Future scenario of China's downstream oil reform: Improving the energy-environmental efficiency of the pipeline networks through interconnectivity

Improving energy supply efficiency and quality is regarded as a key pathway to shifting towards a fully sustainable energy system. To address the low efficiency and high emissions in the downstream oil industry caused by the problem of vertically integrated monopoly, the Chinese government is making...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Energy Policy Ročník 140; s. 111403
Hlavní autoři: Yuan, Meng, Zhang, Haoran, Wang, Bohong, Zhang, Yang, Zhou, Xingyuan, Liang, Yongtu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Kidlington Elsevier Ltd 01.05.2020
Elsevier BV
Elsevier Science Ltd
Témata:
ISSN:0301-4215, 1873-6777
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Improving energy supply efficiency and quality is regarded as a key pathway to shifting towards a fully sustainable energy system. To address the low efficiency and high emissions in the downstream oil industry caused by the problem of vertically integrated monopoly, the Chinese government is making an effort to promote a multiproduct pipeline network reform. The fundamental and indispensable step for this goal is the pipeline network interconnectivity. This paper quantifies the energy-environmental impacts of the pipeline network interconnectivity reform on China's downstream oil supply chain to 2030. An integrated framework is developed to obtain the detailed design-scale information required for assessment, introducing demand forecasting and demand reallocation into a pipeline network optimal planning model. The model is formulated as a fuzzy mixed integer linear programming that optimizes the infrastructure development scheme and supply chain operation plan simultaneously while taking into account demand uncertainty. The results show that, compared with the baseline, the pipeline interconnectivity reform could reduce yearly energy consumption and CO2 emissions by 9.7–19.8% and 12.5–17.9%, respectively. It is shown that this reform policy could overcome infrastructure constraints, increase pipeline utilization, and improve both energy and environmental performance. The proposed framework can be a theoretical guideline for policymakers within and beyond China. •We quantify the benefits of pipeline network interconnectivity reform in China's DOSC.•We propose an integrated framework to evaluate the energy-environmental efficiency.•Energy saving and CO2 reduction will respectively reach 9.7% and 12.5% at least.•The reform breaks the infrastructure bottleneck and improves oil supply efficiency.•Detailed policy implications are recommended for policy makers in China.
AbstractList Improving energy supply efficiency and quality is regarded as a key pathway to shifting towards a fully sustainable energy system. To address the low efficiency and high emissions in the downstream oil industry caused by the problem of vertically integrated monopoly, the Chinese government is making an effort to promote a multiproduct pipeline network reform. The fundamental and indispensable step for this goal is the pipeline network interconnectivity. This paper quantifies the energy-environmental impacts of the pipeline network interconnectivity reform on China's downstream oil supply chain to 2030. An integrated framework is developed to obtain the detailed design-scale information required for assessment, introducing demand forecasting and demand reallocation into a pipeline network optimal planning model. The model is formulated as a fuzzy mixed integer linear programming that optimizes the infrastructure development scheme and supply chain operation plan simultaneously while taking into account demand uncertainty. The results show that, compared with the baseline, the pipeline interconnectivity reform could reduce yearly energy consumption and CO2 emissions by 9.7–19.8% and 12.5–17.9%, respectively. It is shown that this reform policy could overcome infrastructure constraints, increase pipeline utilization, and improve both energy and environmental performance. The proposed framework can be a theoretical guideline for policymakers within and beyond China. •We quantify the benefits of pipeline network interconnectivity reform in China's DOSC.•We propose an integrated framework to evaluate the energy-environmental efficiency.•Energy saving and CO2 reduction will respectively reach 9.7% and 12.5% at least.•The reform breaks the infrastructure bottleneck and improves oil supply efficiency.•Detailed policy implications are recommended for policy makers in China.
Improving energy supply efficiency and quality is regarded as a key pathway to shifting towards a fully sustainable energy system. To address the low efficiency and high emissions in the downstream oil industry caused by the problem of vertically integrated monopoly, the Chinese government is making an effort to promote a multiproduct pipeline network reform. The fundamental and indispensable step for this goal is the pipeline network interconnectivity. This paper quantifies the energy-environmental impacts of the pipeline network interconnectivity reform on China's downstream oil supply chain to 2030. An integrated framework is developed to obtain the detailed design-scale information required for assessment, introducing demand forecasting and demand reallocation into a pipeline network optimal planning model. The model is formulated as a fuzzy mixed integer linear programming that optimizes the infrastructure development scheme and supply chain operation plan simultaneously while taking into account demand uncertainty. The results show that, compared with the baseline, the pipeline interconnectivity reform could reduce yearly energy consumption and CO₂ emissions by 9.7–19.8% and 12.5–17.9%, respectively. It is shown that this reform policy could overcome infrastructure constraints, increase pipeline utilization, and improve both energy and environmental performance. The proposed framework can be a theoretical guideline for policymakers within and beyond China.
Improving energy supply efficiency and quality is regarded as a key pathway to shifting towards a fully sustainable energy system. To address the low efficiency and high emissions in the downstream oil industry caused by the problem of vertically integrated monopoly, the Chinese government is making an effort to promote a multiproduct pipeline network reform. The fundamental and indispensable step for this goal is the pipeline network interconnectivity. This paper quantifies the energy-environmental impacts of the pipeline network interconnectivity reform on China's downstream oil supply chain to 2030. An integrated framework is developed to obtain the detailed design-scale information required for assessment, introducing demand forecasting and demand reallocation into a pipeline network optimal planning model. The model is formulated as a fuzzy mixed integer linear programming that optimizes the infrastructure development scheme and supply chain operation plan simultaneously while taking into account demand uncertainty. The results show that, compared with the baseline, the pipeline interconnectivity reform could reduce yearly energy consumption and CO2 emissions by 9.7–19.8% and 12.5–17.9%, respectively. It is shown that this reform policy could overcome infrastructure constraints, increase pipeline utilization, and improve both energy and environmental performance. The proposed framework can be a theoretical guideline for policymakers within and beyond China.
