Free field world-sheet correlators for AdS3
A bstract We employ the free field realisation of the psu 1 1 2 1 world-sheet theory to constrain the correlators of string theory on AdS 3 × S 3 × 𝕋 4 with unit NS-NS flux. In particular, we directly obtain the unusual delta function localisation of these correlators onto branched covers of the bou...
Uloženo v:
| Vydáno v: | The journal of high energy physics Ročník 2021; číslo 2; s. 1 - 44 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2021
SpringerOpen |
| Témata: | |
| ISSN: | 1029-8479, 1029-8479 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | A
bstract
We employ the free field realisation of the
psu
1
1
2
1
world-sheet theory to constrain the correlators of string theory on AdS
3
×
S
3
×
𝕋
4
with unit NS-NS flux. In particular, we directly obtain the unusual delta function localisation of these correlators onto branched covers of the boundary S
2
by the (genus zero) world-sheet — this is the key property which makes the equivalence to the dual symmetric orbifold manifest. In our approach, this feature follows from a remarkable ‘incidence relation’ obeyed by the correlators, which is reminiscent of a twistorial string description. We also illustrate our results with explicit computations in various special cases. |
|---|---|
| AbstractList | A
bstract
We employ the free field realisation of the
psu
1
1
2
1
world-sheet theory to constrain the correlators of string theory on AdS
3
×
S
3
×
𝕋
4
with unit NS-NS flux. In particular, we directly obtain the unusual delta function localisation of these correlators onto branched covers of the boundary S
2
by the (genus zero) world-sheet — this is the key property which makes the equivalence to the dual symmetric orbifold manifest. In our approach, this feature follows from a remarkable ‘incidence relation’ obeyed by the correlators, which is reminiscent of a twistorial string description. We also illustrate our results with explicit computations in various special cases. We employ the free field realisation of the $$ \mathfrak{psu}{\left(1,1\left|2\right.\right)}_1 $$ psu 1 1 2 1 world-sheet theory to constrain the correlators of string theory on AdS 3 × S 3 × 4 with unit NS-NS flux. In particular, we directly obtain the unusual delta function localisation of these correlators onto branched covers of the boundary S 2 by the (genus zero) world-sheet — this is the key property which makes the equivalence to the dual symmetric orbifold manifest. In our approach, this feature follows from a remarkable ‘incidence relation’ obeyed by the correlators, which is reminiscent of a twistorial string description. We also illustrate our results with explicit computations in various special cases. Abstract We employ the free field realisation of the psu 1 1 2 1 $$ \mathfrak{psu}{\left(1,1\left|2\right.\right)}_1 $$ world-sheet theory to constrain the correlators of string theory on AdS3 × S3 × 𝕋4 with unit NS-NS flux. In particular, we directly obtain the unusual delta function localisation of these correlators onto branched covers of the boundary S2 by the (genus zero) world-sheet — this is the key property which makes the equivalence to the dual symmetric orbifold manifest. In our approach, this feature follows from a remarkable ‘incidence relation’ obeyed by the correlators, which is reminiscent of a twistorial string description. We also illustrate our results with explicit computations in various special cases. |
| ArticleNumber | 81 |
| Author | Gopakumar, Rajesh Gaberdiel, Matthias R. Dei, Andrea Knighton, Bob |
| Author_xml | – sequence: 1 givenname: Andrea orcidid: 0000-0002-2683-3946 surname: Dei fullname: Dei, Andrea organization: Institut für Theoretische Physik, ETH Zürich – sequence: 2 givenname: Matthias R. orcidid: 0000-0002-6472-9402 surname: Gaberdiel fullname: Gaberdiel, Matthias R. organization: Institut für Theoretische Physik, ETH Zürich – sequence: 3 givenname: Rajesh surname: Gopakumar fullname: Gopakumar, Rajesh organization: International Centre for Theoretical Sciences-TIFR – sequence: 4 givenname: Bob surname: Knighton fullname: Knighton, Bob email: robejr@ethz.ch organization: Institut für Theoretische Physik, ETH Zürich |
