Future scenario of China's downstream oil reform: Improving the energy-environmental efficiency of the pipeline networks through interconnectivity
Improving energy supply efficiency and quality is regarded as a key pathway to shifting towards a fully sustainable energy system. To address the low efficiency and high emissions in the downstream oil industry caused by the problem of vertically integrated monopoly, the Chinese government is making...
Uloženo v:
| Vydáno v: | Energy Policy Ročník 140; s. 111403 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Kidlington
Elsevier Ltd
01.05.2020
Elsevier BV Elsevier Science Ltd |
| Témata: | |
| ISSN: | 0301-4215, 1873-6777 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Improving energy supply efficiency and quality is regarded as a key pathway to shifting towards a fully sustainable energy system. To address the low efficiency and high emissions in the downstream oil industry caused by the problem of vertically integrated monopoly, the Chinese government is making an effort to promote a multiproduct pipeline network reform. The fundamental and indispensable step for this goal is the pipeline network interconnectivity. This paper quantifies the energy-environmental impacts of the pipeline network interconnectivity reform on China's downstream oil supply chain to 2030. An integrated framework is developed to obtain the detailed design-scale information required for assessment, introducing demand forecasting and demand reallocation into a pipeline network optimal planning model. The model is formulated as a fuzzy mixed integer linear programming that optimizes the infrastructure development scheme and supply chain operation plan simultaneously while taking into account demand uncertainty. The results show that, compared with the baseline, the pipeline interconnectivity reform could reduce yearly energy consumption and CO2 emissions by 9.7–19.8% and 12.5–17.9%, respectively. It is shown that this reform policy could overcome infrastructure constraints, increase pipeline utilization, and improve both energy and environmental performance. The proposed framework can be a theoretical guideline for policymakers within and beyond China.
•We quantify the benefits of pipeline network interconnectivity reform in China's DOSC.•We propose an integrated framework to evaluate the energy-environmental efficiency.•Energy saving and CO2 reduction will respectively reach 9.7% and 12.5% at least.•The reform breaks the infrastructure bottleneck and improves oil supply efficiency.•Detailed policy implications are recommended for policy makers in China. |
|---|---|
| AbstractList | Improving energy supply efficiency and quality is regarded as a key pathway to shifting towards a fully sustainable energy system. To address the low efficiency and high emissions in the downstream oil industry caused by the problem of vertically integrated monopoly, the Chinese government is making an effort to promote a multiproduct pipeline network reform. The fundamental and indispensable step for this goal is the pipeline network interconnectivity. This paper quantifies the energy-environmental impacts of the pipeline network interconnectivity reform on China's downstream oil supply chain to 2030. An integrated framework is developed to obtain the detailed design-scale information required for assessment, introducing demand forecasting and demand reallocation into a pipeline network optimal planning model. The model is formulated as a fuzzy mixed integer linear programming that optimizes the infrastructure development scheme and supply chain operation plan simultaneously while taking into account demand uncertainty. The results show that, compared with the baseline, the pipeline interconnectivity reform could reduce yearly energy consumption and CO2 emissions by 9.7–19.8% and 12.5–17.9%, respectively. It is shown that this reform policy could overcome infrastructure constraints, increase pipeline utilization, and improve both energy and environmental performance. The proposed framework can be a theoretical guideline for policymakers within and beyond China.
•We quantify the benefits of pipeline network interconnectivity reform in China's DOSC.•We propose an integrated framework to evaluate the energy-environmental efficiency.•Energy saving and CO2 reduction will respectively reach 9.7% and 12.5% at least.•The reform breaks the infrastructure bottleneck and improves oil supply efficiency.•Detailed policy implications are recommended for policy makers in China. Improving energy supply efficiency and quality is regarded as a key pathway to shifting towards a fully sustainable energy system. To address the low efficiency and high emissions in the downstream oil industry caused by the problem of vertically integrated monopoly, the Chinese government is making an effort to promote a multiproduct pipeline network reform. The fundamental and indispensable step for this goal is the pipeline network interconnectivity. This paper quantifies the energy-environmental impacts of the pipeline network interconnectivity reform on China's downstream oil supply chain to 2030. An integrated framework is developed to obtain the detailed design-scale information required for assessment, introducing demand forecasting and demand reallocation into a pipeline network