Free field world-sheet correlators for AdS3

A bstract We employ the free field realisation of the psu 1 1 2 1 world-sheet theory to constrain the correlators of string theory on AdS 3 × S 3 × 𝕋 4 with unit NS-NS flux. In particular, we directly obtain the unusual delta function localisation of these correlators onto branched covers of the bou...

Full description

Saved in:
Bibliographic Details
Published in:The journal of high energy physics Vol. 2021; no. 2; pp. 1 - 44
Main Authors: Dei, Andrea, Gaberdiel, Matthias R., Gopakumar, Rajesh, Knighton, Bob
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2021
SpringerOpen
Subjects:
ISSN:1029-8479, 1029-8479
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A bstract We employ the free field realisation of the psu 1 1 2 1 world-sheet theory to constrain the correlators of string theory on AdS 3 × S 3 × 𝕋 4 with unit NS-NS flux. In particular, we directly obtain the unusual delta function localisation of these correlators onto branched covers of the boundary S 2 by the (genus zero) world-sheet — this is the key property which makes the equivalence to the dual symmetric orbifold manifest. In our approach, this feature follows from a remarkable ‘incidence relation’ obeyed by the correlators, which is reminiscent of a twistorial string description. We also illustrate our results with explicit computations in various special cases.
AbstractList We employ the free field realisation of the $$ \mathfrak{psu}{\left(1,1\left|2\right.\right)}_1 $$ psu 1 1 2 1 world-sheet theory to constrain the correlators of string theory on AdS 3 × S 3 × 4 with unit NS-NS flux. In particular, we directly obtain the unusual delta function localisation of these correlators onto branched covers of the boundary S 2 by the (genus zero) world-sheet — this is the key property which makes the equivalence to the dual symmetric orbifold manifest. In our approach, this feature follows from a remarkable ‘incidence relation’ obeyed by the correlators, which is reminiscent of a twistorial string description. We also illustrate our results with explicit computations in various special cases.
A bstract We employ the free field realisation of the psu 1 1 2 1 world-sheet theory to constrain the correlators of string theory on AdS 3 × S 3 × 𝕋 4 with unit NS-NS flux. In particular, we directly obtain the unusual delta function localisation of these correlators onto branched covers of the boundary S 2 by the (genus zero) world-sheet — this is the key property which makes the equivalence to the dual symmetric orbifold manifest. In our approach, this feature follows from a remarkable ‘incidence relation’ obeyed by the correlators, which is reminiscent of a twistorial string description. We also illustrate our results with explicit computations in various special cases.
Abstract We employ the free field realisation of the psu 1 1 2 1 $$ \mathfrak{psu}{\left(1,1\left|2\right.\right)}_1 $$ world-sheet theory to constrain the correlators of string theory on AdS3 × S3 × 𝕋4 with unit NS-NS flux. In particular, we directly obtain the unusual delta function localisation of these correlators onto branched covers of the boundary S2 by the (genus zero) world-sheet — this is the key property which makes the equivalence to the dual symmetric orbifold manifest. In our approach, this feature follows from a remarkable ‘incidence relation’ obeyed by the correlators, which is reminiscent of a twistorial string description. We also illustrate our results with explicit computations in various special cases.
ArticleNumber 81
Author Gopakumar, Rajesh
Gaberdiel, Matthias R.
Dei, Andrea
Knighton, Bob
Author_xml – sequence: 1
  givenname: Andrea
  orcidid: 0000-0002-2683-3946
  surname: Dei
  fullname: Dei, Andrea
  organization: Institut für Theoretische Physik, ETH Zürich
– sequence: 2
  givenname: Matthias R.
  orcidid: 0000-0002-6472-9402
  surname: Gaberdiel
  fullname: Gaberdiel, Matthias R.
  organization: Institut für Theoretische Physik, ETH Zürich
– sequence: 3
  givenname: Rajesh
  surname: Gopakumar
  fullname: Gopakumar, Rajesh
  organization: International Centre for Theoretical Sciences-TIFR
– sequence: 4
  givenname: Bob
  surname: Knighton
  fullname: Knighton, Bob
  email: robejr@ethz.ch
  organization: Institut für Theoretische Physik, ETH Zürich
