT_2023_3243489
crossref_primary_10_1109_TWC_2024_3351755
crossref_primary_10_1049_sil2_12209
crossref_primary_10_1109_JSAC_2020_3007039
crossref_primary_10_1109_JSAC_2020_3007038
crossref_primary_10_1109_TWC_2021_3136925
crossref_primary_10_1109_JSAC_2020_3007036
crossref_primary_10_1109_JSAC_2020_3007035
crossref_primary_10_1002_dac_6024
crossref_primary_10_1109_TWC_2023_3296191
crossref_primary_10_1109_ACCESS_2022_3202300
crossref_primary_10_1109_TSP_2022_3158026
crossref_primary_10_1109_TSP_2022_3158024
crossref_primary_10_1109_TWC_2023_3253699
crossref_primary_10_1109_JSAC_2023_3322805
crossref_primary_10_1109_LWC_2023_3328456
crossref_primary_10_1109_TVT_2021_3121698
crossref_primary_10_1109_TAP_2022_3225593
crossref_primary_10_1109_TCOMM_2022_3161688
crossref_primary_10_1109_JSAC_2023_3322801
crossref_primary_10_1109_LWC_2020_2994930
crossref_primary_10_1109_TAP_2024_3418517
crossref_primary_10_1109_LWC_2021_3062992
crossref_primary_10_1002_dac_6058
crossref_primary_10_1109_MAP_2024_3389488
crossref_primary_10_1109_TWC_2020_2994455
crossref_primary_10_1186_s13638_023_02295_8
crossref_primary_10_1016_j_procs_2021_09_018
crossref_primary_10_1109_JPROC_2024_3397910
crossref_primary_10_1109_TCOMM_2022_3175833
crossref_primary_10_1109_TVT_2021_3050046
crossref_primary_10_3390_electronics11193076
crossref_primary_10_1109_LAWP_2023_3291868
crossref_primary_10_1109_LWC_2024_3400127
crossref_primary_10_1155_2021_9989098
crossref_primary_10_1109_TWC_2021_3095174
crossref_primary_10_1109_TAP_2023_3297193
crossref_primary_10_1109_MNET_011_1900579
crossref_primary_10_1109_OJCOMS_2025_3581735
crossref_primary_10_1109_TCOMM_2020_3028875
crossref_primary_10_1109_TWC_2021_3078853
crossref_primary_10_1109_TVT_2021_3073158
crossref_primary_10_1109_TVT_2020_3024005
crossref_primary_10_5515_KJKIEES_2025_36_8_737
crossref_primary_10_1109_JSTSP_2024_3417356
crossref_primary_10_1109_ACCESS_2023_3273297
crossref_primary_10_1109_JPROC_2022_3169771
crossref_primary_10_1109_TWC_2021_3104059
crossref_primary_10_1109_ACCESS_2023_3240775
crossref_primary_10_1109_JIOT_2023_3299210
crossref_primary_10_1038_s41467_020_17808_y
crossref_primary_10_1109_TWC_2023_3265420
crossref_primary_10_1109_TCOMM_2022_3182369
crossref_primary_10_1109_TWC_2023_3310664
crossref_primary_10_1109_COMST_2022_3155305
crossref_primary_10_1109_ACCESS_2021_3120725
crossref_primary_10_1109_TCOMM_2022_3162580
crossref_primary_10_1109_TAP_2025_3570549
crossref_primary_10_1109_JSTSP_2022_3195671
crossref_primary_10_1109_TCCN_2024_3414395
crossref_primary_10_1109_TWC_2022_3203413
crossref_primary_10_1109_JSAC_2020_3000814
crossref_primary_10_1002_ett_70010
crossref_primary_10_1002_admt_202400006
crossref_primary_10_1109_JSAC_2022_3143230
crossref_primary_10_1109_LCOMM_2020_2974196
crossref_primary_10_1109_TWC_2020_3029743
crossref_primary_10_29026_oea_2022_210147
crossref_primary_10_1109_LWC_2020_2989134
crossref_primary_10_1109_TCOMM_2021_3124958
crossref_primary_10_1109_TCOMM_2023_3303957
crossref_primary_10_1109_JSAC_2020_3000811
crossref_primary_10_1002_lpor_202500057
crossref_primary_10_1109_JSAC_2020_3000813
crossref_primary_10_26636_jtit_2024_1_1326
crossref_primary_10_1109_TAP_2023_3301654
crossref_primary_10_1109_TCCN_2024_3384495
crossref_primary_10_1109_LWC_2021_3058637
crossref_primary_10_1109_JIOT_2021_3089500
crossref_primary_10_3390_s23020984
crossref_primary_10_1109_JSAC_2020_3000826
crossref_primary_10_1109_TMC_2024_3371534
crossref_primary_10_1109_JSAC_2020_3007211
crossref_primary_10_1109_TCOMM_2020_3026654
crossref_primary_10_1109_TCOMM_2024_3361554
crossref_primary_10_1109_TCOMM_2024_3383107
crossref_primary_10_1109_TCOMM_2023_3320700
crossref_primary_10_1007_s11432_022_3626_5
crossref_primary_10_1109_LWC_2020_3031084
crossref_primary_10_4218_etrij_2023_0418
crossref_primary_10_1007_s11235_022_00898_y
crossref_primary_10_1109_TCCN_2021_3114184
crossref_primary_10_1109_TCOMM_2025_3541108
crossref_primary_10_1109_OJCOMS_2025_3567256
crossref_primary_10_1109_TVT_2021_3102315
crossref_primary_10_1109_TAP_2024_3491420
crossref_primary_10_1109_JSAC_2020_3000807
crossref_primary_10_1109_TVT_2021_3049257
crossref_primary_10_1109_ACCESS_2020_2992613
crossref_primary_10_1109_TWC_2020_3024887
crossref_primary_10_1186_s13638_021_02048_5
crossref_primary_10_1109_LWC_2020_3021058
crossref_primary_10_1109_JIOT_2023_3278384
crossref_primary_10_1109_TCCN_2024_3417625
crossref_primary_10_1109_LWC_2021_3139043
crossref_primary_10_1109_JSAC_2020_3000802
crossref_primary_10_1109_TCOMM_2021_3087794
crossref_primary_10_1109_TWC_2024_3439774
crossref_primary_10_3390_app15063252
crossref_primary_10_1109_ACCESS_2023_3236909
crossref_primary_10_1063_5_0076022
crossref_primary_10_1109_LWC_2020_2987798
crossref_primary_10_1109_TSP_2022_3229945
crossref_primary_10_1002_adom_202203114
crossref_primary_10_1109_TCCN_2021_3068414
crossref_primary_10_1109_JIOT_2024_3427425
crossref_primary_10_1109_TWC_2022_3154041
crossref_primary_10_1109_COMST_2021_3077737
crossref_primary_10_1109_TWC_2021_3070064
crossref_primary_10_1109_JIOT_2022_3222039
crossref_primary_10_1109_TVT_2022_3229494
crossref_primary_10_3390_app132111750
crossref_primary_10_1109_TAP_2022_3177284
crossref_primary_10_1109_TAP_2024_3375659
crossref_primary_10_1109_TCOMM_2020_3035391
crossref_primary_10_1109_TCOMM_2024_3361549
crossref_primary_10_1109_TWC_2021_3122959
crossref_primary_10_1109_JSTSP_2023_3304846
crossref_primary_10_1109_TWC_2020_3023578
crossref_primary_10_1109_TCOMM_2022_3220692
crossref_primary_10_1109_ACCESS_2022_3217204
crossref_primary_10_1109_LWC_2020_3044178
crossref_primary_10_1109_TVT_2024_3414933
crossref_primary_10_1109_TCOMM_2020_3008402
crossref_primary_10_1109_TVT_2023_3287250
crossref_primary_10_1155_2023_9970205
crossref_primary_10_1109_LWC_2022_3165427
crossref_primary_10_1109_LCOMM_2020_3035751
crossref_primary_10_1109_TWC_2023_3239371
crossref_primary_10_1109_LSP_2021_3071981
crossref_primary_10_1109_JPROC_2020_3040589
crossref_primary_10_1109_TCCN_2022_3212427
crossref_primary_10_1109_TAP_2025_3562760
crossref_primary_10_1109_JSTSP_2022_3172788
crossref_primary_10_1109_ACCESS_2022_3174082
crossref_primary_10_1109_MAP_2022_3169396
crossref_primary_10_1109_TWC_2021_3087912
crossref_primary_10_1109_MAP_2022_3169395
crossref_primary_10_1103_PhysRevApplied_17_024027
crossref_primary_10_1109_TWC_2021_3071332
crossref_primary_10_1109_ACCESS_2022_3209823
crossref_primary_10_1109_TVT_2022_3172763
crossref_primary_10_1109_TAP_2024_3451162
crossref_primary_10_1109_MVT_2021_3136832
crossref_primary_10_1109_JIOT_2023_3245288
crossref_primary_10_1109_TGCN_2021_3100009
crossref_primary_10_1109_ACCESS_2022_3192971
crossref_primary_10_1109_TCOMM_2021_3111022
crossref_primary_10_1109_MCOM_001_201097
crossref_primary_10_1109_MWC_005_2100401
crossref_primary_10_1109_LWC_2020_3003400
crossref_primary_10_1109_TAP_2022_3149660
crossref_primary_10_1109_TWC_2021_3073746
crossref_primary_10_1109_TCOMM_2020_3040761
crossref_primary_10_1109_LWC_2019_2943559
crossref_primary_10_1109_JPROC_2023_3286172
crossref_primary_10_1016_j_aeue_2025_155849
crossref_primary_10_1109_LWC_2024_3378455
crossref_primary_10_1109_TCOMM_2022_3223706
crossref_primary_10_1109_TSP_2024_3413017
crossref_primary_10_1109_TVT_2022_3221720
crossref_primary_10_1109_TAP_2019_2935131
crossref_primary_10_1109_LWC_2020_3035661
crossref_primary_10_3390_e24010099
crossref_primary_10_1109_TWC_2022_3188240
crossref_primary_10_1007_s11276_023_03326_4
crossref_primary_10_1109_MSP_2021_3130549
crossref_primary_10_1109_ACCESS_2021_3058151
crossref_primary_10_3390_e25050728
crossref_primary_10_1109_TWC_2022_3178445
crossref_primary_10_1002_advs_202309826
crossref_primary_10_1109_TCOMM_2023_3242365
crossref_primary_10_1109_ACCESS_2020_2981745
crossref_primary_10_1109_LWC_2020_3024781
crossref_primary_10_1109_TSIPN_2023_3239652
crossref_primary_10_1109_TWC_2022_3187156
crossref_primary_10_1109_TWC_2021_3070014
crossref_primary_10_1109_JPROC_2024_3449807
Cites_doi 10.1109/WCNC.2013.6555350
10.1109/TAP.2017.2772022
10.1145/3152434.3152456
10.1109/ACCESS.2017.2737528
10.1109/TWC.2017.2773058
10.1109/EuCAP.2012.6206517
10.1103/PhysRevLett.90.014301
10.1109/ISWCS.2015.7454307
10.1109/MSP.2018.2848361
10.1364/OE.26.033732
10.1109/MAP.2012.6230714
10.1109/MCOM.2018.1601068
10.1109/MNET.2018.1700096
10.1038/nmat4338
10.1109/TWC.2016.2574852
10.1109/ACCESS.2017.2693267
10.1109/JSAC.2008.080813
10.1103/PhysRevB.87.161110
10.1049/iet-com.2010.0544
10.1109/TWC.2013.100113.130220
10.1109/ISCAS.2018.8351874
10.1109/TWC.2018.2838597
10.1109/INFOCOM.2018.8485965
10.1109/TCOMM.2017.2731768
10.1002/adom.201500156
10.1109/MCOM.2011.6094024
10.1109/SURV.2013.052213.00000
10.1126/science.1210713
10.1109/WCL.2013.112313.130696
10.1109/TWC.2018.2825351
10.1109/JSAC.2009.090902
10.1109/TWC.2014.2331971
10.2528/PIER15032005
10.1109/GLOCOM.2015.7417557
10.1109/TWC.2014.2332335
10.1109/TCOMM.2017.2767605
10.1561/1300000032
10.1109/TIT.2005.858939
10.1145/3130242.3131494
10.1109/JMMCT.2018.2829871
10.1109/TSP.2018.2795547
10.1109/TWC.2014.2364267
10.1103/PhysRevB.97.035439
10.1109/GLOCOM.2017.8254903
10.1109/TWC.2018.2846734
10.1109/TCOM.1978.1093993
10.1109/INFOCOM.2015.7218450
10.1109/TKDE.2009.191
10.1109/NOCARC.2018.8541148
10.1109/TVT.2015.2442754
10.1364/OE.21.027438
10.1109/MILCOM.2017.8170856
10.1109/TIT.2005.862098
10.1364/OE.22.018881
10.1109/TIT.2009.2025543
10.1002/bltj.20354
10.1109/LWC.2014.2357444
10.1063/1.5035442
10.1109/MCOM.2010.5621983
10.1109/TAP.2018.2793958
10.1109/TCOMM.2015.2456016
10.1109/JSAC.2009.090908
10.1109/ISCAS.2018.8351672
10.1109/MCOM.2016.7432147
10.1109/TWC.2015.2431689
10.1109/18.165447
10.1109/TWC.2015.2498926
10.1088/1367-2630/aacba1
10.1109/ISCAS.2018.8351865
10.1109/TMC.2015.2506583
10.1109/49.895048
10.1002/2015RS005659
10.1109/MCOM.2018.1700659
10.1023/A:1019172312328
10.1109/TWC.2016.2607206
10.1109/LWC.2018.2836438
10.1109/TCOMM.2011.100411.100541
10.1126/science.1242818
10.1109/ICC.2016.7510962
10.1109/INFOCOM.2018.8485924
10.1109/TWC.2018.2850310
10.1021/acs.nanolett.6b00732
10.1126/science.aac9411
10.1109/TCOMM.2015.2477498
10.1109/49.56383
10.1109/TWC.2013.040413.121174
10.1002/j.1538-7305.1948.tb01338.x
10.1109/JSAC.2012.120405
10.1109/TSP.2018.2816577
10.1109/MCOM.2016.7588290
10.1109/ACCESS.2018.2872781
10.1109/TCOMM.2014.2387170
10.1088/1361-6633/aa8732
10.1145/3192336
10.1109/JPROC.2013.2287851
10.1109/26.61388
10.1109/IWAT.2017.7915281
10.1109/TWC.2015.2496273
10.1007/978-3-030-00244-2_6
10.1109/TCOMM.2010.093010.090478
10.1145/3109453.3109469
10.1109/TWC.2018.2797264
10.1016/j.adhoc.2018.11.001
10.1109/TWC.2015.2503391
10.1109/TAP.2015.2423700
ContentType Journal Article
Copyright The Author(s) 2019
EURASIP Journal on Wireless Communications and Networking is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: The Author(s) 2019
– notice: EURASIP Journal on Wireless Communications and Networking is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: licence_http://creativecommons.org/publicdomain/zero
DBID C6C
AAYXX
CITATION
3V.
7SC
7SP
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
1XC
VOOES
DOA
DOI 10.1186/s13638-019-1438-9
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1687-1499
EndPage 20
ExternalDocumentID oai_doaj_org_article_dbc95917d2ad4c38a660d3c2c57418ef
oai:HAL:hal-02395877v1
10_1186_s13638_019_1438_9
GroupedDBID -A0
.4S
.DC
0R~
29G
2WC
3V.
4.4
40G
5GY
5VS
6OB
8FE
8FG
8R4
8R5
AAFWJ
AAJSJ
AAKKN
AAKPC
ABDBF
ABEEZ
ABFTD
ABUWG
ACACY
ACGFS
ACUHS
ACULB
ADBBV
ADDVE
ADINQ
ADMLS
AENEX
AFGXO
AFKRA
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
ARCSS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
C24
C6C
CCPQU
CS3
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBLON
EBS
EDO
EJD
EMK
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
HZ~
I-F
K6V
K7-
KQ8
M0N
M~E
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
Q2X
RHU
RNS
RSV
SEG
SOJ
TUS
U2A
XSB
AASML
AAYXX
CITATION
OVT
7SC
7SP
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
1XC
VOOES
ID FETCH-LOGICAL-c459t-3d89ebd37aa1aab6b998e05fadb3ba80c853bd3e3372dc8658c95af2d3fe05503
IEDL.DBID K7-
ISICitedReferencesCount 913
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000468981000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1687-1499
1687-1472
IngestDate Tue Oct 14 18:54:31 EDT 2025
Sat Nov 15 06:26:27 EST 2025
Sat Oct 11 05:43:55 EDT 2025
Sat Nov 29 01:43:52 EST 2025
Tue Nov 18 22:18:40 EST 2025
Fri Feb 21 02:35:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Reconfigurable intelligent meta-surfaces
6G wireless
Smart radio environments
Environmental AI
Language English
License licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-3d89ebd37aa1aab6b998e05fadb3ba80c853bd3e3372dc8658c95af2d3fe05503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Literature Review-2
ORCID 0000-0003-0772-8793
0000-0002-8494-7562
0000-0002-0043-7742
0000-0002-7087-5377
OpenAccessLink https://www.proquest.com/docview/2229558386?pq-origsite=%requestingapplication%
PQID 2229558386
PQPubID 237293
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_dbc95917d2ad4c38a660d3c2c57418ef
hal_primary_oai_HAL_hal_02395877v1
proquest_journals_2229558386
crossref_primary_10_1186_s13638_019_1438_9
crossref_citationtrail_10_1186_s13638_019_1438_9
springer_journals_10_1186_s13638_019_1438_9
PublicationCentury 2000
PublicationDate 2019-05-23
PublicationDateYYYYMMDD 2019-05-23
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-23
  day: 23
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: New York
PublicationTitle EURASIP journal on wireless communications and networking
PublicationTitleAbbrev J Wireless Com Network
PublicationYear 2019
Publisher Springer International Publishing
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: SpringerOpen
References BaccelliF.BlaszczyszynB.MuhlethalerP.An aloha protocol for multihop mobile wireless networksIEEE Trans. Inf. Theory200652242143622361661282.9400410.1109/TIT.2005.862098
TanX.SunZ.KoutsonikolasD.JornetK. M.Enabling indoor mobile millimeter-Wave Networks Based on Smart Reflect-Arrays2018HonoluluIEEE Conference on Computer Communications10.1109/INFOCOM.2018.8485924
BaccelliF.KleinM.LebourgesM.ZuyevS. A.Stochastic geometry and architecture of communication networksTelecommun. Syst.199771-320922710.1023/A:1019172312328
K. Wu, P. Coquet, Q. J. Wang, P. Genevet, Modelling of free-form conformal metasurfaces. Nat. Commun.9: (2018). Article No. 3494. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6113266/.
AndrewsJ. G.BaccelliF.GantiR. K.A tractable approach to coverage and rate in cellular networksIEEE Trans. Commun.201159113122313410.1109/TCOMM.2011.100411.100541
L. Spada, Metamaterials for Advanced Sensing Platforms. Res. J. Opt. Photon.1(1) (2017). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359273/.
WeberS.AndrewsJ. G.Transmission capacity of wireless networksFound. Trends. Netw.201152-31092811243.6813110.1561/1300000032
E. Bastug, M. Bennis, M. Kountouris, M. Debbah, Cache-enabled small cell networks: modeling and tradeoffs. EURASIP J. Wirel. Commun. Netw.41: (2015). https://jwcn-eurasipjournals.springeropen.com/articles/10.1186/s13638-015-0250-4.
C. Huang, G. C. Alexandropoulos, A. Zappone, M. Debbah, C. Yuen, Energy efficient multi-user MISO communication using low resolution large intelligent surfaces submitted (2018). https://arxiv.org/abs/1809.05397.
O’LoneC. E.DhillonH. S.BuehrerR. M.A statistical characterization of localization performance in wireless networksIEEE Trans. Wirel. Commun.20181795841585610.1109/TWC.2018.2850310
J. Zhao, W. Gong, J. Liu, Spatial stream backscatter using commodity WiFi. ACM MobiSys (2018). https://dl.acm.org/citation.cfm?id=3210240.3210329.
M. Jung, W. Saad, Y. Jang, G. Kong, S. Choi, Performance analysis of large intelligence surfaces (LISs): Asymptotic Data Rate and Channel Hardening Effects submitted (2018). https://arxiv.org/abs/1810.05667v1.
DerodeA.TourinA.de RosnyJ.TanterM.YonS.FinkM.Taking advantage of multiple scattering to communicate with time reversal antennasPhys. Rev. Lett.20039001430110.1103/PhysRevLett.90.014301
AgarwalA.JagannathamA. K.Distributed estimation in homogenous Poisson wireless sensor networksIEEE Wirel. Commun. Lett.201431909310.1109/WCL.2013.112313.130696
AbariO.BharadiaD.DuffieldA.KatabiD.Enabling high-quality untethered virtual reality2017BostonUSENIX Symposium on Networked Systems Design and Implementation10.1145/3130242.3131494
P. Hu, P. Zhang, M. Rostami, D. Ganesan, Braidio: an integrated active-passive radio for mobile devices with asymmetric energy budgets (ACM SIGCOMM, Florianopolis, 2016). https://dl.acm.org/citation.cfm?id=2934902.
BonodN.Large-Scale Dielectric MetasurfacesNat. Mater.20151466466510.1038/nmat4338
DhillonH. S.GantiR. K.BaccelliF.AndrewsJ. G.Modeling and analysis of K-tier downlink heterogeneous cellular networksIEEE J. Sel. Areas Commun.201230355056010.1109/JSAC.2012.120405
N. Kaina, M. Dupre’, G. Lerosey, M. Fink, Shaping complex microwave fields in reverberating media with binary tunable metasurfaces. Sci. Rep.4(Article ID 6693) (2014). https://www.nature.com/articles/srep06693.
TsioliaridouA.LiaskosC.IoannidisS.Towards a Circular Economy via Intelligent Metamaterials2018BarcelonaIEEE International Conference on Computer-Aided Modeling Analysis and Design of Communication Links and Networks
P. del Hougne, M. Fink, G. Lerosey, Optimally diverse communication channels in disordered environments with tuned randomness. Nat. Electron.2(1) (2019). Article ID 36. https://www.nature.com/articles/s41928-018-0190-1.
SaeedT.SkitsasC.KouzapasD.LestasM.SoteriouV.PhilippouA.AbadalS.LiaskosC.PetrouL.GeorgiouJ.PitsillidesA.Fault Adaptive Routing in Metasurface Controller Networks2018FukuokaInternational Workshop on Network on Chip Architectures10.1109/NOCARC.2018.8541148
El-SawyH.HossainE.HaenggiM.Stochastic geometry for modeling, analysis, and design of multi-tier and cognitive cellular wireless networks: a surveyIEEE Commun. Surv. Tutor.2013153996101910.1109/SURV.2013.052213.00000
ClaussenH.Autonomous self-deployment of wireless access networksBell Labs Tech. J.2009141557110.1002/bltj.20354
Zangeneh-NejadFarzadFleuryRomainPerforming mathematical operations using high-index acoustic metamaterialsNew Journal of Physics201820707300110.1088/1367-2630/aacba1
GuptaAbhishek K.AndrewsJeffrey G.HeathRobert W.Macrodiversity in Cellular Networks With Random BlockagesIEEE Transactions on Wireless Communications2018172996101010.1109/TWC.2017.2773058
F. Liu, A. Pitilakis, M. S. Mirmoosa, O. Tsilipakos, X. Wang, A. C. Tasolamprou, S. Abadal, A. Cabellos-Aparicio, E. Alarcon, C. Liaskos, N. V. Kantartzis, M. Kafesaki, E. N. Economou, C. M. Soukoulis, S. Tretyakov, Programmable Metasurfaces: State of the art and Prospects (IEEE International Symposium on Circuits and Systems, Florence, 2018). https://ieeexplore.ieee.org/document/8351817.
SedaghatM. A.BarousisV.MullerR. R.PapadiasC. B.Load modulated arrays: a low-complexity antennaIEEE Commun. Mag.2016543465210.1109/MCOM.2016.7432147
PorsAndersBozhevolnyiSergey I.Plasmonic metasurfaces for efficient phase control in reflectionOptics Express201321222743810.1364/OE.21.027438
N. Wiener, Cybernetics, or Control and Communication in the Animal and the Machine (Hermann & Cie and Cambridge Massachusetts (MIT Press), 1948). ISBN 978-0-262-73009-9. https://ieeexplore.ieee.org/document/1593093.
Di RenzoM.HaasH.GrantP.Spatial modulation for multiple-antenna wireless systems - A SurveyIEEE Commun. Mag.2011491218219110.1109/MCOM.2011.6094024
A. Welkie, L. Shangguan, J. Gummeson, W. Hu, K. Jamieson, Programmable radio environments for smart spaces (ACM Workshop on Hot Topics in Networks, Palo Alto, 2017). https://dl.acm.org/citation.cfm?id=3152456.
HaenggiM.AndrewsJ. G.BaccelliF.DousseO.FranceschettiM.Stochastic geometry and random graphs for the analysis and design of wireless NetworksIEEE J. Sel. Areas Commun.20092771029104610.1109/JSAC.2009.090902
YuN.GenevetP.KatsM. A.AietaF.TetienneJ. -P.CapassoF.GaburroZ.Light propagation with phase discontinuities: generalized laws of reflection and refractionScience2011334605433333710.1126/science.1210713
PopovskiP.TrillingsgaardK. F.SimeoneO.DurisiG.5G wireless network slicing for eMBB, URLLC, and mMTC: A Communication-Theoretic ViewIEEE Access20186557655577910.1109/ACCESS.2018.2872781
AbadalS.LiaskosC.TsioliaridouA.IoannidisS.PitsillidesA.Sole-ParetaJ.AlarconE.Cabellos-AparicioA.Computing and communications for the software-defined metamaterial paradigm: a context analysisIEEE Access201756225623510.1109/ACCESS.2017.2693267
GantiR. K.HaenggiM.Interference and outage in clustered wireless ad hoc networksIEEE Trans. Inf. Theory2009559406740861367.9402610.1109/TIT.2009.2025543
DengN.ZhouW.HaenggiM.The Ginibre point process as a model for wireless networks with repulsionIEEE Trans. Wirel. Commun.201514110712110.1109/TWC.2014.2332335
Y. Li, B. Liang, Z. -M. Gu, X. -Y. Zou, J. -C. Cheng, Reflected wavefront manipulation based on ultrathin planar acoustic Metasurfaces. Nat. Sci. Rep.3: (2013). Article No. 2546.
H. Claussen, Autonomous self-deployment of wireless access networks in an airport environment, autonomic communication, lecture notes in computer science (LNCS). Springer. 3854:, 86–98 (2006). https://pdfs.semanticscholar.org/dad9/8df1687144a6f5666b9091493fb080117707.pdf.
GantiR. K.HaenggiM.Asymptotics and approximation of the SIR distribution in general cellular networksIEEE Trans. Wirel. Commun.20161532130214310.1109/TWC.2015.2498926
BaccelliF.MuhlethalerP.BlaszczyszynB.Stochastic analysis of spatial and opportunistic alohaIEEE J. Sel. Areas Commun.20092771105111910.1109/JSAC.2009.090908
SousaE. S.Interference modeling in a direct-sequence spread spectrum packet radio networkIEEE Trans. Commun.19903891475148210.1109/26.61388
A. Gati, et al., in IEEE Communications Surveys & Tutorials, submitted for journal publication. Key Technologies to Accelerate the ICT Green Evolution: An Operator’s Point of View, (2018). https://arxiv.org/abs/1903.09627.
Q. Wu, R. Zhang, Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming submitted (2018). https://arxiv.org/abs/1810.03961.
V. S. Asadchy, M. Albooyeh, S. N. Tcvetkova, A. Diaz-Rubio, Y. Radi, S. A. Tretyakov, Perfect control of reflection and refraction using spatially dispersive metasurfaces. Phys. Rev. B. 94(7) (2016). https://journals.aps.org/prb/abstract/10.1103/PhysRevB.94.075142.
TasolamprouA. C.MirmoosaM. S.TsilipakosO.PitilakisA.LiuF.AbadalS.Cabellos-AparicioA.AlarconE.LiaskosC.KantartzisN. V.TretyakovS.KafesakiM.EconomouE. N.SoukoulisC. M.Intercell Wireless Communication in Software-Defined Metasurfaces2018FlorenceIEEE International Symposium on Circuits and Systems10.1109/ISCAS.2018.8351865
TsioliaridouN. A.LiaskosC. K.PitsillidesA.IoannidisS. A.A Novel Protocol for Network-Controlled Metasurfaces2017Washington DCACM International Conference on Nanoscale Computing and Communication10.1145/3109453.3109469
BrownT. X.Cellular performance bounds via shotgun cellular systemsIEEE J. Sel. Areas Commun.200018112443245510.1109/49.895048
KongH. -B.FlintI.WangP.NiyatoD.PrivaultN.Fog radio access networks: Ginibre point process modeling and analysisIEEE Trans. Wirel. Commun.20181775564558010.1109/TWC.2018.2846734
A. K. Khandani, Media-based modulation: improving spectral efficiency beyond conventional MIMO (IEEE Communications Theory Workshop, Nafplio, 2016). Available: http://ctw2016.ieee-ctw.org/slides/ctw16_Khandani.pdf.
H. Chu, Q. Li, B. Liu, J. Luo, S. Sun, Z. H. Hang, L. Zhou, Y. Lai, A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials. Nat. Light: Sci. Appl.7: (2018). Article No. 50.
KouvarosP.KouzapasD.PhilippouA.GeorgiouJ.PetrouL.PitsillidesA.Formal verification of a programmable hyp
A. Kalis (1438_CR63) 2008; 26
S. Singh (1438_CR42) 2013; 12
C. E. O’Lone (1438_CR114) 2018; 17
K. Achouri (1438_CR29) 2015; 63
A. K. Khandani (1438_CR61) 2014
Y. Li (1438_CR138) 2015; 63
A. Derode (1438_CR35) 2003; 90
1438_CR121
J. Schloemann (1438_CR113) 2016; 15
1438_CR122
C. Xu (1438_CR149) 2018; 35
N. Dabidian (1438_CR71) 2016; 16
X. Tan (1438_CR11) 2018
P. Popovski (1438_CR86) 2018; 6
A. C. Tasolamprou (1438_CR88) 2018
L. Petrou (1438_CR89) 2018
1438_CR68
X. Tan (1438_CR9) 2016
F. Baccelli (1438_CR108) 2009; 27
A. Narayanan (1438_CR129) 2017
1438_CR62
J. Lee (1438_CR134) 2016; 15
R. K. Ganti (1438_CR103) 2009; 55
1438_CR80
A. Guo (1438_CR136) 2013; 12
H. -B. Kong (1438_CR118) 2018; 17
S. Narayanan (1438_CR37) 2016; 65
E. S. Sousa (1438_CR98) 1992; 38
F. Baccelli (1438_CR99) 1997; 7
M. Di Renzo (1438_CR125) 2015; 14
J. G. Andrews (1438_CR43) 2016; 54
C. Liaskos (1438_CR2) 2018
E. S. Sousa (1438_CR96) 1990; 8
1438_CR115
1438_CR116
M. A. Sedaghat (1438_CR66) 2016; 54
T. Nakanishi (1438_CR22) 2013; 87
T. Bai (1438_CR124) 2015; 14
1438_CR79
1438_CR76
N. Bonod (1438_CR28) 2015; 14
1438_CR75
J. G. Andrews (1438_CR102) 2010; 48
Y. Vahabzadeh (1438_CR155) 2018; 66
C. -S. Choi (1438_CR140) 2018; 66
1438_CR72
S. Hu (1438_CR13) 2018; 66
1438_CR73
J. Kibilda (1438_CR139) 2016; 15
1438_CR92
Abhishek K. Gupta (1438_CR131) 2018; 17
1438_CR146
1438_CR147
1438_CR148
X. Ni (1438_CR77) 2015; 349
M. Haenggi (1438_CR93) 2009; 27
F. Fuschini (1438_CR157) 2015; 50
Christos Liaskos (1438_CR25) 2019; 87
J. G. Andrews (1438_CR47) 2017; 65
S. Weber (1438_CR105) 2010; 58
R. W. Heath Jr. (1438_CR46) 2016; 10
Anders Pors (1438_CR69) 2013; 21
R. K. Ganti (1438_CR143) 2016; 15
1438_CR82
1438_CR85
S. Musa (1438_CR95) 1978; 26
T. Saeed (1438_CR87) 2018
M. Di Renzo (1438_CR145) 2018; 17
P. Kouvaros (1438_CR91) 2018
1438_CR130
J. Lee (1438_CR135) 2018
H. S. Dhillon (1438_CR110) 2012; 30
A. Tsioliaridou (1438_CR26) 2018
Y. Vahabzadeh (1438_CR30) 2018; 3
1438_CR17
P. del Hougne (1438_CR23) 2018; 8
S. Hu (1438_CR53) 2018; 66
1438_CR19
S. P. Weber (1438_CR104) 2005; 51
J. G. Andrews (1438_CR109) 2011; 59
N. Kaina (1438_CR18) 2014; 22
M. Di Renzo (1438_CR127) 2016; 15
1438_CR12
X. Zhang (1438_CR133) 2015
N. A. Tsioliaridou (1438_CR34) 2017
C. Liaskos (1438_CR6) 2018; 56
1438_CR160
1438_CR161
1438_CR4
1438_CR163
1438_CR5
1438_CR3
S. Abadal (1438_CR90) 2018; 56
M. Ding (1438_CR128) 2018; 32
1438_CR1
O. Abari (1438_CR10) 2017
Raphaël Pestourie (1438_CR81) 2018; 26
N. Campbell (1438_CR94) 1909; 15
1438_CR24
1438_CR27
Toshihiro Nakanishi (1438_CR83) 2018; 112
1438_CR21
M. Di Renzo (1438_CR64) 2011; 49
1438_CR20
S. Abadal (1438_CR51) 2017; 5
T. X. Brown (1438_CR101) 2000; 18
S. J. Pan (1438_CR162) 2010; 22
L. Subrt (1438_CR8) 2012; 6
M. Ding (1438_CR126) 2016; 15
A. Guo (1438_CR142) 2015; 63
A. K. Khandani (1438_CR60) 2013
1438_CR150
F. Baccelli (1438_CR132) 2015
Y. Takahashi (1438_CR144) 2018; 7
1438_CR152
1438_CR153
1438_CR154
W. Lu (1438_CR48) 2015; 63
1438_CR156
C. E. Shannon (1438_CR38) 1948; 27
1438_CR158
1438_CR159
1438_CR39
1438_CR36
E. Basar (1438_CR67) 2017; 5
A. Agarwal (1438_CR119) 2014; 3
1438_CR32
L. Y. Hsu (1438_CR78) 2015; 152
G. Pastor (1438_CR120) 2015
1438_CR33
C. Mollen (1438_CR45) 2017
A. Shojaeifard (1438_CR49) 2017; 65
Fei Ding (1438_CR74) 2017; 81
H. Claussen (1438_CR40) 2006
F. Baccelli (1438_CR107) 2006; 52
1438_CR100
G. Lavigne (1438_CR31) 2018; 66
S. Weber (1438_CR106) 2011; 5
D. S. Dong (1438_CR70) 2015; 3
H. Claussen (1438_CR41) 2009; 14
C. L. Holloway (1438_CR16) 2012; 54
H. ElSawy (1438_CR112) 2017; 19
C. Liaskos (1438_CR14) 2018; 61
M. Di Renzo (1438_CR151) 2017
M. Haenggi (1438_CR141) 2014; 3
T. Bai (1438_CR123) 2014; 13
E. S. Sousa (1438_CR97) 1990; 38
M. Di Renzo (1438_CR44) 2018; 17
H. El-Sawy (1438_CR111) 2013; 15
Farzad Zangeneh-Nejad (1438_CR84) 2018; 20
M. Emara (1438_CR117) 2018; 17
L. Subrt (1438_CR7) 2012
1438_CR58
1438_CR57
N. Yu (1438_CR15) 2011; 334
1438_CR59
1438_CR54
N. Deng (1438_CR137) 2015; 14
1438_CR56
1438_CR55
1438_CR50
M. Di Renzo (1438_CR65) 2014; 102
1438_CR52
References_xml – reference: N. Kaina, M. Dupre’, G. Lerosey, M. Fink, Shaping complex microwave fields in reverberating media with binary tunable metasurfaces. Sci. Rep.4(Article ID 6693) (2014). https://www.nature.com/articles/srep06693.
– reference: Di RenzoM.Spatial Modulation Based on Reconfigurable Antennas - A New Air Interface for the IoT2017BaltimoreIEEE Military Communications Conference10.1109/MILCOM.2017.8170856
– reference: SedaghatM. A.BarousisV.MullerR. R.PapadiasC. B.Load modulated arrays: a low-complexity antennaIEEE Commun. Mag.2016543465210.1109/MCOM.2016.7432147
– reference: MusaS.WasylkiwskyjW.Co-channel interference of spread spectrum systems in a multiple user environmentIEEE Trans. Commun.19782610140514130384.9400210.1109/TCOM.1978.1093993
– reference: HollowayC. L.KuesterE. F.GordonJ. A.O’HarJ.BoothJ.SmithD. R.An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterialsIEEE Antennas Propag. Mag.2012542103510.1109/MAP.2012.6230714
– reference: E. Bastug, M. Bennis, M. Kountouris, M. Debbah, Cache-enabled small cell networks: modeling and tradeoffs. EURASIP J. Wirel. Commun. Netw.41: (2015). https://jwcn-eurasipjournals.springeropen.com/articles/10.1186/s13638-015-0250-4.
– reference: M. Dupre’, P. del Hougne, M. Fink, F. Lemoult, G. Lerosey, Wave-field shaping in cavities: waves trapped in a box with controllable boundaries. Phys. Rev. Lett.115(1) (2015). Article ID 017701. https://www.ncbi.nlm.nih.gov/pubmed/26182120.