ArticleNumber 111403
Author Zhang, Yang
Wang, Bohong
Liang, Yongtu
Zhang, Haoran
Yuan, Meng
Zhou, Xingyuan
Author_xml – sequence: 1
  givenname: Meng
  surname: Yuan
  fullname: Yuan, Meng
  organization: China University of Petroleum-Beijing, Beijing Key Laboratory of Urban oil and Gas Distribution Technology, Fuxue Road No.18, Changping District, Beijing 102249, PR China
– sequence: 2
  givenname: Haoran
  surname: Zhang
  fullname: Zhang, Haoran
  email: zhang_ronan@csis.u-tokyo.ac.jp
  organization: Center for Spatial Information Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8563, Japan
– sequence: 3
  givenname: Bohong
  surname: Wang
  fullname: Wang, Bohong
  organization: China University of Petroleum-Beijing, Beijing Key Laboratory of Urban oil and Gas Distribution Technology, Fuxue Road No.18, Changping District, Beijing 102249, PR China
– sequence: 4
  givenname: Yang
  surname: Zhang
  fullname: Zhang, Yang
  organization: China University of Petroleum-Beijing, Beijing Key Laboratory of Urban oil and Gas Distribution Technology, Fuxue Road No.18, Changping District, Beijing 102249, PR China
– sequence: 5
  givenname: Xingyuan
  surname: Zhou
  fullname: Zhou, Xingyuan
  organization: China University of Petroleum-Beijing, Beijing Key Laboratory of Urban oil and Gas Distribution Technology, Fuxue Road No.18, Changping District, Beijing 102249, PR China
– sequence: 6
  givenname: Yongtu
  surname: Liang
  fullname: Liang, Yongtu
  email: liangyt21st@163.com
  organization: China University of Petroleum-Beijing, Beijing Key Laboratory of Urban oil and Gas Distribution Technology, Fuxue Road No.18, Changping District, Beijing 102249, PR China
BackLink https://cir.nii.ac.jp/crid/1872835442716416000$$DView record in CiNii
BookMark eNqFkcFu1DAQhiNUJLaFJ-BiCSS4ZLFjJ06QOFQrWipV4gJny-tMdmdJxovtbLWvwRPj7fbUA1xsafT94_F8l8UFeYKieCv4UnDRfNotgfZ-XFa8yhUhFJcvioVotSwbrfVFseCSi1JVon5VXMa445yrtlOL4s_NnOYALDogG9AzP7DVFsl-iKz3DxRTADsxjyMLMPgwfWZ30z74A9KGpS0wIAibYwl0wOBpAkp2ZDAM6BDIHU_9Ttge9zAiASNIDz78irka_LzZMqQEwXkicAkPmI6vi5eDHSO8ebqvip83X3-svpX332_vVtf3pVN1l0pZ9U72uhLa2tZVzSBUY-26H1TfgV2DaGq-HqzUDe81tNp1EjJZ66GuOyGcvCo-nvvm7_yeISYzYV7DOFoCP0dTKSlaJZpGZfTdM3Tn50B5ukwp1WjR1W2m5JlywceY12X2AScbjkZwc_JkdubRkzl5MmdPOdU9SzlMNqGnFCyO_8m-P2cJMcdOZ5ZetbJWqtKiydNn0xn7csYgr_OAEEx8tAM9hrx103v85zN_ARHev34
CitedBy_id crossref_primary_10_1016_j_cie_2021_107760
crossref_primary_10_1016_j_jclepro_2024_140663
crossref_primary_10_1016_j_egyr_2022_09_187
crossref_primary_10_1016_j_energy_2024_133366
crossref_primary_10_1016_j_epsr_2024_111176
crossref_primary_10_1016_j_energy_2022_123581
crossref_primary_10_1016_j_enconman_2021_114527
crossref_primary_10_1080_15567249_2024_2324944
crossref_primary_10_1016_j_eneco_2022_106495
crossref_primary_10_1016_j_esr_2022_100933
crossref_primary_10_1016_j_apenergy_2023_121135
crossref_primary_10_1016_j_jpse_2021_12_004
crossref_primary_10_1016_j_compchemeng_2022_107726
crossref_primary_10_1016_j_spc_2021_05_010
crossref_primary_10_1016_j_cie_2022_108840
crossref_primary_10_1016_j_ces_2022_117607
crossref_primary_10_1016_j_jclepro_2024_141445
crossref_primary_10_1016_j_petsci_2022_03_021
crossref_primary_10_1016_j_cherd_2023_09_033
crossref_primary_10_1016_j_jclepro_2020_122681
crossref_primary_10_1016_j_renene_2024_122230
crossref_primary_10_3390_buildings14010213
crossref_primary_10_1016_j_energy_2021_121564
crossref_primary_10_1016_j_energy_2022_126079
crossref_primary_10_1016_j_jclepro_2023_136507
crossref_primary_10_1016_j_energy_2021_122299
crossref_primary_10_3390_en16041775
crossref_primary_10_1016_j_apenergy_2022_118684
crossref_primary_10_1016_j_resourpol_2022_102788
crossref_primary_10_1016_j_apenergy_2022_119750
crossref_primary_10_1016_j_esd_2024_101457
crossref_primary_10_1016_j_jpse_2025_100341
Cites_doi 10.1016/j.compchemeng.2012.10.012
10.1016/j.energy.2017.02.112
10.1016/j.cor.2014.03.021
10.1016/j.enpol.2018.08.034
10.1016/j.enpol.2019.01.053
10.1016/j.compchemeng.2016.05.002
10.1016/j.cherd.2017.11.001
10.1016/j.enpol.2019.111077
10.1016/j.energy.2018.10.010
10.1016/j.apenergy.2012.06.021
10.1016/j.apenergy.2019.03.055
10.1016/j.rser.2019.01.046
10.1016/j.cherd.2008.12.025
10.1016/j.cherd.2019.03.009
10.1016/j.enpol.2015.11.021
10.1016/j.jclepro.2015.01.064
10.1016/j.apenergy.2016.04.021
10.1016/j.jhydrol.2018.06.060
10.1016/j.apenergy.2019.01.157
10.1016/j.energy.2016.07.140
10.1016/j.apenergy.2013.08.071
