The Apollo 5' exonuclease functions together with TRF2 to protect telomeres from DNA repair
A major issue in telomere research is to understand how the integrity of chromosome ends is preserved . The human telomeric protein TRF2 coordinates several pathways that prevent checkpoint activation and chromosome fusions. In this work, we identified hSNM1B, here named Apollo, as a novel TRF2-inte...
Saved in:
| Published in: | Current biology Vol. 16; no. 13; p. 1303 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
11.07.2006
|
| Subjects: | |
| ISSN: | 0960-9822 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A major issue in telomere research is to understand how the integrity of chromosome ends is preserved . The human telomeric protein TRF2 coordinates several pathways that prevent checkpoint activation and chromosome fusions. In this work, we identified hSNM1B, here named Apollo, as a novel TRF2-interacting factor. Interestingly, the N-terminal domain of Apollo is closely related to that of Artemis, a factor involved in V(D)J recombination and DNA repair. Both proteins belong to the beta-CASP metallo-beta-lactamase family of DNA caretaker proteins. Apollo appears preferentially localized at telomeres in a TRF2-dependent manner. Reduced levels of Apollo exacerbate the sensitivity of cells to TRF2 inhibition, resulting in severe growth defects and an increased number of telomere-induced DNA-damage foci and telomere fusions. Purified Apollo protein exhibits a 5'-to-3' DNA exonuclease activity. We conclude that Apollo is a novel component of the human telomeric complex and works together with TRF2 to protect chromosome termini from being recognized and processed as DNA damage. These findings unveil a previously undescribed telomere-protection mechanism involving a DNA 5'-to-3' exonuclease. |
|---|---|
| AbstractList | A major issue in telomere research is to understand how the integrity of chromosome ends is preserved . The human telomeric protein TRF2 coordinates several pathways that prevent checkpoint activation and chromosome fusions. In this work, we identified hSNM1B, here named Apollo, as a novel TRF2-interacting factor. Interestingly, the N-terminal domain of Apollo is closely related to that of Artemis, a factor involved in V(D)J recombination and DNA repair. Both proteins belong to the beta-CASP metallo-beta-lactamase family of DNA caretaker proteins. Apollo appears preferentially localized at telomeres in a TRF2-dependent manner. Reduced levels of Apollo exacerbate the sensitivity of cells to TRF2 inhibition, resulting in severe growth defects and an increased number of telomere-induced DNA-damage foci and telomere fusions. Purified Apollo protein exhibits a 5'-to-3' DNA exonuclease activity. We conclude that Apollo is a novel component of the human telomeric complex and works together with TRF2 to protect chromosome termini from being recognized and processed as DNA damage. These findings unveil a previously undescribed telomere-protection mechanism involving a DNA 5'-to-3' exonuclease.A major issue in telomere research is to understand how the integrity of chromosome ends is preserved . The human telomeric protein TRF2 coordinates several pathways that prevent checkpoint activation and chromosome fusions. In this work, we identified hSNM1B, here named Apollo, as a novel TRF2-interacting factor. Interestingly, the N-terminal domain of Apollo is closely related to that of Artemis, a factor involved in V(D)J recombination and DNA repair. Both proteins belong to the beta-CASP metallo-beta-lactamase family of DNA caretaker proteins. Apollo appears preferentially localized at telomeres in a TRF2-dependent manner. Reduced levels of Apollo exacerbate the sensitivity of cells to TRF2 inhibition, resulting in severe growth defects and an increased number of telomere-induced DNA-damage foci and telomere fusions. Purified Apollo protein exhibits a 5'-to-3' DNA exonuclease activity. We conclude that Apollo is a