| BookMark | eNp9kE1LAzEQQINUsK2eve5RkbUzSfYjx1JaqxQU1HPI5qNuWTeSrIj_3q0rIoKeZhh4b-BNyKj1rSXkFOESAYrZzXp5B_SMAsVzKPGAjBGoSEteiNGP_YhMYtwBYIYCxuRiFaxNXG0bk7z50Jg0PlnbJdqHYBvV-RAT50MyN_fsmBw61UR78jWn5HG1fFis083t1fVivkk1z0SXUiNQ2IIxgByYVsqxXIMTCl3OTb8IJZyuaFnovMxAoKXIM1Y4ByhYgWxKrgev8WonX0L9rMK79KqWnwcftlKFrtaNlZwbUUKVGzQFR1qWHICpylQaVGbd3jUbXDr4GIN13z4Eue8mh25y30323Xoi-0XoulNd7dsuqLr5h4OBi_2HdmuD3PnX0Pah_kQ-AI1jf70 |
| CitedBy_id | crossref_primary_10_1007_JHEP01_2024_098 crossref_primary_10_1007_JHEP12_2021_149 crossref_primary_10_1007_JHEP04_2024_057 crossref_primary_10_1007_JHEP05_2024_189 crossref_primary_10_1007_JHEP07_2023_049 crossref_primary_10_1007_JHEP03_2025_128 crossref_primary_10_1007_JHEP04_2025_053 crossref_primary_10_1007_JHEP11_2024_145 crossref_primary_10_1007_JHEP07_2025_260 crossref_primary_10_1007_JHEP11_2021_129 crossref_primary_10_1007_JHEP07_2023_093 crossref_primary_10_1007_JHEP01_2025_017 crossref_primary_10_1007_JHEP12_2022_107 crossref_primary_10_1007_JHEP12_2021_012 crossref_primary_10_1007_JHEP10_2022_077 crossref_primary_10_1007_JHEP03_2024_030 crossref_primary_10_1007_JHEP05_2024_113 crossref_primary_10_1007_JHEP03_2021_036 crossref_primary_10_1007_JHEP06_2024_053 crossref_primary_10_1007_JHEP09_2022_244 crossref_primary_10_21468_SciPostPhys_19_2_060 crossref_primary_10_1007_JHEP04_2021_007 crossref_primary_10_1007_JHEP01_2025_042 crossref_primary_10_1007_JHEP10_2021_168 crossref_primary_10_1007_JHEP10_2024_117 crossref_primary_10_1007_JHEP08_2022_274 crossref_primary_10_1007_JHEP09_2024_110 crossref_primary_10_1007_JHEP08_2024_186 crossref_primary_10_1088_1751_8121_ad72be crossref_primary_10_1007_JHEP05_2023_005 crossref_primary_10_1007_JHEP05_2021_233 crossref_primary_10_1007_JHEP09_2021_209 crossref_primary_10_1007_JHEP03_2021_208 crossref_primary_10_1007_JHEP05_2021_073 crossref_primary_10_1007_JHEP08_2024_203 crossref_primary_10_1007_JHEP11_2024_083 crossref_primary_10_1007_JHEP07_2023_149 crossref_primary_10_1007_JHEP03_2021_246 crossref_primary_10_1007_JHEP07_2025_083 crossref_primary_10_1007_JHEP02_2025_004 crossref_primary_10_1007_JHEP05_2025_003 crossref_primary_10_1007_JHEP12_2022_043 crossref_primary_10_1007_JHEP04_2021_211 crossref_primary_10_1007_JHEP02_2025_163 crossref_primary_10_1007_JHEP07_2024_266 crossref_primary_10_1007_JHEP11_2024_059 crossref_primary_10_1007_JHEP03_2025_074 crossref_primary_10_1007_JHEP04_2024_048 crossref_primary_10_1007_JHEP08_2021_025 crossref_primary_10_1007_JHEP06_2024_071 crossref_primary_10_1007_JHEP05_2024_136 crossref_primary_10_1088_1751_8121_ada7ae crossref_primary_10_1007_JHEP06_2024_030 crossref_primary_10_1007_JHEP09_2024_135 crossref_primary_10_1007_JHEP06_2024_024 crossref_primary_10_1007_JHEP05_2025_014 crossref_primary_10_1007_JHEP05_2022_150 crossref_primary_10_1007_JHEP08_2025_159 crossref_primary_10_1007_JHEP10_2021_187 crossref_primary_10_1088_1751_8121_ad3ab1 crossref_primary_10_1016_j_physrep_2023_04_001 crossref_primary_10_1007_JHEP07_2024_236 |
| Cites_doi | 10.1007/JHEP06(2019)035 10.1088/0305-4470/39/47/016 10.1088/1126-6708/2005/09/045 10.1016/j.physletb.2005.09.031 10.1016/S0370-2693(01)00503-2 10.1007/JHEP04(2010)096 10.1007/JHEP05(2018)085 10.1016/0550-3213(94)00419-F 10.1007/JHEP04(2019)103 10.1103/PhysRevD.70.026009 10.1007/JHEP07(2018)038 10.1103/PhysRevD.79.086004 10.1088/1126-6708/2007/03/003 10.1007/JHEP01(2020)108 10.1016/0550-3213(84)90374-2 10.1007/s002200100431 10.1088/1126-6708/2009/10/034 10.1007/JHEP08(2018)204 10.1016/S0550-3213(02)00905-7 10.1016/j.nuclphysb.2011.02.015 10.1007/JHEP02(2020)136 10.1007/JHEP11(2020)047 10.1088/1126-6708/2008/10/024 10.1063/1.1377273 10.1103/PhysRevD.65.106006 10.1103/PhysRevLett.93.011601 10.1016/S0550-3213(99)00071-1 10.1007/JHEP09(2020)157 10.1016/S0370-2693(01)01181-9 10.1088/1751-8113/46/49/494010 10.1007/s002200050031 10.1088/1126-6708/1999/03/018 10.1016/j.nuclphysb.2005.04.015 10.1063/1.1377039 10.1007/JHEP10(2012)084 10.1007/s00220-004-1187-3 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 |
| Copyright_xml | – notice: The Author(s) 2021 |
| DBID | C6C AAYXX CITATION DOA |
| DOI | 10.1007/JHEP02(2021)081 |
| DatabaseName | Springer Nature OA Free Journals CrossRef DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1029-8479 |
| EndPage | 44 |
| ExternalDocumentID | oai_doaj_org_article_44d980b6d1d7412884003abdbc0a5ef1 10_1007_JHEP02_2021_081 |
| GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS ER. FEDTE GQ6 GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT 02O 1JI 1WK 2VQ 5ZI AAGCD AAGCF AAIAL AAJIO AALHV AARHV AATNI AAYXX ABFSG ACAFW ACARI ACBXY ACSTC ADKPE ADRFC AEFHF AEINN AEJGL AERVB AETNG AEZWR AFFHD AFHIU AFLOW AGJBK AGQPQ AHSBF AHSEE AHWEU AIXLP AIYBF AKPSB AMVHM ARNYC BAPOH BBWZM BGNMA CAG CITATION CJUJL COF CRLBU EDWGO EJD EMSAF EPQRW EQZZN H13 IJHAN IOP IZVLO JCGBZ KOT M45 M4Y NT- NT. NU0 O9- PHGZM PHGZT PJBAE PQGLB Q02 R4D RIN RKQ RNS ROL RPA S1Z S3P SY9 T37 |
| ID | FETCH-LOGICAL-c459t-2d919e73300603caaf36c0f9a1f64d0f99a9fcb287c685091e214537ff0193713 |
| IEDL.DBID | C24 |
| ISICitedReferencesCount | 73 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000619793200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1029-8479 |
| IngestDate | Tue Oct 14 18:50:01 EDT 2025 Tue Nov 18 22:35:06 EST 2025 Sat Nov 29 02:11:55 EST 2025 Fri Feb 21 02:49:22 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | AdS-CFT Correspondence Conformal and W Symmetry Conformal Field Models in String Theory |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c459t-2d919e73300603caaf36c0f9a1f64d0f99a9fcb287c685091e214537ff0193713 |
| ORCID | 0000-0002-6472-9402 0000-0002-2683-3946 |
| OpenAccessLink | https://link.springer.com/10.1007/JHEP02(2021)081 |
| PageCount | 44 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_44d980b6d1d7412884003abdbc0a5ef1 crossref_primary_10_1007_JHEP02_2021_081 crossref_citationtrail_10_1007_JHEP02_2021_081 springer_journals_10_1007_JHEP02_2021_081 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-02-01 |
| PublicationDateYYYYMMDD | 2021-02-01 |
| PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg |
| PublicationTitle | The journal of high energy physics |
| PublicationTitleAbbrev | J. High Energ. Phys |
| PublicationYear | 2021 |
| Publisher | Springer Berlin Heidelberg SpringerOpen |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: SpringerOpen |
| References | P. Goddard, Meromorphic conformal field theory, DAMTP-89-01, (1989) [INSPIRE]. LuninOMathurSDCorrelation functions for MN/SNorbifoldsCommun. Math. Phys.20012193992001CMaPh.219..399L10.1007/s002200100431[hep-th/0006196] [INSPIRE] TeschnerJCrossing symmetry in theH3+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {H}_3^{+} $$\end{document}WZNW modelPhys. Lett. B20015211272001PhLB..521..127T187351010.1016/S0370-2693(01)01181-9[hep-th/0108121] [INSPIRE] KawaiSWheaterJFModular transformation and boundary states in logarithmic conformal field theoryPhys. Lett. B20015082032001PhLB..508..203K185382410.1016/S0370-2693(01)00503-2[hep-th/0103197] [INSPIRE] QuellaTSchomerusVCreutzigTBoundary spectra in superspace sigma-modelsJHEP2008100242008JHEP...10..024Q10.1088/1126-6708/2008/10/024[arXiv:0712.3549] [INSPIRE] GaberdielMRGoddardPAxiomatic conformal field theoryCommun. Math. Phys.20002095492000CMaPh.209..549G174360910.1007/s002200050031[hep-th/9810019] [INSPIRE] J.M. Maldacena, H. Ooguri and J. Son, Strings in AdS3and the SL(2, R) WZW model. Part 2: euclidean black hole, J. Math. Phys.42 (2001) 2961 [hep-th/0005183] [INSPIRE]. EberhardtLGaberdielMRGopakumarRDeriving the AdS3/CFT2correspondenceJHEP2020021362020JHEP...02..136E10.1007/JHEP02(2020)136[arXiv:1911.00378] [INSPIRE] LiSTroostJTwisted string theory in anti-de Sitter spaceJHEP2020110472020JHEP...11..047L420423810.1007/JHEP11(2020)047[arXiv:2005.13817] [INSPIRE] RidoutDFusion in fractional levelsl̂2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \hat{sl}(2) $$\end{document}-theories with k = −12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{1}{2} $$\end{document}Nucl. Phys. B20118482162011NuPhB.848..216R10.1016/j.nuclphysb.2011.02.015[arXiv:1012.2905] [INSPIRE] WittenEPerturbative gauge theory as a string theory in twistor spaceCommun. Math. Phys.20042521892004CMaPh.252..189W210487910.1007/s00220-004-1187-3[hep-th/0312171] [INSPIRE] J.M. Maldacena and H. Ooguri, Strings in AdS3and the SL(2, R) WZW model. Part 3: correlation functions, Phys. Rev. D65 (2002) 106006 [hep-th/0111180] [INSPIRE]. BerkovitsNAn alternative string theory in twistor space for N = 4 super Yang-MillsPhys. Rev. Lett.2004932004PhRvL..93a1601B211390610.1103/PhysRevLett.93.011601[hep-th/0402045] [INSPIRE] M.R. Gaberdiel and