The Apollo 5' exonuclease functions together with TRF2 to protect telomeres from DNA repair

A major issue in telomere research is to understand how the integrity of chromosome ends is preserved . The human telomeric protein TRF2 coordinates several pathways that prevent checkpoint activation and chromosome fusions. In this work, we identified hSNM1B, here named Apollo, as a novel TRF2-inte...

Full description

Saved in:
Bibliographic Details
Published in:Current biology Vol. 16; no. 13; p. 1303
Main Authors: Lenain, Christelle, Bauwens, Serge, Amiard, Simon, Brunori, Michele, Giraud-Panis, Marie-Josèphe, Gilson, Eric
Format: Journal Article
Language:English
Published: England 11.07.2006
Subjects:
ISSN:0960-9822
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A major issue in telomere research is to understand how the integrity of chromosome ends is preserved . The human telomeric protein TRF2 coordinates several pathways that prevent checkpoint activation and chromosome fusions. In this work, we identified hSNM1B, here named Apollo, as a novel TRF2-interacting factor. Interestingly, the N-terminal domain of Apollo is closely related to that of Artemis, a factor involved in V(D)J recombination and DNA repair. Both proteins belong to the beta-CASP metallo-beta-lactamase family of DNA caretaker proteins. Apollo appears preferentially localized at telomeres in a TRF2-dependent manner. Reduced levels of Apollo exacerbate the sensitivity of cells to TRF2 inhibition, resulting in severe growth defects and an increased number of telomere-induced DNA-damage foci and telomere fusions. Purified Apollo protein exhibits a 5'-to-3' DNA exonuclease activity. We conclude that Apollo is a novel component of the human telomeric complex and works together with TRF2 to protect chromosome termini from being recognized and processed as DNA damage. These findings unveil a previously undescribed telomere-protection mechanism involving a DNA 5'-to-3' exonuclease.
AbstractList A major issue in telomere research is to understand how the integrity of chromosome ends is preserved . The human telomeric protein TRF2 coordinates several pathways that prevent checkpoint activation and chromosome fusions. In this work, we identified hSNM1B, here named Apollo, as a novel TRF2-interacting factor. Interestingly, the N-terminal domain of Apollo is closely related to that of Artemis, a factor involved in V(D)J recombination and DNA repair. Both proteins belong to the beta-CASP metallo-beta-lactamase family of DNA caretaker proteins. Apollo appears preferentially localized at telomeres in a TRF2-dependent manner. Reduced levels of Apollo exacerbate the sensitivity of cells to TRF2 inhibition, resulting in severe growth defects and an increased number of telomere-induced DNA-damage foci and telomere fusions. Purified Apollo protein exhibits a 5'-to-3' DNA exonuclease activity. We conclude that Apollo is a novel component of the human telomeric complex and works together with TRF2 to protect chromosome termini from being recognized and processed as DNA damage. These findings unveil a previously undescribed telomere-protection mechanism involving a DNA 5'-to-3' exonuclease.A major issue in telomere research is to understand how the integrity of chromosome ends is preserved . The human telomeric protein TRF2 coordinates several pathways that prevent checkpoint activation and chromosome fusions. In this work, we identified hSNM1B, here named Apollo, as a novel TRF2-interacting factor. Interestingly, the N-terminal domain of Apollo is closely related to that of Artemis, a factor involved in V(D)J recombination and DNA repair. Both proteins belong to the beta-CASP metallo-beta-lactamase family of DNA caretaker proteins. Apollo appears preferentially localized at telomeres in a TRF2-dependent manner. Reduced levels of Apollo exacerbate the sensitivity of cells to TRF2 inhibition, resulting in severe growth defects and an increased number of telomere-induced DNA-damage foci and telomere fusions. Purified Apollo protein exhibits a 5'-to-3' DNA exonuclease activity. We conclude that Apollo is a novel component of the human telomeric complex and works together with TRF2 to protect chromosome termini from being recognized and processed as DNA damage. These findings unveil a previously undescribed telomere-protection mechanism involving a DNA 5'-to-3' exonuclease.
A major issue in telomere research is to understand how the integrity of chromosome ends is preserved . The human telomeric protein TRF2 coordinates several pathways that prevent checkpoint activation and chromosome fusions. In this work, we identified hSNM1B, here named Apollo, as a novel TRF2-interacting factor. Interestingly, the N-terminal domain of Apollo is closely related to that of Artemis, a factor involved in V(D)J recombination and DNA repair. Both proteins belong to the beta-CASP metallo-beta-lactamase family of DNA caretaker proteins. Apollo appears preferentially localized at telomeres in a TRF2-dependent manner. Reduced levels of Apollo exacerbate the sensitivity of cells to TRF2 inhibition, resulting in severe growth defects and an increased number of telomere-induced DNA-damage foci and telomere fusions. Purified Apollo protein exhibits a 5'-to-3' DNA exonuclease activity. We conclude that Apollo is a novel component of the human telomeric complex and works together with TRF2 to protect chromosome termini from being recognized and processed as DNA damage. These findings unveil a previously undescribed telomere-protection mechanism involving a DNA 5'-to-3' exonuclease.
Author Lenain, Christelle
Giraud-Panis, Marie-Josèphe
Bauwens, Serge
Amiard, Simon
Brunori, Michele
Gilson, Eric
Author_xml – sequence: 1
  givenname: Christelle
  surname: Lenain
  fullname: Lenain, Christelle
  organization: Laboratoire de Biologie Moléculaire de la Cellule, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Unité mixte de recerche 5161, Institut Fédératif de Recherche 128, 46 Allée d'Italie, F-69364 Lyon, France
– sequence: 2
  givenname: Serge
  surname: Bauwens
  fullname: Bauwens, Serge
– sequence: 3
  givenname: Simon
  surname: Amiard
  fullname: Amiard, Simon
– sequence: 4
  givenname: Michele
  surname: Brunori
  fullname: Brunori, Michele
– sequence: 5
  givenname: Marie-Josèphe
  surname: Giraud-Panis
  fullname: Giraud-Panis, Marie-Josèphe
– sequence: 6
  givenname: Eric
  surname: Gilson
  fullname: Gilson, Eric
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16730175$$D View this record in MEDLINE/PubMed
BookMark eNo1kEFLwzAYhnOYuDn9AV4kJz21fknXNDmO6VQYCjJPHkqafnEdbVOTFPXfO3CeXnh5eHh5z8ikdz0ScskgZcDE7T41Y5VyAJFCngJnEzIDJSBRkvMpOQthD8C4VOKUTJkoMmBFPiPv2x3S5eDa1tH8huK360fTog5I7dib2Lg-0Og-MO7Q068m7uj2dc0PFR28i2gijdi6Dj0Gar3r6N3zknocdOPPyYnVbcCLY87J2_p-u3pMNi8PT6vlJjGLXMWEGWkyFLaWVtiiZloWaiGMyiXWUktpFdTAFrWtM8agAKx0rrjBA6Ahqxifk-s_72HR54ghll0TDLat7tGNoRRSsKIQ-QG8OoJj1WFdDr7ptP8p_-_gvxzDYk4
CitedBy_id crossref_primary_10_1038_emboj_2009_278
crossref_primary_10_1039_D4SC00367E
crossref_primary_10_1016_j_molcel_2010_08_018
crossref_primary_10_1080_10409230701279118
crossref_primary_10_1038_s41594_023_01072_x
crossref_primary_10_1182_blood_2021010791
crossref_primary_10_1074_jbc_M800388200
crossref_primary_10_1016_j_bbrc_2008_09_130
crossref_primary_10_1016_j_tibs_2015_03_003
crossref_primary_10_1002_gcc_20446
crossref_primary_10_1016_j_mad_2012_05_002
crossref_primary_10_1016_j_dnarep_2024_103774
crossref_primary_10_1016_j_oraloncology_2016_04_006
crossref_primary_10_1007_s00018_013_1469_z
crossref_primary_10_3390_genes8040112
crossref_primary_10_1038_s41576_022_00527_z
crossref_primary_10_1016_j_cell_2012_05_026
crossref_primary_10_1080_15384101_2016_1231288
crossref_primary_10_3390_genes8020055
crossref_primary_10_1126_science_1151804
crossref_primary_10_1111_j_1474_9726_2011_00696_x
crossref_primary_10_1016_j_bbadis_2024_167107
crossref_primary_10_1093_hmg_ddt340
crossref_primary_10_1007_s13238_013_3002_4
crossref_primary_10_1111_j_1742_4658_2009_07461_x
crossref_primary_10_1242_jcs_050567
crossref_primary_10_1016_j_celrep_2025_116178
crossref_primary_10_1371_journal_pone_0331492
crossref_primary_10_1016_j_ymeth_2012_02_010
crossref_primary_10_1093_nar_gkae105
crossref_primary_10_1016_j_molcel_2007_03_023
crossref_primary_10_1101_gad_350479_123
crossref_primary_10_1038_onc_2010_344
crossref_primary_10_1371_journal_pone_0140456
crossref_primary_10_1093_molbev_msad155
crossref_primary_10_1093_nar_gkac401
crossref_primary_10_3390_genes14040775
crossref_primary_10_1038_emboj_2010_58
crossref_primary_10_1002_em_20556
crossref_primary_10_1093_nar_gks1354
crossref_primary_10_1038_nrm2259
crossref_primary_10_1016_j_dnarep_2007_12_014
crossref_primary_10_1042_BJ20131395
crossref_primary_10_1016_j_mad_2008_08_004
crossref_primary_10_1016_j_dnarep_2008_03_020
crossref_primary_10_3390_biom14030263
crossref_primary_10_1002_em_20566
crossref_primary_10_1371_journal_pone_0012407
crossref_primary_10_1016_j_molcel_2010_06_031
crossref_primary_10_1093_nar_gkv006
crossref_primary_10_1016_j_bbagrm_2013_01_010
crossref_primary_10_1093_nar_gkv522
crossref_primary_10_1371_journal_pbio_3003056
crossref_primary_10_1152_physrev_00026_2007
crossref_primary_10_1093_nar_gkv1256
crossref_primary_10_1093_nar_gkv1531
crossref_primary_10_4161_cc_10_23_18385
crossref_primary_10_1038_sj_onc_1210875
crossref_primary_10_1371_journal_pone_0049626
crossref_primary_10_1093_nar_gkab693
crossref_primary_10_4161_cc_10_11_15676
crossref_primary_10_1093_nar_gkab692
crossref_primary_10_1002_jcp_31034
crossref_primary_10_3390_ijms22189900
crossref_primary_10_1002_wrna_33
crossref_primary_10_1038_nchembio_2007_38
crossref_primary_10_1038_emboj_2008_74
crossref_primary_10_1111_j_1365_2184_2007_00452_x
crossref_primary_10_3390_cells10071753
crossref_primary_10_3892_or_2021_8135
crossref_primary_10_1007_s00412_013_0440_y
crossref_primary_10_1016_j_gene_2007_04_021
crossref_primary_10_1073_pnas_2201662119
crossref_primary_10_1158_1541_7786_MCR_17_0772
crossref_primary_10_1111_j_1474_9726_2010_00631_x
crossref_primary_10_1016_j_bbrc_2011_06_027
crossref_primary_10_1073_pnas_0914918107
crossref_primary_10_1016_j_fgb_2013_09_003
crossref_primary_10_1016_j_bmcl_2020_127401
crossref_primary_10_1146_annurev_genet_032918_021921
crossref_primary_10_1038_s41598_017_08663_x
crossref_primary_10_1101_gad_276873_115
crossref_primary_10_1111_j_1582_4934_2010_01220_x
crossref_primary_10_1182_blood_2021015199
crossref_primary_10_1016_j_bioorg_2025_108225
crossref_primary_10_1101_gad_1626908
crossref_primary_10_1101_gad_348835_121
crossref_primary_10_1093_hmg_dds338
crossref_primary_10_1093_nar_gkr1059
crossref_primary_10_1038_ncomms14334
crossref_primary_10_3390_cancers14030808
crossref_primary_10_2217_fon_10_47
crossref_primary_10_1093_hmg_ddr153
crossref_primary_10_1016_j_biochi_2007_07_008
crossref_primary_10_1016_j_cub_2006_06_037
crossref_primary_10_1038_nsmb_3083
crossref_primary_10_1016_j_cub_2007_10_054
crossref_primary_10_1146_annurev_genet_41_110306_130350
crossref_primary_10_1038_onc_2008_139
crossref_primary_10_1074_jbc_M112_367243
crossref_primary_10_1038_nsmb_1575
crossref_primary_10_1186_1756_9966_32_68
crossref_primary_10_1016_j_cub_2006_05_022
crossref_primary_10_26508_lsa_201800121
crossref_primary_10_1016_j_dnarep_2006_09_005
crossref_primary_10_1042_BST20230300
crossref_primary_10_1016_j_dnarep_2020_102941
crossref_primary_10_1038_nsmb_3092
crossref_primary_10_1093_nar_gkp582
crossref_primary_10_1269_jrr_10017
crossref_primary_10_1016_j_jphotobiol_2013_11_024
crossref_primary_10_1128_MCB_00009_09
crossref_primary_10_1016_j_cell_2008_11_045
crossref_primary_10_1128_MCB_00286_09
crossref_primary_10_1016_j_dnarep_2008_10_010
crossref_primary_10_1016_j_dnarep_2007_09_013
crossref_primary_10_1016_j_cell_2010_05_032
crossref_primary_10_1016_j_biochi_2007_07_011
crossref_primary_10_1016_j_febslet_2010_06_016
crossref_primary_10_1021_ja5080773
crossref_primary_10_1093_nar_gkac065
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.cub.2006.05.021
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
ExternalDocumentID 16730175
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
-DZ
-~X
0R~
1RT
1~5
2WC
4.4
457
4G.
53G
5GY
62-
6J9
7-5
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKRW
AALRI
AAMRU
AAVLU
AAXUO
AAYWO
ABDGV
ABJNI
ABMAC
ACGFO
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEFWE
AENEX
AEUPX
AEXQZ
AFPUW
AFTJW
AGCQF
AGHFR
AGHSJ
AGKMS
AGUBO
AHHHB
AIGII
AITUG
AKAPO
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
AZFZN
BAWUL
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EFKBS
EIF
EJD
F5P
FCP
FDB
FIRID
HZ~
IHE
IXB
J1W
JIG
LX5
M3Z
M41
NPM
O-L
O9-
OK1
OZT
P2P
RIG
ROL
RPZ
SCP
SDG
SES
SSZ
TR2
XIH
7X8
ID FETCH-LOGICAL-c459t-1c8c3e6fd8f6f7d1a87946c958ed8a88f90d014dfd311070eba592ce958a03b12
IEDL.DBID 7X8
ISICitedReferencesCount 151
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000239127800024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0960-9822
IngestDate Thu Oct 02 18:40:28 EDT 2025
Mon Jul 21 06:05:55 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-1c8c3e6fd8f6f7d1a87946c958ed8a88f90d014dfd311070eba592ce958a03b12
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://www.cell.com/article/S096098220601565X/pdf
PMID 16730175
PQID 68617765
PQPubID 23479
ParticipantIDs proquest_miscellaneous_68617765
pubmed_primary_16730175
PublicationCentury 2000
PublicationDate 2006-07-11
PublicationDateYYYYMMDD 2006-07-11
PublicationDate_xml – month: 07
  year: 2006
  text: 2006-07-11
  day: 11
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Current biology
PublicationTitleAlternate Curr Biol
PublicationYear 2006
References 16860732 - Curr Biol. 2006 Jul 25;16(14):R544-6
References_xml – reference: 16860732 - Curr Biol. 2006 Jul 25;16(14):R544-6
SSID ssj0012896
Score 2.2813497
Snippet A major issue in telomere research is to understand how the integrity of chromosome ends is preserved . The human telomeric protein TRF2 coordinates several...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1303
SubjectTerms Animals
Chlorocebus aethiops
COS Cells
DNA Repair - physiology
DNA Repair Enzymes
Exodeoxyribonucleases - analysis
Exodeoxyribonucleases - genetics
Exodeoxyribonucleases - physiology
Glutathione Transferase - analysis
Humans
Nuclear Proteins - analysis
Nuclear Proteins - genetics
Nuclear Proteins - physiology
Recombinant Fusion Proteins - analysis
Telomere - metabolism
Telomere - ultrastructure
Telomeric Repeat Binding Protein 2 - metabolism
Title The Apollo 5' exonuclease functions together with TRF2 to protect telomeres from DNA repair
URI https://www.ncbi.nlm.nih.gov/pubmed/16730175
https://www.proquest.com/docview/68617765
Volume 16
WOSCitedRecordID wos000239127800024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA6jo-DFfRnXHARP0aZt0hQEGdTBi2UQhQEPJc0iA9qOMx3Rf-9LFzyJBy89hBTC69e3fXnvIXSqWCYcAUcsbCCh9jwiw8AjxmY8zlTMqVLVsIkoScRoFA876LKthXHXKludWClqXSiXI7_gAmxtxNnV5J24mVGOW20GaCygbgCOjMN0NPrhECCUqJhK8NGJ61LXcprV7S41zxomgp17Pv3dv6zszGDtfydcR6uNf4n7NSA2UMfkm2i5njj5tYWeARa4P4GPX2B2hs1nkbuGxmDKsLNwFQhxWbxUZcDYJWnx48PAhyXcdHTApXkt3gxE6diVpuCbpI-nYNPG0230NLh9vL4jzXwFokIWl4QqoQLDrRaW20hTKVy3eRUzYbSQQtjY0xBBaasDFyV6JpMs9pWBDdILMurvoMW8yM2eq_zmwvjaxhmVoVG-tCHEeZL7IbNCGtNDJ63MUsCvIyVkbor5LG2l1kO7tdjTSd1mI6XcaZ-I7f_57gFaqTMjEaH0EHUt_LnmCC2pj3I8mx5XsIBnMrz_Bj4FwvE
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Apollo+5%27+exonuclease+functions+together+with+TRF2+to+protect+telomeres+from+DNA+repair&rft.jtitle=Current+biology&rft.au=Lenain%2C+Christelle&rft.au=Bauwens%2C+Serge&rft.au=Amiard%2C+Simon&rft.au=Brunori%2C+Michele&rft.date=2006-07-11&rft.issn=0960-9822&rft.volume=16&rft.issue=13&rft.spage=1303&rft_id=info:doi/10.1016%2Fj.cub.2006.05.021&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-9822&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-9822&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-9822&client=summon