novel component of the human telomeric complex and works together with TRF2 to protect chromosome termini from being recognized and processed as DNA damage. These findings unveil a previously undescribed telomere-protection mechanism involving a DNA 5'-to-3' exonuclease. A major issue in telomere research is to understand how the integrity of chromosome ends is preserved . The human telomeric protein TRF2 coordinates several pathways that prevent checkpoint activation and chromosome fusions. In this work, we identified hSNM1B, here named Apollo, as a novel TRF2-interacting factor. Interestingly, the N-terminal domain of Apollo is closely related to that of Artemis, a factor involved in V(D)J recombination and DNA repair. Both proteins belong to the beta-CASP metallo-beta-lactamase family of DNA caretaker proteins. Apollo appears preferentially localized at telomeres in a TRF2-dependent manner. Reduced levels of Apollo exacerbate the sensitivity of cells to TRF2 inhibition, resulting in severe growth defects and an increased number of telomere-induced DNA-damage foci and telomere fusions. Purified Apollo protein exhibits a 5'-to-3' DNA exonuclease activity. We conclude that Apollo is a novel component of the human telomeric complex and works together with TRF2 to protect chromosome termini from being recognized and processed as DNA damage. These findings unveil a previously undescribed telomere-protection mechanism involving a DNA 5'-to-3' exonuclease. |
| Author | Lenain, Christelle Giraud-Panis, Marie-Josèphe Bauwens, Serge Amiard, Simon Brunori, Michele Gilson, Eric |
| Author_xml | – sequence: 1 givenname: Christelle surname: Lenain fullname: Lenain, Christelle organization: Laboratoire de Biologie Moléculaire de la Cellule, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Unité mixte de recerche 5161, Institut Fédératif de Recherche 128, 46 Allée d'Italie, F-69364 Lyon, France – sequence: 2 givenname: Serge surname: Bauwens fullname: Bauwens, Serge – sequence: 3 givenname: Simon surname: Amiard fullname: Amiard, Simon – sequence: 4 givenname: Michele surname: Brunori fullname: Brunori, Michele – sequence: 5 givenname: Marie-Josèphe surname: Giraud-Panis fullname: Giraud-Panis, Marie-Josèphe – sequence: 6 givenname: Eric surname: Gilson fullname: Gilson, Eric |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16730175$$D View this record in MEDLINE/PubMed |
| BookMark | eNo1kEFLwzAYhnOYuDn9AV4kJz21fknXNDmO6VQYCjJPHkqafnEdbVOTFPXfO3CeXnh5eHh5z8ikdz0ScskgZcDE7T41Y5VyAJFCngJnEzIDJSBRkvMpOQthD8C4VOKUTJkoMmBFPiPv2x3S5eDa1tH8huK360fTog5I7dib2Lg-0Og-MO7Q068m7uj2dc0PFR28i2gijdi6Dj0Gar3r6N3zknocdOPPyYnVbcCLY87J2_p-u3pMNi8PT6vlJjGLXMWEGWkyFLaWVtiiZloWaiGMyiXWUktpFdTAFrWtM8agAKx0rrjBA6Ahqxifk-s_72HR54ghll0TDLat7tGNoRRSsKIQ-QG8OoJj1WFdDr7ptP8p_-_gvxzDYk4 |
| CitedBy_id | crossref_primary_10_1038_emboj_2009_278 crossref_primary_10_1039_D4SC00367E crossref_primary_10_1016_j_molcel_2010_08_018 crossref_primary_10_1080_10409230701279118 crossref_primary_10_1038_s41594_023_01072_x crossref_primary_10_1182_blood_2021010791 crossref_primary_10_1074_jbc_M800388200 crossref_primary_10_1016_j_bbrc_2008_09_130 crossref_primary_10_1016_j_tibs_2015_03_003 crossref_primary_10_1002_gcc_20446 crossref_primary_10_1016_j_mad_2012_05_002 crossref_primary_10_1016_j_dnarep_2024_103774 crossref_primary_10_1016_j_oraloncology_2016_04_006 crossref_primary_10_1007_s00018_013_1469_z crossref_primary_10_3390_genes8040112 crossref_primary_10_1038_s41576_022_00527_z crossref_primary_10_1016_j_cell_2012_05_026 crossref_primary_10_1080_15384101_2016_1231288 crossref_primary_10_3390_genes8020055 crossref_primary_10_1126_science_1151804 crossref_primary_10_1111_j_1474_9726_2011_00696_x crossref_primary_10_1016_j_bbadis_2024_167107 crossref_primary_10_1093_hmg_ddt340 crossref_primary_10_1007_s13238_013_3002_4 crossref_primary_10_1111_j_1742_4658_2009_07461_x crossref_primary_10_1242_jcs_050567 crossref_primary_10_1016_j_celrep_2025_116178 crossref_primary_10_1371_journal_pone_0331492 crossref_primary_10_1016_j_ymeth_2012_02_010 crossref_primary_10_1093_nar_gkae105 crossref_primary_10_1016_j_molcel_2007_03_023 crossref_primary_10_1101_gad_350479_123 crossref_primary_10_1038_onc_2010_344 crossref_primary_10_1371_journal_pone_0140456 crossref_primary_10_1093_molbev_msad155 crossref_primary_10_1093_nar_gkac401 crossref_primary_10_3390_genes14040775 crossref_primary_10_1038_emboj_2010_58 crossref_primary_10_1002_em_20556 crossref_primary_10_1093_nar_gks1354 crossref_primary_10_1038_nrm2259 crossref_primary_10_1016_j_dnarep_2007_12_014 crossref_primary_10_1042_BJ20131395 crossref_primary_10_1016_j_mad_2008_08_004 crossref_primary_10_1016_j_dnarep_2008_03_020 crossref_primary_10_3390_biom14030263 crossref_primary_10_1002_em_20566 crossref_primary_10_1371_journal_pone_0012407 crossref_primary_10_1016_j_molcel_2010_06_031 crossref_primary_10_1093_nar_gkv006 crossref_primary_10_1016_j_bbagrm_2013_01_010 crossref_primary_10_1093_nar_gkv522 crossref_primary_10_1371_journal_pbio_3003056 crossref_primary_10_1152_physrev_00026_2007 crossref_primary_10_1093_nar_gkv1256 crossref_primary_10_1093_nar_gkv1531 crossref_primary_10_4161_cc_10_23_18385 crossref_primary_10_1038_sj_onc_1210875 crossref_primary_10_1371_journal_pone_0049626 crossref_primary_10_1093_nar_gkab693 crossref_primary_10_4161_cc_10_11_15676 crossref_primary_10_1093_nar_gkab692 crossref_primary_10_1002_jcp_31034 crossref_primary_10_3390_ijms22189900 crossref_primary_10_1002_wrna_33 crossref_primary_10_1038_nchembio_2007_38 crossref_primary_10_1038_emboj_2008_74 crossref_primary_10_1111_j_1365_2184_2007_00452_x crossref_primary_10_3390_cells10071753 crossref_primary_10_3892_or_2021_8135 crossref_primary_10_1007_s00412_013_0440_y crossref_primary_10_1016_j_gene_2007_04_021 crossref_primary_10_1073_pnas_2201662119 crossref_primary_10_1158_1541_7786_MCR_17_0772 crossref_primary_10_1111_j_1474_9726_2010_00631_x crossref_primary_10_1016_j_bbrc_2011_06_027 crossref_primary_10_1073_pnas_0914918107 crossref_primary_10_1016_j_fgb_2013_09_003 crossref_primary_10_1016_j_bmcl_2020_127401 crossref_primary_10_1146_annurev_genet_032918_021921 crossref_primary_10_1038_s41598_017_08663_x crossref_primary_10_1101_gad_276873_115 crossref_primary_10_1111_j_1582_4934_2010_01220_x crossref_primary_10_1182_blood_2021015199 crossref_primary_10_1016_j_bioorg_2025_108225 crossref_primary_10_1101_gad_1626908 crossref_primary_10_1101_gad_348835_121 crossref_primary_10_1093_hmg_dds338 crossref_primary_10_1093_nar_gkr1059 crossref_primary_10_1038_ncomms14334 crossref_primary_10_3390_cancers14030808 crossref_primary_10_2217_fon_10_47 crossref_primary_10_1093_hmg_ddr153 crossref_primary_10_1016_j_biochi_2007_07_008 crossref_primary_10_1016_j_cub_2006_06_037 crossref_primary_10_1038_nsmb_3083 crossref_primary_10_1016_j_cub_2007_10_054 crossref_primary_10_1146_annurev_genet_41_110306_130350 crossref_primary_10_1038_onc_2008_139 crossref_primary_10_1074_jbc_M112_367243 crossref_primary_10_1038_nsmb_1575 crossref_primary_10_1186_1756_9966_32_68 crossref_primary_10_1016_j_cub_2006_05_022 crossref_primary_10_26508_lsa_201800121 crossref_primary_10_1016_j_dnarep_2006_09_005 crossref_primary_10_1042_BST20230300 crossref_primary_10_1016_j_dnarep_2020_102941 crossref_primary_10_1038_nsmb_3092 crossref_primary_10_1093_nar_gkp582 crossref_primary_10_1269_jrr_10017 crossref_primary_10_1016_j_jphotobiol_2013_11_024 crossref_primary_10_1128_MCB_00009_09 crossref_primary_10_1016_j_cell_2008_11_045 crossref_primary_10_1128_MCB_00286_09 crossref_primary_10_1016_j_dnarep_2008_10_010 crossref_primary_10_1016_j_dnarep_2007_09_013 crossref_primary_10_1016_j_cell_2010_05_032 crossref_primary_10_1016_j_biochi_2007_07_011 crossref_primary_10_1016_j_febslet_2010_06_016 crossref_primary_10_1021_ja5080773 crossref_primary_10_1093_nar_gkac065 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.cub.2006.05.021 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Biology |
| ExternalDocumentID | 16730175 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --K -DZ -~X 0R~ 1RT 1~5 2WC 4.4 457 4G. 53G 5GY 62- 6J9 7-5 AAEDT AAEDW AAFWJ AAIKJ AAKRW AALRI AAMRU AAVLU AAXUO AAYWO ABDGV ABJNI ABMAC ACGFO ACGFS ACVFH ADBBV ADCNI ADEZE ADVLN AEFWE AENEX AEUPX AEXQZ AFPUW AFTJW AGCQF AGHFR AGHSJ AGKMS AGUBO AHHHB AIGII AITUG AKAPO AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP AZFZN BAWUL CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EFKBS EIF EJD F5P FCP FDB FIRID HZ~ IHE IXB J1W JIG LX5 M3Z M41 NPM O-L O9- OK1 OZT P2P RIG ROL RPZ SCP SDG SES SSZ TR2 XIH 7X8 |
| ID | FETCH-LOGICAL-c459t-1c8c3e6fd8f6f7d1a87946c958ed8a88f90d014dfd311070eba592ce958a03b12 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 151 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000239127800024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0960-9822 |
| IngestDate | Thu Oct 02 18:40:28 EDT 2025 Mon Jul 21 06:05:55 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c459t-1c8c3e6fd8f6f7d1a87946c958ed8a88f90d014dfd311070eba592ce958a03b12 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | http://www.cell.com/article/S096098220601565X/pdf |
| PMID | 16730175 |
| PQID | 68617765 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_68617765 pubmed_primary_16730175 |
| PublicationCentury | 2000 |
| PublicationDate | 2006-07-11 |
| PublicationDateYYYYMMDD | 2006-07-11 |
| PublicationDate_xml | – month: 07 year: 2006 text: 2006-07-11 day: 11 |
| PublicationDecade | 2000 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Current biology |
| PublicationTitleAlternate | Curr Biol |
| PublicationYear | 2006 |
| References | 16860732 - Curr Biol. 2006 Jul 25;16(14):R544-6 |
| References_xml | – reference: 16860732 - Curr Biol. 2006 Jul 25;16(14):R544-6 |
| SSID | ssj0012896 |
| Score | 2.2813497 |
| Snippet | A major issue in telomere research is to understand how the integrity of chromosome ends is preserved . The human telomeric protein TRF2 coordinates several... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 1303 |
| SubjectTerms | Animals Chlorocebus aethiops COS Cells DNA Repair - physiology DNA Repair Enzymes Exodeoxyribonucleases - analysis Exodeoxyribonucleases - genetics Exodeoxyribonucleases - physiology Glutathione Transferase - analysis Humans Nuclear Proteins - analysis Nuclear Proteins - genetics Nuclear Proteins - physiology Recombinant Fusion Proteins - analysis Telomere - metabolism Telomere - ultrastructure Telomeric Repeat Binding Protein 2 - metabolism |
| Title | The Apollo 5' exonuclease functions together with TRF2 to protect telomeres from DNA repair |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/16730175 https://www.proquest.com/docview/68617765 |
| Volume | 16 |
| WOSCitedRecordID | wos000239127800024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA6jo-DFfRnXHARP0aZt0hQEGdTBi2UQhQEPJc0iA9qOMx3Rf-9LFzyJBy89hBTC69e3fXnvIXSqWCYcAUcsbCCh9jwiw8AjxmY8zlTMqVLVsIkoScRoFA876LKthXHXKludWClqXSiXI7_gAmxtxNnV5J24mVGOW20GaCygbgCOjMN0NPrhECCUqJhK8NGJ61LXcprV7S41zxomgp17Pv3dv6zszGDtfydcR6uNf4n7NSA2UMfkm2i5njj5tYWeARa4P4GPX2B2hs1nkbuGxmDKsLNwFQhxWbxUZcDYJWnx48PAhyXcdHTApXkt3gxE6diVpuCbpI-nYNPG0230NLh9vL4jzXwFokIWl4QqoQLDrRaW20hTKVy3eRUzYbSQQtjY0xBBaasDFyV6JpMs9pWBDdILMurvoMW8yM2eq_zmwvjaxhmVoVG-tCHEeZL7IbNCGtNDJ63MUsCvIyVkbor5LG2l1kO7tdjTSd1mI6XcaZ-I7f_57gFaqTMjEaH0EHUt_LnmCC2pj3I8mx5XsIBnMrz_Bj4FwvE |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Apollo+5%27+exonuclease+functions+together+with+TRF2+to+protect+telomeres+from+DNA+repair&rft.jtitle=Current+biology&rft.au=Lenain%2C+Christelle&rft.au=Bauwens%2C+Serge&rft.au=Amiard%2C+Simon&rft.au=Brunori%2C+Michele&rft.date=2006-07-11&rft.issn=0960-9822&rft.volume=16&rft.issue=13&rft.spage=1303&rft_id=info:doi/10.1016%2Fj.cub.2006.05.021&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-9822&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-9822&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-9822&client=summon |