R. Gopakumar, work in progress. DeiAEberhardtLCorrelators of the symmetric product orbifoldJHEP2020011082020JHEP...01..108D408821110.1007/JHEP01(2020)108[arXiv:1911.08485] [INSPIRE] GerigkSString states on AdS3× S3from the supergroupJHEP2012100842012JHEP...10..084G303385610.1007/JHEP10(2012)084[arXiv:1208.0345] [INSPIRE] RibaultSKnizhnik-Zamolodchikov equations and spectral flow in AdS3string theoryJHEP2005090452005JHEP...09..045R217416610.1088/1126-6708/2005/09/045[hep-th/0507114] [INSPIRE] EberhardtLAdS3/CFT2at higher genusJHEP2020051502020JHEP...05..150E1437.81070[arXiv:2002.11729] [INSPIRE] TeschnerJThe minisuperspace limit of the SL(2, C )/SU(2) WZNW modelNucl. Phys. B19995463691999NuPhB.546..369T168213210.1016/S0550-3213(99)00071-1[hep-th/9712258] [INSPIRE] BaronWHNúñezCAFusion rules and four-point functions in the SL(2, R) WZNW modelPhys. Rev. D2009792009PhRvD..79h6004B250562210.1103/PhysRevD.79.086004[arXiv:0810.2768] [INSPIRE] GaberdielMRGopakumarRTensionless string spectra on AdS3JHEP2018050852018JHEP...05..085G10.1007/JHEP05(2018)085[arXiv:1803.04423] [INSPIRE] GaberdielMRRunkelIThe logarithmic triplet theory with boundaryJ. Phys. A200639147452006JPhA...3914745G227708110.1088/0305-4470/39/47/016[hep-th/0608184] [INSPIRE] GiveonAKutasovDRabinoviciESeverAPhases of quantum gravity in AdS3and linear dilaton backgroundsNucl. Phys. B200571932005NuPhB.719....3G215427110.1016/j.nuclphysb.2005.04.015[hep-th/0503121] [INSPIRE] RoibanRSpradlinMVolovichAOn the tree level S matrix of Yang-Mills theoryPhys. Rev. D2004702004PhRvD..70b6009R210329210.1103/PhysRevD.70.026009[hep-th/0403190] [INSPIRE] BerkovitsNVafaCWittenEConformal field theory of AdS background with Ramond-Ramond fluxJHEP1999030181999JHEP...03..018B169677010.1088/1126-6708/1999/03/018[hep-th/9902098] [INSPIRE] KnizhnikVGZamolodchikovABCurrent algebra and Wess-Zumino model in two-dimensionsNucl. Phys. B1984247831984NuPhB.247...83K85325810.1016/0550-3213(84)90374-2[INSPIRE] PakmanARastelliLRazamatSSDiagrams for symmetric product orbifoldsJHEP2009100342009JHEP...10..034P260746310.1088/1126-6708/2009/10/034[arXiv:0905.3448] [INSPIRE] GötzGQuellaTSchomerusVThe WZNW model on PSU(1, 1|2)JHEP2007030032007JHEP...03..003G231389410.1088/1126-6708/2007/03/003[hep-th/0610070] [INSPIRE] L. Eberhardt, Partition functions of the tensionless string, arXiv:2008.07533 [INSPIRE]. HikidaYLiuTCorrelation functions of symmetric orbifold from AdS3string theoryJHEP2020091572020JHEP...09..157H10.1007/JHEP09(2020)157[arXiv:2005.12511] [INSPIRE] LesageFMathieuPRasmussenJSaleurHThesu2−1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{su}{(2)}_{-1/2} $$\end{document}WZW model and the βγ systemNucl. Phys. B20026473632002NuPhB.647..363L10.1016/S0550-3213(02)00905-7[hep-th/0207201] [INSPIRE] RoumpedakisKComments on the SNorbifold CFT in the large N -limitJHEP2018070382018JHEP...07..038R386201510.1007/JHEP07(2018)038[arXiv:1804.03207] [INSPIRE] RibaultSMinisuperspace limit of the AdS3 WZNW modelJHEP2010040962010JHEP...04..096R267306410.1007/JHEP04(2010)096[arXiv:0912.4481] [INSPIRE] J.M. Maldacena and H. Ooguri, Strings in AdS3and SL(2, R) WZW model. Part 1: the spectrum, J. Math. Phys.42 (2001) 2929 [hep-th/0001053] [INSPIRE]. B. Knighton, Higher genus correlators for tensionless AdS3strings, arXiv:2012.01445 [INSPIRE]. BerkovitsNVafaCN = 4 topological stringsNucl. Phys. B19954331231995NuPhB.433..123B130965610.1016/0550-3213(94)00419-F[hep-th/9407190] [INSPIRE] GiribetGOn spectral flow symmetry and Knizhnik-Zamolodchikov equationPhys. Lett. B20056281482005PhLB..628..148G217553710.1016/j.physletb.2005.09.031[hep-th/0508019] [INSPIRE] EberhardtLGaberdielMRStrings on AdS3× S3× S3× S1JHEP2019060352019JHEP...06..035E10.1007/JHEP06(2019)035[arXiv:1904.01585] [INSPIRE] QuellaTSchomerusVSuperspace conformal field theoryJ. Phys. A201346494010314601610.1088/1751-8113/46/49/494010[arXiv:1307.7724] [INSPIRE] EberhardtLGaberdielMRGopakumarRThe worldsheet dual of the symmetric product CFTJHEP2019041032019JHEP...04..103E395397110.1007/JHEP04(2019)103[arXiv:1812.01007] [INSPIRE] K. Costello and N.M. Paquette, Twisted supergravity and Koszul duality: a case study in AdS3, arXiv:2001.02177 [INSPIRE]. GiribetGHullCKlebanMPorratiMRabinoviciESuperstrings on AdS3at k = 1JHEP2018082042018JHEP...08..204G10.1007/JHEP08(2018)204[arXiv:1803.04420] [INSPIRE] WH