BookMark eNp9kE1LAzEQQINUsK2eve5RkbUzSfYjx1JaqxQU1HPI5qNuWTeSrIj_3q0rIoKeZhh4b-BNyKj1rSXkFOESAYrZzXp5B_SMAsVzKPGAjBGoSEteiNGP_YhMYtwBYIYCxuRiFaxNXG0bk7z50Jg0PlnbJdqHYBvV-RAT50MyN_fsmBw61UR78jWn5HG1fFis083t1fVivkk1z0SXUiNQ2IIxgByYVsqxXIMTCl3OTb8IJZyuaFnovMxAoKXIM1Y4ByhYgWxKrgev8WonX0L9rMK79KqWnwcftlKFrtaNlZwbUUKVGzQFR1qWHICpylQaVGbd3jUbXDr4GIN13z4Eue8mh25y30323Xoi-0XoulNd7dsuqLr5h4OBi_2HdmuD3PnX0Pah_kQ-AI1jf70
CitedBy_id crossref_primary_10_1007_JHEP01_2024_098
crossref_primary_10_1007_JHEP12_2021_149
crossref_primary_10_1007_JHEP04_2024_057
crossref_primary_10_1007_JHEP05_2024_189
crossref_primary_10_1007_JHEP07_2023_049
crossref_primary_10_1007_JHEP03_2025_128
crossref_primary_10_1007_JHEP04_2025_053
crossref_primary_10_1007_JHEP11_2024_145
crossref_primary_10_1007_JHEP07_2025_260
crossref_primary_10_1007_JHEP11_2021_129
crossref_primary_10_1007_JHEP07_2023_093
crossref_primary_10_1007_JHEP01_2025_017
crossref_primary_10_1007_JHEP12_2022_107
crossref_primary_10_1007_JHEP12_2021_012
crossref_primary_10_1007_JHEP10_2022_077
crossref_primary_10_1007_JHEP03_2024_030
crossref_primary_10_1007_JHEP05_2024_113
crossref_primary_10_1007_JHEP03_2021_036
crossref_primary_10_1007_JHEP06_2024_053
crossref_primary_10_1007_JHEP09_2022_244
crossref_primary_10_21468_SciPostPhys_19_2_060
crossref_primary_10_1007_JHEP04_2021_007
crossref_primary_10_1007_JHEP01_2025_042
crossref_primary_10_1007_JHEP10_2021_168
crossref_primary_10_1007_JHEP10_2024_117
crossref_primary_10_1007_JHEP08_2022_274
crossref_primary_10_1007_JHEP09_2024_110
crossref_primary_10_1007_JHEP08_2024_186
crossref_primary_10_1088_1751_8121_ad72be
crossref_primary_10_1007_JHEP05_2023_005
crossref_primary_10_1007_JHEP05_2021_233
crossref_primary_10_1007_JHEP09_2021_209
crossref_primary_10_1007_JHEP03_2021_208
crossref_primary_10_1007_JHEP05_2021_073
crossref_primary_10_1007_JHEP08_2024_203
crossref_primary_10_1007_JHEP11_2024_083
crossref_primary_10_1007_JHEP07_2023_149
crossref_primary_10_1007_JHEP03_2021_246
crossref_primary_10_1007_JHEP07_2025_083
crossref_primary_10_1007_JHEP02_2025_004
crossref_primary_10_1007_JHEP05_2025_003
crossref_primary_10_1007_JHEP12_2022_043
crossref_primary_10_1007_JHEP04_2021_211
crossref_primary_10_1007_JHEP02_2025_163
crossref_primary_10_1007_JHEP07_2024_266
crossref_primary_10_1007_JHEP11_2024_059
crossref_primary_10_1007_JHEP03_2025_074
crossref_primary_10_1007_JHEP04_2024_048
crossref_primary_10_1007_JHEP08_2021_025
crossref_primary_10_1007_JHEP06_2024_071
crossref_primary_10_1007_JHEP05_2024_136
crossref_primary_10_1088_1751_8121_ada7ae
crossref_primary_10_1007_JHEP06_2024_030
crossref_primary_10_1007_JHEP09_2024_135
crossref_primary_10_1007_JHEP06_2024_024
crossref_primary_10_1007_JHEP05_2025_014
crossref_primary_10_1007_JHEP05_2022_150
crossref_primary_10_1007_JHEP08_2025_159
crossref_primary_10_1007_JHEP10_2021_187
crossref_primary_10_1088_1751_8121_ad3ab1
crossref_primary_10_1016_j_physrep_2023_04_001
crossref_primary_10_1007_JHEP07_2024_236
Cites_doi 10.1007/JHEP06(2019)035
10.1088/0305-4470/39/47/016
10.1088/1126-6708/2005/09/045
10.1016/j.physletb.2005.09.031
10.1016/S0370-2693(01)00503-2
10.1007/JHEP04(2010)096
10.1007/JHEP05(2018)085
10.1016/0550-3213(94)00419-F
10.1007/JHEP04(2019)103
10.1103/PhysRevD.70.026009
10.1007/JHEP07(2018)038
10.1103/PhysRevD.79.086004
10.1088/1126-6708/2007/03/003
10.1007/JHEP01(2020)108
10.1016/0550-3213(84)90374-2
10.1007/s002200100431
10.1088/1126-6708/2009/10/034
10.1007/JHEP08(2018)204
10.1016/S0550-3213(02)00905-7
10.1016/j.nuclphysb.2011.02.015
10.1007/JHEP02(2020)136
10.1007/JHEP11(2020)047
10.1088/1126-6708/2008/10/024
10.1063/1.1377273
10.1103/PhysRevD.65.106006
10.1103/PhysRevLett.93.011601
10.1016/S0550-3213(99)00071-1
10.1007/JHEP09(2020)157
10.1016/S0370-2693(01)01181-9
10.1088/1751-8113/46/49/494010
10.1007/s002200050031
10.1088/1126-6708/1999/03/018
10.1016/j.nuclphysb.2005.04.015
10.1063/1.1377039
10.1007/JHEP10(2012)084
10.1007/s00220-004-1187-3
ContentType Journal Article
Copyright The Author(s) 2021
Copyright_xml – notice: The Author(s) 2021
DBID C6C
AAYXX
CITATION
DOA
DOI 10.1007/JHEP02(2021)081
DatabaseName Springer Nature OA Free Journals
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 44
ExternalDocumentID oai_doaj_org_article_44d980b6d1d7412884003abdbc0a5ef1
10_1007_JHEP02_2021_081
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
02O
1JI
1WK
2VQ
5ZI
AAGCD
AAGCF
AAIAL
AAJIO
AALHV
AARHV
AATNI
AAYXX
ABFSG
ACAFW
ACARI
ACBXY
ACSTC
ADKPE
ADRFC
AEFHF
AEINN
AEJGL
AERVB
AETNG
AEZWR
AFFHD
AFHIU
AFLOW
AGJBK
AGQPQ
AHSBF
AHSEE
AHWEU
AIXLP
AIYBF
AKPSB
AMVHM
ARNYC
BAPOH
BBWZM
BGNMA
CAG
CITATION
CJUJL
COF
CRLBU
EDWGO
EJD
EMSAF
EPQRW
EQZZN
H13
IJHAN
IOP
IZVLO
JCGBZ
KOT
M45
M4Y
NT-
NT.