– reference: LiaskosC.TsioliaridouA.PitsillidesA.IoannidisS.AkyildizI. F.Using any surface to realize a new paradigm for wireless communicationsCommun. ACM20186111303310.1145/3192336
– reference: BrownT. X.Cellular performance bounds via shotgun cellular systemsIEEE J. Sel. Areas Commun.200018112443245510.1109/49.895048
– reference: D. -H. Phan-Huy, T. Sarrebourse, A. Gati, J. Wiart, M. Helard, Characterization of the confidentiality of a green time reversal communication system: experimental measurement of the spy BER Sink. IEEE Wirel. Commun. Netw. Conf., 4783–4788 (2013).
– reference: AbariO.BharadiaD.DuffieldA.KatabiD.Enabling high-quality untethered virtual reality2017BostonUSENIX Symposium on Networked Systems Design and Implementation10.1145/3130242.3131494
– reference: J. Zhao, W. Gong, J. Liu, Spatial stream backscatter using commodity WiFi. ACM MobiSys (2018). https://dl.acm.org/citation.cfm?id=3210240.3210329.
– reference: N. Wiener, Cybernetics, or Control and Communication in the Animal and the Machine (Hermann & Cie and Cambridge Massachusetts (MIT Press), 1948). ISBN 978-0-262-73009-9. https://ieeexplore.ieee.org/document/1593093.
– reference: PopovskiP.TrillingsgaardK. F.SimeoneO.DurisiG.5G wireless network slicing for eMBB, URLLC, and mMTC: A Communication-Theoretic ViewIEEE Access20186557655577910.1109/ACCESS.2018.2872781
– reference: D. -T. Phan-Huy, Y. Kokar, K. Rachedi, P. Pajusco, A. Mokh, T. Magounaki, R. Masood, C. Buey, P. Ratajczak, N. Malhouroux-Gaffet, J. -M. Conrat, J. C. Prevotet, A. Ourir, J. de Rosny, M. Crussiere, M. Helard, A. Gati, T. Sarrebourse, M. Di Renzo, Single-carrier spatial modulation for the Internet of Things: design and performance evaluation by using real compact and reconfigurable antenna. IEEE Access (2019). accepted, to appear, https://arxiv.org/abs/1812.07514.
– reference: EmaraM.ElsawyH.SorourS.Al-GhadhbanS.AlouiniM. -S.Al-NaffouriT. Y.Optimal caching in 5G networks with opportunistic spectrum accessIEEE Trans. Wirel. Commun.20181784447446110.1109/TWC.2018.2825351
– reference: DingFeiPorsAndersBozhevolnyiSergey IGradient metasurfaces: a review of fundamentals and applicationsReports on Progress in Physics201781202640110.1088/1361-6633/aa8732
– reference: TanX.SunZ.JornetJ. M.PadosD.Increasing Indoor Spectrum Sharing Capacity using Smart Reflect-Array2016Kuala LumpurIEEE International Conference on Communications10.1109/ICC.2016.7510962
– reference: M. Di Renzo, T. T. Lam, A. Zappone, M. Debbah, A tractable closed-form expression of the coverage probability in Poisson cellular networks. IEEE Wirel. Commun. Lett. (2018). to appear, https://10.1109/LWC.2018.2868753 (https://ieeexplore.ieee.org/document/8454463).
– reference: F. Liu, A. Pitilakis, M. S. Mirmoosa, O. Tsilipakos, X. Wang, A. C. Tasolamprou, S. Abadal, A. Cabellos-Aparicio, E. Alarcon, C. Liaskos, N. V. Kantartzis, M. Kafesaki, E. N. Economou, C. M. Soukoulis, S. Tretyakov, Programmable Metasurfaces: State of the art and Prospects (IEEE International Symposium on Circuits and Systems, Florence, 2018). https://ieeexplore.ieee.org/document/8351817.
– reference: VahabzadehY.ChamanaraN.CalozC.Generalized sheet transition condition FDTD simulation of metasurfaceIEEE Trans. Antennas Propag.201866127128010.1109/TAP.2017.2772022
– reference: P. Hu, P. Zhang, M. Rostami, D. Ganesan, Braidio: an integrated active-passive radio for mobile devices with asymmetric energy budgets (ACM SIGCOMM, Florianopolis, 2016). https://dl.acm.org/citation.cfm?id=2934902.
– reference: HaenggiM.AndrewsJ. G.BaccelliF.DousseO.FranceschettiM.Stochastic geometry and random graphs for the analysis and design of wireless NetworksIEEE J. Sel. Areas Commun.20092771029104610.1109/JSAC.2009.090902
– reference: SousaE. S.Performance of a spread spectrum packet radio network link on a Poisson field of interferersIEEE Trans. Inf. Theory1992386174317540775.9402510.1109/18.165447
– reference: ITU-T Y., 3172 architectural framework for machine learning in future networks including IMT-2020, ITU-T SG13 plenary. Victoria Falls (2019). https://www.itu.int/md/T17-SG13-190304-TD-PLEN/en.
– reference: Q. Wu, R. Zhang, Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming submitted (2018). https://arxiv.org/abs/1810.03961.
– reference: J. Y. H. Teo, L. J. Wong, C. Molardi, P. Genevet, Controlling electromagnetic fields at boundaries of arbitrary geometries. Phys. Rev. A. 94: (2016). Article No. 023820.
– reference: C. Huang, A. Zappone, G. C. Alexandropoulos, M. Debbah, C. Yuen, Large intelligent surfaces for energy efficiency in wireless Communication submitted (2018). https://arxiv.org/abs/1810.06934.
– reference: ChoiC. -S.WooJ. O.AndrewsJ. G.An analytical framework for modeling a spatially repulsive cellular networkIEEE Trans. Commun.201866286287410.1109/TCOMM.2017.2767605
– reference: Di RenzoM.HaasH.GhrayebA.HanzoL.Spatial modulation for generalized MIMO: challenges, opportunities and implementationProc. IEEE201410215610310.1109/JPROC.2013.2287851
– reference: SchloemannJ.DhillonH. S.BuehrerR. M.Toward a tractable analysis of localization fundamentals in cellular networksIEEE Trans. Wirel. Commun.20161531768178210.1109/TWC.2015.2496273
– reference: 5GPPP Vision on Software Networks and 5G SN WG (2017). https://5g-ppp.eu/wp-content/uploads/2014/02/5G-PPP_SoftNets_WG_whitepaper_v20.pdf.
– reference: ClaussenH.Autonomous self-deployment of wireless access networksBell Labs Tech. J.2009141557110.1002/bltj.20354
– reference: HuS.RusekF.EdforsO.Beyond massive MIMO: the potential of positioning with large intelligent surfacesIEEE Trans. Sig. Process.20186671761177437978330702097210.1109/TSP.2018.2795547
– reference: A. Zappone, M. Di Renzo, M. Debbah, T. T. Lam, X. Qian, Model-aided wireless artificial intelligence: embedding expert knowledge in deep neural networks towards wireless systems optimization, submitted for journal publication (2018). https://arxiv.org/abs/1808.01672.
– reference: DabidianN.Dutta-GuptaS.KholmanovI.LaiK.LuF.LeeJ.JinM.TrendafilovS.KhanikaevA.FallahazadB.TutucE.BelkinM. A.ShvetsG.Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfacesNano Lett.20161663607361510.1021/acs.nanolett.6b00732
– reference: LiaskosChristosNieShuaiTsioliaridouAgelikiPitsillidesAndreasIoannidisSotirisAkyildizIanA novel communication paradigm for high capacity and security via programmable indoor wireless environments in next generation wireless systemsAd Hoc Networks20198711610.1016/j.adhoc.2018.11.001
– reference: A. Welkie, L. Shangguan, J. Gummeson, W. Hu, K. Jamieson, Programmable radio environments for smart spaces (ACM Workshop on Hot Topics in Networks, Palo Alto, 2017). https://dl.acm.org/citation.cfm?id=3152456.
– reference: A. Diaz-Rubio, V. Asadchy, A. Elsakka, S. Tretyakov, Metasurfaces for Perfect Control of Reflection (International Workshop on Antenna Technology: Small Antennas, Innovative Structures, and Applications, Athens, 2017). https://ieeexplore.ieee.org/document/7915281/.
– reference: J. Park, S. Samarakoon, M. Bennis, M. Debbah, Wireless network intelligence at the edge, submitted (2019). https://arxiv.org/abs/1812.02858.
– reference: O’LoneC. E.DhillonH. S.BuehrerR. M.A statistical characterization of localization performance in wireless networksIEEE Trans. Wirel. Commun.20181795841585610.1109/TWC.2018.2850310
– reference: TsioliaridouN. A.LiaskosC. K.PitsillidesA.IoannidisS. A.A Novel Protocol for Network-Controlled Metasurfaces2017Washington DCACM International Conference on Nanoscale Computing and Communication10.1145/3109453.3109469
– reference: H. Claussen, Autonomous self-deployment of wireless access networks in an airport environment, autonomic communication, lecture notes in computer science (LNCS). Springer. 3854:, 86–98 (2006). https://pdfs.semanticscholar.org/dad9/8df1687144a6f5666b9091493fb080117707.pdf.
– reference: SousaE. S.SilvesterJ. A.Optimum transmission ranges in a direct-sequence spread-spectrum multihop packet radio networkIEEE J. Sel. Areas Commun.1990857627110.1109/49.56383
– reference: DingM.WangP.Lopez-PerezD.MaoG.LinZ.Performance impact of LoS and NLoS transmissions in dense cellular networksIEEE Trans. Wirel. Commun.20161532365238010.1109/TWC.2015.2503391
– reference: H. Chu, Q. Li, B. Liu, J. Luo, S. Sun, Z. H. Hang, L. Zhou, Y. Lai, A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials. Nat. Light: Sci. Appl.7: (2018). Article No. 50.
– reference: V. S. Asadchy, M. Albooyeh, S. N. Tcvetkova, A. Diaz-Rubio, Y. Radi, S. A. Tretyakov, Perfect control of reflection and refraction using spatially dispersive metasurfaces. Phys. Rev. B. 94(7) (2016). https://journals.aps.org/prb/abstract/10.1103/PhysRevB.94.075142.
– reference: SubrtL.PechacP.Intelligent Walls as Autonomous Parts of Smart Indoor EnvironmentsIET Commun.2012681004101010.1049/iet-com.2010.0544
– reference: SinghS.DhillonH. S.AndrewsJ. G.Offloading in heterogeneous networks: modeling, analysis, and design InsightsIEEE Trans, Wirel. Commun.20131252484249710.1109/TWC.2013.040413.121174
– reference: Q. Wu, R. Zhang, Beamforming optimization for intelligent reflecting surface with discrete phase shifts submitted (2018). https://arxiv.org/abs/1810.10718.
– reference: NakanishiToshihiroKitanoMasaoStorage and retrieval of electromagnetic waves using electromagnetically induced transparency in a nonlinear metamaterialApplied Physics Letters20181122020190510.1063/1.5035442
– reference: DerodeA.TourinA.de RosnyJ.TanterM.YonS.FinkM.Taking advantage of multiple scattering to communicate with time reversal antennasPhys. Rev. Lett.20039001430110.1103/PhysRevLett.90.014301
– reference: AbadalS.MestresA.TorrellasJ.AlarconE.Cabellos-AparicioA.Medium access control in wireless network-on-chip: a context analysisIEEE Commun. Mag.201856617217810.1109/MCOM.2018.1601068
– reference: KhandaniA. K.Media-based modulation: converting static Rayleigh fading to AWGN2014HonoluluIEEE International Symposium on Information Theory
– reference: LiaskosC.NieS.TsioliaridouA.PitsillidesA.IoannidisS.AkyildizI. F.A New Wireless Communication Paradigm Through Software-Controlled MetasurfacesIEEE Commun. Mag.201856916216910.1109/MCOM.2018.1700659
– reference: ElSawyH.Sultan-SalemA. K.AlouiniM. -S.WinM. Z.Modeling and analysis of cellular networks using stochastic geometry: a tutorialProc. IEEE2017191167203
– reference: K. Wu, P. Coquet, Q. J. Wang, P. Genevet, Modelling of free-form conformal metasurfaces. Nat. Commun.9: (2018). Article No. 3494. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6113266/.
– reference: V. Sciancalepore, M. Di Renzo, X. Costa-Perez, STORNS: Stochastic radio access network slicing IEEE International Conference on Communications (ICC),(submitted) (2019). https://arxiv.org/abs/1901.05336.
– reference: NakanishiT.OtaniT.TamayamaY.KitanoM.Storage of electromagnetic waves in a metamaterial that mimics electromagnetically induced transparencyPhys. Rev. B20138716111010.1103/PhysRevB.87.161110
– reference: VahabzadehY.ChamanaraN.AchouriK.CalozC.Computational analysis of metasurfacesIEEE J. Multiscale Multiphysics Comput. Tech.20183374910.1109/JMMCT.2018.2829871
– reference: J. Cheng, S. Inampudi, H. Mosallaei, Design of phase gradient coding metasurfaces for broadband Wave modulating. Nature Scientific Reports. 7: (2017). Article No. 12228.
– reference: NarayananA.VeetilS. T.GantiR. K.Coverage analysis in millimeter wave cellular networks with reflections2017SingaporeIEEE Global Communications Conference10.1109/GLOCOM.2017.8254903
– reference: ShannonC. E.A mathematical theory of communicationBell Syst. Tech. J.1948273379423262861154.9430310.1002/j.1538-7305.1948.tb01338.x
– reference: AndrewsJ. G.ZhangX.DurginG. D.GuptaA. K.Are we approaching the fundamental limits of wireless network Densification?IEEE Commun. Mag.2016541018419010.1109/MCOM.2016.7588290
– reference: J. Li, C. Shen, A. Diaz-Rubio, S. A. Tretyakov, S. A. Cummer, Systematic design and experimental demonstration of Bianisotropic Metasurfaces for Scattering-Free Manipulation of Acoustic Wavefronts. Nat. Commun.9: (2018). Article No. 1342. https://www.nature.com/articles/s41467-018-03778-9.
– reference: LavigneG.AchouriK.AsadchyV. S.TretyakovS. A.CalozC.Susceptibility derivation and experimental demonstration of refracting metasurfaces without spurious diffractionIEEE Trans. Antennas Propag.20186631321133010.1109/TAP.2018.2793958
– reference: D. Nguyen Viet, M. Di Renzo, V. Basavarajappa, B. Bedia Exposito, J. Basterrechea, D. -T. Phan-Huy, Spatial modulation based on reconfigurable antennas: performance evaluation by using the prototype of a reconfigurable antenna submitted for journal publication (2018). https://arxiv.org/abs/1901.01752.
– reference: S. Colburn, Dielectric metasurface optics: a new platform for compact optical sensing (University of Washington, 2017). https://digital.lib.washington.edu/researchworks/handle/1773/40037.
– reference: Y. Li, B. Liang, Z. -M. Gu, X. -Y. Zou, J. -C. Cheng, Reflected wavefront manipulation based on ultrathin planar acoustic Metasurfaces. Nat. Sci. Rep.3: (2013). Article No. 2546.
– reference: HaenggiM.The mean interference-to-signal ratio and its key role in cellular and amorphous networksIEEE Wirel. Commun. Lett.20143659760010.1109/LWC.2014.2357444
– reference: BasarE.WenM.MeslehR.Di RenzoM.XiaoY.HaasH.Index modulation techniques for next-generation wireless networksIEEE Access20175166931674610.1109/ACCESS.2017.2737528
– reference: ClaussenH.HoL. T. W.KarimiH. R.MullanyF. J.SamuelL. G.I, Base Station: Cognisant Robots and Future Wireless Access Networks2006Las VegasIEEE Consumer Communications and Networking Conference
– reference: KibildaJ.GalkinB.DaSilvaL. A.Modelling multi-operator base station deployment patterns in cellular networksIEEE Trans. Mob. Comput.201615123087309910.1109/TMC.2015.2506583
– reference: KalisA.KanatasA. G.PapadiasC. B.A novel approach to MIMO transmission using a single RF front endIEEE J. Sel. Areas Commun.200826697298010.1109/JSAC.2008.080813
– reference: PanS. J.YangQ.A Survey on Transfer LearningIEEE Trans. Knowl. Data Eng.201022101345135910.1109/TKDE.2009.191
– reference: MollenC.High-end performance with low-end hardware: analysis of massive MIMO base station transceivers, Doctoral Thesis2017SwedenLinkoping University
– reference: DengN.ZhouW.HaenggiM.The Ginibre point process as a model for wireless networks with repulsionIEEE Trans. Wirel. Commun.201514110712110.1109/TWC.2014.2332335
– reference: C. Huang, G. C. Alexandropoulos, A. Zappone, M. Debbah, C. Yuen, Energy efficient multi-user MISO communication using low resolution large intelligent surfaces submitted (2018). https://arxiv.org/abs/1809.05397.
– reference: ShojaeifardA.WongK. -K.RenzoM. D.ZhengG.HamdiK. A.TangJ.Massive MIMO-enabled full-duplex cellular networksIEEE Trans. Commun.201765114734475010.1109/TCOMM.2017.2731768
– reference: P. Fleming, A. L. Stolyar, B. Simon, Closed-Form Expressions for Other-Cell Interference in Cellular CDMA Technical Report (University of Colorado, Boulder, 1997). http://ccm.ucdenver.edu/reports/rep116.pdf.
– reference: S. A. Aldalahmeh, M. Ghogho, Des McLernon, E. Nurellari, Optimal fusion rule for distributed detection in clustered wireless sensor networks. EURASIP J. Adv. Sig. Process.5: (2016). https://asp-eurasipjournals.springeropen.com/articles/10.1186/s13634-016-0303-9.
– reference: BaccelliF.BlaszczyszynB.MuhlethalerP.An aloha protocol for multihop mobile wireless networksIEEE Trans. Inf. Theory200652242143622361661282.9400410.1109/TIT.2005.862098
– reference: LiY.BaccelliF.DhillonH.AndrewsJ. G.Statistical modeling and probabilistic analysis of cellular networks with determinantal point processesIEEE Trans. Commun.20156393405342210.1109/TCOMM.2015.2456016
– reference: BaiT.Heath Jr.R. W.Coverage and rate analysis for millimeter wave cellular networksIEEE Trans. Wirel. Commun.20151421100111410.1109/TWC.2014.2364267
– reference: TasolamprouA. C.MirmoosaM. S.TsilipakosO.PitilakisA.LiuF.AbadalS.Cabellos-AparicioA.AlarconE.LiaskosC.KantartzisN. V.TretyakovS.KafesakiM.EconomouE. N.SoukoulisC. M.Intercell Wireless Communication in Software-Defined Metasurfaces2018FlorenceIEEE International Symposium on Circuits and Systems10.1109/ISCAS.2018.8351865
– reference: A. K. Khandani, Media-based modulation: improving spectral efficiency beyond conventional MIMO (IEEE Communications Theory Workshop, Nafplio, 2016). Available: http://ctw2016.ieee-ctw.org/slides/ctw16_Khandani.pdf.
– reference: M. Jung, W. Saad, Y. Jang, G. Kong, S. Choi, Performance analysis of large intelligence surfaces (LISs): Asymptotic Data Rate and Channel Hardening Effects submitted (2018). https://arxiv.org/abs/1810.05667v1.
– reference: HougneP. delLeroseyG.Leveraging chaos for wave-based analog computation: demonstration with indoor wireless communication signalsPhys. Reviex X201884041037
– reference: K. M. Kossifos, M. A. Antoniades, J. Georgiou, A. H. Jaafar, N. T. Kemp, An optically-programmable absorbing metasurface (International Symposium on Circuits and Systems, Florence, 2018). https://ieeexplore.ieee.org/document/8351874/.
– reference: LeeJ.ZhangX.BaccelliF.A 3-D spatial model for in-building wireless networks with correlated shadowingIEEE Trans. Wirel. Commun.201615117778779310.1109/TWC.2016.2607206
– reference: ZhangX.BaccelliF.Heath Jr.R. W.An indoor correlated shadowing model2015San DiegoIEEE Global Communications Conference10.1109/GLOCOM.2015.7417557
– reference: XuC.YangL.ZhangP.Practical backscatter communication systems for battery-free Internet of Things: a tutorial and survey of recent researchIEEE Sig. Process. Mag.2018355162710.1109/MSP.2018.2848361
– reference: Di RenzoM.LuW.GuanP.The intensity matching approach: a tractable stochastic geometry approximation to system-level analysis of cellular networksIEEE Trans. Wirel. Commun.20161595963598310.1109/TWC.2016.2574852
– reference: BaiT.VazeR.Heath Jr.R. W.Analysis of blockage effects on urban cellular networksIEEE Trans. Wirel. Commun.20141395070508310.1109/TWC.2014.2331971
– reference: GuoA.HaenggiM.Asymptotic deployment gain: a simple approach to characterize the SINR distribution in general cellular networksIEEE Trans. Commun.201563396297610.1109/TCOMM.2014.2387170
– reference: M. W. Matthes, P. del Hougne, J. de Rosny, G. Lerosey, S. M. Popoff, Turning optical complex media into universal reconfigurable linear operators by wavefront shaping submitted (2018). https://arxiv.org/abs/1810.05688.
– reference: PastorG.NorrosI.JanttiR.CaamanoA. J.Compressive Data Aggregation from Poisson Point Process Observations2015BrusselsIEEE International Symposium on Wireless Communication Systems10.1109/ISWCS.2015.7454307
– reference: KainaN.Dupre’M.LeroseyG.FinkM.Hybridized resonances to design tunable binary phase metasurface unit cellsOpt. Express20142216188811888810.1364/OE.22.018881
– reference: TsioliaridouA.LiaskosC.IoannidisS.Towards a Circular Economy via Intelligent Metamaterials2018BarcelonaIEEE International Conference on Computer-Aided Modeling Analysis and Design of Communication Links and Networks
– reference: AndrewsJ. G.GantiR. K.HaenggiM.JindalN.WeberS.A primer on spatial modeling and analysis in wireless networksIEEE Commun. Mag.2010481115616310.1109/MCOM.2010.5621983
– reference: BaccelliF.MuhlethalerP.BlaszczyszynB.Stochastic analysis of spatial and opportunistic alohaIEEE J. Sel. Areas Commun.20092771105111910.1109/JSAC.2009.090908
– reference: M. Di Renzo, A. Zappone, T. T. Lam, M. Debbah, Spectral-energy efficiency Pareto front in cellular networks: a stochastic geometry framework. IEEE Wirel. Commun. Lett. (2018). to appear, https://10.1109/LWC.2018.2874642 (https://ieeexplore.ieee.org/document/8486640).
– reference: SubrtL.PechacP.Controlling propagation environments using intelligent Walls2012PragueEuropean Conference on Antennas and Propagation10.1109/EuCAP.2012.6206517
– reference: BaccelliF.ZhangX.A Correlated Shadowing Model for Urban Wireless Networks2015Hong KongIEEE International Conference on Computer Communications10.1109/INFOCOM.2015.7218450
– reference: SaeedT.SkitsasC.KouzapasD.LestasM.SoteriouV.PhilippouA.AbadalS.LiaskosC.PetrouL.GeorgiouJ.PitsillidesA.Fault Adaptive Routing in Metasurface Controller Networks2018FukuokaInternational Workshop on Network on Chip Architectures10.1109/NOCARC.2018.8541148
– reference: D. -H. Kwon, S. A. Tretyakov, Arbitrary beam control using passive lossless metasurfaces enabled by orthogonally polarized custom surface waves. Phys. Rev. B. 97(3) (2018).
– reference: PorsAndersBozhevolnyiSergey I.Plasmonic metasurfaces for efficient phase control in reflectionOptics Express201321222743810.1364/OE.21.027438
– reference: Di RenzoM.HaasH.GrantP.Spatial modulation for multiple-antenna wireless systems - A SurveyIEEE Commun. Mag.2011491218219110.1109/MCOM.2011.6094024
– reference: PestourieRaphaëlPérez-ArancibiaCarlosLinZinShinWonseokCapassoFedericoJohnsonSteven G.Inverse design of large-area metasurfacesOptics Express201826263373210.1364/OE.26.033732
– reference: El-SawyH.HossainE.HaenggiM.Stochastic geometry for modeling, analysis, and design of multi-tier and cognitive cellular wireless networks: a surveyIEEE Commun. Surv. Tutor.2013153996101910.1109/SURV.2013.052213.00000
– reference: Di RenzoM.WangS.XiX.Modeling and analysis of cellular networks by using inhomogeneous Poisson point processesIEEE Trans. Wirel. Commun.20181785162518210.1109/TWC.2018.2838597
– reference: GantiR. K.HaenggiM.Interference and outage in clustered wireless ad hoc networksIEEE Trans. Inf. Theory2009559406740861367.9402610.1109/TIT.2009.2025543
– reference: TanX.SunZ.KoutsonikolasD.JornetK. M.Enabling indoor mobile millimeter-Wave Networks Based on Smart Reflect-Arrays2018HonoluluIEEE Conference on Computer Communications10.1109/INFOCOM.2018.8485924
– reference: LiaskosC.NieS.TsioliaridouA.PitsillidesA.IoannidisS.AkyildizI. F.Realizing Wireless Communication Through Software-Defined HyperSurface EnvironmentsIEEE International Symposium on a World of Wireless2018CreteMobile and Multimedia Networks
– reference: A. Gati, et al., in IEEE Communications Surveys & Tutorials, submitted for journal publication. Key Technologies to Accelerate the ICT Green Evolution: An Operator’s Point of View, (2018). https://arxiv.org/abs/1903.09627.