Baron (14807_CR23) 2009; 79 MR Gaberdiel (14807_CR2) 2018; 05 S Gerigk (14807_CR30) 2012; 10 S Ribault (14807_CR18) 2010; 04 S Ribault (14807_CR21) 2005; 09 L Eberhardt (14807_CR37) 2019; 06 T Quella (14807_CR41) 2008; 10 A Giveon (14807_CR16) 2005; 719 F Lesage (14807_CR24) 2002; 647 O Lunin (14807_CR4) 2001; 219 J Teschner (14807_CR19) 1999; 546 14807_CR28 L Eberhardt (14807_CR1) 2019; 04 N Berkovits (14807_CR12) 2004; 93 Y Hikida (14807_CR7) 2020; 09 G Giribet (14807_CR17) 2018; 08 G Giribet (14807_CR22) 2005; 628 MR Gaberdiel (14807_CR40) 2006; 39 R Roiban (14807_CR35) 2004; 70 S Kawai (14807_CR39) 2001; 508 MR Gaberdiel (14807_CR29) 2000; 209 VG Knizhnik (14807_CR42) 1984; 247 L Eberhardt (14807_CR6) 2020; 05 A Dei (14807_CR33) 2020; 01 14807_CR38 14807_CR14 G Götz (14807_CR25) 2007; 03 14807_CR36 14807_CR13 N Berkovits (14807_CR31) 1995; 433 E Witten (14807_CR34) 2004; 252 14807_CR10 A Pakman (14807_CR5) 2009; 10 14807_CR9 14807_CR8 L Eberhardt (14807_CR3) 2020; 02 S Li (14807_CR15) 2020; 11 D Ridout (14807_CR26) 2011; 848 N Berkovits (14807_CR11) 1999; 03 K Roumpedakis (14807_CR32) 2018; 07 T Quella (14807_CR27) 2013; 46 J Teschner (14807_CR20) 2001; 521 |
| References_xml | – reference: RidoutDFusion in fractional levelsl̂2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \hat{sl}(2) $$\end{document}-theories with k = −12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{1}{2} $$\end{document}Nucl. Phys. B20118482162011NuPhB.848..216R10.1016/j.nuclphysb.2011.02.015[arXiv:1012.2905] [INSPIRE] – reference: B. Knighton, Higher genus correlators for tensionless AdS3strings, arXiv:2012.01445 [INSPIRE]. – reference: KnizhnikVGZamolodchikovABCurrent algebra and Wess-Zumino model in two-dimensionsNucl. Phys. B1984247831984NuPhB.247...83K85325810.1016/0550-3213(84)90374-2[INSPIRE] – reference: EberhardtLGaberdielMRGopakumarRThe worldsheet dual of the symmetric product CFTJHEP2019041032019JHEP...04..103E395397110.1007/JHEP04(2019)103[arXiv:1812.01007] [INSPIRE] – reference: J.M. Maldacena and H. Ooguri, Strings in AdS3and SL(2, R) WZW model. Part 1: the spectrum, J. Math. Phys.42 (2001) 2929 [hep-th/0001053] [INSPIRE]. – reference: QuellaTSchomerusVSuperspace conformal field theoryJ. Phys. A201346494010314601610.1088/1751-8113/46/49/494010[arXiv:1307.7724] [INSPIRE] – reference: J.M. Maldacena, H. Ooguri and J. Son, Strings in AdS3and the SL(2, R) WZW model. Part 2: euclidean black hole, J. Math. Phys.42 (2001) 2961 [hep-th/0005183] [INSPIRE]. – reference: EberhardtLAdS3/CFT2at higher genusJHEP2020051502020JHEP...05..150E1437.81070[arXiv:2002.11729] [INSPIRE] – reference: BerkovitsNVafaCWittenEConformal field theory of AdS background with Ramond-Ramond fluxJHEP1999030181999JHEP...03..018B169677010.1088/1126-6708/1999/03/018[hep-th/9902098] [INSPIRE] – reference: GaberdielMRGoddardPAxiomatic conformal field theoryCommun. Math. Phys.20002095492000CMaPh.209..549G174360910.1007/s002200050031[hep-th/9810019] [INSPIRE] – reference: RoibanRSpradlinMVolovichAOn the tree level S matrix of Yang-Mills theoryPhys. Rev. D2004702004PhRvD..70b6009R210329210.1103/PhysRevD.70.026009[hep-th/0403190] [INSPIRE] – reference: BerkovitsNAn alternative string theory in twistor space for N = 4 super Yang-MillsPhys. Rev. Lett.2004932004PhRvL..93a1601B211390610.1103/PhysRevLett.93.011601[hep-th/0402045] [INSPIRE] – reference: LuninOMathurSDCorrelation functions for MN/SNorbifoldsCommun. Math. Phys.20012193992001CMaPh.219..399L10.1007/s002200100431[hep-th/0006196] [INSPIRE] – reference: K. Costello and N.M. Paquette, Twisted supergravity and Koszul duality: a case study in AdS3, arXiv:2001.02177 [INSPIRE]. – reference: GiveonAKutasovDRabinoviciESeverAPhases of quantum gravity in AdS3and linear dilaton backgroundsNucl. Phys. B200571932005NuPhB.719....3G215427110.1016/j.nuclphysb.2005.04.015[hep-th/0503121] [INSPIRE] – reference: GiribetGHullCKlebanMPorratiMRabinoviciESuperstrings on AdS3at k = 1JHEP2018082042018JHEP...08..204G10.1007/JHEP08(2018)204[arXiv:1803.04420] [INSPIRE] – reference: DeiAEberhardtLCorrelators of the symmetric product orbifoldJHEP2020011082020JHEP...01..108D408821110.1007/JHEP01(2020)108[arXiv:1911.08485] [INSPIRE] – reference: TeschnerJCrossing symmetry in