NU0
O9-
PHGZM
PHGZT
PJBAE
PQGLB
Q02
R4D
RIN
RKQ
RNS
ROL
RPA
S1Z
S3P
SY9
T37
ID FETCH-LOGICAL-c459t-2d919e73300603caaf36c0f9a1f64d0f99a9fcb287c685091e214537ff0193713
IEDL.DBID DOA
ISICitedReferencesCount 73
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000619793200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1029-8479
IngestDate Tue Oct 14 18:50:01 EDT 2025
Tue Nov 18 22:35:06 EST 2025
Sat Nov 29 02:11:55 EST 2025
Fri Feb 21 02:49:22 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords AdS-CFT Correspondence
Conformal and W Symmetry
Conformal Field Models in String Theory
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-2d919e73300603caaf36c0f9a1f64d0f99a9fcb287c685091e214537ff0193713
ORCID 0000-0002-6472-9402
0000-0002-2683-3946
OpenAccessLink https://doaj.org/article/44d980b6d1d7412884003abdbc0a5ef1
PageCount 44
ParticipantIDs doaj_primary_oai_doaj_org_article_44d980b6d1d7412884003abdbc0a5ef1
crossref_primary_10_1007_JHEP02_2021_081
crossref_citationtrail_10_1007_JHEP02_2021_081
springer_journals_10_1007_JHEP02_2021_081
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2021
Publisher Springer Berlin Heidelberg
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: SpringerOpen
References P. Goddard, Meromorphic conformal field theory, DAMTP-89-01, (1989) [INSPIRE].
LuninOMathurSDCorrelation functions for MN/SNorbifoldsCommun. Math. Phys.20012193992001CMaPh.219..399L10.1007/s002200100431[hep-th/0006196] [INSPIRE]
TeschnerJCrossing symmetry in theH3+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {H}_3^{+} $$\end{document}WZNW modelPhys. Lett. B20015211272001PhLB..521..127T187351010.1016/S0370-2693(01)01181-9[hep-th/0108121] [INSPIRE]
KawaiSWheaterJFModular transformation and boundary states in logarithmic conformal field theoryPhys. Lett. B20015082032001PhLB..508..203K185382410.1016/S0370-2693(01)00503-2[hep-th/0103197] [INSPIRE]
QuellaTSchomerusVCreutzigTBoundary spectra in superspace sigma-modelsJHEP2008100242008JHEP...10..024Q10.1088/1126-6708/2008/10/024[arXiv:0712.3549] [INSPIRE]
GaberdielMRGoddardPAxiomatic conformal field theoryCommun. Math. Phys.20002095492000CMaPh.209..549G174360910.1007/s002200050031[hep-th/9810019] [INSPIRE]
J.M. Maldacena, H. Ooguri and J. Son, Strings in AdS3and the SL(2, R) WZW model. Part 2: euclidean black hole, J. Math. Phys.42 (2001) 2961 [hep-th/0005183] [INSPIRE].
EberhardtLGaberdielMRGopakumarRDeriving the AdS3/CFT2correspondenceJHEP2020021362020JHEP...02..136E10.1007/JHEP02(2020)136[arXiv:1911.00378] [INSPIRE]
LiSTroostJTwisted string theory in anti-de Sitter spaceJHEP2020110472020JHEP...11..047L420423810.1007/JHEP11(2020)047[arXiv:2005.13817] [INSPIRE]
RidoutDFusion in fractional levelsl̂2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \hat{sl}(2) $$\end{document}-theories with k = −12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{1}{2} $$\end{document}Nucl. Phys. B20118482162011NuPhB.848..216R10.1016/j.nuclphysb.2011.02.015[arXiv:1012.2905] [INSPIRE]
WittenEPerturbative gauge theory as a string theory in twistor spaceCommun. Math. Phys.20042521892004CMaPh.252..189W210487910.1007/s00220-004-1187-3[hep-th/0312171] [INSPIRE]
J.M. Maldacena and H. Ooguri, Strings in AdS3and the SL(2, R) WZW model. Part 3: correlation functions, Phys. Rev. D65 (2002) 106006 [hep-th/0111180] [INSPIRE].
BerkovitsNAn alternative string theory in twistor space for N = 4 super Yang-MillsPhys. Rev. Lett.2004932004PhRvL..93a1601B211390610.1103/PhysRevLett.93.011601[hep-th/0402045] [INSPIRE]
M.R. Gaberdiel and R. Gopakumar, work in progress.