optimal planning model. The model is formulated as a fuzzy mixed integer linear programming that optimizes the infrastructure development scheme and supply chain operation plan simultaneously while taking into account demand uncertainty. The results show that, compared with the baseline, the pipeline interconnectivity reform could reduce yearly energy consumption and CO₂ emissions by 9.7–19.8% and 12.5–17.9%, respectively. It is shown that this reform policy could overcome infrastructure constraints, increase pipeline utilization, and improve both energy and environmental performance. The proposed framework can be a theoretical guideline for policymakers within and beyond China. Improving energy supply efficiency and quality is regarded as a key pathway to shifting towards a fully sustainable energy system. To address the low efficiency and high emissions in the downstream oil industry caused by the problem of vertically integrated monopoly, the Chinese government is making an effort to promote a multiproduct pipeline network reform. The fundamental and indispensable step for this goal is the pipeline network interconnectivity. This paper quantifies the energy-environmental impacts of the pipeline network interconnectivity reform on China's downstream oil supply chain to 2030. An integrated framework is developed to obtain the detailed design-scale information required for assessment, introducing demand forecasting and demand reallocation into a pipeline network optimal planning model. The model is formulated as a fuzzy mixed integer linear programming that optimizes the infrastructure development scheme and supply chain operation plan simultaneously while taking into account demand uncertainty. The results show that, compared with the baseline, the pipeline interconnectivity reform could reduce yearly energy consumption and CO2 emissions by 9.7–19.8% and 12.5–17.9%, respectively. It is shown that this reform policy could overcome infrastructure constraints, increase pipeline utilization, and improve both energy and environmental performance. The proposed framework can be a theoretical guideline for policymakers within and beyond China. |
| ArticleNumber | 111403 |
| Author | Zhang, Yang Wang, Bohong Liang, Yongtu Zhang, Haoran Yuan, Meng Zhou, Xingyuan |
| Author_xml | – sequence: 1 givenname: Meng surname: Yuan fullname: Yuan, Meng organization: China University of Petroleum-Beijing, Beijing Key Laboratory of Urban oil and Gas Distribution Technology, Fuxue Road No.18, Changping District, Beijing 102249, PR China – sequence: 2 givenname: Haoran surname: Zhang fullname: Zhang, Haoran email: zhang_ronan@csis.u-tokyo.ac.jp organization: Center for Spatial Information Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8563, Japan – sequence: 3 givenname: Bohong surname: Wang fullname: Wang, Bohong organization: China University of Petroleum-Beijing, Beijing Key Laboratory of Urban oil and Gas Distribution Technology, Fuxue Road No.18, Changping District, Beijing 102249, PR China – sequence: 4 givenname: Yang surname: Zhang fullname: Zhang, Yang organization: China University of Petroleum-Beijing, Beijing Key Laboratory of Urban oil and Gas Distribution Technology, Fuxue Road No.18, Changping District, Beijing 102249, PR China – sequence: 5 givenname: Xingyuan surname: Zhou fullname: Zhou, Xingyuan organization: China University of Petroleum-Beijing, Beijing Key Laboratory of Urban oil and Gas Distribution Technology, Fuxue Road No.18, Changping District, Beijing 102249, PR China – sequence: 6 givenname: Yongtu surname: Liang fullname: Liang, Yongtu email: liangyt21st@163.com organization: China University of Petroleum-Beijing, Beijing Key Laboratory of Urban oil and Gas Distribution Technology, Fuxue Road No.18, Changping District, Beijing 102249, PR China |
| BackLink | https://cir.nii.ac.jp/crid/1872835442716416000$$DView record in CiNii |
| BookMark | eNqFkcFu1DAQhiNUJLaFJ-BiCSS4ZLFjJ06QOFQrWipV4gJny-tMdmdJxovtbLWvwRPj7fbUA1xsafT94_F8l8UFeYKieCv4UnDRfNotgfZ-XFa8yhUhFJcvioVotSwbrfVFseCSi1JVon5VXMa445yrtlOL4s_NnOYALDogG9AzP7DVFsl-iKz3DxRTADsxjyMLMPgwfWZ30z74A9KGpS0wIAibYwl0wOBpAkp2ZDAM6BDIHU_9Ttge9zAiASNIDz78irka_LzZMqQEwXkicAkPmI6vi5eDHSO8ebqvip83X3-svpX332_vVtf3pVN1l0pZ9U72uhLa2tZVzSBUY-26H1TfgV2DaGq-HqzUDe81tNp1EjJZ66GuOyGcvCo-nvvm7_yeISYzYV7DOFoCP0dTKSlaJZpGZfTdM3Tn50B5ukwp1WjR1W2m5JlywceY12X2AScbjkZwc_JkdubRkzl5MmdPOdU9SzlMNqGnFCyO_8m-P2cJMcdOZ5ZetbJWqtKiydNn0xn7csYgr_OAEEx8tAM9hrx103v85zN_ARHev34 |
| CitedBy_id | crossref_primary_10_1016_j_cie_2021_107760 crossref_primary_10_1016_j_jclepro_2024_140663 crossref_primary_10_1016_j_egyr_2022_09_187 crossref_primary_10_1016_j_energy_2024_133366 crossref_primary_10_1016_j_epsr_2024_111176 crossref_primary_10_1016_j_energy_2022_123581 crossref_primary_10_1016_j_enconman_2021_114527 crossref_primary_10_1080_15567249_2024_2324944 crossref_primary_10_1016_j_eneco_2022_106495 crossref_primary_10_1016_j_esr_2022_100933 crossref_primary_10_1016_j_apenergy_2023_121135 crossref_primary_10_1016_j_jpse_2021_12_004 crossref_primary_10_1016_j_compchemeng_2022_107726 crossref_primary_10_1016_j_spc_2021_05_010 crossref_primary_10_1016_j_cie_2022_108840 crossref_primary_10_1016_j_ces_2022_117607 crossref_primary_10_1016_j_jclepro_2024_141445 crossref_primary_10_1016_j_petsci_2022_03_021 crossref_primary_10_1016_j_cherd_2023_09_033 crossref_primary_10_1016_j_jclepro_2020_122681 crossref_primary_10_1016_j_renene_2024_122230 crossref_primary_10_3390_buildings14010213 crossref_primary_10_1016_j_energy_2021_121564 crossref_primary_10_1016_j_energy_2022_126079 crossref_primary_10_1016_j_jclepro_2023_136507 crossref_primary_10_1016_j_energy_2021_122299 crossref_primary_10_3390_en16041775 crossref_primary_10_1016_j_apenergy_2022_118684 crossref_primary_10_1016_j_resourpol_2022_102788 crossref_primary_10_1016_j_apenergy_2022_119750 crossref_primary_10_1016_j_esd_2024_101457 crossref_primary_10_1016_j_jpse_2025_100341 |
| Cites_doi | 10.1016/j.compchemeng.2012.10.012 10.1016/j.energy.2017.02.112 10.1016/j.cor.2014.03.021 10.1016/j.enpol.2018.08.034 10.1016/j.enpol.2019.01.053 10.1016/j.compchemeng.2016.05.002 10.1016/j.cherd.2017.11.001 10.1016/j.enpol.2019.111077 10.1016/j.energy.2018.10.010 10.1016/j.apenergy.2012.06.021 10.1016/j.apenergy.2019.03.055 10.1016/j.rser.2019.01.046 10.1016/j.cherd.2008.12.025 10.1016/j.cherd.2019.03.009 10.1016/j.enpol.2015.11.021 10.1016/j.jclepro.2015.01.064 10.1016/j.apenergy.2016.04.021 10.1016/j.jhydrol.2018.06.060 10.1016/j.apenergy.2019.01.157 10.1016/j.energy.2016.07.140 10.1016/j.apenergy.2013.08.071 10.1016/j.enpol.2005.02.004 10.1016/j.apenergy.2018.08.016 10.1016/j.compchemeng.2017.09.012 10.1016/j.jclepro.2019.118866 10.1016/j.jclepro.2018.11.144 10.1016/j.apm.2017.08.007 10.1016/j.energy.2019.07.117 10.1016/j.cherd.2013.05.028 10.1016/j.apenergy.2019.01.154 10.1016/j.apenergy.2018.06.037 10.1016/j.enpol.2016.11.011 10.1016/j.eneco.2015.11.004 10.1021/ie2013339 10.1016/j.jclepro.2019.05.340 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd Copyright Elsevier Science Ltd. May 2020 |
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. May 2020 |
| DBID | RYH AAYXX CITATION 7SP 7TA 7TB 7TQ 8BJ 8FD DHY DON F28 FQK FR3 H8D JBE JG9 KR7 L7M 7S9 L.6 |
| DOI | 10.1016/j.enpol.2020.111403 |
| DatabaseName | CiNii Complete CrossRef Electronics & Communications Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts PAIS Index International Bibliography of the Social Sciences (IBSS) Technology Research Database PAIS International PAIS International (Ovid) ANTE: Abstracts in New Technology & Engineering International Bibliography of the Social Sciences Engineering Research Database Aerospace Database International Bibliography of the Social Sciences Materials Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Materials Research Database Aerospace Database Civil Engineering Abstracts International Bibliography of the Social Sciences (IBSS) Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts PAIS International Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Materials Business File AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Engineering Environmental Sciences |
| EISSN | 1873-6777 |
| ExternalDocumentID | 10_1016_j_enpol_2020_111403 S0301421520301579 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | --K --M --Z -~X .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN 9JO AABNK AACTN AAEDT AAEDW AAFFL AAFJI AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABMMH ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACHQT ACIWK ACRLP ACROA ADBBV ADEZE ADFHU ADIYS ADMUD AEBSH AEFWE AEKER AENEX AEYQN AFKWA AFODL AFRAH AFTJW AFXIZ AGHFR AGTHC AGUBO AGYEJ AHEUO AHHHB AHIDL AIEXJ AIIAU AIKHN AITUG AJBFU AJOXV AJWLA AKIFW AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK ASPBG AVARZ AVWKF AXJTR AXLSJ AZFZN BEHZQ BELTK BEZPJ BGSCR BKOJK BKOMP BLECG BLXMC BNTGB BPUDD BULVW BZJEE CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMC HVGLF HZ~ H~9 IHE IXIXF J1W JARJE KCYFY KOM LY6 LY9 M41 MO0 MS~ N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. PQQKQ PRBVW Q38 R2- RIG ROL RPZ SAC SCC SDF SDG SDP SEN SES SEW SPC SPCBC SSB SSF SSJ SSO SSR SSZ T5K TAE TN5 U5U WH7 WUQ ZY4 ~02 ~G- AAHBH AATTM AAXKI AAYWO ACLOT ACVFH ADCNI AEIPS AEUPX AFPUW AIIUN AKBMS AKRWK AKYEP ANKPU APXCP EFKBS RYH ~HD 9DU AAYXX ABWVN ACRPL ADNMO ADXHL AEGFY AFJKZ AGQPQ AIGII CITATION 7SP 7TA 7TB 7TQ 8BJ 8FD DHY DON F28 FQK FR3 H8D JBE JG9 KR7 L7M 7S9 L.6 |
| ID | FETCH-LOGICAL-c459t-32dc3d7217aa8c26f146aabdf4d9eabe1650bfa3760d7e87c93eaa857f55911c3 |
| ISICitedReferencesCount | 35 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000529795600031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0301-4215 |
| IngestDate | Thu Oct 02 11:42:59 EDT 2025 Sat Nov 08 22:22:53 EST 2025 Sat Nov 29 07:20:30 EST 2025 Tue Nov 18 22:00:32 EST 2025 Thu Sep 25 06:55:29 EDT 2025 Fri Feb 23 02:48:17 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Pipeline network interconnectivity sub-scenario Emission reduction Pipeline network interconnectivity China National Offshore Oil Corporation Reference sub-scenario Energy reform China Downstream oil supply chain Energy efficiency Low carbon main scenario Mixed integer linear programming Business as usual main scenario China Petroleum and Chemical Corporation China National Petroleum Corporation |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c459t-32dc3d7217aa8c26f146aabdf4d9eabe1650bfa3760d7e87c93eaa857f55911c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4176-0164 0000-0001-9602-8646 0000-0003-1206-475x |
| PQID | 2444671958 |
| PQPubID | 49018 |
| ParticipantIDs | proquest_miscellaneous_2431841664 proquest_journals_2444671958 crossref_primary_10_1016_j_enpol_2020_111403 crossref_citationtrail_10_1016_j_enpol_2020_111403 nii_cinii_1872835442716416000 elsevier_sciencedirect_doi_10_1016_j_enpol_2020_111403 |
| PublicationCentury | 2000 |
| PublicationDate | May 2020 2020-05-01 2020-05-00 20200501 |
| PublicationDateYYYYMMDD | 2020-05-01 |
| PublicationDate_xml | – month: 05 year: 2020 text: May 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington |
| PublicationTitle | Energy Policy |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd Elsevier BV Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV – name: Elsevier Science Ltd |
| References | BP (bib5) 2019 United Nations (bib35) 2019 (bib25) 2019 (bib15) 2018 Otsuki, Mohd Isa, Samuelson (bib32) 2016; 89 Moradi Nasab, Amin-Naseri (bib23) 2016; 114 Oliveira, Hamacher (bib28) 2012; 51 Yuan, Zhang, Wang, Shen, Long, Liang (bib41) 2019; 232 Yang, Ding, Zhu, Yang, Wang (bib39) 2018; 229 Fernandes, Relvas, Barbosa-Póvoa (bib13) 2013; 91 Xu, Ma, Lian, Xu, Chaima (bib38) 2018; 563 Oliveira, Gupta, Hamacher, Grossmann (bib29) 2013; 50 Oliver (bib31) 2015; 52 Agostini, Guzmán, Nasirov, Silva (bib2) 2019; 128 Lima, Relvas, Barbosa-Póvoa (bib19) 2016; 92 Dong, Sun, Wu, Hochman (bib10) 2018; 123 Zhou, Zhang, Xin, Yan, Long, Yuan, Liang (bib45) 2020; 244 Kiliç (bib18) 2006; 34 Ringler, Keles, Fichtner (bib33) 2017; 101 National Development (bib27) 2019 Dieckhöner, Lochner, Lindenberger (bib9) 2013; 102 Chaudry, Jenkins, Qadrdan, Wu (bib7) 2014; 113 MirHassani (bib21) 2008; 196 Alikhani, Azar (bib3) 2015; 107 (bib24) 2019 Billimoria, Adisa, Gordon (bib6) 2018; 165 Devine, Russo (bib8) 2019; 238 National Development (bib26) 2018 BP (bib4) 2019 Kapsali, Kaldellis, Anagnostopoulos (bib17) 2016; 173 Fang, Zhang, Long, Yoshida, Sun, Zhang, Dou, Li (bib11) 2019; 241 (bib16) 2019 Yuan, Zhang, Wang, Huang, Fang, Liang (bib42) 2020; 136 Feijoo, Iyer, Avraam, Siddiqui, Clarke, Sankaranarayanan, Binsted, Patel, Prates, Torres-Alfaro, Wise (bib12) 2018; 228 Oliveira, Grossmann, Hamacher (bib30) 2014; 49 Wang, Liang, Zheng, Yuan, Zhang (bib37) 2019; 145 Lima, Relvas, Barbosa-Póvoa (bib20) 2018; 108 Zarei, Amin-Naseri (bib43) 2019; 185 Thellufsen, Lund (bib34) 2017; 124 Zhou, Price, Yande, Creyts, Khanna, Fridley, Lu, Feng, Liu, Hasanbeigi, Tian, Yang, Bai, Zhu, Xiong, Zhang, Chrisman, Agenbroad, Ke, McIntosh, Mullaney, Stranger, Wanless, Wetzel, Yee, Franconi (bib44) 2019; 239 Wang, Yuan, Zhang, Zhao, Liang (bib36) 2018; 129 Ghaithan, Attia, Duffuaa (bib14) 2017; 52 Mitra, Gudi, Patwardhan, Sardar (bib22) 2009; 87 Aghahosseini, Bogdanov, Barbosa, Breyer (bib1) 2019; 105 Yuan, Zhang, Long, Shen, Wang, Liang (bib40) 2019; 211 (10.1016/j.enpol.2020.111403_bib25) 2019 (10.1016/j.enpol.2020.111403_bib15) 2018 Yang (10.1016/j.enpol.2020.111403_bib39) 2018; 229 Oliveira (10.1016/j.enpol.2020.111403_bib29) 2013; 50 Billimoria (10.1016/j.enpol.2020.111403_bib6) 2018; 165 BP (10.1016/j.enpol.2020.111403_bib5) 2019 Fernandes (10.1016/j.enpol.2020.111403_bib13) 2013; 91 Oliveira (10.1016/j.enpol.2020.111403_bib28) 2012; 51 Lima (10.1016/j.enpol.2020.111403_bib20) 2018; 108 Yuan (10.1016/j.enpol.2020.111403_bib41) 2019; 232 MirHassani (10.1016/j.enpol.2020.111403_bib21) 2008; 196 Mitra (10.1016/j.enpol.2020.111403_bib22) 2009; 87 United Nations (10.1016/j.enpol.2020.111403_bib35) 2019 Dong (10.1016/j.enpol.2020.111403_bib10) 2018; 123 Oliver (10.1016/j.enpol.2020.111403_bib31) 2015; 52 Wang (10.1016/j.enpol.2020.111403_bib36) 2018; 129 Ghaithan (10.1016/j.enpol.2020.111403_bib14) 2017; 52 Zhou (10.1016/j.enpol.2020.111403_bib45) 2020; 244 Lima (10.1016/j.enpol.2020.111403_bib19) 2016; 92 (10.1016/j.enpol.2020.111403_bib24) 2019 Aghahosseini (10.1016/j.enpol.2020.111403_bib1) 2019; 105 Yuan (10.1016/j.enpol.2020.111403_bib40) 2019; 211 Chaudry (10.1016/j.enpol.2020.111403_bib7) 2014; 113 Otsuki (10.1016/j.enpol.2020.111403_bib32) 2016; 89 Feijoo (10.1016/j.enpol.2020.111403_bib12) 2018; 228 Dieckhöner (10.1016/j.enpol.2020.111403_bib9) 2013; 102 Ringler (10.1016/j.enpol.2020.111403_bib33) 2017; 101 Zarei (10.1016/j.enpol.2020.111403_bib43) 2019; 185 (10.1016/j.enpol.2020.111403_bib16) 2019 Yuan (10.1016/j.enpol.2020.111403_bib42) 2020; 136 Xu (10.1016/j.enpol.2020.111403_bib38) 2018; 563 National Development (10.1016/j.enpol.2020.111403_bib26) 2018 Zhou (10.1016/j.enpol.2020.111403_bib44) 2019; 239 Agostini (10.1016/j.enpol.2020.111403_bib2) 2019; 128 Kapsali (10.1016/j.enpol.2020.111403_bib17) 2016; 173 Kiliç (10.1016/j.enpol.2020.111403_bib18) 2006; 34 National Development (10.1016/j.enpol.2020.111403_bib27) 2019 Alikhani (10.1016/j.enpol.2020.111403_bib3) 2015; 107 BP (10.1016/j.enpol.2020.111403_bib4) 2019 Oliveira (10.1016/j.enpol.2020.111403_bib30) 2014; 49 Wang (10.1016/j.enpol.2020.111403_bib37) 2019; 145 Thellufsen (10.1016/j.enpol.2020.111403_bib34) 2017; 124 Moradi Nasab (10.1016/j.enpol.2020.111403_bib23) 2016; 114 Devine (10.1016/j.enpol.2020.111403_bib8) 2019; 238 Fang (10.1016/j.enpol.2020.111403_bib11) 2019; 241 |
| References_xml | – volume: 128 start-page: 673 year: 2019 end-page: 684 ident: bib2 article-title: A surplus based framework for cross-border electricity trade in South America publication-title: Energy Pol. – volume: 49 start-page: 47 year: 2014 end-page: 58 ident: bib30 article-title: Accelerating Benders stochastic decomposition for the optimization under uncertainty of the petroleum product supply chain publication-title: Comput. Oper. Res. – volume: 145 start-page: 300 year: 2019 end-page: 313 ident: bib37 article-title: Optimisation of a downstream oil supply chain with new pipeline route planning publication-title: Chem. Eng. Res. Des. – volume: 102 start-page: 994 year: 2013 end-page: 1003 ident: bib9 article-title: European natural gas infrastructure: the impact of market developments on gas flows and physical market integration publication-title: Appl. Energy – volume: 105 start-page: 187 year: 2019 end-page: 205 ident: bib1 article-title: Analysing the feasibility of powering the Americas with renewable energy and inter-regional grid interconnections by 2030 publication-title: Renew. Sustain. Energy Rev. – volume: 52 start-page: 265 year: 2015 end-page: 276 ident: bib31 article-title: Economies of scale and scope in expansion of the U.S. natural gas pipeline network publication-title: Energy Econ. – volume: 51 start-page: 4279 year: 2012 end-page: 4287 ident: bib28 article-title: Optimization of the petroleum product supply chain under uncertainty: a case study in northern Brazil publication-title: Ind. Eng. Chem. Res. – volume: 89 start-page: 311 year: 2016 end-page: 329 ident: bib32 article-title: Electric power grid interconnections in Northeast Asia: a quantitative analysis of opportunities and challenges publication-title: Energy Pol. – volume: 173 start-page: 238 year: 2016 end-page: 254 ident: bib17 article-title: Investigating the techno-economic perspectives of high wind energy production in remote vs interconnected island networks publication-title: Appl. Energy – volume: 114 start-page: 708 year: 2016 end-page: 733 ident: bib23 article-title: Designing an integrated model for a multi-period, multi-echelon and multi-product petroleum supply chain publication-title: Energy – year: 2018 ident: bib15 article-title: Market Report Series: Energy Efficiency – volume: 229 start-page: 352 year: 2018 end-page: 363 ident: bib39 article-title: Multi-criteria integrated evaluation of distributed energy system for community energy planning based on improved grey incidence approach: a case study in Tianjin publication-title: Appl. Energy – volume: 34 start-page: 1928 year: 2006 end-page: 1934 ident: bib18 article-title: Turkey's natural gas necessity, consumption and future perspectives publication-title: Energy Pol. – year: 2019 ident: bib25 article-title: National Consumption of Oil Products – volume: 244 start-page: 118866 year: 2020 ident: bib45 article-title: Future scenario of China’s downstream oil supply chain: Low carbon-oriented optimization for the design of planned multi-product pipelines publication-title: J. Clean. Prod. – volume: 124 start-page: 492 year: 2017 end-page: 501 ident: bib34 article-title: Cross-border versus cross-sector interconnectivity in renewable energy systems publication-title: Energy – volume: 238 start-page: 1389 year: 2019 end-page: 1406 ident: bib8 article-title: Liquefied natural gas and gas storage valuation: lessons from the integrated Irish and UK markets publication-title: Appl. Energy – volume: 129 start-page: 122 year: 2018 end-page: 131 ident: bib36 article-title: An MILP model for optimal design of multi-period natural gas transmission network publication-title: Chem. Eng. Res. Des. – year: 2019 ident: bib4 article-title: BP Energy Outlook: 2019 Edition – volume: 107 start-page: 353 year: 2015 end-page: 365 ident: bib3 article-title: A hybrid fuzzy satisfying optimization model for sustainable gas resources allocation publication-title: J. Clean. Prod. – year: 2019 ident: bib5 article-title: BP Statistical Review of World Energy 2019 – year: 2019 ident: bib24 article-title: Annual Data of China – year: 2018 ident: bib26 article-title: Year Book of China Transportation and Communications – volume: 165 start-page: 1370 year: 2018 end-page: 1379 ident: bib6 article-title: The feasibility of cost-effective gas through network interconnectivity: possibility or pipe dream? publication-title: Energy – year: 2019 ident: bib27 article-title: Fair and Open Supervision for Oil and Gas Pipeline Networks and Ancillary Infrastructures – volume: 563 start-page: 975 year: 2018 end-page: 986 ident: bib38 article-title: Urban flooding risk assessment based on an integrated k-means cluster algorithm and improved entropy weight method in the region of Haikou, China publication-title: J. Hydrol. – volume: 185 start-page: 1114 year: 2019 end-page: 1130 ident: bib43 article-title: An integrated optimization model for natural gas supply chain publication-title: Energy – volume: 239 start-page: 793 year: 2019 end-page: 819 ident: bib44 article-title: A roadmap for China to peak carbon dioxide emissions and achieve a 20% share of non-fossil fuels in primary energy by 2030 publication-title: Appl. Energy – volume: 87 start-page: 967 year: 2009 end-page: 981 ident: bib22 article-title: Towards resilient supply chains: uncertainty analysis using fuzzy mathematical programming publication-title: Chem. Eng. Res. Des. – volume: 241 start-page: 380 year: 2019 end-page: 389 ident: bib11 article-title: How can China achieve its Intended Nationally Determined Contributions by 2030? A multi-criteria allocation of China's carbon emission allowance publication-title: Appl. Energy – volume: 52 start-page: 689 year: 2017 end-page: 708 ident: bib14 article-title: Multi-objective optimization model for a downstream oil and gas supply chain publication-title: Appl. Math. Model. – volume: 211 start-page: 1209 year: 2019 end-page: 1227 ident: bib40 article-title: Economic, energy-saving and carbon-abatement potential forecast of multiproduct pipelines: a case study in China publication-title: J. Clean. Prod. – year: 2019 ident: bib16 article-title: Oil Information: Overview (2019 Edition – volume: 108 start-page: 314 year: 2018 end-page: 336 ident: bib20 article-title: Stochastic programming approach for the optimal tactical planning of the downstream oil supply chain publication-title: Comput. Chem. Eng. – year: 2019 ident: bib35 article-title: The Sustainable Development Goals Report 2019 – volume: 196 start-page: 744 year: 2008 end-page: 751 ident: bib21 article-title: An operational planning model for petroleum products logistics under uncertainty publication-title: Appl. Math. Comput. – volume: 50 start-page: 184 year: 2013 end-page: 195 ident: bib29 article-title: A Lagrangean decomposition approach for oil supply chain investment planning under uncertainty with risk considerations publication-title: Comput. Chem. Eng. – volume: 228 start-page: 149 year: 2018 end-page: 166 ident: bib12 article-title: The future of natural gas infrastructure development in the United States publication-title: Appl. Energy – volume: 232 start-page: 1513 year: 2019 end-page: 1528 ident: bib41 article-title: Future scenario of China's downstream oil supply chain: an energy, economy and environment analysis for impacts of pipeline network reform publication-title: J. Clean. Prod. – volume: 113 start-page: 1171 year: 2014 end-page: 1187 ident: bib7 article-title: Combined gas and electricity network expansion planning publication-title: Appl. Energy – volume: 123 start-page: 64 year: 2018 end-page: 71 ident: bib10 article-title: The growth and development of natural gas supply chains: the case of China and the US publication-title: Energy Pol. – volume: 92 start-page: 78 year: 2016 end-page: 92 ident: bib19 article-title: Downstream oil supply chain management: a critical review and future directions publication-title: Comput. Chem. Eng. – volume: 101 start-page: 629 year: 2017 end-page: 643 ident: bib33 article-title: How to benefit from a common European electricity market design publication-title: Energy Pol. – volume: 136 start-page: 111077 year: 2020 ident: bib42 article-title: Downstream oil supply security in China: policy implications from quantifying the impact of oil import disruption publication-title: Energy Pol. – volume: 91 start-page: 1557 year: 2013 end-page: 1587 ident: bib13 article-title: Strategic network design of downstream petroleum supply chains: single versus multi-entity participation publication-title: Chem. Eng. Res. Des. – volume: 50 start-page: 184 year: 2013 ident: 10.1016/j.enpol.2020.111403_bib29 article-title: A Lagrangean decomposition approach for oil supply chain investment planning under uncertainty with risk considerations publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2012.10.012 – volume: 124 start-page: 492 year: 2017 ident: 10.1016/j.enpol.2020.111403_bib34 article-title: Cross-border versus cross-sector interconnectivity in renewable energy systems publication-title: Energy doi: 10.1016/j.energy.2017.02.112 – volume: 49 start-page: 47 year: 2014 ident: 10.1016/j.enpol.2020.111403_bib30 article-title: Accelerating Benders stochastic decomposition for the optimization under uncertainty of the petroleum product supply chain publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2014.03.021 – volume: 123 start-page: 64 year: 2018 ident: 10.1016/j.enpol.2020.111403_bib10 article-title: The growth and development of natural gas supply chains: the case of China and the US publication-title: Energy Pol. doi: 10.1016/j.enpol.2018.08.034 – year: 2019 ident: 10.1016/j.enpol.2020.111403_bib24 – year: 2019 ident: 10.1016/j.enpol.2020.111403_bib27 – volume: 128 start-page: 673 year: 2019 ident: 10.1016/j.enpol.2020.111403_bib2 article-title: A surplus based framework for cross-border electricity trade in South America publication-title: Energy Pol. doi: 10.1016/j.enpol.2019.01.053 – volume: 92 start-page: 78 year: 2016 ident: 10.1016/j.enpol.2020.111403_bib19 article-title: Downstream oil supply chain management: a critical review and future directions publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2016.05.002 – volume: 129 start-page: 122 year: 2018 ident: 10.1016/j.enpol.2020.111403_bib36 article-title: An MILP model for optimal design of multi-period natural gas transmission network publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2017.11.001 – volume: 136 start-page: 111077 year: 2020 ident: 10.1016/j.enpol.2020.111403_bib42 article-title: Downstream oil supply security in China: policy implications from quantifying the impact of oil import disruption publication-title: Energy Pol. doi: 10.1016/j.enpol.2019.111077 – volume: 165 start-page: 1370 year: 2018 ident: 10.1016/j.enpol.2020.111403_bib6 article-title: The feasibility of cost-effective gas through network interconnectivity: possibility or pipe dream? publication-title: Energy doi: 10.1016/j.energy.2018.10.010 – year: 2019 ident: 10.1016/j.enpol.2020.111403_bib4 – volume: 102 start-page: 994 year: 2013 ident: 10.1016/j.enpol.2020.111403_bib9 article-title: European natural gas infrastructure: the impact of market developments on gas flows and physical market integration publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.06.021 – year: 2018 ident: 10.1016/j.enpol.2020.111403_bib26 – volume: 241 start-page: 380 year: 2019 ident: 10.1016/j.enpol.2020.111403_bib11 article-title: How can China achieve its Intended Nationally Determined Contributions by 2030? A multi-criteria allocation of China's carbon emission allowance publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.03.055 – volume: 105 start-page: 187 year: 2019 ident: 10.1016/j.enpol.2020.111403_bib1 article-title: Analysing the feasibility of powering the Americas with renewable energy and inter-regional grid interconnections by 2030 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2019.01.046 – volume: 87 start-page: 967 year: 2009 ident: 10.1016/j.enpol.2020.111403_bib22 article-title: Towards resilient supply chains: uncertainty analysis using fuzzy mathematical programming publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2008.12.025 – volume: 145 start-page: 300 year: 2019 ident: 10.1016/j.enpol.2020.111403_bib37 article-title: Optimisation of a downstream oil supply chain with new pipeline route planning publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2019.03.009 – volume: 89 start-page: 311 year: 2016 ident: 10.1016/j.enpol.2020.111403_bib32 article-title: Electric power grid interconnections in Northeast Asia: a quantitative analysis of opportunities and challenges publication-title: Energy Pol. doi: 10.1016/j.enpol.2015.11.021 – volume: 107 start-page: 353 year: 2015 ident: 10.1016/j.enpol.2020.111403_bib3 article-title: A hybrid fuzzy satisfying optimization model for sustainable gas resources allocation publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2015.01.064 – volume: 173 start-page: 238 year: 2016 ident: 10.1016/j.enpol.2020.111403_bib17 article-title: Investigating the techno-economic perspectives of high wind energy production in remote vs interconnected island networks publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.04.021 – volume: 563 start-page: 975 year: 2018 ident: 10.1016/j.enpol.2020.111403_bib38 article-title: Urban flooding risk assessment based on an integrated k-means cluster algorithm and improved entropy weight method in the region of Haikou, China publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.06.060 – volume: 238 start-page: 1389 year: 2019 ident: 10.1016/j.enpol.2020.111403_bib8 article-title: Liquefied natural gas and gas storage valuation: lessons from the integrated Irish and UK markets publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.01.157 – year: 2018 ident: 10.1016/j.enpol.2020.111403_bib15 – volume: 114 start-page: 708 year: 2016 ident: 10.1016/j.enpol.2020.111403_bib23 article-title: Designing an integrated model for a multi-period, multi-echelon and multi-product petroleum supply chain publication-title: Energy doi: 10.1016/j.energy.2016.07.140 – volume: 113 start-page: 1171 year: 2014 ident: 10.1016/j.enpol.2020.111403_bib7 article-title: Combined gas and electricity network expansion planning publication-title: Appl. Energy doi: 10.1016/j.apenergy.2013.08.071 – volume: 34 start-page: 1928 year: 2006 ident: 10.1016/j.enpol.2020.111403_bib18 article-title: Turkey's natural gas necessity, consumption and future perspectives publication-title: Energy Pol. doi: 10.1016/j.enpol.2005.02.004 – volume: 229 start-page: 352 year: 2018 ident: 10.1016/j.enpol.2020.111403_bib39 article-title: Multi-criteria integrated evaluation of distributed energy system for community energy planning based on improved grey incidence approach: a case study in Tianjin publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.08.016 – volume: 108 start-page: 314 year: 2018 ident: 10.1016/j.enpol.2020.111403_bib20 article-title: Stochastic programming approach for the optimal tactical planning of the downstream oil supply chain publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2017.09.012 – volume: 244 start-page: 118866 year: 2020 ident: 10.1016/j.enpol.2020.111403_bib45 article-title: Future scenario of China’s downstream oil supply chain: Low carbon-oriented optimization for the design of planned multi-product pipelines publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.118866 – volume: 211 start-page: 1209 year: 2019 ident: 10.1016/j.enpol.2020.111403_bib40 article-title: Economic, energy-saving and carbon-abatement potential forecast of multiproduct pipelines: a case study in China publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.11.144 – volume: 52 start-page: 689 year: 2017 ident: 10.1016/j.enpol.2020.111403_bib14 article-title: Multi-objective optimization model for a downstream oil and gas supply chain publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2017.08.007 – year: 2019 ident: 10.1016/j.enpol.2020.111403_bib25 – year: 2019 ident: 10.1016/j.enpol.2020.111403_bib5 – year: 2019 ident: 10.1016/j.enpol.2020.111403_bib35 – volume: 185 start-page: 1114 year: 2019 ident: 10.1016/j.enpol.2020.111403_bib43 article-title: An integrated optimization model for natural gas supply chain publication-title: Energy doi: 10.1016/j.energy.2019.07.117 – volume: 91 start-page: 1557 year: 2013 ident: 10.1016/j.enpol.2020.111403_bib13 article-title: Strategic network design of downstream petroleum supply chains: single versus multi-entity participation publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2013.05.028 – volume: 239 start-page: 793 year: 2019 ident: 10.1016/j.enpol.2020.111403_bib44 article-title: A roadmap for China to peak carbon dioxide emissions and achieve a 20% share of non-fossil fuels in primary energy by 2030 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.01.154 – volume: 228 start-page: 149 year: 2018 ident: 10.1016/j.enpol.2020.111403_bib12 article-title: The future of natural gas infrastructure development in the United States publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.06.037 – volume: 196 start-page: 744 year: 2008 ident: 10.1016/j.enpol.2020.111403_bib21 article-title: An operational planning model for petroleum products logistics under uncertainty publication-title: Appl. Math. Comput. – volume: 101 start-page: 629 year: 2017 ident: 10.1016/j.enpol.2020.111403_bib33 article-title: How to benefit from a common European electricity market design publication-title: Energy Pol. doi: 10.1016/j.enpol.2016.11.011 – year: 2019 ident: 10.1016/j.enpol.2020.111403_bib16 – volume: 52 start-page: 265 year: 2015 ident: 10.1016/j.enpol.2020.111403_bib31 article-title: Economies of scale and scope in expansion of the U.S. natural gas pipeline network publication-title: Energy Econ. doi: 10.1016/j.eneco.2015.11.004 – volume: 51 start-page: 4279 year: 2012 ident: 10.1016/j.enpol.2020.111403_bib28 article-title: Optimization of the petroleum product supply chain under uncertainty: a case study in northern Brazil publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie2013339 – volume: 232 start-page: 1513 year: 2019 ident: 10.1016/j.enpol.2020.111403_bib41 article-title: Future scenario of China's downstream oil supply chain: an energy, economy and environment analysis for impacts of pipeline network reform publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.05.340 |
| SSID | ssj0004894 ssib003011623 ssib006540256 ssib006540255 |
| Score | 2.480949 |
| Snippet | Improving energy supply efficiency and quality is regarded as a key pathway to shifting towards a fully sustainable energy system. To address the low... |
| SourceID | proquest crossref nii elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 111403 |
| SubjectTerms | Carbon dioxide Carbon dioxide emissions China Demand Downstream oil supply chain Economic forecasting Efficiency Emission reduction Energy Energy consumption Energy efficiency Energy policy Energy reform Environmental assessment Environmental impact Environmental performance Forecasting greenhouse gas emissions guidelines industry Infrastructure Integer programming issues and policy Linear programming Mixed integer Monopolies monopoly Networks Oil and gas industry oils Petroleum Petroleum industry Pipeline network interconnectivity Pipelines planning Policy making Reforms renewable energy sources Supply supply chain Supply chains Sustainable energy Uncertainty |
| Title | Future scenario of China's downstream oil reform: Improving the energy-environmental efficiency of the pipeline networks through interconnectivity |
| URI | https://dx.doi.org/10.1016/j.enpol.2020.111403 https://cir.nii.ac.jp/crid/1872835442716416000 https://www.proquest.com/docview/2444671958 https://www.proquest.com/docview/2431841664 |
| Volume | 140 |
| WOSCitedRecordID | wos000529795600031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6777 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004894 issn: 0301-4215 databaseCode: AIEXJ dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5Bi0Q5IAhUDbRokZA4BKP4vcutQqkAoYpDgYiLtV6vW0dgW3GMyt_gFzOzu36gQIEDFyux1w9pPs_LM98Q8iSI0jyP_dBBciwnyLh0mJ_5DpOpy3gahEIJPWwiPj1lyyV_Z0uCGj1OIC5LdnnJ6_8qatgHwsbW2X8Qd39R2AG_QeiwBbHD9q8Ef6JZQmbI0gRxcGXrLbD1K25mGSaTsbj8y6wqkNIffVbMCgzJBV3loTsCnVEXHEhSabYJ3appCwvqolbaTS1NMXnTj_1BFoq1xCIaacZT_PQFwPQbjiiJdb3iBY49-iisKdWaqDzftLO3xWjfEh7xWwtK6dNF1fYLYcFMp77HSQxvPpQMmsxa313zYaT_QPc4gWe6PXtlbcidrLoFRR1oioRtS2CSEqvnqqwr_MTkaesQIDHsrheHHDTg7vHrxfLNOLh0x85gBM6sN-raNf-joeuWcUNOZh-z47TS1YNbt_2d33O9LIotP0A7N2d3yG0bldBjg6a75NpKTMjNrmm9mZBbI97KCdlfjIFBrX1o7pHvBny0Ax-tcqrB97ShA_QoQI8a6L2gPfAoIIr-Cnh0AB5eD5d1wKMd8KgFHt0C3n3y_mRx9vKVY6d-ODII-cbxvUz6WQyhshBMelEOtlyINMtBkSiRKhdiijQXWMyVxYrFkvsKVoZxDsGx60p_n-yUVakOCI3CMJLp3GUZeP2czVOuUgxxRJRyBp73lHidTBJpKfFxMsvnpKt9XCVakAkKMjGCnJJn_Um1YYS5ennUCTuxTq1xVhNA6tUnHgE04Llw67IYiRGDwMP8hgtRynxKDjvQJFb9NAk46-D5IIHUlDzuD4PFwM-AolRVi2vAjsM1ouDBH27xkOwNL-sh2dmsW3VEbsivm6JZP7Lvzw-vr9-l |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Future+scenario+of+China%27s+downstream+oil+reform%3A+Improving+the+energy-environmental+efficiency+of+the+pipeline+networks+through+interconnectivity&rft.jtitle=Energy+Policy&rft.au=Bohong+Wang&rft.au=Yongtu+Liang&rft.au=Xingyuan+Zhou&rft.au=Yang+Zhang&rft.date=2020-05-01&rft.pub=Elsevier+BV&rft.issn=0301-4215&rft.volume=140&rft.spage=111403&rft_id=info:doi/10.1016%2Fj.enpol.2020.111403 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-4215&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-4215&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-4215&client=summon |