10.1016/j.enpol.2005.02.004
10.1016/j.apenergy.2018.08.016
10.1016/j.compchemeng.2017.09.012
10.1016/j.jclepro.2019.118866
10.1016/j.jclepro.2018.11.144
10.1016/j.apm.2017.08.007
10.1016/j.energy.2019.07.117
10.1016/j.cherd.2013.05.028
10.1016/j.apenergy.2019.01.154
10.1016/j.apenergy.2018.06.037
10.1016/j.enpol.2016.11.011
10.1016/j.eneco.2015.11.004
10.1021/ie2013339
10.1016/j.jclepro.2019.05.340
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier Science Ltd. May 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. May 2020
DBID RYH
AAYXX
CITATION
7SP
7TA
7TB
7TQ
8BJ
8FD
DHY
DON
F28
FQK
FR3
H8D
JBE
JG9
KR7
L7M
7S9
L.6
DOI 10.1016/j.enpol.2020.111403
DatabaseName CiNii Complete
CrossRef
Electronics & Communications Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
PAIS Index
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
PAIS International
PAIS International (Ovid)
ANTE: Abstracts in New Technology & Engineering
International Bibliography of the Social Sciences
Engineering Research Database
Aerospace Database
International Bibliography of the Social Sciences
Materials Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Aerospace Database
Civil Engineering Abstracts
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
PAIS International
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Materials Business File
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
Environmental Sciences
EISSN 1873-6777
ExternalDocumentID 10_1016_j_enpol_2020_111403
S0301421520301579
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFFL
AAFJI
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABMMH
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACHQT
ACIWK
ACRLP
ACROA
ADBBV
ADEZE
ADFHU
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AEYQN
AFKWA
AFODL
AFRAH
AFTJW
AFXIZ
AGHFR
AGTHC
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AIEXJ
AIIAU
AIKHN
AITUG
AJBFU
AJOXV
AJWLA
AKIFW
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AXLSJ
AZFZN
BEHZQ
BELTK
BEZPJ
BGSCR
BKOJK
BKOMP
BLECG
BLXMC
BNTGB
BPUDD
BULVW
BZJEE
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMC
HVGLF
HZ~
H~9
IHE
IXIXF
J1W
JARJE
KCYFY
KOM
LY6
LY9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
R2-
RIG
ROL
RPZ
SAC
SCC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSB
SSF
SSJ
SSO
SSR
SSZ
T5K
TAE
TN5
U5U
WH7
WUQ
ZY4
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
EFKBS
RYH
~HD
9DU
AAYXX
ABWVN
ACRPL
ADNMO
ADXHL
AEGFY
AFJKZ
AGQPQ
AIGII
CITATION
7SP
7TA
7TB
7TQ
8BJ
8FD
DHY
DON
F28
FQK
FR3
H8D
JBE
JG9
KR7
L7M
7S9
L.6
ID FETCH-LOGICAL-c459t-32dc3d7217aa8c26f146aabdf4d9eabe1650bfa3760d7e87c93eaa857f55911c3
ISICitedReferencesCount 35
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000529795600031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0301-4215
IngestDate Thu Oct 02 11:42:59 EDT 2025
Sat Nov 08 22:22:53 EST 2025
Sat Nov 29 07:20:30 EST 2025
Tue Nov 18 22:00:32 EST 2025
Thu Sep 25 06:55:29 EDT 2025
Fri Feb 23 02:48:17 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Pipeline network interconnectivity sub-scenario
Emission reduction
Pipeline network interconnectivity
China National Offshore Oil Corporation
Reference sub-scenario
Energy reform
China
Downstream oil supply chain
Energy efficiency
Low carbon main scenario
Mixed integer linear programming
Business as usual main scenario
China Petroleum and Chemical Corporation
China National Petroleum Corporation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c459t-32dc3d7217aa8c26f146aabdf4d9eabe1650bfa3760d7e87c93eaa857f55911c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4176-0164
0000-0001-9602-8646
0000-0003-1206-475x
PQID 2444671958
PQPubID 49018
ParticipantIDs proquest_miscellaneous_2431841664
proquest_journals_2444671958
crossref_primary_10_1016_j_enpol_2020_111403
crossref_citationtrail_10_1016_j_enpol_2020_111403
nii_cinii_1872835442716416000
elsevier_sciencedirect_doi_10_1016_j_enpol_2020_111403
PublicationCentury 2000
PublicationDate May 2020
2020-05-01
2020-05-00
20200501
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: May 2020
PublicationDecade 2020
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Energy Policy
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
– name: Elsevier Science Ltd
References BP (bib5) 2019
United Nations (bib35) 2019
(bib25) 2019
(bib15) 2018
Otsuki, Mohd Isa, Samuelson (bib32) 2016; 89
Moradi Nasab, Amin-Naseri (bib23) 2016; 114