DeiAEberhardtLCorrelators of the symmetric product orbifoldJHEP2020011082020JHEP...01..108D408821110.1007/JHEP01(2020)108[arXiv:1911.08485] [INSPIRE]
GerigkSString states on AdS3× S3from the supergroupJHEP2012100842012JHEP...10..084G303385610.1007/JHEP10(2012)084[arXiv:1208.0345] [INSPIRE]
RibaultSKnizhnik-Zamolodchikov equations and spectral flow in AdS3string theoryJHEP2005090452005JHEP...09..045R217416610.1088/1126-6708/2005/09/045[hep-th/0507114] [INSPIRE]
EberhardtLAdS3/CFT2at higher genusJHEP2020051502020JHEP...05..150E1437.81070[arXiv:2002.11729] [INSPIRE]
TeschnerJThe minisuperspace limit of the SL(2, C )/SU(2) WZNW modelNucl. Phys. B19995463691999NuPhB.546..369T168213210.1016/S0550-3213(99)00071-1[hep-th/9712258] [INSPIRE]
BaronWHNúñezCAFusion rules and four-point functions in the SL(2, R) WZNW modelPhys. Rev. D2009792009PhRvD..79h6004B250562210.1103/PhysRevD.79.086004[arXiv:0810.2768] [INSPIRE]
GaberdielMRGopakumarRTensionless string spectra on AdS3JHEP2018050852018JHEP...05..085G10.1007/JHEP05(2018)085[arXiv:1803.04423] [INSPIRE]
GaberdielMRRunkelIThe logarithmic triplet theory with boundaryJ. Phys. A200639147452006JPhA...3914745G227708110.1088/0305-4470/39/47/016[hep-th/0608184] [INSPIRE]
GiveonAKutasovDRabinoviciESeverAPhases of quantum gravity in AdS3and linear dilaton backgroundsNucl. Phys. B200571932005NuPhB.719....3G215427110.1016/j.nuclphysb.2005.04.015[hep-th/0503121] [INSPIRE]
RoibanRSpradlinMVolovichAOn the tree level S matrix of Yang-Mills theoryPhys. Rev. D2004702004PhRvD..70b6009R210329210.1103/PhysRevD.70.026009[hep-th/0403190] [INSPIRE]
BerkovitsNVafaCWittenEConformal field theory of AdS background with Ramond-Ramond fluxJHEP1999030181999JHEP...03..018B169677010.1088/1126-6708/1999/03/018[hep-th/9902098] [INSPIRE]
KnizhnikVGZamolodchikovABCurrent algebra and Wess-Zumino model in two-dimensionsNucl. Phys. B1984247831984NuPhB.247...83K85325810.1016/0550-3213(84)90374-2[INSPIRE]
PakmanARastelliLRazamatSSDiagrams for symmetric product orbifoldsJHEP2009100342009JHEP...10..034P260746310.1088/1126-6708/2009/10/034[arXiv:0905.3448] [INSPIRE]
GötzGQuellaTSchomerusVThe WZNW model on PSU(1, 1|2)JHEP2007030032007JHEP...03..003G231389410.1088/1126-6708/2007/03/003[hep-th/0610070] [INSPIRE]
L. Eberhardt, Partition functions of the tensionless string, arXiv:2008.07533 [INSPIRE].
HikidaYLiuTCorrelation functions of symmetric orbifold from AdS3string theoryJHEP2020091572020JHEP...09..157H10.1007/JHEP09(2020)157[arXiv:2005.12511] [INSPIRE]
LesageFMathieuPRasmussenJSaleurHThesu2−1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{su}{(2)}_{-1/2} $$\end{document}WZW model and the βγ systemNucl. Phys. B20026473632002NuPhB.647..363L10.1016/S0550-3213(02)00905-7[hep-th/0207201] [INSPIRE]
RoumpedakisKComments on the SNorbifold CFT in the large N -limitJHEP2018070382018JHEP...07..038R386201510.1007/JHEP07(2018)038[arXiv:1804.03207] [INSPIRE]
RibaultSMinisuperspace limit of the AdS3 WZNW modelJHEP2010040962010JHEP...04..096R267306410.1007/JHEP04(2010)096[arXiv:0912.4481] [INSPIRE]
J.M. Maldacena and H. Ooguri, Strings in AdS3and SL(2, R) WZW model. Part 1: the spectrum, J. Math. Phys.42 (2001) 2929 [hep-th/0001053] [INSPIRE].
B. Knighton, Higher genus correlators for tensionless AdS3strings, arXiv:2012.01445 [INSPIRE].
BerkovitsNVafaCN = 4 topological stringsNucl. Phys. B19954331231995NuPhB.433..123B130965610.1016/0550-3213(94)00419-F[hep-th/9407190] [INSPIRE]
GiribetGOn spectral flow symmetry and Knizhnik-Zamolodchikov equationPhys. Lett. B20056281482005PhLB..628..148G217553710.1016/j.physletb.2005.09.031[hep-th/0508019] [INSPIRE]
EberhardtLGaberdielMRStrings on AdS3× S3× S3× S1JHEP2019060352019JHEP...06..035E10.1007/JHEP06(2019)035[arXiv:1904.01585] [INSPIRE]
QuellaTSchomerusVSuperspace conformal field theoryJ. Phys. A201346494010314601610.1088/1751-8113/46/49/494010[arXiv:1307.7724] [INSPIRE]
EberhardtLGaberdielMRGopakumarRThe worldsheet dual of the symmetric product CFTJHEP2019041032019JHEP...04..103E395397110.1007/JHEP04(2019)103[arXiv:1812.01007] [INSPIRE]
K. Costello and N.M. Paquette, Twisted supergravity and Koszul duality: a case study in AdS3, arXiv:2001.02177 [INSPIRE].