– reference: KongH. -B.FlintI.WangP.NiyatoD.PrivaultN.Fog radio access networks: Ginibre point process modeling and analysisIEEE Trans. Wirel. Commun.20181775564558010.1109/TWC.2018.2846734
– reference: LuW.Di RenzoM.Stochastic geometry modeling and system-level analysis and optimization of relay-aided downlink cellular networksIEEE Trans. Commun.201563114063408510.1109/TCOMM.2015.2477498
– reference: Network Motion (NEMO), ERC-2017-ADG - ERC Advanced Grant (2019). https://cordis.europa.eu/project/rcn/214933_fr.html.
– reference: P. del Hougne, M. Fink, G. Lerosey, Optimally diverse communication channels in disordered environments with tuned randomness. Nat. Electron.2(1) (2019). Article ID 36. https://www.nature.com/articles/s41928-018-0190-1.
– reference: GuptaAbhishek K.AndrewsJeffrey G.HeathRobert W.Macrodiversity in Cellular Networks With Random BlockagesIEEE Transactions on Wireless Communications2018172996101010.1109/TWC.2017.2773058
– reference: WeberS. P.YangX.AndrewsJ. G.De VecianaG.Transmission capacity of wireless ad hoc networks with outage constraintsIEEE Trans. Inf. Theory200551124091410222431451318.9401010.1109/TIT.2005.858939
– reference: NarayananS.Di RenzoM.GraziosiF.HaasH.Distributed spatial modulation: a cooperative diversity protocol for half-duplex relay-aided wireless networksIEEE Trans. Veh. Technol.20166552947296410.1109/TVT.2015.2442754
– reference: PetrouL.KarousiosP.GeorgiouJ.Asynchronous circuits as an enabler of scalable and programmable metasurfaces2018FlorenceInternational Symposium on Circuits and Systems10.1109/ISCAS.2018.8351672
– reference: Zangeneh-NejadFarzadFleuryRomainPerforming mathematical operations using high-index acoustic metamaterialsNew Journal of Physics201820707300110.1088/1367-2630/aacba1
– reference: TakahashiY.ChenY.KobayashiT.MiyoshiN.Simple and fast PPP-based approximation of SIR distributions in downlink cellular networksIEEE Wirel. Commun. Lett.20187689890110.1109/LWC.2018.2836438
– reference: S. Aditya, H. S. Dhillon, A. F. Molisch, H. Behairy, A tractable analysis of the blind spot probability in localization networks under correlated blocking. IEEE Trans. Wirel. Commun. (2018). to appear, https://arxiv.org/pdf/1801.08560.pdf.
– reference: DongD. S.YangJ.ChengQ.ZhaoJ.GaoL. H.MaS. J.LiuS.ChenH. B.HeQ.LiuW. W.FangZ.ZhouL.CuiT. J.Terahertz Broadband low-reflection metasurface by controlling phase distributionsAdv. Opt. Mater.20153101405141010.1002/adom.201500156
– reference: DingM.Lopez-PerezD.ClaussenH.KaafarM. A.On the fundamental characteristics of ultra-dense small cell networksIEEE Netw.20183239210010.1109/MNET.2018.1700096
– reference: KhandaniA. K.Media-based modulation: a new approach to wireless transmission2013IstanbulIEEE International Symposium on Information Theory
– reference: FuschiniF.VitucciE. M.BarbiroliM.FalciaseccaG.Degli-EspostiV.Ray tracing propagation modeling for future small-cell and indoor applications: a review of current techniquesRadio Sci.201550646948510.1002/2015RS005659
– reference: WeberS.AndrewsJ. G.Transmission capacity of wireless networksFound. Trends. Netw.201152-31092811243.6813110.1561/1300000032
– reference: AgarwalA.JagannathamA. K.Distributed estimation in homogenous Poisson wireless sensor networksIEEE Wirel. Commun. Lett.201431909310.1109/WCL.2013.112313.130696
– reference: AndrewsJ. G.BaiT.KulkarniM. N.AlkhateebA.GuptaA. K.Heath Jr.R. W.Modeling and analyzing millimeter wave cellular systemsIEEE Trans. Commun.2017651403430
– reference: NiX.WongZ. J.MrejenM.WangY.ZhangX.An ultrathin invisibility skin cloak for visible lightScience201534962541310131410.1126/science.aac9411
– reference: SousaE. S.Interference modeling in a direct-sequence spread spectrum packet radio networkIEEE Trans. Commun.19903891475148210.1109/26.61388
– reference: M. Di Renzo, J. Song, Reflection probability in wireless networks with metasurface-coated environmental objects: an approach Based on Random Spatial Processes. EURASIP J. Wirel. Commun. Netw. (2019). (to appear)https://arxiv.org/abs/1901.01046.
– reference: AchouriK.SalemM. A.CalozC.General metasurface synthesis based on susceptibility tensorsIEEE Trans. Antennas Propag.20156372977299133673371373.7811410.1109/TAP.2015.2423700
– reference: Y. Vahabzadeh, N. Chamanara, C. Caloz, Efficient GSTC-FDTD simulation of dispersive bianisotropic metasurface IEEE Transactions on Antennas and Propagation, submitted (2018). https://arxiv.org/pdf/1710.00044.pdf.
– reference: A. Zappone, M. Di Renzo, M. Debbah, Wireless networks design in the era of deep learning: model-based, AI-based, or both?IEEE Trans. Commun. submitted, 43 (2018). (invited paper) https://arxiv.org/abs/1902.02647.
– reference: Heath Jr.R. W.Gonzalez-PrelcicN.RanganS.RohW.SayeedA.An overview of signal processing techniques for millimeter wave MIMO systemsIEEE J. Sel. Top. Sig. Process.201610343453
– reference: AndrewsJ. G.BaccelliF.GantiR. K.A tractable approach to coverage and rate in cellular networksIEEE Trans. Commun.201159113122313410.1109/TCOMM.2011.100411.100541
– reference: HuS.RusekF.EdforsO.Beyond Massive MIMO: The potential of data transmission with large intelligent surfacesIEEE. Trans. Sig. Process.201866102746275838119880702104110.1109/TSP.2018.2816577
– reference: BonodN.Large-Scale Dielectric MetasurfacesNat. Mater.20151466466510.1038/nmat4338
– reference: DhillonH. S.GantiR. K.BaccelliF.AndrewsJ. G.Modeling and analysis of K-tier downlink heterogeneous cellular networksIEEE J. Sel. Areas Commun.201230355056010.1109/JSAC.2012.120405
– reference: AbadalS.LiaskosC.TsioliaridouA.IoannidisS.PitsillidesA.Sole-ParetaJ.AlarconE.Cabellos-AparicioA.Computing and communications for the software-defined metamaterial paradigm: a context analysisIEEE Access201756225623510.1109/ACCESS.2017.2693267
– reference: HsuL. Y.LepetitT.Kante’B.Extremely thin dielectric metasurface for carpet cloakingProg. Electromagn. Res.2015152334010.2528/PIER15032005
– reference: CampbellN.The study of discontinuous phenomenaMath. Proc. Cambridge Philos. Soc.190915117136
– reference: GuoA.HaenggiM.Spatial stochastic models and metrics for the structure of base stations in cellular networksIEEE Trans. Wirel. Commun.201312115800581210.1109/TWC.2013.100113.130220
– reference: CupCarbon U-One 3.8, A Smart City & IoT wireless sensor network simulator. http://cupcarbon.com/.
– reference: Di RenzoM.Stochastic geometry modeling and analysis of multi-tier millimeter wave cellular networksIEEE Trans. Wirel. Commun.20151495038505710.1109/TWC.2015.2431689
– reference: R. Chandra, K. Winstein, Programmable radio environments for smart spaces - HotNets-XVI Dialogue (ACM Workshop on Hot Topics in Networks, Palo Alto, 2017). https://conferences.sigcomm.org/hotnets/2017/dialogues/dialogue118.pdf.
– reference: KouvarosP.KouzapasD.PhilippouA.GeorgiouJ.PetrouL.PitsillidesA.Formal verification of a programmable hypersurface2018IrelandInternational Conference on Formal Methods for Industrial Critical Systems10.1007/978-3-030-00244-2_6
– reference: BaccelliF.KleinM.LebourgesM.ZuyevS. A.Stochastic geometry and architecture of communication networksTelecommun. Syst.199771-320922710.1023/A:1019172312328
– reference: Di RenzoM.ZapponeA.LamT. T.DebbahM.System-level modeling and optimization of the energy efficiency in cellular networks—a stochastic geometry frameworkIEEE Trans. Wirel. Commun.20181742539255610.1109/TWC.2018.2797264
– reference: GantiR. K.HaenggiM.Asymptotics and approximation of the SIR distribution in general cellular networksIEEE Trans. Wirel. Commun.20161532130214310.1109/TWC.2015.2498926
– reference: L. Spada, Metamaterials for Advanced Sensing Platforms. Res. J. Opt. Photon.1(1) (2017). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359273/.
– reference: H, 2020 VISORSURF project, A hardware platform for software-driven functional metasurfaces. http://www.visorsurf.eu/.
– reference: Q. -U. -A. Nadeem, A. Kammoun, A. Chaaban, M. Debbah, M. -S. Alouini, Large Intelligent Surface Assisted Massive MIMO Communications submitted (2019). https://128.84.21.199/pdf/1903.08127.pdf.
– reference: YuN.GenevetP.KatsM. A.AietaF.TetienneJ. -P.CapassoF.GaburroZ.Light propagation with phase discontinuities: generalized laws of reflection and refractionScience2011334605433333710.1126/science.1210713
– reference: C. Liaskos, A. Tsioliaridou, S. Nie, A. Pitsillides, S. Ioannidis, I. Akyildiz, Modeling, simulating and configuring programmable wireless environments for multi-user multi-objective networking, submitted for journal publication (2018). https://arxiv.org/abs/1812.11429.
– reference: LeeJ.BaccelliF.On the effect of shadowing correlation on wireless network performance2018HonoluluIEEE International Conference on Computer Communications10.1109/INFOCOM.2018.8485965
– reference: A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alu, N. Engheta, Performing mathematical operations with metamaterials. 343(6167), 160–163 (2014).
– reference: WeberS.AndrewsJ. G.JindalN.An overview of the transmission capacity of wireless networksIEEE Trans. Inf. Theory2010581235933604
– ident: 1438_CR36
  doi: 10.1109/WCNC.2013.6555350
– volume: 66
  start-page: 271
  issue: 1
  year: 2018
  ident: 1438_CR155
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.2017.2772022
– volume: 19
  start-page: 167
  issue: 1
  year: 2017
  ident: 1438_CR112
  publication-title: Proc. IEEE
– ident: 1438_CR32
– ident: 1438_CR4
  doi: 10.1145/3152434.3152456
– volume: 5
  start-page: 16693
  year: 2017
  ident: 1438_CR67
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2737528
– volume: 17
  start-page: 996
  issue: 2
  year: 2018
  ident: 1438_CR131
  publication-title: IEEE Transactions on Wireless Communications
  doi: 10.1109/TWC.2017.2773058
– volume-title: Controlling propagation environments using intelligent Walls
  year: 2012
  ident: 1438_CR7
  doi: 10.1109/EuCAP.2012.6206517
– volume: 90
  start-page: 014301
  year: 2003
  ident: 1438_CR35
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.90.014301
– volume-title: Compressive Data Aggregation from Poisson Point Process Observations
  year: 2015
  ident: 1438_CR120
  doi: 10.1109/ISWCS.2015.7454307
– volume: 35
  start-page: 16
  issue: 5
  year: 2018
  ident: 1438_CR149
  publication-title: IEEE Sig. Process. Mag.
  doi: 10.1109/MSP.2018.2848361
– volume: 26
  start-page: 33732
  issue: 26
  year: 2018
  ident: 1438_CR81
  publication-title: Optics Express
  doi: 10.1364/OE.26.033732
– volume: 54
  start-page: 10
  issue: 2
  year: 2012
  ident: 1438_CR16
  publication-title: IEEE Antennas Propag. Mag.
  doi: 10.1109/MAP.2012.6230714
– volume: 56
  start-page: 172
  issue: 6
  year: 2018
  ident: 1438_CR90
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2018.1601068
– volume: 32
  start-page: 92
  issue: 3
  year: 2018
  ident: 1438_CR128
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.2018.1700096
– ident: 1438_CR17
– volume: 14
  start-page: 664
  year: 2015
  ident: 1438_CR28
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4338
– ident: 1438_CR55
– volume: 15
  start-page: 5963
  issue: 9
  year: 2016
  ident: 1438_CR127
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2016.2574852
– ident: 1438_CR1
– volume: 5
  start-page: 6225
  year: 2017
  ident: 1438_CR51
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2693267
– volume: 10
  start-page: 43
  issue: 3
  year: 2016
  ident: 1438_CR46
  publication-title: IEEE J. Sel. Top. Sig. Process.
– ident: 1438_CR75
– volume: 26
  start-page: 972
  issue: 6
  year: 2008
  ident: 1438_CR63
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2008.080813
– volume: 87
  start-page: 161110
  year: 2013
  ident: 1438_CR22
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.161110
– ident: 1438_CR163
– ident: 1438_CR146
– volume: 6
  start-page: 1004
  issue: 8
  year: 2012
  ident: 1438_CR8
  publication-title: IET Commun.
  doi: 10.1049/iet-com.2010.0544
– ident: 1438_CR100
– ident: 1438_CR12
– volume: 8
  start-page: 041037
  issue: 4
  year: 2018
  ident: 1438_CR23
  publication-title: Phys. Reviex X
– volume: 12
  start-page: 5800
  issue: 11
  year: 2013
  ident: 1438_CR136
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2013.100113.130220
– ident: 1438_CR76
  doi: 10.1109/ISCAS.2018.8351874
– volume: 17
  start-page: 5162
  issue: 8
  year: 2018
  ident: 1438_CR145
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2018.2838597
– ident: 1438_CR58
– ident: 1438_CR152
– ident: 1438_CR158
– volume-title: On the effect of shadowing correlation on wireless network performance
  year: 2018
  ident: 1438_CR135
  doi: 10.1109/INFOCOM.2018.8485965
– ident: 1438_CR72
– volume: 65
  start-page: 4734
  issue: 11
  year: 2017
  ident: 1438_CR49
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2017.2731768
– volume: 3
  start-page: 1405
  issue: 10
  year: 2015
  ident: 1438_CR70
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201500156
– volume: 49
  start-page: 182
  issue: 12
  year: 2011
  ident: 1438_CR64
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2011.6094024
– volume: 15
  start-page: 996
  issue: 3
  year: 2013
  ident: 1438_CR111
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/SURV.2013.052213.00000
– volume-title: Media-based modulation: converting static Rayleigh fading to AWGN
  year: 2014
  ident: 1438_CR61
– volume: 334
  start-page: 333
  issue: 6054
  year: 2011
  ident: 1438_CR15
  publication-title: Science
  doi: 10.1126/science.1210713
– volume: 3
  start-page: 90
  issue: 1
  year: 2014
  ident: 1438_CR119
  publication-title: IEEE Wirel. Commun. Lett.
  doi: 10.1109/WCL.2013.112313.130696
– volume-title: High-end performance with low-end hardware: analysis of massive MIMO base station transceivers, Doctoral Thesis
  year: 2017
  ident: 1438_CR45
– ident: 1438_CR85
– ident: 1438_CR122
– volume: 17
  start-page: 4447
  issue: 8
  year: 2018
  ident: 1438_CR117
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2018.2825351
– volume: 27
  start-page: 1029
  issue: 7
  year: 2009
  ident: 1438_CR93
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2009.090902
– ident: 1438_CR57
– volume: 13
  start-page: 5070
  issue: 9
  year: 2014
  ident: 1438_CR123
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2014.2331971
– volume: 152
  start-page: 33
  year: 2015
  ident: 1438_CR78
  publication-title: Prog. Electromagn. Res.
  doi: 10.2528/PIER15032005
– volume-title: IEEE International Symposium on a World of Wireless
  year: 2018
  ident: 1438_CR2
– volume-title: An indoor correlated shadowing model
  year: 2015
  ident: 1438_CR133
  doi: 10.1109/GLOCOM.2015.7417557
– volume: 14
  start-page: 107
  issue: 1
  year: 2015
  ident: 1438_CR137
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2014.2332335
– ident: 1438_CR52
– volume: 66
  start-page: 862
  issue: 2
  year: 2018
  ident: 1438_CR140
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2017.2767605
– volume: 5
  start-page: 109
  issue: 2-3
  year: 2011
  ident: 1438_CR106
  publication-title: Found. Trends. Netw.
  doi: 10.1561/1300000032
– ident: 1438_CR161
– ident: 1438_CR147
– volume: 15
  start-page: 117
  year: 1909
  ident: 1438_CR94
  publication-title: Math. Proc. Cambridge Philos. Soc.
– volume: 51
  start-page: 4091
  issue: 12
  year: 2005
  ident: 1438_CR104
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2005.858939
– volume-title: Enabling high-quality untethered virtual reality
  year: 2017
  ident: 1438_CR10
  doi: 10.1145/3130242.3131494
– volume: 3
  start-page: 37
  year: 2018
  ident: 1438_CR30
  publication-title: IEEE J. Multiscale Multiphysics Comput. Tech.
  doi: 10.1109/JMMCT.2018.2829871
– ident: 1438_CR21
– volume: 66
  start-page: 1761
  issue: 7
  year: 2018
  ident: 1438_CR53
  publication-title: IEEE Trans. Sig. Process.
  doi: 10.1109/TSP.2018.2795547
– volume-title: Towards a Circular Economy via Intelligent Metamaterials
  year: 2018
  ident: 1438_CR26
– volume: 14
  start-page: 1100
  issue: 2
  year: 2015
  ident: 1438_CR124
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2014.2364267
– ident: 1438_CR50
  doi: 10.1103/PhysRevB.97.035439
– ident: 1438_CR116
– ident: 1438_CR150
– volume-title: Coverage analysis in millimeter wave cellular networks with reflections
  year: 2017
  ident: 1438_CR129
  doi: 10.1109/GLOCOM.2017.8254903
– volume: 17
  start-page: 5564
  issue: 7
  year: 2018
  ident: 1438_CR118
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2018.2846734
– volume-title: Media-based modulation: a new approach to wireless transmission
  year: 2013
  ident: 1438_CR60
– volume: 26
  start-page: 1405
  issue: 10
  year: 1978
  ident: 1438_CR95
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOM.1978.1093993
– ident: 1438_CR68
– ident: 1438_CR80
– volume-title: A Correlated Shadowing Model for Urban Wireless Networks
  year: 2015
  ident: 1438_CR132
  doi: 10.1109/INFOCOM.2015.7218450
– volume: 22
  start-page: 1345
  issue: 10
  year: 2010
  ident: 1438_CR162
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2009.191
– volume-title: Fault Adaptive Routing in Metasurface Controller Networks
  year: 2018
  ident: 1438_CR87
  doi: 10.1109/NOCARC.2018.8541148
– volume: 65
  start-page: 2947
  issue: 5
  year: 2016
  ident: 1438_CR37
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2015.2442754
– volume: 21
  start-page: 27438
  issue: 22
  year: 2013
  ident: 1438_CR69
  publication-title: Optics Express
  doi: 10.1364/OE.21.027438
– volume-title: Spatial Modulation Based on Reconfigurable Antennas - A New Air Interface for the IoT
  year: 2017
  ident: 1438_CR151
  doi: 10.1109/MILCOM.2017.8170856
– volume: 52
  start-page: 421
  issue: 2
  year: 2006
  ident: 1438_CR107
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2005.862098
– ident: 1438_CR130
– volume: 22
  start-page: 18881
  issue: 16
  year: 2014
  ident: 1438_CR18
  publication-title: Opt. Express
  doi: 10.1364/OE.22.018881
– volume: 55
  start-page: 4067
  issue: 9
  year: 2009
  ident: 1438_CR103
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2009.2025543
– volume: 14
  start-page: 55
  issue: 1
  year: 2009
  ident: 1438_CR41
  publication-title: Bell Labs Tech. J.
  doi: 10.1002/bltj.20354
– ident: 1438_CR59
– volume: 3
  start-page: 597
  issue: 6
  year: 2014
  ident: 1438_CR141
  publication-title: IEEE Wirel. Commun. Lett.
  doi: 10.1109/LWC.2014.2357444
– volume: 112
  start-page: 201905
  issue: 20
  year: 2018
  ident: 1438_CR83
  publication-title: Applied Physics Letters
  doi: 10.1063/1.5035442
– ident: 1438_CR153
– volume: 48
  start-page: 156
  issue: 11
  year: 2010
  ident: 1438_CR102
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2010.5621983
– volume: 66
  start-page: 1321
  issue: 3
  year: 2018
  ident: 1438_CR31
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.2018.2793958
– volume: 63
  start-page: 3405
  issue: 9
  year: 2015
  ident: 1438_CR138
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2015.2456016
– ident: 1438_CR159
– volume: 27
  start-page: 1105
  issue: 7
  year: 2009
  ident: 1438_CR108
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2009.090908
– ident: 1438_CR54
– ident: 1438_CR27
– volume-title: Asynchronous circuits as an enabler of scalable and programmable metasurfaces
  year: 2018
  ident: 1438_CR89
  doi: 10.1109/ISCAS.2018.8351672
– volume: 54
  start-page: 46
  issue: 3
  year: 2016
  ident: 1438_CR66
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2016.7432147
– volume: 14
  start-page: 5038
  issue: 9
  year: 2015
  ident: 1438_CR125
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2015.2431689
– volume: 38
  start-page: 1743
  issue: 6
  year: 1992
  ident: 1438_CR98
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.165447
– ident: 1438_CR121
– volume: 15
  start-page: 2130
  issue: 3
  year: 2016
  ident: 1438_CR143
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2015.2498926
– volume: 20
  start-page: 073001
  issue: 7
  year: 2018
  ident: 1438_CR84
  publication-title: New Journal of Physics
  doi: 10.1088/1367-2630/aacba1
– volume-title: Intercell Wireless Communication in Software-Defined Metasurfaces
  year: 2018
  ident: 1438_CR88
  doi: 10.1109/ISCAS.2018.8351865
– volume: 15
  start-page: 3087
  issue: 12
  year: 2016
  ident: 1438_CR139
  publication-title: IEEE Trans. Mob. Comput.
  doi: 10.1109/TMC.2015.2506583
– volume: 18
  start-page: 2443
  issue: 11
  year: 2000
  ident: 1438_CR101
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/49.895048
– volume: 50
  start-page: 469
  issue: 6
  year: 2015
  ident: 1438_CR157
  publication-title: Radio Sci.
  doi: 10.1002/2015RS005659
– ident: 1438_CR33
– volume: 56
  start-page: 162
  issue: 9
  year: 2018
  ident: 1438_CR6
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2018.1700659
– volume: 7
  start-page: 209
  issue: 1-3
  year: 1997
  ident: 1438_CR99
  publication-title: Telecommun. Syst.
  doi: 10.1023/A:1019172312328
– ident: 1438_CR92
– volume: 15
  start-page: 7778
  issue: 11
  year: 2016
  ident: 1438_CR134
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2016.2607206
– volume: 7
  start-page: 898
  issue: 6
  year: 2018
  ident: 1438_CR144
  publication-title: IEEE Wirel. Commun. Lett.
  doi: 10.1109/LWC.2018.2836438
– volume: 59
  start-page: 3122
  issue: 11
  year: 2011
  ident: 1438_CR109
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2011.100411.100541
– volume: 65
  start-page: 403
  issue: 1
  year: 2017
  ident: 1438_CR47
  publication-title: IEEE Trans. Commun.
– ident: 1438_CR24
  doi: 10.1126/science.1242818
– ident: 1438_CR156
– ident: 1438_CR79
– volume-title: Increasing Indoor Spectrum Sharing Capacity using Smart Reflect-Array
  year: 2016
  ident: 1438_CR9
  doi: 10.1109/ICC.2016.7510962
– volume-title: Enabling indoor mobile millimeter-Wave Networks Based on Smart Reflect-Arrays
  year: 2018
  ident: 1438_CR11
  doi: 10.1109/INFOCOM.2018.8485924
– volume: 17
  start-page: 5841
  issue: 9
  year: 2018
  ident: 1438_CR114
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2018.2850310
– ident: 1438_CR82
– volume: 16
  start-page: 3607
  issue: 6
  year: 2016
  ident: 1438_CR71
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b00732
– volume: 349
  start-page: 1310
  issue: 6254
  year: 2015
  ident: 1438_CR77
  publication-title: Science
  doi: 10.1126/science.aac9411
– volume: 63
  start-page: 4063
  issue: 11
  year: 2015
  ident: 1438_CR48
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2015.2477498
– volume: 8
  start-page: 762
  issue: 5
  year: 1990
  ident: 1438_CR96
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/49.56383
– ident: 1438_CR160
– volume: 12
  start-page: 2484
  issue: 5
  year: 2013
  ident: 1438_CR42
  publication-title: IEEE Trans, Wirel. Commun.
  doi: 10.1109/TWC.2013.040413.121174
– ident: 1438_CR62
– ident: 1438_CR148
– volume: 27
  start-page: 379
  issue: 3
  year: 1948
  ident: 1438_CR38
  publication-title: Bell Syst. Tech. J.
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– volume: 30
  start-page: 550
  issue: 3
  year: 2012
  ident: 1438_CR110
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2012.120405
– volume: 66
  start-page: 2746
  issue: 10
  year: 2018
  ident: 1438_CR13
  publication-title: IEEE. Trans. Sig. Process.
  doi: 10.1109/TSP.2018.2816577
– ident: 1438_CR19
– ident: 1438_CR20
– volume: 54
  start-page: 184
  issue: 10
  year: 2016
  ident: 1438_CR43
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2016.7588290
– volume: 6
  start-page: 55765
  year: 2018
  ident: 1438_CR86
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2872781
– volume: 63
  start-page: 962
  issue: 3
  year: 2015
  ident: 1438_CR142
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2014.2387170
– ident: 1438_CR115
– ident: 1438_CR5
– ident: 1438_CR3
– volume: 81
  start-page: 026401
  issue: 2
  year: 2017
  ident: 1438_CR74
  publication-title: Reports on Progress in Physics
  doi: 10.1088/1361-6633/aa8732
– volume: 61
  start-page: 30
  issue: 11
  year: 2018
  ident: 1438_CR14
  publication-title: Commun. ACM
  doi: 10.1145/3192336
– volume: 102
  start-page: 56
  issue: 1
  year: 2014
  ident: 1438_CR65
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2013.2287851
– volume: 38
  start-page: 1475
  issue: 9
  year: 1990
  ident: 1438_CR97
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/26.61388
– ident: 1438_CR73
  doi: 10.1109/IWAT.2017.7915281
– volume: 15
  start-page: 1768
  issue: 3
  year: 2016
  ident: 1438_CR113
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2015.2496273
– volume-title: Formal verification of a programmable hypersurface
  year: 2018
  ident: 1438_CR91
  doi: 10.1007/978-3-030-00244-2_6
– volume: 58
  start-page: 3593
  issue: 12
  year: 2010
  ident: 1438_CR105
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TCOMM.2010.093010.090478
– volume-title: A Novel Protocol for Network-Controlled Metasurfaces
  year: 2017
  ident: 1438_CR34
  doi: 10.1145/3109453.3109469
– ident: 1438_CR39
– volume-title: I, Base Station: Cognisant Robots and Future Wireless Access Networks
  year: 2006
  ident: 1438_CR40
– volume: 17
  start-page: 2539
  issue: 4
  year: 2018
  ident: 1438_CR44
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2018.2797264
– ident: 1438_CR56
– ident: 1438_CR154
– volume: 87
  start-page: 1
  year: 2019
  ident: 1438_CR25
  publication-title: Ad Hoc Networks
  doi: 10.1016/j.adhoc.2018.11.001
– volume: 15
  start-page: 2365
  issue: 3
  year: 2016
  ident: 1438_CR126
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2015.2503391
– volume: 63
  start-page: 2977
  issue: 7
  year: 2015
  ident: 1438_CR29
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.2015.2423700
SSID ssj0033492
Score 2.679894
SecondaryResourceType review_article
Snippet Future wireless networks are expected to constitute a distributed intelligent wireless communications, sensing, and computing platform, which will have the...
Abstract Future wireless networks are expected to constitute a distributed intelligent wireless communications, sensing, and computing platform, which will...
SourceID doaj
hal
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms 6G wireless
Backscattering
Cellular radio
Communications Engineering
Computer Science
Emerging Intelligent Algorithms for Edge-of-Things Computing
Emission
Engineering
Environmental AI
Environmental impact
Information Systems Applications (incl.Internet)
Information Theory
Networks
Object recognition
Operators
Power consumption
Radio equipment
Radio waves
Radios
Reconfigurable intelligent meta-surfaces
Reconfiguration
Redesign
Review
Signal,Image and Speech Processing
Smart radio environments
Smart sensors
Thin films
Wireless communications
Wireless networks
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yeNCD-MTWVYJ4UsKmO93pxNsoLissi-CDvYXKyxnYnZHumV3891Z196yzgnrxmkeTrnxJVVGVrxh7GTNU1pS1kCZ5UbcgBaigRIRK6aRjHYdswq_H7cmJOT21H3dKfVFO2EgPPAruIPpgG_QpYgWxDsqA1jKqUIWGeFdSptsXrZ6tMzXewYo496YYZmn0QV8qxBm6zVZQuW9hr2mhgawfdcucUiF37MzfQqODxjm8y-5MpiKfjUu8x26k5X12e4dA8AHzn87xD3gHcbHiu2_WODFOXVIdTu5_8MHrzYtvm44eSvHZB36e1iD6TZcpI-sNhyVfxAT8cr7qE6d683wOPUc0pofsy-H7z--OxFQ1QYS6sWuhorHJR9UClABee3SokmwyRK88GBlQQWN3UqqtYjBogaCAIVdRZRzWSPWI7S1Xy_SY8Ua3VcZzCVmjm2KDqW2qUxuszzRfFkxupejCRClOlS3O3OBaGO1GwTsUvCPBO1uwV1dTvo98Gn8b_Ja25mogUWEPDQgQNwHE_QsgBXuBG3vtG0ezY0dt9LC3MW17URZsf7vvbjrEvRtKnVNYWRfs9RYLv7r_uOwn_2PZT9mtivAqG1Gpfba37jbpGbsZLtaLvns-oP0nvUABzA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: SpringerLink Open Access Journals
  dbid: C24
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA9afdAHv8W1rQTxSQnuJrvZxLeztFQoRfCDvoXJV-_A3snuXYv_vZncbnsVFfQ1mSzD7Ewmw8z8hpBXPgLXqqpZqYJldQslA-EE88CFDNLXPlcTfj1qj4_VyYn-OPRx92O1-5iSzDd1Nmsl3_aVSLqSQl_NcGQ30zfJraZSGtV6D1sc1tevQLi9IX3522PXHFDG6U9uZYpVkBtPzF-yotnZHNz_LzYfkHvD25JO1srwkNwI80fk7gbi4GNiP50lXaEd-NmCbja5UYSousDBndT-oDlMjrPTVYedVXTygZ6FJbB-1UUs4XpHYU5nPgC9mC76QHFAPZ1CTxOL4Qn5crD_ee-QDWMWmKsbvWTCKx2sFy1ABWClTRFYKJsI3goLqnTJo6ftIETLvVPpyeJ0A5F7ERNZU4qnZGu-mIdnhDay5TEZMkSZ4hrtVK1DHVqnbcTzZUHKUfbGDRjkOArjm8mxiJJmLT6TxGdQfEYX5PXlke9rAI6_Eb_HH3pJiNjZeWHRnZrBFI23if8UpXoOvnZCgZSlF467BpF8QizIy6QO175xODkyuIadwI1q2_OqIDujtpjB6nuTZ6NjHloW5M2oHVfbf2T7-T9Rb5M7HNWrbBgXO2Rr2a3CLrntzpezvnuRjeEnMFEEbQ
  priority: 102
  providerName: Springer Nature
Title Smart radio environments empowered by reconfigurable AI meta-surfaces: an idea whose time has come
URI https://link.springer.com/article/10.1186/s13638-019-1438-9
https://www.proquest.com/docview/2229558386
https://hal.science/hal-02395877
https://doaj.org/article/dbc95917d2ad4c38a660d3c2c57418ef
Volume 2019
WOSCitedRecordID wos000468981000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1687-1499
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033492
  issn: 1687-1499
  databaseCode: DOA
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVAVX
  databaseName: SpringerLink Open Access Journals
  customDbUrl:
  eissn: 1687-1499
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033492
  issn: 1687-1499
  databaseCode: C24
  dateStart: 20041201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoywEOvBEpZWUhTiCriZ04Nhe0rVq1oqxWvFS4WH6luxLdtMluK_49Hm_SbpHohUsOfkQjzTczHs94BqE3rtJUiiwnqfCG5KVOiWaWEacp45673MVswu9H5Wgkjo_luLtwa7u0yl4nRkXtagt35Nux7zTE-PiHs3MCXaMgutq10FhDGxmlGeD8Y0l6Tcyg8h44XDwIUpaXtItqZoJvtxkLyAuOtCTQAJzIG3Yplu8P1mYCyZErJ8-_gqXRBu0__F_qH6EH3ekTD5dweYzu-NkTdH-lJuFTZL6cBjThRrtpjVefwWEoYnUJrT2x-Y2jI11NTxYNvL3Cw0N86ueatIumgiSv91jP8NR5jS8ndesxtLDHE93iQK5_hr7t733dPSBdIwZi80LOCXNCeuNYqXWmteEm-Gg-LSrtDDNapDbY_DDtGSupsyIcaqwsdEUdq8KyImXP0fqsnvkXCBe8pFUQdV3x4PlIK3Lpc19aaSrYnyYo7dmgbFelHJpl_FLRWxFcLTmnAucUcE7JBL292nK2LNFx2-Id4O3VQqiuHQfq5kR1wqqcCfQHP9ZR7XLLhOY8dcxSW0CtH18l6HVAxo1_HAyPFIzBW-FClOVFlqCtHgqq0wutusZBgt71YLqe_ifZm7f_7CW6RwHKaUEo20Lr82bhX6G79mI-bZsB2tjZG40_D9DaLs0H8dZhEAUlfMfFzzA_Pvw0_vEHe1sXHQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGQGI8cEcLDLAQvICsJXbiCxJC5TK1aqmQGGhvnmM7ayXajqRdtT_Fb8QnTbYOib3tgdf4Isf-zjk-PjeEXrrCUCWTlMTS5yQVJiaGWUacoYx77lJXexP-GIjhUB4cqK8b6HcbCwNulS1PrBm1m1l4I9-t606DjY-_P_5FoGoUWFfbEhorWPT96TKobNW73qdwvq8o3fu8_7FLmqoCxKaZmhPmpPK5Y8KYxJic50Hh8HFWGJez3MjYBgEWmj1jgjorg4S2KjMFdawI3bKYhXmvoespkwJy9fcFaTk_g0x_oODxQLhJKmhjRU0k360SFpAeFHdFoOA4URfkYF0uIEi3EThjrt10_zLO1jJv787_tlt30e3mdo07K3K4hzb89D66tZZz8QHKv00CteDSuPEMr4f5YUjStYTSpTg_xfVDQTE-WpQQW4Y7PTzxc0OqRVmAE9tbbKZ47LzBy9Gs8ng-nng8MhUO2-Mfou9X8pOP0OZ0NvXbCGdc0CKwMlPwoNkpK1PlUy-sygsYH0cobo9d2yYLOxQD-alrbUxyvUKKDkjRgBStIvT6bMjxKgXJZZ0_AJbOOkL28PrDrDzSDTPSLg_rD3q6o8allknDeeyYpTaDXEa-iNCLgMQLc3Q7Aw3fIBY6k0KcJBHaaaGnG75X6XPcRehNC97z5n8u-_Hlkz1HN7v7XwZ60Bv2n6AtCmQUZ4SyHbQ5Lxf-KbphT-bjqnxWEyRGh1eN6T9funCY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ZbxMxELZKQYg-cKMGClgIXkBWd-29jIRQoESNEkWVONQ31-ujWYkkZTdp1L_Gr2Nms9umSPStD7z6ktf7zYzHcxHy2nrNZRZGLMhczqJUB0wLI5jVXCQusZGtvQl_DNPRKDs8lAcb5HcbC4NulS1PrBm1nRl8I9-t606jjS_Z9Y1bxMFe7-PJL4YVpNDS2pbTWEFk4M6WoL5VH_p78K_fcN778u3zPmsqDDATxXLOhM2ky61ItQ61zpMclA8XxF7bXOQ6CwwIM-h2QqTcmgyktZGx9twKD8PiQMC6N8hNkMIx0tggZa0UEJj1D5W9BIg4jFLeWFRD2H8VCkA9KPGSYfFxJi_JxLp0AEi6MTpmrt16_zLU1vKvd-9_Prn75G5z66bdFZk8IBtu-pBsreVifETyrxOgIlpqW8zoevgfxeRdSyxpSvMzWj8g-OJ4UWLMGe326cTNNasWpUfntvdUT2lhnabL8axydF5MHB3risJRucfk-7V85BOyOZ1N3TahcZJyDyxO-wQ0PmmySLrIpUbmHucHHRK0EFCmyc6ORUJ-qlpLyxK1Qo0C1ChEjZId8vZ8yskqNclVgz8hrs4HYlbxumFWHquGSSmbw_5Bf7dc28iITCdJYIXhJsYcR853yCtA5aU19rtDhW0YIx1naXoadshOC0PV8MNKXWCwQ961QL7o_ue2n1692EtyG6Cshv3R4Bm5w5GigphxsUM25-XCPSe3zOm8qMoXNW1ScnTdkP4DePF5Ug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smart+radio+environments+empowered+by+reconfigurable+AI+meta-surfaces%3A+an+idea+whose+time+has+come&rft.jtitle=EURASIP+journal+on+wireless+communications+and+networking&rft.au=Renzo%2C+Marco+Di&rft.au=Debbah%2C+Merouane&rft.au=Phan-Huy%2C+Dinh-Thuy&rft.au=Zappone%2C+Alessio&rft.date=2019-05-23&rft.issn=1687-1499&rft.eissn=1687-1499&rft.volume=2019&rft.issue=1&rft_id=info:doi/10.1186%2Fs13638-019-1438-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13638_019_1438_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-1499&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-1499&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-1499&client=summon