Oliveira, Hamacher (bib28) 2012; 51
Yuan, Zhang, Wang, Shen, Long, Liang (bib41) 2019; 232
Yang, Ding, Zhu, Yang, Wang (bib39) 2018; 229
Fernandes, Relvas, Barbosa-Póvoa (bib13) 2013; 91
Xu, Ma, Lian, Xu, Chaima (bib38) 2018; 563
Oliveira, Gupta, Hamacher, Grossmann (bib29) 2013; 50
Oliver (bib31) 2015; 52
Agostini, Guzmán, Nasirov, Silva (bib2) 2019; 128
Lima, Relvas, Barbosa-Póvoa (bib19) 2016; 92
Dong, Sun, Wu, Hochman (bib10) 2018; 123
Zhou, Zhang, Xin, Yan, Long, Yuan, Liang (bib45) 2020; 244
Kiliç (bib18) 2006; 34
Ringler, Keles, Fichtner (bib33) 2017; 101
National Development (bib27) 2019
Dieckhöner, Lochner, Lindenberger (bib9) 2013; 102
Chaudry, Jenkins, Qadrdan, Wu (bib7) 2014; 113
MirHassani (bib21) 2008; 196
Alikhani, Azar (bib3) 2015; 107
(bib24) 2019
Billimoria, Adisa, Gordon (bib6) 2018; 165
Devine, Russo (bib8) 2019; 238
National Development (bib26) 2018
BP (bib4) 2019
Kapsali, Kaldellis, Anagnostopoulos (bib17) 2016; 173
Fang, Zhang, Long, Yoshida, Sun, Zhang, Dou, Li (bib11) 2019; 241
(bib16) 2019
Yuan, Zhang, Wang, Huang, Fang, Liang (bib42) 2020; 136
Feijoo, Iyer, Avraam, Siddiqui, Clarke, Sankaranarayanan, Binsted, Patel, Prates, Torres-Alfaro, Wise (bib12) 2018; 228
Oliveira, Grossmann, Hamacher (bib30) 2014; 49
Wang, Liang, Zheng, Yuan, Zhang (bib37) 2019; 145
Lima, Relvas, Barbosa-Póvoa (bib20) 2018; 108
Zarei, Amin-Naseri (bib43) 2019; 185
Thellufsen, Lund (bib34) 2017; 124
Zhou, Price, Yande, Creyts, Khanna, Fridley, Lu, Feng, Liu, Hasanbeigi, Tian, Yang, Bai, Zhu, Xiong, Zhang, Chrisman, Agenbroad, Ke, McIntosh, Mullaney, Stranger, Wanless, Wetzel, Yee, Franconi (bib44) 2019; 239
Wang, Yuan, Zhang, Zhao, Liang (bib36) 2018; 129
Ghaithan, Attia, Duffuaa (bib14) 2017; 52
Mitra, Gudi, Patwardhan, Sardar (bib22) 2009; 87
Aghahosseini, Bogdanov, Barbosa, Breyer (bib1) 2019; 105
Yuan, Zhang, Long, Shen, Wang, Liang (bib40) 2019; 211
(10.1016/j.enpol.2020.111403_bib25) 2019
(10.1016/j.enpol.2020.111403_bib15) 2018
Yang (10.1016/j.enpol.2020.111403_bib39) 2018; 229
Oliveira (10.1016/j.enpol.2020.111403_bib29) 2013; 50
Billimoria (10.1016/j.enpol.2020.111403_bib6) 2018; 165
BP (10.1016/j.enpol.2020.111403_bib5) 2019
Fernandes (10.1016/j.enpol.2020.111403_bib13) 2013; 91
Oliveira (10.1016/j.enpol.2020.111403_bib28) 2012; 51
Lima (10.1016/j.enpol.2020.111403_bib20) 2018; 108
Yuan (10.1016/j.enpol.2020.111403_bib41) 2019; 232
MirHassani (10.1016/j.enpol.2020.111403_bib21) 2008; 196
Mitra (10.1016/j.enpol.2020.111403_bib22) 2009; 87
United Nations (10.1016/j.enpol.2020.111403_bib35) 2019
Dong (10.1016/j.enpol.2020.111403_bib10) 2018; 123
Oliver (10.1016/j.enpol.2020.111403_bib31) 2015; 52
Wang (10.1016/j.enpol.2020.111403_bib36) 2018; 129
Ghaithan (10.1016/j.enpol.2020.111403_bib14) 2017; 52
Zhou (10.1016/j.enpol.2020.111403_bib45) 2020; 244
Lima (10.1016/j.enpol.2020.111403_bib19) 2016; 92
(10.1016/j.enpol.2020.111403_bib24) 2019
Aghahosseini (10.1016/j.enpol.2020.111403_bib1) 2019; 105
Yuan (10.1016/j.enpol.2020.111403_bib40) 2019; 211
Chaudry (10.1016/j.enpol.2020.111403_bib7) 2014; 113
Otsuki (10.1016/j.enpol.2020.111403_bib32) 2016; 89
Feijoo (10.1016/j.enpol.2020.111403_bib12) 2018; 228
Dieckhöner (10.1016/j.enpol.2020.111403_bib9) 2013; 102
Ringler (10.1016/j.enpol.2020.111403_bib33) 2017; 101
Zarei (10.1016/j.enpol.2020.111403_bib43) 2019; 185
(10.1016/j.enpol.2020.111403_bib16) 2019
Yuan (10.1016/j.enpol.2020.111403_bib42) 2020; 136
Xu (10.1016/j.enpol.2020.111403_bib38) 2018; 563
National Development (10.1016/j.enpol.2020.111403_bib26) 2018
Zhou (10.1016/j.enpol.2020.111403_bib44) 2019; 239
Agostini (10.1016/j.enpol.2020.111403_bib2) 2019; 128
Kapsali (10.1016/j.enpol.2020.111403_bib17) 2016; 173
Kiliç (10.1016/j.enpol.2020.111403_bib18) 2006; 34
National Development (10.1016/j.enpol.2020.111403_bib27) 2019
Alikhani (10.1016/j.enpol.2020.111403_bib3) 2015; 107
BP (10.1016/j.enpol.2020.111403_bib4) 2019
Oliveira (10.1016/j.enpol.2020.111403_bib30) 2014; 49
Wang (10.1016/j.enpol.2020.111403_bib37) 2019; 145
Thellufsen (10.1016/j.enpol.2020.111403_bib34) 2017; 124
Moradi Nasab (10.1016/j.enpol.2020.111403_bib23) 2016; 114
Devine (10.1016/j.enpol.2020.111403_bib8) 2019; 238
Fang (10.1016/j.enpol.2020.111403_bib11) 2019; 241
References_xml – volume: 128
  start-page: 673
  year: 2019
  end-page: 684
  ident: bib2
  article-title: A surplus based framework for cross-border electricity trade in South America
  publication-title: Energy Pol.
– volume: 49
  start-page: 47
  year: 2014
  end-page: 58
  ident: bib30
  article-title: Accelerating Benders stochastic decomposition for the optimization under uncertainty of the petroleum product supply chain
  publication-title: Comput. Oper. Res.
– volume: 145
  start-page: 300
  year: 2019
  end-page: 313
  ident: bib37
  article-title: Optimisation of a downstream oil supply chain with new pipeline route planning
  publication-title: Chem. Eng. Res. Des.
– volume: 102
  start-page: 994
  year: 2013
  end-page: 1003
  ident: bib9
  article-title: European natural gas infrastructure: the impact of market developments on gas flows and physical market integration
  publication-title: Appl. Energy
– volume: 105
  start-page: 187
  year: 2019
  end-page: 205
  ident: bib1
  article-title: Analysing the feasibility of powering the Americas with renewable energy and inter-regional grid interconnections by 2030
  publication-title: Renew. Sustain. Energy Rev.
– volume: 52
  start-page: 265
  year: 2015
  end-page: 276
  ident: bib31
  article-title: Economies of scale and scope in expansion of the U.S. natural gas pipeline network
  publication-title: Energy Econ.
– volume: 51
  start-page: 4279
  year: 2012
  end-page: 4287
  ident: bib28
  article-title: Optimization of the petroleum product supply chain under uncertainty: a case study in northern Brazil
  publication-title: Ind. Eng. Chem. Res.
– volume: 89
  start-page: 311
  year: 2016
  end-page: 329
  ident: bib32
  article-title: Electric power grid interconnections in Northeast Asia: a quantitative analysis of opportunities and challenges
  publication-title: Energy Pol.
– volume: 173
  start-page: 238
  year: 2016
  end-page: 254
  ident: bib17
  article-title: Investigating the techno-economic perspectives of high wind energy production in remote vs interconnected island networks
  publication-title: Appl. Energy
– volume: 114
  start-page: 708
  year: 2016
  end-page: 733
  ident: bib23
  article-title: Designing an integrated model for a multi-period, multi-echelon and multi-product petroleum supply chain
  publication-title: Energy
– year: 2018
  ident: bib15
  article-title: Market Report Series: Energy Efficiency
– volume: 229
  start-page: 352
  year: 2018
  end-page: 363
  ident: bib39
  article-title: Multi-criteria integrated evaluation of distributed energy system for community energy planning based on improved grey incidence approach: a case study in Tianjin
  publication-title: Appl. Energy
– volume: 34
  start-page: 1928
  year: 2006
  end-page: 1934
  ident: bib18
  article-title: Turkey's natural gas necessity, consumption and future perspectives
  publication-title: Energy Pol.
– year: 2019
  ident: bib25
  article-title: National Consumption of Oil Products
– volume: 244
  start-page: 118866
  year: 2020
  ident: bib45
  article-title: Future scenario of China’s downstream oil supply chain: Low carbon-oriented optimization for the design of planned multi-product pipelines
  publication-title: J. Clean. Prod.
– volume: 124
  start-page: 492
  year: 2017
  end-page: 501
  ident: bib34
  article-title: Cross-border versus cross-sector interconnectivity in renewable energy systems
  publication-title: Energy
– volume: 238
  start-page: 1389
  year: 2019
  end-page: 1406
  ident: bib8
  article-title: Liquefied natural gas and gas storage valuation: lessons from the integrated Irish and UK markets
  publication-title: Appl. Energy
– volume: 129
  start-page: 122
  year: 2018
  end-page: 131
  ident: bib36
  article-title: An MILP model for optimal design of multi-period natural gas transmission network
  publication-title: Chem. Eng. Res. Des.
– year: 2019
  ident: bib4
  article-title: BP Energy Outlook: 2019 Edition
– volume: 107
  start-page: 353
  year: 2015
  end-page: 365
  ident: bib3
  article-title: A hybrid fuzzy satisfying optimization model for sustainable gas resources allocation
  publication-title: J. Clean. Prod.
– year: 2019
  ident: bib5
  article-title: BP Statistical Review of World Energy 2019
– year: 2019
  ident: bib24
  article-title: Annual Data of China
– year: 2018
  ident: bib26
  article-title: Year Book of China Transportation and Communications
– volume: 165
  start-page: 1370
  year: 2018
  end-page: 1379
  ident: bib6
  article-title: The feasibility of cost-effective gas through network interconnectivity: possibility or pipe dream?
  publication-title: Energy
– year: 2019
  ident: bib27
  article-title: Fair and Open Supervision for Oil and Gas Pipeline Networks and Ancillary Infrastructures
– volume: 563
  start-page: 975
  year: 2018
  end-page: 986
  ident: bib38
  article-title: Urban flooding risk assessment based on an integrated k-means cluster algorithm and improved entropy weight method in the region of Haikou, China
  publication-title: J. Hydrol.
– volume: 185
  start-page: 1114
  year: 2019
  end-page: 1130
  ident: bib43
  article-title: An integrated optimization model for natural gas supply chain
  publication-title: Energy
– volume: 239
  start-page: 793
  year: 2019
  end-page: 819
  ident: bib44
  article-title: A roadmap for China to peak carbon dioxide emissions and achieve a 20% share of non-fossil fuels in primary energy by 2030
  publication-title: Appl. Energy
– volume: 87
  start-page: 967
  year: 2009
  end-page: 981
  ident: bib22
  article-title: Towards resilient supply chains: uncertainty analysis using fuzzy mathematical programming
  publication-title: Chem. Eng. Res. Des.
– volume: 241
  start-page: 380
  year: 2019
  end-page: 389
  ident: bib11
  article-title: How can China achieve its Intended Nationally Determined Contributions by 2030? A multi-criteria allocation of China's carbon emission allowance
  publication-title: Appl. Energy
– volume: 52
  start-page: 689
  year: 2017
  end-page: 708
  ident: bib14
  article-title: Multi-objective optimization model for a downstream oil and gas supply chain
  publication-title: Appl. Math. Model.
– volume: 211
  start-page: 1209
  year: 2019
  end-page: 1227
  ident: bib40
  article-title: Economic, energy-saving and carbon-abatement potential forecast of multiproduct pipelines: a case study in China
  publication-title: J. Clean. Prod.
– year: 2019
  ident: bib16
  article-title: Oil Information: Overview (2019 Edition
– volume: 108
  start-page: 314
  year: 2018
  end-page: 336
  ident: bib20
  article-title: Stochastic programming approach for the optimal tactical planning of the downstream oil supply chain
  publication-title: Comput. Chem. Eng.
– year: 2019
  ident: bib35
  article-title: The Sustainable Development Goals Report 2019
– volume: 196
  start-page: 744
  year: 2008
  end-page: 751
  ident: bib21
  article-title: An operational planning model for petroleum products logistics under uncertainty
  publication-title: Appl. Math. Comput.
– volume: 50
  start-page: 184
  year: 2013
  end-page: 195
  ident: bib29
  article-title: A Lagrangean decomposition approach for oil supply chain investment planning under uncertainty with risk considerations
  publication-title: Comput. Chem. Eng.
– volume: 228
  start-page: 149
  year: 2018
  end-page: 166
  ident: bib12
  article-title: The future of natural gas infrastructure development in the United States
  publication-title: Appl. Energy
– volume: 232
  start-page: 1513
  year: 2019
  end-page: 1528
  ident: bib41
  article-title: Future scenario of China's downstream oil supply chain: an energy, economy and environment analysis for impacts of pipeline network reform
  publication-title: J. Clean. Prod.
– volume: 113
  start-page: 1171
  year: 2014
  end-page: 1187
  ident: bib7
  article-title: Combined gas and electricity network expansion planning
  publication-title: Appl. Energy
– volume: 123
  start-page: 64
  year: 2018
  end-page: 71
  ident: bib10
  article-title: The growth and development of natural gas supply chains: the case of China and the US
  publication-title: Energy Pol.
– volume: 92
  start-page: 78
  year: 2016
  end-page: 92
  ident: bib19
  article-title: Downstream oil supply chain management: a critical review and future directions
  publication-title: Comput. Chem. Eng.
– volume: 101
  start-page: 629
  year: 2017
  end-page: 643
  ident: bib33
  article-title: How to benefit from a common European electricity market design
  publication-title: Energy Pol.
– volume: 136
  start-page: 111077
  year: 2020
  ident: bib42
  article-title: Downstream oil supply security in China: policy implications from quantifying the impact of oil import disruption
  publication-title: Energy Pol.
– volume: 91
  start-page: 1557
  year: 2013
  end-page: 1587
  ident: bib13
  article-title: Strategic network design of downstream petroleum supply chains: single versus multi-entity participation
  publication-title: Chem. Eng. Res. Des.
– volume: 50
  start-page: 184
  year: 2013
  ident: 10.1016/j.enpol.2020.111403_bib29
  article-title: A Lagrangean decomposition approach for oil supply chain investment planning under uncertainty with risk considerations
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2012.10.012
– volume: 124
  start-page: 492
  year: 2017
  ident: 10.1016/j.enpol.2020.111403_bib34
  article-title: Cross-border versus cross-sector interconnectivity in renewable energy systems
  publication-title: Energy
  doi: 10.1016/j.energy.2017.02.112
– volume: 49
  start-page: 47
  year: 2014
  ident: 10.1016/j.enpol.2020.111403_bib30
  article-title: Accelerating Benders stochastic decomposition for the optimization under uncertainty of the petroleum product supply chain
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2014.03.021
– volume: 123
  start-page: 64
  year: 2018
  ident: 10.1016/j.enpol.2020.111403_bib10
  article-title: The growth and development of natural gas supply chains: the case of China and the US
  publication-title: Energy Pol.
  doi: 10.1016/j.enpol.2018.08.034
– year: 2019
  ident: 10.1016/j.enpol.2020.111403_bib24
– year: 2019
  ident: 10.1016/j.enpol.2020.111403_bib27
– volume: 128
  start-page: 673
  year: 2019
  ident: 10.1016/j.enpol.2020.111403_bib2
  article-title: A surplus based framework for cross-border electricity trade in South America
  publication-title: Energy Pol.
  doi: 10.1016/j.enpol.2019.01.053
– volume: 92
  start-page: 78
  year: 2016
  ident: 10.1016/j.enpol.2020.111403_bib19
  article-title: Downstream oil supply chain management: a critical review and future directions
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2016.05.002
– volume: 129
  start-page: 122
  year: 2018
  ident: 10.1016/j.enpol.2020.111403_bib36
  article-title: An MILP model for optimal design of multi-period natural gas transmission network
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2017.11.001
– volume: 136
  start-page: 111077
  year: 2020
  ident: 10.1016/j.enpol.2020.111403_bib42
  article-title: Downstream oil supply security in China: policy implications from quantifying the impact of oil import disruption
  publication-title: Energy Pol.
  doi: 10.1016/j.enpol.2019.111077
– volume: 165
  start-page: 1370
  year: 2018
  ident: 10.1016/j.enpol.2020.111403_bib6
  article-title: The feasibility of cost-effective gas through network interconnectivity: possibility or pipe dream?
  publication-title: Energy
  doi: 10.1016/j.energy.2018.10.010
– year: 2019
  ident: 10.1016/j.enpol.2020.111403_bib4
– volume: 102
  start-page: 994
  year: 2013
  ident: 10.1016/j.enpol.2020.111403_bib9
  article-title: European natural gas infrastructure: the impact of market developments on gas flows and physical market integration
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.06.021
– year: 2018
  ident: 10.1016/j.enpol.2020.111403_bib26
– volume: 241
  start-page: 380
  year: 2019
  ident: 10.1016/j.enpol.2020.111403_bib11
  article-title: How can China achieve its Intended Nationally Determined Contributions by 2030? A multi-criteria allocation of China's carbon emission allowance
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.03.055
– volume: 105
  start-page: 187
  year: 2019
  ident: 10.1016/j.enpol.2020.111403_bib1
  article-title: Analysing the feasibility of powering the Americas with renewable energy and inter-regional grid interconnections by 2030
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2019.01.046
– volume: 87
  start-page: 967
  year: 2009
  ident: 10.1016/j.enpol.2020.111403_bib22
  article-title: Towards resilient supply chains: uncertainty analysis using fuzzy mathematical programming
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2008.12.025
– volume: 145
  start-page: 300
  year: 2019
  ident: 10.1016/j.enpol.2020.111403_bib37
  article-title: Optimisation of a downstream oil supply chain with new pipeline route planning
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2019.03.009
– volume: 89
  start-page: 311
  year: 2016
  ident: 10.1016/j.enpol.2020.111403_bib32
  article-title: Electric power grid interconnections in Northeast Asia: a quantitative analysis of opportunities and challenges
  publication-title: Energy Pol.
  doi: 10.1016/j.enpol.2015.11.021
– volume: 107
  start-page: 353
  year: 2015
  ident: 10.1016/j.enpol.2020.111403_bib3
  article-title: A hybrid fuzzy satisfying optimization model for sustainable gas resources allocation
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2015.01.064
– volume: 173
  start-page: 238
  year: 2016
  ident: 10.1016/j.enpol.2020.111403_bib17
  article-title: Investigating the techno-economic perspectives of high wind energy production in remote vs interconnected island networks
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.04.021
– volume: 563
  start-page: 975
  year: 2018
  ident: 10.1016/j.enpol.2020.111403_bib38
  article-title: Urban flooding risk assessment based on an integrated k-means cluster algorithm and improved entropy weight method in the region of Haikou, China
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.06.060
– volume: 238
  start-page: 1389
  year: 2019
  ident: 10.1016/j.enpol.2020.111403_bib8
  article-title: Liquefied natural gas and gas storage valuation: lessons from the integrated Irish and UK markets
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.01.157
– year: 2018
  ident: 10.1016/j.enpol.2020.111403_bib15
– volume: 114
  start-page: 708
  year: 2016
  ident: 10.1016/j.enpol.2020.111403_bib23
  article-title: Designing an integrated model for a multi-period, multi-echelon and multi-product petroleum supply chain
  publication-title: Energy
  doi: 10.1016/j.energy.2016.07.140
– volume: 113
  start-page: 1171
  year: 2014
  ident: 10.1016/j.enpol.2020.111403_bib7
  article-title: Combined gas and electricity network expansion planning
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.08.071
– volume: 34
  start-page: 1928
  year: 2006
  ident: 10.1016/j.enpol.2020.111403_bib18
  article-title: Turkey's natural gas necessity, consumption and future perspectives
  publication-title: Energy Pol.
  doi: 10.1016/j.enpol.2005.02.004
– volume: 229
  start-page: 352
  year: 2018
  ident: 10.1016/j.enpol.2020.111403_bib39
  article-title: Multi-criteria integrated evaluation of distributed energy system for community energy planning based on improved grey incidence approach: a case study in Tianjin
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.08.016
– volume: 108
  start-page: 314
  year: 2018
  ident: 10.1016/j.enpol.2020.111403_bib20
  article-title: Stochastic programming approach for the optimal tactical planning of the downstream oil supply chain
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2017.09.012
– volume: 244
  start-page: 118866
  year: 2020
  ident: 10.1016/j.enpol.2020.111403_bib45
  article-title: Future scenario of China’s downstream oil supply chain: Low carbon-oriented optimization for the design of planned multi-product pipelines
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.118866
– volume: 211
  start-page: 1209
  year: 2019
  ident: 10.1016/j.enpol.2020.111403_bib40
  article-title: Economic, energy-saving and carbon-abatement potential forecast of multiproduct pipelines: a case study in China
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.11.144
– volume: 52
  start-page: 689
  year: 2017
  ident: 10.1016/j.enpol.2020.111403_bib14
  article-title: Multi-objective optimization model for a downstream oil and gas supply chain
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2017.08.007
– year: 2019
  ident: 10.1016/j.enpol.2020.111403_bib25
– year: 2019
  ident: 10.1016/j.enpol.2020.111403_bib5
– year: 2019
  ident: 10.1016/j.enpol.2020.111403_bib35
– volume: 185
  start-page: 1114
  year: 2019
  ident: 10.1016/j.enpol.2020.111403_bib43
  article-title: An integrated optimization model for natural gas supply chain
  publication-title: Energy
  doi: 10.1016/j.energy.2019.07.117
– volume: 91
  start-page: 1557
  year: 2013
  ident: 10.1016/j.enpol.2020.111403_bib13
  article-title: Strategic network design of downstream petroleum supply chains: single versus multi-entity participation
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2013.05.028
– volume: 239
  start-page: 793
  year: 2019
  ident: 10.1016/j.enpol.2020.111403_bib44
  article-title: A roadmap for China to peak carbon dioxide emissions and achieve a 20% share of non-fossil fuels in primary energy by 2030
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.01.154
– volume: 228
  start-page: 149
  year: 2018
  ident: 10.1016/j.enpol.2020.111403_bib12
  article-title: The future of natural gas infrastructure development in the United States
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.06.037
– volume: 196
  start-page: 744
  year: 2008
  ident: 10.1016/j.enpol.2020.111403_bib21
  article-title: An operational planning model for petroleum products logistics under uncertainty
  publication-title: Appl. Math. Comput.
– volume: 101
  start-page: 629
  year: 2017
  ident: 10.1016/j.enpol.2020.111403_bib33
  article-title: How to benefit from a common European electricity market design
  publication-title: Energy Pol.
  doi: 10.1016/j.enpol.2016.11.011
– year: 2019
  ident: 10.1016/j.enpol.2020.111403_bib16
– volume: 52
  start-page: 265
  year: 2015
  ident: 10.1016/j.enpol.2020.111403_bib31
  article-title: Economies of scale and scope in expansion of the U.S. natural gas pipeline network
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2015.11.004
– volume: 51
  start-page: 4279
  year: 2012
  ident: 10.1016/j.enpol.2020.111403_bib28
  article-title: Optimization of the petroleum product supply chain under uncertainty: a case study in northern Brazil
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie2013339
– volume: 232
  start-page: 1513
  year: 2019
  ident: 10.1016/j.enpol.2020.111403_bib41
  article-title: Future scenario of China's downstream oil supply chain: an energy, economy and environment analysis for impacts of pipeline network reform
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.05.340
SSID ssj0004894
ssib003011623
ssib006540256
ssib006540255
Score 2.480949
Snippet Improving energy supply efficiency and quality is regarded as a key pathway to shifting towards a fully sustainable energy system. To address the low...
SourceID proquest
crossref
nii
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 111403
SubjectTerms Carbon dioxide
Carbon dioxide emissions
China
Demand
Downstream oil supply chain
Economic forecasting
Efficiency
Emission reduction
Energy
Energy consumption
Energy efficiency
Energy policy
Energy reform
Environmental assessment
Environmental impact
Environmental performance
Forecasting
greenhouse gas emissions
guidelines
industry
Infrastructure
Integer programming
issues and policy
Linear programming
Mixed integer
Monopolies
monopoly
Networks
Oil and gas industry
oils
Petroleum
Petroleum industry
Pipeline network interconnectivity
Pipelines
planning
Policy making
Reforms
renewable energy sources
Supply
supply chain
Supply chains
Sustainable energy
Uncertainty
Title Future scenario of China's downstream oil reform: Improving the energy-environmental efficiency of the pipeline networks through interconnectivity
URI https://dx.doi.org/10.1016/j.enpol.2020.111403
https://cir.nii.ac.jp/crid/1872835442716416000
https://www.proquest.com/docview/2444671958
https://www.proquest.com/docview/2431841664
Volume 140
WOSCitedRecordID wos000529795600031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6777
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004894
  issn: 0301-4215
  databaseCode: AIEXJ
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5Bi0Q5IAhUDbRokZA4BKP4vcutQqkAoYpDgYiLtV6vW0dgW3GMyt_gFzOzu36gQIEDFyux1w9pPs_LM98Q8iSI0jyP_dBBciwnyLh0mJ_5DpOpy3gahEIJPWwiPj1lyyV_Z0uCGj1OIC5LdnnJ6_8qatgHwsbW2X8Qd39R2AG_QeiwBbHD9q8Ef6JZQmbI0gRxcGXrLbD1K25mGSaTsbj8y6wqkNIffVbMCgzJBV3loTsCnVEXHEhSabYJ3appCwvqolbaTS1NMXnTj_1BFoq1xCIaacZT_PQFwPQbjiiJdb3iBY49-iisKdWaqDzftLO3xWjfEh7xWwtK6dNF1fYLYcFMp77HSQxvPpQMmsxa313zYaT_QPc4gWe6PXtlbcidrLoFRR1oioRtS2CSEqvnqqwr_MTkaesQIDHsrheHHDTg7vHrxfLNOLh0x85gBM6sN-raNf-joeuWcUNOZh-z47TS1YNbt_2d33O9LIotP0A7N2d3yG0bldBjg6a75NpKTMjNrmm9mZBbI97KCdlfjIFBrX1o7pHvBny0Ax-tcqrB97ShA_QoQI8a6L2gPfAoIIr-Cnh0AB5eD5d1wKMd8KgFHt0C3n3y_mRx9vKVY6d-ODII-cbxvUz6WQyhshBMelEOtlyINMtBkSiRKhdiijQXWMyVxYrFkvsKVoZxDsGx60p_n-yUVakOCI3CMJLp3GUZeP2czVOuUgxxRJRyBp73lHidTBJpKfFxMsvnpKt9XCVakAkKMjGCnJJn_Um1YYS5ennUCTuxTq1xVhNA6tUnHgE04Llw67IYiRGDwMP8hgtRynxKDjvQJFb9NAk46-D5IIHUlDzuD4PFwM-AolRVi2vAjsM1ouDBH27xkOwNL-sh2dmsW3VEbsivm6JZP7Lvzw-vr9-l
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Future+scenario+of+China%27s+downstream+oil+reform%3A+Improving+the+energy-environmental+efficiency+of+the+pipeline+networks+through+interconnectivity&rft.jtitle=Energy+Policy&rft.au=Bohong+Wang&rft.au=Yongtu+Liang&rft.au=Xingyuan+Zhou&rft.au=Yang+Zhang&rft.date=2020-05-01&rft.pub=Elsevier+BV&rft.issn=0301-4215&rft.volume=140&rft.spage=111403&rft_id=info:doi/10.1016%2Fj.enpol.2020.111403
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-4215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-4215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-4215&client=summon