GiribetGHullCKlebanMPorratiMRabinoviciESuperstrings on AdS3at k = 1JHEP2018082042018JHEP...08..204G10.1007/JHEP08(2018)204[arXiv:1803.04420] [INSPIRE]
WH Baron (14807_CR23) 2009; 79
MR Gaberdiel (14807_CR2) 2018; 05
S Gerigk (14807_CR30) 2012; 10
S Ribault (14807_CR18) 2010; 04
S Ribault (14807_CR21) 2005; 09
L Eberhardt (14807_CR37) 2019; 06
T Quella (14807_CR41) 2008; 10
A Giveon (14807_CR16) 2005; 719
F Lesage (14807_CR24) 2002; 647
O Lunin (14807_CR4) 2001; 219
J Teschner (14807_CR19) 1999; 546
14807_CR28
L Eberhardt (14807_CR1) 2019; 04
N Berkovits (14807_CR12) 2004; 93
Y Hikida (14807_CR7) 2020; 09
G Giribet (14807_CR17) 2018; 08
G Giribet (14807_CR22) 2005; 628
MR Gaberdiel (14807_CR40) 2006; 39
R Roiban (14807_CR35) 2004; 70
S Kawai (14807_CR39) 2001; 508
MR Gaberdiel (14807_CR29) 2000; 209
VG Knizhnik (14807_CR42) 1984; 247
L Eberhardt (14807_CR6) 2020; 05
A Dei (14807_CR33) 2020; 01
14807_CR38
14807_CR14
G Götz (14807_CR25) 2007; 03
14807_CR36
14807_CR13
N Berkovits (14807_CR31) 1995; 433
E Witten (14807_CR34) 2004; 252
14807_CR10
A Pakman (14807_CR5) 2009; 10
14807_CR9
14807_CR8
L Eberhardt (14807_CR3) 2020; 02
S Li (14807_CR15) 2020; 11
D Ridout (14807_CR26) 2011; 848
N Berkovits (14807_CR11) 1999; 03
K Roumpedakis (14807_CR32) 2018; 07
T Quella (14807_CR27) 2013; 46
J Teschner (14807_CR20) 2001; 521
References_xml – reference: RidoutDFusion in fractional levelsl̂2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \hat{sl}(2) $$\end{document}-theories with k = −12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{1}{2} $$\end{document}Nucl. Phys. B20118482162011NuPhB.848..216R10.1016/j.nuclphysb.2011.02.015[arXiv:1012.2905] [INSPIRE]
– reference: B. Knighton, Higher genus correlators for tensionless AdS3strings, arXiv:2012.01445 [INSPIRE].
– reference: KnizhnikVGZamolodchikovABCurrent algebra and Wess-Zumino model in two-dimensionsNucl. Phys. B1984247831984NuPhB.247...83K85325810.1016/0550-3213(84)90374-2[INSPIRE]
– reference: EberhardtLGaberdielMRGopakumarRThe worldsheet dual of the symmetric product CFTJHEP2019041032019JHEP...04..103E395397110.1007/JHEP04(2019)103[arXiv:1812.01007] [INSPIRE]
– reference: J.M. Maldacena and H. Ooguri, Strings in AdS3and SL(2, R) WZW model. Part 1: the spectrum, J. Math. Phys.42 (2001) 2929 [hep-th/0001053] [INSPIRE].
– reference: QuellaTSchomerusVSuperspace conformal field theoryJ. Phys. A201346494010314601610.1088/1751-8113/46/49/494010[arXiv:1307.7724] [INSPIRE]
– reference: J.M. Maldacena, H. Ooguri and J. Son, Strings in AdS3and the SL(2, R) WZW model. Part 2: euclidean black hole, J. Math. Phys.42 (2001) 2961 [hep-th/0005183] [INSPIRE].
– reference: EberhardtLAdS3/CFT2at higher genusJHEP2020051502020JHEP...05..150E1437.81070[arXiv:2002.11729] [INSPIRE]
– reference: BerkovitsNVafaCWittenEConformal field theory of AdS background with Ramond-Ramond fluxJHEP1999030181999JHEP...03..018B169677010.1088/1126-6708/1999/03/018[hep-th/9902098] [INSPIRE]
– reference: GaberdielMRGoddardPAxiomatic conformal field theoryCommun. Math. Phys.20002095492000CMaPh.209..549G174360910.1007/s002200050031[hep-th/9810019] [INSPIRE]
– reference: RoibanRSpradlinMVolovichAOn the tree level S matrix of Yang-Mills theoryPhys. Rev. D2004702004PhRvD..70b6009R210329210.1103/PhysRevD.70.026009[hep-th/0403190] [INSPIRE]
– reference: BerkovitsNAn alternative string theory in twistor space for N = 4 super Yang-MillsPhys. Rev. Lett.2004932004PhRvL..93a1601B211390610.1103/PhysRevLett.93.011601[hep-th/0402045] [INSPIRE]
– reference: LuninOMathurSDCorrelation functions for MN/SNorbifoldsCommun. Math. Phys.20012193992001CMaPh.219..399L10.1007/s002200100431[hep-th/0006196] [INSPIRE]
– reference: K. Costello and N.M. Paquette, Twisted supergravity and Koszul duality: a case study in AdS3, arXiv:2001.02177 [INSPIRE].
– reference: GiveonAKutasovDRabinoviciESeverAPhases of quantum gravity in AdS3and linear dilaton backgroundsNucl. Phys. B200571932005NuPhB.719....3G215427110.1016/j.nuclphysb.2005.04.015[hep-th/0503121] [INSPIRE]
– reference: GiribetGHullCKlebanMPorratiMRabinoviciESuperstrings on AdS3at k = 1JHEP2018082042018JHEP...08..204G10.1007/JHEP08(2018)204[arXiv:1803.04420] [INSPIRE]
– reference: DeiAEberhardtLCorrelators of the symmetric product orbifoldJHEP2020011082020JHEP...01..108D408821110.1007/JHEP01(2020)108[arXiv:1911.08485] [INSPIRE]
– reference: TeschnerJCrossing symmetry in theH3+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {H}_3^{+} $$\end{document}WZNW modelPhys. Lett. B20015211272001PhLB..521..127T187351010.1016/S0370-2693(01)01181-9[hep-th/0108121] [INSPIRE]
– reference: GaberdielMRGopakumarRTensionless string spectra on AdS3JHEP2018050852018JHEP...05..085G10.1007/JHEP05(2018)085[arXiv:1803.04423] [INSPIRE]
– reference: LiSTroostJTwisted string theory in anti-de Sitter spaceJHEP2020110472020JHEP...11..047L420423810.1007/JHEP11(2020)047[arXiv:2005.13817] [INSPIRE]
– reference: QuellaTSchomerusVCreutzigTBoundary spectra in superspace sigma-modelsJHEP2008100242008JHEP...10..024Q10.1088/1126-6708/2008/10/024[arXiv:0712.3549] [INSPIRE]
– reference: EberhardtLGaberdielMRGopakumarRDeriving the AdS3/CFT2correspondenceJHEP2020021362020JHEP...02..136E10.1007/JHEP02(2020)136[arXiv:1911.00378] [INSPIRE]
– reference: HikidaYLiuTCorrelation functions of symmetric orbifold from AdS3string theoryJHEP2020091572020JHEP...09..157H10.1007/JHEP09(2020)157[arXiv:2005.12511] [INSPIRE]
– reference: L. Eberhardt, Partition functions of the tensionless string, arXiv:2008.07533 [INSPIRE].