theH3+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {H}_3^{+} $$\end{document}WZNW modelPhys. Lett. B20015211272001PhLB..521..127T187351010.1016/S0370-2693(01)01181-9[hep-th/0108121] [INSPIRE] – reference: GaberdielMRGopakumarRTensionless string spectra on AdS3JHEP2018050852018JHEP...05..085G10.1007/JHEP05(2018)085[arXiv:1803.04423] [INSPIRE] – reference: LiSTroostJTwisted string theory in anti-de Sitter spaceJHEP2020110472020JHEP...11..047L420423810.1007/JHEP11(2020)047[arXiv:2005.13817] [INSPIRE] – reference: QuellaTSchomerusVCreutzigTBoundary spectra in superspace sigma-modelsJHEP2008100242008JHEP...10..024Q10.1088/1126-6708/2008/10/024[arXiv:0712.3549] [INSPIRE] – reference: EberhardtLGaberdielMRGopakumarRDeriving the AdS3/CFT2correspondenceJHEP2020021362020JHEP...02..136E10.1007/JHEP02(2020)136[arXiv:1911.00378] [INSPIRE] – reference: HikidaYLiuTCorrelation functions of symmetric orbifold from AdS3string theoryJHEP2020091572020JHEP...09..157H10.1007/JHEP09(2020)157[arXiv:2005.12511] [INSPIRE] – reference: L. Eberhardt, Partition functions of the tensionless string, arXiv:2008.07533 [INSPIRE]. – reference: RibaultSMinisuperspace limit of the AdS3 WZNW modelJHEP2010040962010JHEP...04..096R267306410.1007/JHEP04(2010)096[arXiv:0912.4481] [INSPIRE] – reference: RibaultSKnizhnik-Zamolodchikov equations and spectral flow in AdS3string theoryJHEP2005090452005JHEP...09..045R217416610.1088/1126-6708/2005/09/045[hep-th/0507114] [INSPIRE] – reference: RoumpedakisKComments on the SNorbifold CFT in the large N -limitJHEP2018070382018JHEP...07..038R386201510.1007/JHEP07(2018)038[arXiv:1804.03207] [INSPIRE] – reference: M.R. Gaberdiel and R. Gopakumar, work in progress. – reference: GötzGQuellaTSchomerusVThe WZNW model on PSU(1, 1|2)JHEP2007030032007JHEP...03..003G231389410.1088/1126-6708/2007/03/003[hep-th/0610070] [INSPIRE] – reference: PakmanARastelliLRazamatSSDiagrams for symmetric product orbifoldsJHEP2009100342009JHEP...10..034P260746310.1088/1126-6708/2009/10/034[arXiv:0905.3448] [INSPIRE] – reference: BaronWHNúñezCAFusion rules and four-point functions in the SL(2, R) WZNW modelPhys. Rev. D2009792009PhRvD..79h6004B250562210.1103/PhysRevD.79.086004[arXiv:0810.2768] [INSPIRE] – reference: BerkovitsNVafaCN = 4 topological stringsNucl. Phys. B19954331231995NuPhB.433..123B130965610.1016/0550-3213(94)00419-F[hep-th/9407190] [INSPIRE] – reference: WittenEPerturbative gauge theory as a string theory in twistor spaceCommun. Math. Phys.20042521892004CMaPh.252..189W210487910.1007/s00220-004-1187-3[hep-th/0312171] [INSPIRE] – reference: J.M. Maldacena and H. Ooguri, Strings in AdS3and the SL(2, R) WZW model. Part 3: correlation functions, Phys. Rev. D65 (2002) 106006 [hep-th/0111180] [INSPIRE]. – reference: P. Goddard, Meromorphic conformal field theory, DAMTP-89-01, (1989) [INSPIRE]. – reference: GerigkSString states on AdS3× S3from the supergroupJHEP2012100842012JHEP...10..084G303385610.1007/JHEP10(2012)084[arXiv:1208.0345] [INSPIRE] – reference: KawaiSWheaterJFModular transformation and boundary states in logarithmic conformal field theoryPhys. Lett. B20015082032001PhLB..508..203K185382410.1016/S0370-2693(01)00503-2[hep-th/0103197] [INSPIRE] – reference: LesageFMathieuPRasmussenJSaleurHThesu2−1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{su}{(2)}_{-1/2} $$\end{document}WZW model and the βγ systemNucl. Phys. B20026473632002NuPhB.647..363L10.1016/S0550-3213(02)00905-7[hep-th/0207201] [INSPIRE] – reference: GaberdielMRRunkelIThe logarithmic triplet theory with boundaryJ. Phys. A200639147452006JPhA...3914745G227708110.1088/0305-4470/39/47/016[hep-th/0608184] [INSPIRE] – reference: TeschnerJThe minisuperspace limit of the SL(2, C )/SU(2) WZNW modelNucl. Phys. B19995463691999NuPhB.546..369T168213210.1016/S0550-3213(99)00071-1[hep-th/9712258] [INSPIRE] – reference: GiribetGOn spectral flow symmetry and Knizhnik-Zamolodchikov equationPhys. Lett. B20056281482005PhLB..628..148G217553710.1016/j.physletb.2005.09.031[hep-th/0508019] [INSPIRE] – reference: EberhardtLGaberdielMRStrings on AdS3× S3× S3× S1JHEP2019060352019JHEP...06..035E10.1007/JHEP06(2019)035[arXiv:1904.01585] [INSPIRE] – volume: 06 start-page: 035 year: 2019 ident: 14807_CR37 publication-title: JHEP doi: 10.1007/JHEP06(2019)035 – volume: 39 start-page: 14745 year: 2006 ident: 14807_CR40 publication-title: J. Phys. A doi: 10.1088/0305-4470/39/47/016 – ident: 14807_CR14 – volume: 09 start-page: 045 year: 2005 ident: 14807_CR21 publication-title: JHEP doi: 10.1088/1126-6708/2005/09/045 – volume: 628 start-page: 148 year: 2005 ident: 14807_CR22 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2005.09.031 – volume: 508 start-page: 203 year: 2001 ident: 14807_CR39 publication-title: Phys. Lett. B doi: 10.1016/S0370-2693(01)00503-2 – volume: 04 start-page: 096 year: 2010 ident: 14807_CR18 publication-title: JHEP doi: 10.1007/JHEP04(2010)096 – volume: 05 start-page: 085 year: 2018 ident: 14807_CR2 publication-title: JHEP doi: 10.1007/JHEP05(2018)085 – volume: 433 start-page: 123 year: 1995 ident: 14807_CR31 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(94)00419-F – volume: 04 start-page: 103 year: 2019 ident: 14807_CR1 publication-title: JHEP doi: 10.1007/JHEP04(2019)103 – volume: 70 year: 2004 ident: 14807_CR35 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.70.026009 – volume: 07 start-page: 038 year: 2018 ident: 14807_CR32 publication-title: JHEP doi: 10.1007/JHEP07(2018)038 – volume: 79 year: 2009 ident: 14807_CR23 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.79.086004 – volume: 05 start-page: 150 year: 2020 ident: 14807_CR6 publication-title: JHEP – volume: 03 start-page: 003 year: 2007 ident: 14807_CR25 publication-title: JHEP doi: 10.1088/1126-6708/2007/03/003 – volume: 01 start-page: 108 year: 2020 ident: 14807_CR33 publication-title: JHEP doi: 10.1007/JHEP01(2020)108 – volume: 247 start-page: 83 year: 1984 ident: 14807_CR42 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(84)90374-2 – volume: 219 start-page: 399 year: 2001 ident: 14807_CR4 publication-title: Commun. Math. Phys. doi: 10.1007/s002200100431 – volume: 10 start-page: 034 year: 2009 ident: 14807_CR5 publication-title: JHEP doi: 10.1088/1126-6708/2009/10/034 – volume: 08 start-page: 204 year: 2018 ident: 14807_CR17 publication-title: JHEP doi: 10.1007/JHEP08(2018)204 – volume: 647 start-page: 363 year: 2002 ident: 14807_CR24 publication-title: Nucl. Phys. B doi: 10.1016/S0550-3213(02)00905-7 – volume: 848 start-page: 216 year: 2011 ident: 14807_CR26 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2011.02.015 – ident: 14807_CR13 – volume: 02 start-page: 136 year: 2020 ident: 14807_CR3 publication-title: JHEP doi: 10.1007/JHEP02(2020)136 – volume: 11 start-page: 047 year: 2020 ident: 14807_CR15 publication-title: JHEP doi: 10.1007/JHEP11(2020)047 – volume: 10 start-page: 024 year: 2008 ident: 14807_CR41 publication-title: JHEP doi: 10.1088/1126-6708/2008/10/024 – ident: 14807_CR8 doi: 10.1063/1.1377273 – ident: 14807_CR10 doi: 10.1103/PhysRevD.65.106006 – volume: 93 year: 2004 ident: 14807_CR12 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.011601 – volume: 546 start-page: 369 year: 1999 ident: 14807_CR19 publication-title: Nucl. Phys. B doi: 10.1016/S0550-3213(99)00071-1 – volume: 09 start-page: 157 year: 2020 ident: 14807_CR7 publication-title: JHEP doi: 10.1007/JHEP09(2020)157 – volume: 521 start-page: 127 year: 2001 ident: 14807_CR20 publication-title: Phys. Lett. B doi: 10.1016/S0370-2693(01)01181-9 – volume: 46 start-page: 494010 year: 2013 ident: 14807_CR27 publication-title: J. Phys. A doi: 10.1088/1751-8113/46/49/494010 – volume: 209 start-page: 549 year: 2000 ident: 14807_CR29 publication-title: Commun. Math. Phys. doi: 10.1007/s002200050031 – ident: 14807_CR28 – volume: 03 start-page: 018 year: 1999 ident: 14807_CR11 publication-title: JHEP doi: 10.1088/1126-6708/1999/03/018 – ident: 14807_CR36 – volume: 719 start-page: 3 year: 2005 ident: 14807_CR16 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2005.04.015 – ident: 14807_CR38 – ident: 14807_CR9 doi: 10.1063/1.1377039 – volume: 10 start-page: 084 year: 2012 ident: 14807_CR30 publication-title: JHEP doi: 10.1007/JHEP10(2012)084 – volume: 252 start-page: 189 year: 2004 ident: 14807_CR34 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-004-1187-3 |
| SSID | ssj0015190 |
| Score | 2.6421208 |
| Snippet | A
bstract
We employ the free field realisation of the
psu
1
1
2
1
world-sheet theory to constrain the correlators of string theory on AdS
3
×
S
3
×
𝕋
4
with... We employ the free field realisation of the $$ \mathfrak{psu}{\left(1,1\left|2\right.\right)}_1 $$ psu 1 1 2 1 world-sheet theory to constrain the correlators... Abstract We employ the free field realisation of the psu 1 1 2 1 $$ \mathfrak{psu}{\left(1,1\left|2\right.\right)}_1 $$ world-sheet theory to constrain the... |
| SourceID | doaj crossref springer |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | AdS-CFT Correspondence Classical and Quantum Gravitation Conformal and W Symmetry Conformal Field Models in String Theory Elementary Particles Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Regular Article - Theoretical Physics Relativity Theory String Theory |
| SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4yFLyIP3H-ogcP2yEubbImOU7ZGB7GQIXdSn6iMKas1b_fl7QdiogXb6WkSfu9hvd95PE9hK4ZF0Y4obFyRGOmGGwppxhmPvjvM-O5VLHZBJ_NxGIh519afYWasNoeuAZuwJiVgujcphaSXyZAkBCqtNWGqKHzUfgQLlsx1ZwfAC8hrZEP4YP76XhOsh4I_bRPRPotB0Wr_h_noDG9TPbRXsMLk1H9Pgdoy60O0U6szzTlEQKC6VwSy82SaHKKy2fnqsSE5hrLIJzLBOhnMrIP9Bg9TcaPd1Pc9DnAhg1lhTMrU-k4pcEchRqlPM0N8VKlPmcWLqSS3mjQNiYXIcG7YC9OuffAzyiozBPUWb2u3ClKiBl66QTgDkpDKyMl0xnjEniBgIlsF920X16YxgQ89KJYFq19cQ1VEaAqAKou6m0eeKv9L34fehug3AwLxtXxBoSzaMJZ_BXOLuq3gSia3VT-tuDZfyx4jnbDfHUh9gXqVOt3d4m2zUf1Uq6v4l_1CdqBzFo priority: 102 providerName: Directory of Open Access Journals |
| Title | Free field world-sheet correlators for AdS3 |
| URI | https://link.springer.com/article/10.1007/JHEP02(2021)081 https://doaj.org/article/44d980b6d1d7412884003abdbc0a5ef1 |
| Volume | 2021 |
| WOSCitedRecordID | wos000619793200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: P5Z dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVIAO databaseName: SCOAP3 Journals customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: ER. dateStart: 20140101 isFulltext: true titleUrlDefault: https://scoap3.org/ providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics) – providerCode: PRVAVX databaseName: SpringerLink Open Access Journals customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: C24 dateStart: 20100101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jU_Dib3H-GD142A6VtMna5DjHxhQcBRXmqSRposLYZK3-_b6k7UDGDnoLJUnLS9J8H--97yF0Q2OmmGbSFxpLnwoKR0oL6lNj9fepMjEXrthEPJ2y2YwnDRTUuTAu2r12Sbo_dZ3s9jAZJTjsAlkPetgmW7f6AeM2im9oExwqxwEAElwr-GwO-nX5OI3-DQeou1fGB__4okO0X4FIb1Cu-hFq6MUx2nXBnCo_QYBGtfZcbJrnFFH9_F3rwlO2EsfcsuzcA6zqDbIncopexqPn4cSviiL4ivZ54YcZD7iOCbFKKkQJYUiksOEiMBHNoMEFN0oCEVIRs2hAWy1yEhsDYI4AJT1DzcVyoc-Rh1XfcM1gkYCWSKE4pzKkMQcQwWCirI1ua2ulqlIMt4Ur5mmtdVxaILUWSMECbdRdD_gsxTK2d72z5l93syrX7sFy9ZZWhyalNOMMyygLMgA-IQMyiomQmVRY9LWBSXr1wqTV0cu3vfDiD30v0Z5tlsHZV6hZrL70NdpR38VHvuq4Dddx5L2DWsn9Y_L6A68_0Jw |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KD_TiW6zPHDy0h8gm2Sa7x1paqtZSsEJvYZ8qlFaa6O93dpMUpPSgt7DsbsLMTvYbZuYbhG5JQiXVVPhcY-ETTsCkNCc-MZZ_n0iTMO6aTSTDIZ1M2KiGgqoWxmW7VyFJ96euit0e-90RDhvgrAdNbIutNy3vis3i69gChzJwAIAEVww-q4t-XT6Oo38lAOruld7-P77oAO2VINJrF1o_RDU9O0LbLplTZscI0KjWnstN8xwjqp-9a5170nbimFovO_MAq3pt9RKdoNded9zp-2VTBF-SFsv9ULGA6SSKLJNKJDk3USyxYTwwMVHwwDgzUoAjJGNq0YC2XORRYgyAuQhc0lO0MZvP9BnysGwZpikoCdwSwSVjRIQkYQAiKGyk6uiuklYqS8Zw27himlZcx4UEUiuBFCRQR43lgs-CLGP91Hsr_uU0y3LtBuaLt7Q0mpQQxSgWsQoUAJ-QgjOKIy6UkJi3tIFNmpVi0tL0snUvPP_D3Bu00x8_D9LBw_DpAu3a4SJR-xJt5IsvfYW25Hf-kS2u3eH7ARNl0No |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5SH3jxLdbnHjy0h7XZ3XQ3OdbaUh-Uggq9LXmqUNrSXf39TrK7BSkexNsSJskyyZBvmJlvELomCZVUU-FzjYVPOAGT0pz4xFj-fSJNwrhrNpEMh3Q8ZqMyNyerst2rkGRR02BZmqZ5a65MFdVvPQx6Ixw2wHEPmtgWXq_bcJS94F1b7FAGEQCc4IrNZ3XSj4fI8fWvBEPdG9Pf_eff7aGdElx6neI27KM1PT1Amy7JU2aHCFCq1p7LWfMcU6qfvWude9J26JhY7zvzAMN6HfUcHaHXfu-lO_DLZgm-JG2W-6FiAdNJFFmGlUhybqJYYsN4YGKi4INxZqQAB0nG1KIEbTnKo8QYAHkRuKrHqDadTfUJ8rBsG6YpHB64K4JLxogIScIAXFBYSNXRTaW5VJZM4rahxSStOJALDaRWAylooI4aywnzgkTjd9FbexRLMct-7QZmi7e0NKaUEMUoFrEKFACikIKTiiMulJCYt7WBRZrVIaWlSWa_bXj6B9krtDW666dP98PHM7RtR4v87XNUyxef-gJtyK_8I1tcunv4DSFV2b4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Free+field+world-sheet+correlators+for+AdS3&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Dei%2C+Andrea&rft.au=Gaberdiel%2C+Matthias+R.&rft.au=Gopakumar%2C+Rajesh&rft.au=Knighton%2C+Bob&rft.date=2021-02-01&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=1029-8479&rft.volume=2021&rft.issue=2&rft_id=info:doi/10.1007%2FJHEP02%282021%29081&rft.externalDocID=10_1007_JHEP02_2021_081 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |