Estimating parallel runtimes for randomized algorithms in constraint solving

This paper presents a detailed analysis of the scalability and parallelization of Local Search algorithms for constraint-based and SAT (Boolean satisfiability) solvers. We propose a framework to estimate the parallel performance of a given algorithm by analyzing the runtime behavior of its sequentia...

Full description

Saved in:
Bibliographic Details
Published in:Journal of heuristics Vol. 22; no. 4; pp. 613 - 648
Main Authors: Truchet, Charlotte, Arbelaez, Alejandro, Richoux, Florian, Codognet, Philippe
Format: Journal Article
Language:English
Published: New York Springer US 01.08.2016
Springer Nature B.V
Springer Verlag
Subjects:
ISSN:1381-1231, 1572-9397
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper presents a detailed analysis of the scalability and parallelization of Local Search algorithms for constraint-based and SAT (Boolean satisfiability) solvers. We propose a framework to estimate the parallel performance of a given algorithm by analyzing the runtime behavior of its sequential version. Indeed, by approximating the runtime distribution of the sequential process with statistical methods, the runtime behavior of the parallel process can be predicted by a model based on order statistics. We apply this approach to study the parallel performance of a constraint-based Local Search solver (Adaptive Search), two SAT Local Search solvers (namely Sparrow and CCASAT), and a propagation-based constraint solver (Gecode, with a random labeling heuristic). We compare the performance predicted by our model to actual parallel implementations of those methods using up to 384 processes. We show that the model is accurate and predicts performance close to the empirical data. Moreover, as we study different types of problems, we observe that the experimented solvers exhibit different behaviors and that their runtime distributions can be approximated by two types of distributions: exponential (shifted and non-shifted) and lognormal. Our results show that the proposed framework estimates the runtime of the parallel algorithm with an average discrepancy of 21 % w.r.t. the empirical data across all the experiments with the maximum allowed number of processors for each technique.
AbstractList This paper presents a detailed analysis of the scalability and par-allelization of Local Search algorithms for constraint-based and SAT (Boolean satisfiability) solvers. We propose a framework to estimate the parallel performance of a given algorithm by analyzing the runtime behavior of its sequential version. Indeed, by approximating the runtime distribution of the sequential process with statistical methods, the runtime behavior of the parallel process can be predicted by a model based on order statistics. We apply this approach to study the parallel performance of a Constraint-Based Local Search solver (Adaptive Search), two SAT Local Search solvers (namely Sparrow and CCASAT), and a propagation-based constraint solver (Gecode, with a random labeling heuristic). We compare the performance predicted by our model to actual parallel implementations of those methods using up to 384 processes. We show that the model is accurate and predicts performance close to the empirical data. Moreover, as we study different types of problems, we observe that the experimented solvers exhibit different behaviors and that their runtime distributions can be approximated by two types of distributions: exponential (shifted and non-shifted) and lognormal. Our results show that the proposed framework estimates the runtime of the parallel algorithm with an average discrepancy of 21% w.r.t. the empirical data across all the experiments with the maximum allowed number of processors for each technique.
This paper presents a detailed analysis of the scalability and parallelization of Local Search algorithms for constraint-based and SAT (Boolean satisfiability) solvers. We propose a framework to estimate the parallel performance of a given algorithm by analyzing the runtime behavior of its sequential version. Indeed, by approximating the runtime distribution of the sequential process with statistical methods, the runtime behavior of the parallel process can be predicted by a model based on order statistics. We apply this approach to study the parallel performance of a constraint-based Local Search solver (Adaptive Search), two SAT Local Search solvers (namely Sparrow and CCASAT), and a propagation-based constraint solver (Gecode, with a random labeling heuristic). We compare the performance predicted by our model to actual parallel implementations of those methods using up to 384 processes. We show that the model is accurate and predicts performance close to the empirical data. Moreover, as we study different types of problems, we observe that the experimented solvers exhibit different behaviors and that their runtime distributions can be approximated by two types of distributions: exponential (shifted and non-shifted) and lognormal. Our results show that the proposed framework estimates the runtime of the parallel algorithm with an average discrepancy of 21 % w.r.t. the empirical data across all the experiments with the maximum allowed number of processors for each technique.
This paper presents a detailed analysis of the scalability and parallelization of Local Search algorithms for constraint-based and SAT (Boolean satisfiability) solvers. We propose a framework to estimate the parallel performance of a given algorithm by analyzing the runtime behavior of its sequential version. Indeed, by approximating the runtime distribution of the sequential process with statistical methods, the runtime behavior of the parallel process can be predicted by a model based on order statistics. We apply this approach to study the parallel performance of a constraint-based Local Search solver (Adaptive Search), two SAT Local Search solvers (namely Sparrow and CCASAT), and a propagation-based constraint solver (Gecode, with a random labeling heuristic). We compare the performance predicted by our model to actual parallel implementations of those methods using up to 384 processes. We show that the model is accurate and predicts performance close to the empirical data. Moreover, as we study different types of problems, we observe that the experimented solvers exhibit different behaviors and that their runtime distributions can be approximated by two types of distributions: exponential (shifted and non-shifted) and lognormal. Our results show that the proposed framework estimates the runtime of the parallel algorithm with an average discrepancy of 21 % w.r.t. the empirical data across all the experiments with the maximum allowed number of processors for each technique.
Author Truchet, Charlotte
Richoux, Florian
Arbelaez, Alejandro
Codognet, Philippe
Author_xml – sequence: 1
  givenname: Charlotte
  surname: Truchet
  fullname: Truchet, Charlotte
  email: charlotte.truchet@univ-nantes.fr
  organization: LINA, UMR 6241, University of Nantes
– sequence: 2
  givenname: Alejandro
  surname: Arbelaez
  fullname: Arbelaez, Alejandro
  organization: INSIGHT Centre for Data Analytics, University College Cork
– sequence: 3
  givenname: Florian
  surname: Richoux
  fullname: Richoux, Florian
  organization: LINA, UMR 6241, University of Nantes
– sequence: 4
  givenname: Philippe
  surname: Codognet
  fullname: Codognet, Philippe
  organization: JFLI - CNRS / UPMC, University of Tokyo
BackLink https://hal.science/hal-01248168$$DView record in HAL
BookMark eNp9kFFLwzAUhYNMcJv-AN8KPvlQzU3aJnkcYzqh4Is-h7RNt44smUk30F9vSkVE0Kd7uZxz7uGboYl1ViN0DfgOMGb3ATCjJMWQp4IIktIzNIWckVRQwSZxpxxSIBQu0CyEHcZY8JxOUbkKfbdXfWc3yUF5ZYw2iT_aeNQhaZ1PvLKN23cfukmU2Tjf9dt9SDqb1M6G3qvO9klw5hQTLtF5q0zQV19zjl4fVi_LdVo-Pz4tF2VaZ7noU6halhW6qnKomGCcKYazhuYZZzXToIuG4LrJmrYSeZRyweuKVForRuq2Ig2do9sxd6uMPPjY379Lpzq5XpRyuGEgGYeCnyBqb0btwbu3ow693Lmjt7GeBA4AtOBkUMGoqr0Lwev2OxawHADLEXBMzuUAWNLoYb88dddHks4OVMy_TjI6Q_xiN9r_6PSn6RPstpIR
CitedBy_id crossref_primary_10_1109_ACCESS_2020_3038228
crossref_primary_10_3390_math11143251
crossref_primary_10_1007_s10732_017_9342_0
crossref_primary_10_1016_j_ipl_2019_04_002
crossref_primary_10_2166_ws_2021_419
crossref_primary_10_1007_s11227_020_03417_5
crossref_primary_10_3390_app8020293
crossref_primary_10_3390_math9233043
crossref_primary_10_1007_s10732_016_9313_x
Cites_doi 10.1007/3-540-45322-9_5
10.1007/BF02430365
10.1023/A:1015061802659
10.1023/B:HEUR.0000026897.40171.1a
10.1109/IPDPSW.2012.222
10.1023/A:1006314320276
10.1145/2145816.2145883
10.1007/978-3-642-40627-0_45
10.1109/ICPP.2013.25
10.1007/11889205_26
10.1007/s10898-011-9769-z
10.1007/978-3-642-25566-3_4
10.1007/978-3-642-13520-0_36
10.1007/3-540-62095-8_62
10.1017/S1471068413000392
10.1177/1094342006070078
10.1016/S0004-3702(00)00081-3
10.1007/978-3-540-48085-3_25
10.1007/978-3-642-37198-1_14
10.1007/978-3-642-40627-0_6
10.1016/S0004-3702(99)00048-X
10.1145/185403.185453
10.1007/s11590-006-0031-4
10.1007/3-540-60321-2_26
10.1007/978-3-642-12139-5_23
10.1109/SAINT.2005.1
10.1016/j.spl.2007.05.022
10.1023/B:HEUR.0000026984.08350.12
10.1007/978-3-642-14186-7_31
10.1007/978-3-642-04244-7_20
10.1007/978-3-540-74970-7_37
10.1007/978-3-642-04244-7_14
10.1007/978-3-540-77220-0_51
10.1613/jair.2861
10.1287/opre.42.6.1042
10.1016/0020-0190(93)90029-9
10.1023/A:1015084116772
10.1016/j.cor.2008.08.014
10.1109/ICTAI.2012.17
10.1016/j.parco.2010.08.004
ContentType Journal Article
Copyright Springer Science+Business Media New York 2015
Springer Science+Business Media New York 2016
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Springer Science+Business Media New York 2015
– notice: Springer Science+Business Media New York 2016
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
3V.
7WY
7WZ
7XB
87Z
8AL
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PYYUZ
Q9U
1XC
VOOES
DOI 10.1007/s10732-015-9292-3
DatabaseName CrossRef
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database (ProQuest)
ABI/INFORM Professional Advanced
ABI/INFORM Collection (ProQuest)
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ABI/INFORM Collection China
ProQuest Central Basic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ABI/INFORM China
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Computer Science
EISSN 1572-9397
EndPage 648
ExternalDocumentID oai:HAL:hal-01248168v1
4146264241
10_1007_s10732_015_9292_3
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z81
Z83
Z86
Z88
Z8U
Z8W
Z92
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7XB
8AL
8FK
JQ2
L.-
PKEHL
PQEST
PQUKI
Q9U
1XC
VOOES
ID FETCH-LOGICAL-c459t-1bf746ebb51b79787a704d35487c7e1e6d20cd4dfb95bf7898cb2beea72cfb2d3
IEDL.DBID K7-
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000380273700012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1381-1231
IngestDate Sat Nov 29 15:00:40 EST 2025
Tue Nov 04 21:43:00 EST 2025
Tue Nov 18 22:30:02 EST 2025
Sat Nov 29 06:01:07 EST 2025
Fri Feb 21 02:36:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Parallel processing
Performance model
Randomized constraint solving
Constraint solving
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-1bf746ebb51b79787a704d35487c7e1e6d20cd4dfb95bf7898cb2beea72cfb2d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9234-6188
0000-0003-4693-379X
OpenAccessLink https://hal.science/hal-01248168
PQID 1811136821
PQPubID 26068
PageCount 36
ParticipantIDs hal_primary_oai_HAL_hal_01248168v1
proquest_journals_1811136821
crossref_primary_10_1007_s10732_015_9292_3
crossref_citationtrail_10_1007_s10732_015_9292_3
springer_journals_10_1007_s10732_015_9292_3
PublicationCentury 2000
PublicationDate 2016-08-01
PublicationDateYYYYMMDD 2016-08-01
PublicationDate_xml – month: 08
  year: 2016
  text: 2016-08-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Boston
PublicationTitle Journal of heuristics
PublicationTitleAbbrev J Heuristics
PublicationYear 2016
Publisher Springer US
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer Verlag
References Caromel. D., di Costanzo, A., Baduel, L., Matsuoka, S.: Grid’BnB: a parallel branch and bound framework for grids. In: Proceedings of HiPC’07, 14th International Conference on High Performance Computing, pp, 566–579. Springer, Berlin (2007)
Caniou, Y., Diaz, D., Richoux, F., Codognet, P., Abreu, S.: Performance analysis of parallel constraint-based local search. In: PPoPP 2012, 17th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, ACM Press, New Orleans, Poster Paper (2012)
IbarakiTNonobeKYagiuraMMetaheuristics: Progress as Real Problem Solvers2005New YorkSpringer
BalintAFröhlichAStrichmanOSzeiderSImproving stochastic local search for SAT with a new probability distributionSAT’10, LNCS2010EdinburghSpringer1015
Codognet, P., Diaz, D.: Yet another local search method for constraint solving. In: Proceedings of SAGA’01, pp. 73–90. Springer, New York (2001)
GomesCPSelmanBCratoNKautzHAHeavy-tailed phenomena in satisfiability and constraint satisfaction problemsJ. Autom. Reason.2000241/267100175025910.1023/A:10063143202760967.68145
GomesCPSelmanBAlgorithm portfoliosArtif. Intell.20011261–24362181548910.1016/S0004-3702(00)00081-30969.68047
Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by weighting constraints. In: ECAI’ 2004, pp. 146–150 (2004)
Xie, F., Davenport, A.J.: Massively parallel constraint programming for supercomputers: challenges and initial results. In: CPAIOR’10, 7th International Conference on the Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, Lecture Notes in Computer Science, vol. 6140, pp. 334–338. Springer, Berlin (2010)
Michel, L., See, A., Van Hentenryck, P.: Parallelizing constraint programs transparently. In: Bessiere, C. (ed.) CP’07, 13th International Conference on Principles and Practice of Constraint Programming, Lecture Notes in Computer Science, pp. 514–528. Springer, New York (2007)
Bordeaux, L., Hamadi, Y., Samulowitz, H.: Experiments with massively parallel constraint solving. In: Boutilier, C. (ed.) Proceedings of IJCAI 2009, 21st International Joint Conference on Artificial Intelligence, pp. 443–448 (2009)
Moisan, T., Gaudreault, J., Quimper, C.: Parallel discrepancy-based search. In: Proceedings of the Principles and Practice of Constraint Programming—19th International Conference, CP 2013, Uppsala, Sweden, September 16–20, 2013, pp. 30–46 (2013). doi:10.1007/978-3-642-40627-0_6
Codognet, P., Diaz, D.: An efficient library for solving CSP with local search. In: Ibaraki, T. (ed.) MIC’03, 5th International Conference on Metaheuristics (2003)
Babai, L.: Monte-Carlo algorithms in graph isomorphism testing. Research Report D.M.S. No. 79–10, Université de Montréal (1979)
Pardalos, P.M., Pitsoulis, L.S., Mavridou, T.D., Resende, M.G.C.: Parallel search for combinatorial optimization: genetic algorithms, simulated annealing, tabu search and GRASP. In: Parallel Algorithms for Irregularly Structured Problems (IRREGULAR), pp. 317–331 (1995)
Wolfram, S.: The Mathematica Book, 5th edn. Wolfram Media, Champaign (2003). URL http://reference.wolfram.com
HoosHStützeTStochastic Local Search: Foundations and Applications2005San FranciscoMorgan Kaufmann
Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for the automatic configuration of algorithms. In: Gent, I.P. (ed.) 15th International Conference on Principles and Practice of Constraint Programming, LNCS, vol. 5732, pp. 142–157. Springer, Lisbon (2009)
Van Luong, T., Melab, N., Talbi, E.G.: Local search algorithms on graphics processing units. In: Evolutionary Computation in Combinatorial Optimization, LNCS 6022, pp. 264–275. Springer, Heidelberg (2010)
Chu, G., Schulte, C., Stuckey, P.J.: Confidence-based work stealing in parallel constraint programming. In: Gent, I.P. (ed.) CP 2009, 15th International Conference on Principles and Practice of Constraint Programming, Springer, Lecture Notes in Computer Science, vol. 5732, pp. 226–241 (2009)
BolzeRGrid’5000: a large scale and highly reconfigurable experimental grid testbedInt. J. High Perform. Comput. Appl.200620448149410.1177/1094342006070078
ShyloOVMiddelkoopTPardalosPMRestart strategies in optimization: parallel and serial casesParallel Comput.20113716068279191710.1016/j.parco.2010.08.0041211.68507
ArbelaezATruchetCCodognetPUsing sequential runtime distributions for the parallel speedup prediction of SAT local searchJ. Theory Pract. Log. Program.201313625639315012710.1017/S14710684130003921286.68405
DavidHNagarajaHOrder Statistics. Wiley Series in Probability and Mathematical Statistics. Probability and Mathematical Statistics2003New YorkWiley
RibeiroCRossetiIVallejosRExploiting run time distributions to compare sequential and parallel stochastic local search algorithmsJ. Glob. Optim.201154405429297963810.1007/s10898-011-9769-z1259.90115
AlbaESpecial issue on new advances on parallel meta-heuristics for complex problemsJ. Heuristics200410323938010.1023/B:HEUR.0000026984.08350.12
Pardalos, P.M., Pitsoulis, L.S., Resende, M.G.C.: A parallel grasp for MAX-SAT problems. In: Wasniewski, J., Dongarra, J., Madsen, K., Olesen, D. (eds.) 3rd International Workshop on Applied Parallel Computing, Industrial Computation and Optimization, LNCS. Springer, Lyngby (1996)
Van HentenryckPMichelLConstraint-Based Local Search2005CambridgeThe MIT Press1160.68556
Arbelaez, A., Codognet, P.: Massivelly parallel local search for SAT. In: ICTAI’12, pp. 57–64. IEEE Computer Society, Athens (2012)
GonzalezTHandbook of Approximation Algorithms and Metaheuristics2007Boca RatonChapman and Hall/CRC1138.90001
Arbelaez, A., Hamadi, Y.: Improving parallel local search for SAT. In: Coello, C.A.C. (ed.) Learning and Intelligent Optimization, 5th International Conference, LION’11, LNCS, vol. 6683, pp. 46–60. Springer, Lisbon (2011)
LubyMSinclairAZuckermanDOptimal speedup of Las Vegas algorithmsInf. Process. Lett.199347173180123838710.1016/0020-0190(93)90029-90797.68139
Van Hentenryck, P.: Parallel constraint satisfaction in logic programming: preliminary results of CHIP within PEPsys. In: ICLP’89, International Conference on Logic Programming, MIT Press, Lisbon, pp. 165–180 (1989)
CrainicTGGendreauMHansenPMladenovicNCooperative parallel variable neighborhood search for the p-medianJ. Heuristics200410329331410.1023/B:HEUR.0000026897.40171.1a
HoosHHStützleTTowards a characterisation of the behaviour of stochastic local search algorithms for SATArtif. Intell.19991121–2213232171664510.1016/S0004-3702(99)00048-X0996.68069
MichelLSeeAVan HentenryckPParallel and distributed local search in COMETComput. Oper. Res.2009362357237510.1016/j.cor.2008.08.0141179.90288
Gent, I. P., Walsh, T.: The SAT phase transition. In: ECAI’94, pp. 105–109 (1994)
NadarajahSExplicit expressions for moments of order statisticsStat. Probab. Lett.2008782196205241258610.1016/j.spl.2007.05.0221290.62023
Pham, D.N., Gretton, C.: gNovelty+. In: Solver Description, SAT Competition 2007 (2007)
Aida, K., Osumi, T.: A case study in running a parallel branch and bound application on the grid. In: SAINT ’05: Proceedings of the The 2005 Symposium on Applications and the Internet, pp. 164–173. IEEE Computer Society, Washington, DC (2005)
de KergommeauxJCCodognetPParallel logic programming systemsACM Comput. Surv.199426329533610.1145/185403.185453
Perron, L.: Search procedures and parallelism in constraint programming. In: CP’99, 5th International Conference on Principles and Practice of Constraint Programming, Lecture Notes in Computer Science, pp. 346–360. Springer, Berlin (1999)
AiexRResendeMRibeiroCTTT plots: a perl program to create time-to-target plotsOptim. Lett.20071355366234068410.1007/s11590-006-0031-41220.90102
Cai, S., Luo, C., Su, K.: CCASAT: solver description. In: SAT Challenge 2012: Solver and Benchmark Descriptions, vol. B-2012-2. Department of Computer Science Series of Publications B, University of Helsinki, pp. 13–14 (2012)
Arbelaez. A., Codognet, P.: From sequential to parallel local search for SAT. In: 13th European Conference on Evolutionary Computation in Combinatorial Optimisation (EvoCOP’13) (2013)
CrainicTToulouseMSpecial Issue on parallel meta-heuristicsJ. Heuristics20028324738810.1023/A:1015084116772
Kroc, L., Sabharwal, A., Selman, B.: An empirical study of optimal noise and runtime distributions in local search. In: Strichman, O., Szeider, S. (eds.) SAT’10, LNCS, vol. 6175, pp. 346–351. Springer, Edinburgh (2010)
Diaz, D., Richoux, F., Caniou, Y., Codognet, P., Abreu, S.: Parallel local search for the costas array problem. In: IEEE Workshop on New Trends in Parallel Computing and Optimization (PC012), in Conjunction with IPDPS 2012, IEEE Press, Shanghai (2012)
Aiex, R.M., Resende, M.G.C., Ribeiro, C.C.: Probability distribution of solution time in grasp: an experimental investigation. J. Heuristics 8(3), 343–373 (2002)
Haralick, R.M., Elliott, G.L.: Increasing tree search efficiency for constraint satisfaction problems. In: IJCAI, pp. 356–364 (1979)
Michel, L., See, A., Van Hentenryck, P.: Distributed constraint-based local search. In: Benhamou, F. (ed.) CP’06, 12th International Conference on Principles and Practice of Constraint Programming, Lecture Notes in Computer Science, pp. 344–358. Springer, New York (2006)
VerhoevenMAartsEParallel local searchJ. Heuristics199511436510.1007/BF024303650853.68156
GendronBCrainicTParallel branch-and-bound algorithms: survey and synthesisOper. Res.199442610421066130780510.1287/opre.42.6.10420824.90096
Truchet, C., Richoux, F., Codognet, P.: Prediction of parallel speed-ups for las vegas algorithms. In: Dongarra, J., Robert, Y. (eds.) Proceedings of ICPP-2013, 42nd International Conference on Parallel Processing. IEEE Press, Lyon (2013)
HutterFHoosHHLeyton-BrownKStützleTParamILS: an automatic algorithm configuration frameworkJ. Artif. Intell. Res.2009362673061192.68831
EadieWStatistical Methods in Experimental Physics1971AmsterdamNorth-Holland Publishing Co.0246.62004
Régin, J.C., Rezgui, M., Malapert, A.: Embarrassingly parallel
JC Kergommeaux de (9292_CR24) 1994; 26
W Eadie (9292_CR26) 1971
9292_CR28
9292_CR7
9292_CR6
9292_CR5
9292_CR8
E Alba (9292_CR4) 2004; 10
9292_CR3
9292_CR32
A Arbelaez (9292_CR9) 2013; 13
9292_CR1
9292_CR19
9292_CR18
(9292_CR36) 2005
9292_CR17
9292_CR16
9292_CR15
H Hoos (9292_CR33) 2005
HH Hoos (9292_CR34) 1999; 112
M Luby (9292_CR38) 1993; 47
TG Crainic (9292_CR22) 2004; 10
S Nadarajah (9292_CR43) 2008; 78
9292_CR25
R Aiex (9292_CR2) 2007; 1
9292_CR20
P Hentenryck Van (9292_CR53) 2005
L Michel (9292_CR41) 2009; 36
OV Shylo (9292_CR50) 2011; 37
R Bolze (9292_CR12) 2006; 20
9292_CR48
F Hutter (9292_CR35) 2009; 36
T Crainic (9292_CR21) 2002; 8
A Balint (9292_CR11) 2010
9292_CR14
9292_CR13
CP Gomes (9292_CR29) 2001; 126
9292_CR57
9292_CR56
9292_CR10
9292_CR54
9292_CR52
9292_CR51
H David (9292_CR23) 2003
B Gendron (9292_CR27) 1994; 42
9292_CR39
9292_CR37
M Verhoeven (9292_CR55) 1995; 1
CP Gomes (9292_CR30) 2000; 24
C Ribeiro (9292_CR49) 2011; 54
(9292_CR31) 2007
9292_CR47
9292_CR46
9292_CR45
9292_CR44
9292_CR42
9292_CR40
References_xml – reference: EadieWStatistical Methods in Experimental Physics1971AmsterdamNorth-Holland Publishing Co.0246.62004
– reference: ArbelaezATruchetCCodognetPUsing sequential runtime distributions for the parallel speedup prediction of SAT local searchJ. Theory Pract. Log. Program.201313625639315012710.1017/S14710684130003921286.68405
– reference: VerhoevenMAartsEParallel local searchJ. Heuristics199511436510.1007/BF024303650853.68156
– reference: Van HentenryckPMichelLConstraint-Based Local Search2005CambridgeThe MIT Press1160.68556
– reference: Codognet, P., Diaz, D.: Yet another local search method for constraint solving. In: Proceedings of SAGA’01, pp. 73–90. Springer, New York (2001)
– reference: Arbelaez, A., Codognet, P.: Massivelly parallel local search for SAT. In: ICTAI’12, pp. 57–64. IEEE Computer Society, Athens (2012)
– reference: NadarajahSExplicit expressions for moments of order statisticsStat. Probab. Lett.2008782196205241258610.1016/j.spl.2007.05.0221290.62023
– reference: Bordeaux, L., Hamadi, Y., Samulowitz, H.: Experiments with massively parallel constraint solving. In: Boutilier, C. (ed.) Proceedings of IJCAI 2009, 21st International Joint Conference on Artificial Intelligence, pp. 443–448 (2009)
– reference: de KergommeauxJCCodognetPParallel logic programming systemsACM Comput. Surv.199426329533610.1145/185403.185453
– reference: HoosHHStützleTTowards a characterisation of the behaviour of stochastic local search algorithms for SATArtif. Intell.19991121–2213232171664510.1016/S0004-3702(99)00048-X0996.68069
– reference: Wolfram, S.: The Mathematica Book, 5th edn. Wolfram Media, Champaign (2003). URL http://reference.wolfram.com
– reference: Diaz, D., Richoux, F., Caniou, Y., Codognet, P., Abreu, S.: Parallel local search for the costas array problem. In: IEEE Workshop on New Trends in Parallel Computing and Optimization (PC012), in Conjunction with IPDPS 2012, IEEE Press, Shanghai (2012)
– reference: Aida, K., Osumi, T.: A case study in running a parallel branch and bound application on the grid. In: SAINT ’05: Proceedings of the The 2005 Symposium on Applications and the Internet, pp. 164–173. IEEE Computer Society, Washington, DC (2005)
– reference: Caromel. D., di Costanzo, A., Baduel, L., Matsuoka, S.: Grid’BnB: a parallel branch and bound framework for grids. In: Proceedings of HiPC’07, 14th International Conference on High Performance Computing, pp, 566–579. Springer, Berlin (2007)
– reference: GendronBCrainicTParallel branch-and-bound algorithms: survey and synthesisOper. Res.199442610421066130780510.1287/opre.42.6.10420824.90096
– reference: CrainicTGGendreauMHansenPMladenovicNCooperative parallel variable neighborhood search for the p-medianJ. Heuristics200410329331410.1023/B:HEUR.0000026897.40171.1a
– reference: CrainicTToulouseMSpecial Issue on parallel meta-heuristicsJ. Heuristics20028324738810.1023/A:1015084116772
– reference: LubyMSinclairAZuckermanDOptimal speedup of Las Vegas algorithmsInf. Process. Lett.199347173180123838710.1016/0020-0190(93)90029-90797.68139
– reference: Pham, D.N., Gretton, C.: gNovelty+. In: Solver Description, SAT Competition 2007 (2007)
– reference: Truchet, C., Richoux, F., Codognet, P.: Prediction of parallel speed-ups for las vegas algorithms. In: Dongarra, J., Robert, Y. (eds.) Proceedings of ICPP-2013, 42nd International Conference on Parallel Processing. IEEE Press, Lyon (2013)
– reference: Michel, L., See, A., Van Hentenryck, P.: Distributed constraint-based local search. In: Benhamou, F. (ed.) CP’06, 12th International Conference on Principles and Practice of Constraint Programming, Lecture Notes in Computer Science, pp. 344–358. Springer, New York (2006)
– reference: RibeiroCRossetiIVallejosRExploiting run time distributions to compare sequential and parallel stochastic local search algorithmsJ. Glob. Optim.201154405429297963810.1007/s10898-011-9769-z1259.90115
– reference: DavidHNagarajaHOrder Statistics. Wiley Series in Probability and Mathematical Statistics. Probability and Mathematical Statistics2003New YorkWiley
– reference: Babai, L.: Monte-Carlo algorithms in graph isomorphism testing. Research Report D.M.S. No. 79–10, Université de Montréal (1979)
– reference: GonzalezTHandbook of Approximation Algorithms and Metaheuristics2007Boca RatonChapman and Hall/CRC1138.90001
– reference: Aiex, R.M., Resende, M.G.C., Ribeiro, C.C.: Probability distribution of solution time in grasp: an experimental investigation. J. Heuristics 8(3), 343–373 (2002)
– reference: Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by weighting constraints. In: ECAI’ 2004, pp. 146–150 (2004)
– reference: HoosHStützeTStochastic Local Search: Foundations and Applications2005San FranciscoMorgan Kaufmann
– reference: Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for the automatic configuration of algorithms. In: Gent, I.P. (ed.) 15th International Conference on Principles and Practice of Constraint Programming, LNCS, vol. 5732, pp. 142–157. Springer, Lisbon (2009)
– reference: Arbelaez. A., Codognet, P.: From sequential to parallel local search for SAT. In: 13th European Conference on Evolutionary Computation in Combinatorial Optimisation (EvoCOP’13) (2013)
– reference: BolzeRGrid’5000: a large scale and highly reconfigurable experimental grid testbedInt. J. High Perform. Comput. Appl.200620448149410.1177/1094342006070078
– reference: Gent, I. P., Walsh, T.: The SAT phase transition. In: ECAI’94, pp. 105–109 (1994)
– reference: AlbaESpecial issue on new advances on parallel meta-heuristics for complex problemsJ. Heuristics200410323938010.1023/B:HEUR.0000026984.08350.12
– reference: MichelLSeeAVan HentenryckPParallel and distributed local search in COMETComput. Oper. Res.2009362357237510.1016/j.cor.2008.08.0141179.90288
– reference: Kroc, L., Sabharwal, A., Selman, B.: An empirical study of optimal noise and runtime distributions in local search. In: Strichman, O., Szeider, S. (eds.) SAT’10, LNCS, vol. 6175, pp. 346–351. Springer, Edinburgh (2010)
– reference: Codognet, P., Diaz, D.: An efficient library for solving CSP with local search. In: Ibaraki, T. (ed.) MIC’03, 5th International Conference on Metaheuristics (2003)
– reference: BalintAFröhlichAStrichmanOSzeiderSImproving stochastic local search for SAT with a new probability distributionSAT’10, LNCS2010EdinburghSpringer1015
– reference: Cai, S., Luo, C., Su, K.: CCASAT: solver description. In: SAT Challenge 2012: Solver and Benchmark Descriptions, vol. B-2012-2. Department of Computer Science Series of Publications B, University of Helsinki, pp. 13–14 (2012)
– reference: HutterFHoosHHLeyton-BrownKStützleTParamILS: an automatic algorithm configuration frameworkJ. Artif. Intell. Res.2009362673061192.68831
– reference: IbarakiTNonobeKYagiuraMMetaheuristics: Progress as Real Problem Solvers2005New YorkSpringer
– reference: Michel, L., See, A., Van Hentenryck, P.: Parallelizing constraint programs transparently. In: Bessiere, C. (ed.) CP’07, 13th International Conference on Principles and Practice of Constraint Programming, Lecture Notes in Computer Science, pp. 514–528. Springer, New York (2007)
– reference: ShyloOVMiddelkoopTPardalosPMRestart strategies in optimization: parallel and serial casesParallel Comput.20113716068279191710.1016/j.parco.2010.08.0041211.68507
– reference: Arbelaez, A., Hamadi, Y.: Improving parallel local search for SAT. In: Coello, C.A.C. (ed.) Learning and Intelligent Optimization, 5th International Conference, LION’11, LNCS, vol. 6683, pp. 46–60. Springer, Lisbon (2011)
– reference: Régin, J.C., Rezgui, M., Malapert, A.: Embarrassingly parallel search. In: Schulte, C. (ed.) Proceedings of CP’2013, 19th International Conference on Principles and Practice of Constraint Programming, Lecture Notes in Computer Science, vol. 8124, pp. 596–610. Springer, Berlin (2013)
– reference: Pardalos, P.M., Pitsoulis, L.S., Resende, M.G.C.: A parallel grasp for MAX-SAT problems. In: Wasniewski, J., Dongarra, J., Madsen, K., Olesen, D. (eds.) 3rd International Workshop on Applied Parallel Computing, Industrial Computation and Optimization, LNCS. Springer, Lyngby (1996)
– reference: Perron, L.: Search procedures and parallelism in constraint programming. In: CP’99, 5th International Conference on Principles and Practice of Constraint Programming, Lecture Notes in Computer Science, pp. 346–360. Springer, Berlin (1999)
– reference: Caniou, Y., Diaz, D., Richoux, F., Codognet, P., Abreu, S.: Performance analysis of parallel constraint-based local search. In: PPoPP 2012, 17th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, ACM Press, New Orleans, Poster Paper (2012)
– reference: AiexRResendeMRibeiroCTTT plots: a perl program to create time-to-target plotsOptim. Lett.20071355366234068410.1007/s11590-006-0031-41220.90102
– reference: Moisan, T., Gaudreault, J., Quimper, C.: Parallel discrepancy-based search. In: Proceedings of the Principles and Practice of Constraint Programming—19th International Conference, CP 2013, Uppsala, Sweden, September 16–20, 2013, pp. 30–46 (2013). doi:10.1007/978-3-642-40627-0_6
– reference: Van Hentenryck, P.: Parallel constraint satisfaction in logic programming: preliminary results of CHIP within PEPsys. In: ICLP’89, International Conference on Logic Programming, MIT Press, Lisbon, pp. 165–180 (1989)
– reference: Van Luong, T., Melab, N., Talbi, E.G.: Local search algorithms on graphics processing units. In: Evolutionary Computation in Combinatorial Optimization, LNCS 6022, pp. 264–275. Springer, Heidelberg (2010)
– reference: Haralick, R.M., Elliott, G.L.: Increasing tree search efficiency for constraint satisfaction problems. In: IJCAI, pp. 356–364 (1979)
– reference: Pardalos, P.M., Pitsoulis, L.S., Mavridou, T.D., Resende, M.G.C.: Parallel search for combinatorial optimization: genetic algorithms, simulated annealing, tabu search and GRASP. In: Parallel Algorithms for Irregularly Structured Problems (IRREGULAR), pp. 317–331 (1995)
– reference: Chu, G., Schulte, C., Stuckey, P.J.: Confidence-based work stealing in parallel constraint programming. In: Gent, I.P. (ed.) CP 2009, 15th International Conference on Principles and Practice of Constraint Programming, Springer, Lecture Notes in Computer Science, vol. 5732, pp. 226–241 (2009)
– reference: GomesCPSelmanBCratoNKautzHAHeavy-tailed phenomena in satisfiability and constraint satisfaction problemsJ. Autom. Reason.2000241/267100175025910.1023/A:10063143202760967.68145
– reference: GomesCPSelmanBAlgorithm portfoliosArtif. Intell.20011261–24362181548910.1016/S0004-3702(00)00081-30969.68047
– reference: Xie, F., Davenport, A.J.: Massively parallel constraint programming for supercomputers: challenges and initial results. In: CPAIOR’10, 7th International Conference on the Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, Lecture Notes in Computer Science, vol. 6140, pp. 334–338. Springer, Berlin (2010)
– ident: 9292_CR19
  doi: 10.1007/3-540-45322-9_5
– volume: 1
  start-page: 43
  issue: 1
  year: 1995
  ident: 9292_CR55
  publication-title: J. Heuristics
  doi: 10.1007/BF02430365
– ident: 9292_CR3
  doi: 10.1023/A:1015061802659
– ident: 9292_CR15
– volume: 10
  start-page: 293
  issue: 3
  year: 2004
  ident: 9292_CR22
  publication-title: J. Heuristics
  doi: 10.1023/B:HEUR.0000026897.40171.1a
– ident: 9292_CR25
  doi: 10.1109/IPDPSW.2012.222
– volume: 24
  start-page: 67
  issue: 1/2
  year: 2000
  ident: 9292_CR30
  publication-title: J. Autom. Reason.
  doi: 10.1023/A:1006314320276
– ident: 9292_CR20
– ident: 9292_CR16
  doi: 10.1145/2145816.2145883
– ident: 9292_CR48
  doi: 10.1007/978-3-642-40627-0_45
– ident: 9292_CR47
– ident: 9292_CR51
  doi: 10.1109/ICPP.2013.25
– ident: 9292_CR28
– ident: 9292_CR39
  doi: 10.1007/11889205_26
– volume-title: Constraint-Based Local Search
  year: 2005
  ident: 9292_CR53
– volume: 54
  start-page: 405
  year: 2011
  ident: 9292_CR49
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-011-9769-z
– ident: 9292_CR6
  doi: 10.1007/978-3-642-25566-3_4
– ident: 9292_CR57
  doi: 10.1007/978-3-642-13520-0_36
– volume-title: Stochastic Local Search: Foundations and Applications
  year: 2005
  ident: 9292_CR33
– ident: 9292_CR45
  doi: 10.1007/3-540-62095-8_62
– volume: 13
  start-page: 625
  year: 2013
  ident: 9292_CR9
  publication-title: J. Theory Pract. Log. Program.
  doi: 10.1017/S1471068413000392
– volume: 20
  start-page: 481
  issue: 4
  year: 2006
  ident: 9292_CR12
  publication-title: Int. J. High Perform. Comput. Appl.
  doi: 10.1177/1094342006070078
– start-page: 10
  volume-title: SAT’10, LNCS
  year: 2010
  ident: 9292_CR11
– volume: 126
  start-page: 43
  issue: 1–2
  year: 2001
  ident: 9292_CR29
  publication-title: Artif. Intell.
  doi: 10.1016/S0004-3702(00)00081-3
– ident: 9292_CR32
– ident: 9292_CR46
  doi: 10.1007/978-3-540-48085-3_25
– ident: 9292_CR8
  doi: 10.1007/978-3-642-37198-1_14
– ident: 9292_CR42
  doi: 10.1007/978-3-642-40627-0_6
– volume: 112
  start-page: 213
  issue: 1–2
  year: 1999
  ident: 9292_CR34
  publication-title: Artif. Intell.
  doi: 10.1016/S0004-3702(99)00048-X
– ident: 9292_CR13
– volume: 26
  start-page: 295
  issue: 3
  year: 1994
  ident: 9292_CR24
  publication-title: ACM Comput. Surv.
  doi: 10.1145/185403.185453
– volume: 1
  start-page: 355
  year: 2007
  ident: 9292_CR2
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-006-0031-4
– ident: 9292_CR44
  doi: 10.1007/3-540-60321-2_26
– ident: 9292_CR54
  doi: 10.1007/978-3-642-12139-5_23
– ident: 9292_CR1
  doi: 10.1109/SAINT.2005.1
– volume: 78
  start-page: 196
  issue: 2
  year: 2008
  ident: 9292_CR43
  publication-title: Stat. Probab. Lett.
  doi: 10.1016/j.spl.2007.05.022
– volume: 10
  start-page: 239
  issue: 3
  year: 2004
  ident: 9292_CR4
  publication-title: J. Heuristics
  doi: 10.1023/B:HEUR.0000026984.08350.12
– ident: 9292_CR37
  doi: 10.1007/978-3-642-14186-7_31
– ident: 9292_CR18
  doi: 10.1007/978-3-642-04244-7_20
– ident: 9292_CR40
  doi: 10.1007/978-3-540-74970-7_37
– ident: 9292_CR5
  doi: 10.1007/978-3-642-04244-7_14
– volume-title: Metaheuristics: Progress as Real Problem Solvers
  year: 2005
  ident: 9292_CR36
– ident: 9292_CR17
  doi: 10.1007/978-3-540-77220-0_51
– ident: 9292_CR56
– ident: 9292_CR10
– ident: 9292_CR14
– ident: 9292_CR52
– volume-title: Statistical Methods in Experimental Physics
  year: 1971
  ident: 9292_CR26
– volume-title: Order Statistics. Wiley Series in Probability and Mathematical Statistics. Probability and Mathematical Statistics
  year: 2003
  ident: 9292_CR23
– volume: 36
  start-page: 267
  year: 2009
  ident: 9292_CR35
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.2861
– volume: 42
  start-page: 1042
  issue: 6
  year: 1994
  ident: 9292_CR27
  publication-title: Oper. Res.
  doi: 10.1287/opre.42.6.1042
– volume-title: Handbook of Approximation Algorithms and Metaheuristics
  year: 2007
  ident: 9292_CR31
– volume: 47
  start-page: 173
  year: 1993
  ident: 9292_CR38
  publication-title: Inf. Process. Lett.
  doi: 10.1016/0020-0190(93)90029-9
– volume: 8
  start-page: 247
  issue: 3
  year: 2002
  ident: 9292_CR21
  publication-title: J. Heuristics
  doi: 10.1023/A:1015084116772
– volume: 36
  start-page: 2357
  year: 2009
  ident: 9292_CR41
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2008.08.014
– ident: 9292_CR7
  doi: 10.1109/ICTAI.2012.17
– volume: 37
  start-page: 60
  issue: 1
  year: 2011
  ident: 9292_CR50
  publication-title: Parallel Comput.
  doi: 10.1016/j.parco.2010.08.004
SSID ssj0009853
Score 2.1852252
Snippet This paper presents a detailed analysis of the scalability and parallelization of Local Search algorithms for constraint-based and SAT (Boolean satisfiability)...
This paper presents a detailed analysis of the scalability and par-allelization of Local Search algorithms for constraint-based and SAT (Boolean...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 613
SubjectTerms Algorithms
Artificial Intelligence
Boolean
Calculus of Variations and Optimal Control; Optimization
Combinatorics
Computer Science
Distributed, Parallel, and Cluster Computing
Estimating techniques
Management Science
Mathematical analysis
Mathematics
Mathematics and Statistics
Methods
Operations Research
Operations Research/Decision Theory
Parallel processing
Performance evaluation
Propagation
Random variables
Studies
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58HfTgW1xfBPGkBPpIm_YoonhYRXzhrTSP6kK3K9vqwV_vTLddV1FBe0szTcIkk5k0M98AHBi04XUcZ9xNZcyF0pqngfC58fEx0hq_joW578rLy-jhIb5q4rjL1tu9vZKsd-qJYDfpkxtBwFGle9yfhlnUdhFJ4_XN_QfSblRDT7qoijhuy257lfldE5-U0fQTuUJO2JlfrkZrjXO29K-xLsNiY2Cy49GKWIEpW6zCUpu8gTWyvAoLE0iEWLoYw7eWa9A9RcGnQvHICBs8z23OCKKA4kUYmrkMNZwZ9Htv1rA0fxwMe9VTv2S9gmmyNyntRMVwVdPfinW4Ozu9PTnnTdoFrkUQV9xVmRShVSpwlcRDpkylI4xPRxstrWtD4znaCJOpOEDSKI608pS1qfR0pjzjb8BMMSjsJrAw8rJAWi8MbCa0Y7E1rZTrZEqEWkW2A07L_0Q3mOQ0xjz5QFMmTibIyYQ4mfgdOBx_8jwC5PiNeB8ndUxHUNrnx92E3qFiFpRz5NXtwE4750kjwGWChg9lu4k8rD5q53ii-qcet_5EvQ3zaICFI4fCHZiphi92F-b0a9Urh3v1un4Hf5jx8w
  priority: 102
  providerName: Springer Nature
Title Estimating parallel runtimes for randomized algorithms in constraint solving
URI https://link.springer.com/article/10.1007/s10732-015-9292-3
https://www.proquest.com/docview/1811136821
https://hal.science/hal-01248168
Volume 22
WOSCitedRecordID wos000380273700012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1572-9397
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009853
  issn: 1381-1231
  databaseCode: 7WY
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1572-9397
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009853
  issn: 1381-1231
  databaseCode: M0C
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1572-9397
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009853
  issn: 1381-1231
  databaseCode: P5Z
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database (ProQuest)
  customDbUrl:
  eissn: 1572-9397
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009853
  issn: 1381-1231
  databaseCode: K7-
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1572-9397
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009853
  issn: 1381-1231
  databaseCode: BENPR
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-9397
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009853
  issn: 1381-1231
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFH6iGwc4MBhMdGyVhTiBLGLHiZMT2qZOkyhVNWAMLlH8I1ulLN3WsAN_Pe-lydpNYhdy8CFxbCfv2e-z_fw9gHcOMbxN04KLXKdcGWt5HqmQuxAvp70Lm7MwJyM9Hienp-mkXXCbt26V3ZjYDNRuZmmN_CNaIgo_kkjx6fKKU9Qo2l1tQ2j0YF1IKUjPP2u-JN1NGhZKgVaJ4wgtul3NxdE5HZJTQsQRIEge3rFLvXPyilyBnPd2SRvjc7jxv81-Ds9a2Mn2FnryAh75ahM2upAOrO3hm_B0hZ_wJYyGOAAQpK3OGHGEl6UvGVEV0LkRhnCXoaVzs4vpH-9YXp5hxfX5xZxNK2YJd1L4iZqhdtOqxSv4fjj8dnDE2_AL3KoorbkwhVaxNyYSRuNkU-c6UC6kKY7VXvjYycA65QqTRpg1SRNrpPE-19IWRrpwC9aqWeVfA8PvLyLtZRz5QtnAY2nWGBEURsXWJL4PQffzM9tyk1Mby2zJqkzyylBeGckrC_vw_vaVywUxx0OZ36JEb_MRpfbR3iije2igFcUeuRF92OlEmLUdeZ4t5deHD50SrDz-V43bDxf2Bp4g8ooXnoQ7sFZf__a78Nje1NP59QB6-sfPAazvD8eT40Gj05h-CQ4wnUS_MD3-evIX3ar9MQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB21BQk4UCggFgpYCC4gi8Rx4uSAUFVabdWw4lBQbyb-SLtSmi3dUAQ_it_ITD66CxK99UCOieMk9vPMczx-A_DCIYe3WVbysFAZl8ZaXsQy4i7CwynvonYvzOdcTSbp4WH2cQV-DXthKKxysImtoXYzS__I36AnovQjqQjfnX7llDWKVleHFBodLPb9j-84ZZu_3XuP_ftSiN2dg-0x77MKcCvjrOGhKZVMvDFxaBTOoVShAukiYu5W-dAnTgTWSVeaLMaiaZZaI4z3hRK2NMJFWO8qXJMShwOFCgbbC5HftFW9DNELcvQI4bCK2m3VUxEFQcQcCYng0R9-cPWYojCXKO5fq7Kts9td_9-a6Q7c7mk12-rGwV1Y8fUGrA8pK1hvwTbg1pL-4j3Id9DAEWWvjxhpoFeVrxhJMdC-GIZ0nqEnd7OT6U_vWFEd4Yc2xydzNq2ZJV5N6TUahqOX_srch09X8oUPYK2e1f4hMGzvMlZeJLEvpQ081maNCYPSyMSa1I8gGDpb2157nd6x0gvVaMKHRnxowoeORvDq4pbTTnjkssLPEUEX5UgyfLyVazqHBERSbpXzcASbA2R0b6jmeoGXEbweQLd0-V9PfHR5Zc_gxvjgQ67zvcn-Y7iJLDPpoiY3Ya05--afwHV73kznZ0_bEcTgy1Vj8TfgFFd6
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB21BSF6oFBALBSwEFxAVhPHiZMDQhXtqtWuVj0A6s3EH2lXSrNtNxTBT-PXMZOP7oJEbz2QY-I4if088xyP3wC8dsjhbZYVPMxVxqWxluexjLiL8HDKu6jZC_NlrCaT9OgoO1yBX_1eGAqr7G1iY6jdzNI_8m30RJR-JBXhdtGFRRzuDj-cnXPKIEUrrX06jRYiI__jO07f5u8PdrGv3wgx3Pv0cZ93GQa4lXFW89AUSibemDg0CudTKleBdBGxeKt86BMnAuukK0wWY9E0S60RxvtcCVsY4SKsdxVuoReOaYyNFF8I_qaNAmaIHpGjdwj7FdV2256KKCAi5khOBI_-8ImrJxSRuUR3_1qhbRzfcON_brL7cK-j22ynHR8PYMVXm7DRp7JgnWXbhPUlXcaHMN5Dw0dUvjpmpI1elr5kJNFA-2UY0nyGHt7NTqc_vWN5eYwfWp-cztm0Ypb4NqXdqBmOavpb8wg-38gXPoa1alb5J8Cw7YtYeZHEvpA28FibNSYMCiMTa1I_gKDveG07TXZ6x1Iv1KQJKxqxogkrOhrA26tbzlpBkusKv0I0XZUjKfH9nbGmc0hMJOVcuQwHsNXDR3cGbK4X2BnAux6AS5f_9cSn11f2Eu4gBPX4YDJ6BneRfCZtMOUWrNUX3_xzuG0v6-n84kUzmBh8vWko_gY6rmAg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+parallel+runtimes+for+randomized+algorithms+in+constraint+solving&rft.jtitle=Journal+of+heuristics&rft.au=Truchet%2C+Charlotte&rft.au=Arbelaez%2C+Alejandro&rft.au=Richoux%2C+Florian&rft.au=Codognet%2C+Philippe&rft.date=2016-08-01&rft.pub=Springer+Nature+B.V&rft.issn=1381-1231&rft.eissn=1572-9397&rft.volume=22&rft.issue=4&rft.spage=613&rft_id=info:doi/10.1007%2Fs10732-015-9292-3&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=4146264241
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1381-1231&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1381-1231&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1381-1231&client=summon