– reference: RibaultSMinisuperspace limit of the AdS3 WZNW modelJHEP2010040962010JHEP...04..096R267306410.1007/JHEP04(2010)096[arXiv:0912.4481] [INSPIRE]
– reference: RibaultSKnizhnik-Zamolodchikov equations and spectral flow in AdS3string theoryJHEP2005090452005JHEP...09..045R217416610.1088/1126-6708/2005/09/045[hep-th/0507114] [INSPIRE]
– reference: RoumpedakisKComments on the SNorbifold CFT in the large N -limitJHEP2018070382018JHEP...07..038R386201510.1007/JHEP07(2018)038[arXiv:1804.03207] [INSPIRE]
– reference: M.R. Gaberdiel and R. Gopakumar, work in progress.
– reference: GötzGQuellaTSchomerusVThe WZNW model on PSU(1, 1|2)JHEP2007030032007JHEP...03..003G231389410.1088/1126-6708/2007/03/003[hep-th/0610070] [INSPIRE]
– reference: PakmanARastelliLRazamatSSDiagrams for symmetric product orbifoldsJHEP2009100342009JHEP...10..034P260746310.1088/1126-6708/2009/10/034[arXiv:0905.3448] [INSPIRE]
– reference: BaronWHNúñezCAFusion rules and four-point functions in the SL(2, R) WZNW modelPhys. Rev. D2009792009PhRvD..79h6004B250562210.1103/PhysRevD.79.086004[arXiv:0810.2768] [INSPIRE]
– reference: BerkovitsNVafaCN = 4 topological stringsNucl. Phys. B19954331231995NuPhB.433..123B130965610.1016/0550-3213(94)00419-F[hep-th/9407190] [INSPIRE]
– reference: WittenEPerturbative gauge theory as a string theory in twistor spaceCommun. Math. Phys.20042521892004CMaPh.252..189W210487910.1007/s00220-004-1187-3[hep-th/0312171] [INSPIRE]
– reference: J.M. Maldacena and H. Ooguri, Strings in AdS3and the SL(2, R) WZW model. Part 3: correlation functions, Phys. Rev. D65 (2002) 106006 [hep-th/0111180] [INSPIRE].
– reference: P. Goddard, Meromorphic conformal field theory, DAMTP-89-01, (1989) [INSPIRE].
– reference: GerigkSString states on AdS3× S3from the supergroupJHEP2012100842012JHEP...10..084G303385610.1007/JHEP10(2012)084[arXiv:1208.0345] [INSPIRE]
– reference: KawaiSWheaterJFModular transformation and boundary states in logarithmic conformal field theoryPhys. Lett. B20015082032001PhLB..508..203K185382410.1016/S0370-2693(01)00503-2[hep-th/0103197] [INSPIRE]
– reference: LesageFMathieuPRasmussenJSaleurHThesu2−1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{su}{(2)}_{-1/2} $$\end{document}WZW model and the βγ systemNucl. Phys. B20026473632002NuPhB.647..363L10.1016/S0550-3213(02)00905-7[hep-th/0207201] [INSPIRE]
– reference: GaberdielMRRunkelIThe logarithmic triplet theory with boundaryJ. Phys. A200639147452006JPhA...3914745G227708110.1088/0305-4470/39/47/016[hep-th/0608184] [INSPIRE]
– reference: TeschnerJThe minisuperspace limit of the SL(2, C )/SU(2) WZNW modelNucl. Phys. B19995463691999NuPhB.546..369T168213210.1016/S0550-3213(99)00071-1[hep-th/9712258] [INSPIRE]
– reference: GiribetGOn spectral flow symmetry and Knizhnik-Zamolodchikov equationPhys. Lett. B20056281482005PhLB..628..148G217553710.1016/j.physletb.2005.09.031[hep-th/0508019] [INSPIRE]
– reference: EberhardtLGaberdielMRStrings on AdS3× S3× S3× S1JHEP2019060352019JHEP...06..035E10.1007/JHEP06(2019)035[arXiv:1904.01585] [INSPIRE]
– volume: 06
  start-page: 035
  year: 2019
  ident: 14807_CR37
  publication-title: JHEP
  doi: 10.1007/JHEP06(2019)035
– volume: 39
  start-page: 14745
  year: 2006
  ident: 14807_CR40
  publication-title: J. Phys. A
  doi: 10.1088/0305-4470/39/47/016
– ident: 14807_CR14
– volume: 09
  start-page: 045
  year: 2005
  ident: 14807_CR21
  publication-title: JHEP
  doi: 10.1088/1126-6708/2005/09/045
– volume: 628
  start-page: 148
  year: 2005
  ident: 14807_CR22
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2005.09.031
– volume: 508
  start-page: 203
  year: 2001
  ident: 14807_CR39
  publication-title: Phys. Lett. B
  doi: 10.1016/S0370-2693(01)00503-2
– volume: 04
  start-page: 096
  year: 2010
  ident: 14807_CR18
  publication-title: JHEP
  doi: 10.1007/JHEP04(2010)096
– volume: 05
  start-page: 085
  year: 2018
  ident: 14807_CR2
  publication-title: JHEP
  doi: 10.1007/JHEP05(2018)085
– volume: 433
  start-page: 123
  year: 1995
  ident: 14807_CR31
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(94)00419-F
– volume: 04
  start-page: 103
  year: 2019
  ident: 14807_CR1
  publication-title: JHEP
  doi: 10.1007/JHEP04(2019)103
– volume: 70
  year: 2004
  ident: 14807_CR35
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.70.026009
– volume: 07
  start-page: 038
  year: 2018
  ident: 14807_CR32
  publication-title: JHEP
  doi: 10.1007/JHEP07(2018)038
– volume: 79
  year: 2009
  ident: 14807_CR23
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.79.086004
– volume: 05
  start-page: 150
  year: 2020
  ident: 14807_CR6
  publication-title: JHEP
– volume: 03
  start-page: 003
  year: 2007
  ident: 14807_CR25
  publication-title: JHEP
  doi: 10.1088/1126-6708/2007/03/003
– volume: 01
  start-page: 108
  year: 2020
  ident: 14807_CR33
  publication-title: JHEP
  doi: 10.1007/JHEP01(2020)108
– volume: 247
  start-page: 83
  year: 1984
  ident: 14807_CR42
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(84)90374-2
– volume: 219
  start-page: 399
  year: 2001
  ident: 14807_CR4
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s002200100431
– volume: 10
  start-page: 034
  year: 2009
  ident: 14807_CR5
  publication-title: JHEP
  doi: 10.1088/1126-6708/2009/10/034
– volume: 08
  start-page: 204
  year: 2018
  ident: 14807_CR17
  publication-title: JHEP
  doi: 10.1007/JHEP08(2018)204
– volume: 647
  start-page: 363
  year: 2002
  ident: 14807_CR24
  publication-title: Nucl. Phys. B
  doi: 10.1016/S0550-3213(02)00905-7
– volume: 848
  start-page: 216
  year: 2011
  ident: 14807_CR26
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2011.02.015
– ident: 14807_CR13
– volume: 02
  start-page: 136
  year: 2020
  ident: 14807_CR3
  publication-title: JHEP
  doi: 10.1007/JHEP02(2020)136
– volume: 11
  start-page: 047
  year: 2020
  ident: 14807_CR15
  publication-title: JHEP
  doi: 10.1007/JHEP11(2020)047
– volume: 10
  start-page: 024
  year: 2008
  ident: 14807_CR41
  publication-title: JHEP
  doi: 10.1088/1126-6708/2008/10/024
– ident: 14807_CR8
  doi: 10.1063/1.1377273
– ident: 14807_CR10
  doi: 10.1103/PhysRevD.65.106006
– volume: 93
  year: 2004
  ident: 14807_CR12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.011601
– volume: 546
  start-page: 369
  year: 1999
  ident: 14807_CR19
  publication-title: Nucl. Phys. B
  doi: 10.1016/S0550-3213(99)00071-1
– volume: 09
  start-page: 157
  year: 2020
  ident: 14807_CR7
  publication-title: JHEP
  doi: 10.1007/JHEP09(2020)157
– volume: 521
  start-page: 127
  year: 2001
  ident: 14807_CR20
  publication-title: Phys. Lett. B
  doi: 10.1016/S0370-2693(01)01181-9
– volume: 46
  start-page: 494010
  year: 2013
  ident: 14807_CR27
  publication-title: J. Phys. A
  doi: 10.1088/1751-8113/46/49/494010
– volume: 209
  start-page: 549
  year: 2000
  ident: 14807_CR29
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s002200050031
– ident: 14807_CR28
– volume: 03
  start-page: 018
  year: 1999
  ident: 14807_CR11
  publication-title: JHEP
  doi: 10.1088/1126-6708/1999/03/018
– ident: 14807_CR36
– volume: 719
  start-page: 3
  year: 2005
  ident: 14807_CR16
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2005.04.015
– ident: 14807_CR38
– ident: 14807_CR9
  doi: 10.1063/1.1377039
– volume: 10
  start-page: 084
  year: 2012
  ident: 14807_CR30
  publication-title: JHEP
  doi: 10.1007/JHEP10(2012)084
– volume: 252
  start-page: 189
  year: 2004
  ident: 14807_CR34
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-004-1187-3
SSID ssj0015190
Score 2.6421704
Snippet A bstract We employ the free field realisation of the psu 1 1 2 1 world-sheet theory to constrain the correlators of string theory on AdS 3 × S 3 × 𝕋 4 with...
We employ the free field realisation of the $$ \mathfrak{psu}{\left(1,1\left|2\right.\right)}_1 $$ psu 1 1 2 1 world-sheet theory to constrain the correlators...
Abstract We employ the free field realisation of the psu 1 1 2 1 $$ \mathfrak{psu}{\left(1,1\left|2\right.\right)}_1 $$ world-sheet theory to constrain the...
SourceID doaj
crossref
springer
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms AdS-CFT Correspondence
Classical and Quantum Gravitation
Conformal and W Symmetry
Conformal Field Models in String Theory
Elementary Particles
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
String Theory
SummonAdditionalLinks – databaseName: SpringerOpen
  dbid: C24
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KVfDiW6wvcvDQHiKb7DbZPVZpKR5KQYXewmZ3VoXSShP9_c5ukoKUHvQ2hN0kzD7mG2bmG0LuqBICUkhCwzgNecpYKFgOoUZbzBOgxjDtm02kk4mYzeS0RaKmFsZnuzchSX9TN8VuT-PhlMZddNajHnXF1jv9SEiXxffoChzqwAECEtow-GxO-mV8PEf_RgDU25XR4T_-6Igc1CAyGFSrfkxasDghez6ZUxenBNEoQOBz0wLPiBoW7wBloF0njrnzsosAsWowMM_sjLyOhi-P47BuihBq3pdlGBsZSUCdOiYVppWyLNHUShXZhBsUpJJW5-gI6UQ4NACOi5yl1iKYY-iSnpP2YrmACxLYBKyyRjIUOMImFaG7CjbGS4ALpWmH3DfaynTNGO4aV8yzhuu40kDmNJChBjqku57wWZFlbB_64NS_HuZYrv2D5eotqw9NxrmRguaJiQwCn1igM0qZyk2uqeqDxZf0moXJ6qNXbPvg5R_GXpF9J1bJ2dekXa6-4Ibs6u_yo1jd-g33A5J0zYM
  priority: 102
  providerName: Springer Nature
Title Free field world-sheet correlators for AdS3
URI https://link.springer.com/article/10.1007/JHEP02(2021)081
https://doaj.org/article/44d980b6d1d7412884003abdbc0a5ef1
Volume 2021
WOSCitedRecordID wos000619793200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: P5Z
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: PIMPY
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVIAO
  databaseName: SCOAP Physics Open Access (Activated by CARLI)
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: ER.
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://scoap3.org/
  providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics)
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: C24
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEB20KngRP7F-lBw82EPsJrtNdo-1WKqgFFSop7DZDxRKlSb6-53dJEUR8eJtCZts8ibLvMcObwDOiOTcpCYJNWUkZCmlIae5CRXmYpYYojVVvtlEenfHp1Mx-dLqy9WEVfbAFXA9xrTgJE90pDH5xRwFCaEy17kism-sFz4kFY2Yqs8PkJeQxsiHpL2b8dWExOco9KMu4dG3HOSt-n-cg_r0MtqGrZoXBoPqfXZgxcx3YcPXZ6piD5BgGhP4crPAm5yGxbMxZaBcc42ZE85FgPQzGOh7ug-Po6uH4Tis-xyEivVFGcZaRMIgTM4chSopLU0UsUJGNmEaB0IKq3LUNirhLsEbZy9OU2uRn1FUmQfQmr_OzSEENjFWWi0oDhgyIRmhAjU2xn3NuFSkDRfNl2eqNgF3vShmWWNfXEGVOagyhKoN58sb3ir_i9-nXjool9OccbW_gOHM6nBmf4WzDd0mEFm9m4rfFjz6jwWPYdM9ryrEPoFWuXg3p7CuPsqXYtGB1WHMOv7f6sDa5Pp28vQJXZfOZA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA_DD_TFb3F-9sGH7aGSNlnbPM6xMXWOgRP2FtJ8qDA2Wat_v5e0HcjYg76FcGnLpcn9jrv7HUK3WCSJjnXkK0KxT2NC_ISk2pdgi2mksVJEumYT8XCYTCZsVENBVQvjst2rkKS7qatit8d-d4TDBjjrQRPbYutNy7tis_g6tsChDBwAIMEVg8_qol_Gx3H0rwRAnV3p7f_jiw7QXgkivXax64eopmdHaNslc8rsGAEa1dpzuWmeY0T1s3etc0_aThxT62VnHmBVr61eyAl67XXHnb5fNkXwJW2x3A8VC5gGnVomFSKFMCSS2DARmIgqGDDBjEzBEZJRYtGAtlzkJDYGwBwBl_QUbczmM32GPBNpI4xiBAYUYJMIwF3VJoRLgCZC4jq6q7TFZckYbhtXTHnFdVxogFsNcNBAHTWWCz4Lsoz1ovdW_Usxy3LtJuaLN14eGk6pYglOIxUoAD5hAs4oJiJVqcSipQ08pFltDC-PXrbuhed_kL1BO_3x84APHoZPF2jXTheJ2pdoI1986Su0Jb_zj2xx7X6-H0UC0Gg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5SH3jxLdbnHjy0h9jsJt3dHGttqQ9KQYXeQjYPFUpbuqu_38k-ClI8iLcQkt1lMtn5hpn5BqFrIuPYRCbEmjKCWUQpjmlisAJbzEJDtKYqbzYRDYfxeMxHZW5OWmW7VyHJoqbBsTRNs9Zc2yqq33oY9EYkaIDj7jeJK7xed-Eop-BdV-xQBhEAnJCKzWd10w9DlPP1rwRDcxvT3_3n1-2hnRJcep1CG_bRmpkeoM08yVOlhwhQqjFenrPm5UypOH03JvOU69Axcd536gGG9Tr6mR6h137vpTvAZbMErFibZzjQ3OcGZO0YVqiS0tJQEculb0OmYcAltyoBB0mFsUMJxnGU08haAHkUXNVjVJvOpuYEeTY0VlrNKQwYwCnpgxtrbAA_BxZLReroppKcUCWTuGtoMREVB3IhAeEkIEACddRYbpgXJBq_L711R7Fc5tiv84nZ4k2Ul0kwpnlMklD7GgBREIOTSqhMdKKIbBsLD2lWhyTKK5n-9sLTP6y9Qluju754uh8-nqFtN1vkb5-jWrb4NBdoQ31lH-niMtfDb0DU2Uw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Free+field+world-sheet+correlators+for+AdS3&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Dei%2C+Andrea&rft.au=Gaberdiel%2C+Matthias+R.&rft.au=Gopakumar%2C+Rajesh&rft.au=Knighton%2C+Bob&rft.date=2021-02-01&rft.issn=1029-8479&rft.eissn=1029-8479&rft.volume=2021&rft.issue=2&rft_id=info:doi/10.1007%2FJHEP02%282021%29081&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_JHEP02_2021_081
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon