Estimating parallel runtimes for randomized algorithms in constraint solving
This paper presents a detailed analysis of the scalability and parallelization of Local Search algorithms for constraint-based and SAT (Boolean satisfiability) solvers. We propose a framework to estimate the parallel performance of a given algorithm by analyzing the runtime behavior of its sequentia...
Saved in:
| Published in: | Journal of heuristics Vol. 22; no. 4; pp. 613 - 648 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.08.2016
Springer Nature B.V Springer Verlag |
| Subjects: | |
| ISSN: | 1381-1231, 1572-9397 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper presents a detailed analysis of the scalability and parallelization of Local Search algorithms for constraint-based and SAT (Boolean satisfiability) solvers. We propose a framework to estimate the parallel performance of a given algorithm by analyzing the runtime behavior of its sequential version. Indeed, by approximating the runtime distribution of the sequential process with statistical methods, the runtime behavior of the parallel process can be predicted by a model based on order statistics. We apply this approach to study the parallel performance of a constraint-based Local Search solver (Adaptive Search), two SAT Local Search solvers (namely Sparrow and CCASAT), and a propagation-based constraint solver (Gecode, with a random labeling heuristic). We compare the performance predicted by our model to actual parallel implementations of those methods using up to 384 processes. We show that the model is accurate and predicts performance close to the empirical data. Moreover, as we study different types of problems, we observe that the experimented solvers exhibit different behaviors and that their runtime distributions can be approximated by two types of distributions: exponential (shifted and non-shifted) and lognormal. Our results show that the proposed framework estimates the runtime of the parallel algorithm with an average discrepancy of 21 % w.r.t. the empirical data across all the experiments with the maximum allowed number of processors for each technique. |
|---|---|
| AbstractList | This paper presents a detailed analysis of the scalability and par-allelization of Local Search algorithms for constraint-based and SAT (Boolean satisfiability) solvers. We propose a framework to estimate the parallel performance of a given algorithm by analyzing the runtime behavior of its sequential version. Indeed, by approximating the runtime distribution of the sequential process with statistical methods, the runtime behavior of the parallel process can be predicted by a model based on order statistics. We apply this approach to study the parallel performance of a Constraint-Based Local Search solver (Adaptive Search), two SAT Local Search solvers (namely Sparrow and CCASAT), and a propagation-based constraint solver (Gecode, with a random labeling heuristic). We compare the performance predicted by our model to actual parallel implementations of those methods using up to 384 processes. We show that the model is accurate and predicts performance close to the empirical data. Moreover, as we study different types of problems, we observe that the experimented solvers exhibit different behaviors and that their runtime distributions can be approximated by two types of distributions: exponential (shifted and non-shifted) and lognormal. Our results show that the proposed framework estimates the runtime of the parallel algorithm with an average discrepancy of 21% w.r.t. the empirical data across all the experiments with the maximum allowed number of processors for each technique. This paper presents a detailed analysis of the scalability and parallelization of Local Search algorithms for constraint-based and SAT (Boolean satisfiability) solvers. We propose a framework to estimate the parallel performance of a given algorithm by analyzing the runtime behavior of its sequential version. Indeed, by approximating the runtime distribution of the sequential process with statistical methods, the runtime behavior of the parallel process can be predicted by a model based on order statistics. We apply this approach to study the parallel performance of a constraint-based Local Search solver (Adaptive Search), two SAT Local Search solvers (namely Sparrow and CCASAT), and a propagation-based constraint solver (Gecode, with a random labeling heuristic). We compare the performance predicted by our model to actual parallel implementations of those methods using up to 384 processes. We show that the model is accurate and predicts performance close to the empirical data. Moreover, as we study different types of problems, we observe that the experimented solvers exhibit different behaviors and that their runtime distributions can be approximated by two types of distributions: exponential (shifted and non-shifted) and lognormal. Our results show that the proposed framework estimates the runtime of the parallel algorithm with an average discrepancy of 21 % w.r.t. the empirical data across all the experiments with the maximum allowed number of processors for each technique. This paper presents a detailed analysis of the scalability and parallelization of Local Search algorithms for constraint-based and SAT (Boolean satisfiability) solvers. We propose a framework to estimate the parallel performance of a given algorithm by analyzing the runtime behavior of its sequential version. Indeed, by approximating the runtime distribution of the sequential process with statistical methods, the runtime behavior of the parallel process can be predicted by a model based on order statistics. We apply this approach to study the parallel performance of a constraint-based Local Search solver (Adaptive Search), two SAT Local Search solvers (namely Sparrow and CCASAT), and a propagation-based constraint solver (Gecode, with a random labeling heuristic). We compare the performance predicted by our model to actual parallel implementations of those methods using up to 384 processes. We show that the model is accurate and predicts performance close to the empirical data. Moreover, as we study different types of problems, we observe that the experimented solvers exhibit different behaviors and that their runtime distributions can be approximated by two types of distributions: exponential (shifted and non-shifted) and lognormal. Our results show that the proposed framework estimates the runtime of the parallel algorithm with an average discrepancy of 21 % w.r.t. the empirical data across all the experiments with the maximum allowed number of processors for each technique. |
| Author | Truchet, Charlotte Richoux, Florian Arbelaez, Alejandro Codognet, Philippe |
| Author_xml | – sequence: 1 givenname: Charlotte surname: Truchet fullname: Truchet, Charlotte email: charlotte.truchet@univ-nantes.fr organization: LINA, UMR 6241, University of Nantes – sequence: 2 givenname: Alejandro surname: Arbelaez fullname: Arbelaez, Alejandro organization: INSIGHT Centre for Data Analytics, University College Cork – sequence: 3 givenname: Florian surname: Richoux fullname: Richoux, Florian organization: LINA, UMR 6241, University of Nantes – sequence: 4 givenname: Philippe surname: Codognet fullname: Codognet, Philippe organization: JFLI - CNRS / UPMC, University of Tokyo |
| BackLink | https://hal.science/hal-01248168$$DView record in HAL |
| BookMark | eNp9kFFLwzAUhYNMcJv-AN8KPvlQzU3aJnkcYzqh4Is-h7RNt44smUk30F9vSkVE0Kd7uZxz7uGboYl1ViN0DfgOMGb3ATCjJMWQp4IIktIzNIWckVRQwSZxpxxSIBQu0CyEHcZY8JxOUbkKfbdXfWc3yUF5ZYw2iT_aeNQhaZ1PvLKN23cfukmU2Tjf9dt9SDqb1M6G3qvO9klw5hQTLtF5q0zQV19zjl4fVi_LdVo-Pz4tF2VaZ7noU6halhW6qnKomGCcKYazhuYZZzXToIuG4LrJmrYSeZRyweuKVForRuq2Ig2do9sxd6uMPPjY379Lpzq5XpRyuGEgGYeCnyBqb0btwbu3ow693Lmjt7GeBA4AtOBkUMGoqr0Lwev2OxawHADLEXBMzuUAWNLoYb88dddHks4OVMy_TjI6Q_xiN9r_6PSn6RPstpIR |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2020_3038228 crossref_primary_10_3390_math11143251 crossref_primary_10_1007_s10732_017_9342_0 crossref_primary_10_1016_j_ipl_2019_04_002 crossref_primary_10_2166_ws_2021_419 crossref_primary_10_1007_s11227_020_03417_5 crossref_primary_10_3390_app8020293 crossref_primary_10_3390_math9233043 crossref_primary_10_1007_s10732_016_9313_x |
| Cites_doi | 10.1007/3-540-45322-9_5 10.1007/BF02430365 10.1023/A:1015061802659 10.1023/B:HEUR.0000026897.40171.1a 10.1109/IPDPSW.2012.222 10.1023/A:1006314320276 10.1145/2145816.2145883 10.1007/978-3-642-40627-0_45 10.1109/ICPP.2013.25 10.1007/11889205_26 10.1007/s10898-011-9769-z 10.1007/978-3-642-25566-3_4 10.1007/978-3-642-13520-0_36 10.1007/3-540-62095-8_62 10.1017/S1471068413000392 10.1177/1094342006070078 10.1016/S0004-3702(00)00081-3 10.1007/978-3-540-48085-3_25 10.1007/978-3-642-37198-1_14 10.1007/978-3-642-40627-0_6 10.1016/S0004-3702(99)00048-X 10.1145/185403.185453 10.1007/s11590-006-0031-4 10.1007/3-540-60321-2_26 10.1007/978-3-642-12139-5_23 10.1109/SAINT.2005.1 10.1016/j.spl.2007.05.022 10.1023/B:HEUR.0000026984.08350.12 10.1007/978-3-642-14186-7_31 10.1007/978-3-642-04244-7_20 10.1007/978-3-540-74970-7_37 10.1007/978-3-642-04244-7_14 10.1007/978-3-540-77220-0_51 10.1613/jair.2861 10.1287/opre.42.6.1042 10.1016/0020-0190(93)90029-9 10.1023/A:1015084116772 10.1016/j.cor.2008.08.014 10.1109/ICTAI.2012.17 10.1016/j.parco.2010.08.004 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media New York 2015 Springer Science+Business Media New York 2016 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Springer Science+Business Media New York 2015 – notice: Springer Science+Business Media New York 2016 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 3V. 7WY 7WZ 7XB 87Z 8AL 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- M0C M0N P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PYYUZ Q9U 1XC VOOES |
| DOI | 10.1007/s10732-015-9292-3 |
| DatabaseName | CrossRef ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database (ProQuest) ABI/INFORM Professional Advanced ABI/INFORM Collection (ProQuest) Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ABI/INFORM Collection China ProQuest Central Basic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ABI/INFORM China ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics Computer Science |
| EISSN | 1572-9397 |
| EndPage | 648 |
| ExternalDocumentID | oai:HAL:hal-01248168v1 4146264241 10_1007_s10732_015_9292_3 |
| GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29K 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZC RZD RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z81 Z83 Z86 Z88 Z8U Z8W Z92 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7XB 8AL 8FK JQ2 L.- PKEHL PQEST PQUKI Q9U 1XC VOOES |
| ID | FETCH-LOGICAL-c459t-1bf746ebb51b79787a704d35487c7e1e6d20cd4dfb95bf7898cb2beea72cfb2d3 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000380273700012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1381-1231 |
| IngestDate | Sat Nov 29 15:00:40 EST 2025 Tue Nov 04 21:43:00 EST 2025 Tue Nov 18 22:30:02 EST 2025 Sat Nov 29 06:01:07 EST 2025 Fri Feb 21 02:36:37 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Parallel processing Performance model Randomized constraint solving Constraint solving |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c459t-1bf746ebb51b79787a704d35487c7e1e6d20cd4dfb95bf7898cb2beea72cfb2d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9234-6188 0000-0003-4693-379X |
| OpenAccessLink | https://hal.science/hal-01248168 |
| PQID | 1811136821 |
| PQPubID | 26068 |
| PageCount | 36 |
| ParticipantIDs | hal_primary_oai_HAL_hal_01248168v1 proquest_journals_1811136821 crossref_primary_10_1007_s10732_015_9292_3 crossref_citationtrail_10_1007_s10732_015_9292_3 springer_journals_10_1007_s10732_015_9292_3 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-08-01 |
| PublicationDateYYYYMMDD | 2016-08-01 |
| PublicationDate_xml | – month: 08 year: 2016 text: 2016-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Boston |
| PublicationTitle | Journal of heuristics |
| PublicationTitleAbbrev | J Heuristics |
| PublicationYear | 2016 |
| Publisher | Springer US Springer Nature B.V Springer Verlag |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: Springer Verlag |
| References | Caromel. D., di Costanzo, A., Baduel, L., Matsuoka, S.: Grid’BnB: a parallel branch and bound framework for grids. In: Proceedings of HiPC’07, 14th International Conference on High Performance Computing, pp, 566–579. Springer, Berlin (2007) Caniou, Y., Diaz, D., Richoux, F., Codognet, P., Abreu, S.: Performance analysis of parallel constraint-based local search. In: PPoPP 2012, 17th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, ACM Press, New Orleans, Poster Paper (2012) IbarakiTNonobeKYagiuraMMetaheuristics: Progress as Real Problem Solvers2005New YorkSpringer BalintAFröhlichAStrichmanOSzeiderSImproving stochastic local search for SAT with a new probability distributionSAT’10, LNCS2010EdinburghSpringer1015 Codognet, P., Diaz, D.: Yet another local search method for constraint solving. In: Proceedings of SAGA’01, pp. 73–90. Springer, New York (2001) GomesCPSelmanBCratoNKautzHAHeavy-tailed phenomena in satisfiability and constraint satisfaction problemsJ. Autom. Reason.2000241/267100175025910.1023/A:10063143202760967.68145 GomesCPSelmanBAlgorithm portfoliosArtif. Intell.20011261–24362181548910.1016/S0004-3702(00)00081-30969.68047 Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by weighting constraints. In: ECAI’ 2004, pp. 146–150 (2004) Xie, F., Davenport, A.J.: Massively parallel constraint programming for supercomputers: challenges and initial results. In: CPAIOR’10, 7th International Conference on the Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, Lecture Notes in Computer Science, vol. 6140, pp. 334–338. Springer, Berlin (2010) Michel, L., See, A., Van Hentenryck, P.: Parallelizing constraint programs transparently. In: Bessiere, C. (ed.) CP’07, 13th International Conference on Principles and Practice of Constraint Programming, Lecture Notes in Computer Science, pp. 514–528. Springer, New York (2007) Bordeaux, L., Hamadi, Y., Samulowitz, H.: Experiments with massively parallel constraint solving. In: Boutilier, C. (ed.) Proceedings of IJCAI 2009, 21st International Joint Conference on Artificial Intelligence, pp. 443–448 (2009) Moisan, T., Gaudreault, J., Quimper, C.: Parallel discrepancy-based search. In: Proceedings of the Principles and Practice of Constraint Programming—19th International Conference, CP 2013, Uppsala, Sweden, September 16–20, 2013, pp. 30–46 (2013). doi:10.1007/978-3-642-40627-0_6 Codognet, P., Diaz, D.: An efficient library for solving CSP with local search. In: Ibaraki, T. (ed.) MIC’03, 5th International Conference on Metaheuristics (2003) Babai, L.: Monte-Carlo algorithms in graph isomorphism testing. Research Report D.M.S. No. 79–10, Université de Montréal (1979) Pardalos, P.M., Pitsoulis, L.S., Mavridou, T.D., Resende, M.G.C.: Parallel search for combinatorial optimization: genetic algorithms, simulated annealing, tabu search and GRASP. In: Parallel Algorithms for Irregularly Structured Problems (IRREGULAR), pp. 317–331 (1995) Wolfram, S.: The Mathematica Book, 5th edn. Wolfram Media, Champaign (2003). URL http://reference.wolfram.com HoosHStützeTStochastic Local Search: Foundations and Applications2005San FranciscoMorgan Kaufmann Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for the automatic configuration of algorithms. In: Gent, I.P. (ed.) 15th International Conference on Principles and Practice of Constraint Programming, LNCS, vol. 5732, pp. 142–157. Springer, Lisbon (2009) Van Luong, T., Melab, N., Talbi, E.G.: Local search algorithms on graphics processing units. In: Evolutionary Computation in Combinatorial Optimization, LNCS 6022, pp. 264–275. Springer, Heidelberg (2010) Chu, G., Schulte, C., Stuckey, P.J.: Confidence-based work stealing in parallel constraint programming. In: Gent, I.P. (ed.) CP 2009, 15th International Conference on Principles and Practice of Constraint Programming, Springer, Lecture Notes in Computer Science, vol. 5732, pp. 226–241 (2009) BolzeRGrid’5000: a large scale and highly reconfigurable experimental grid testbedInt. J. High Perform. Comput. Appl.200620448149410.1177/1094342006070078 ShyloOVMiddelkoopTPardalosPMRestart strategies in optimization: parallel and serial casesParallel Comput.20113716068279191710.1016/j.parco.2010.08.0041211.68507 ArbelaezATruchetCCodognetPUsing sequential runtime distributions for the parallel speedup prediction of SAT local searchJ. Theory Pract. Log. Program.201313625639315012710.1017/S14710684130003921286.68405 DavidHNagarajaHOrder Statistics. Wiley Series in Probability and Mathematical Statistics. Probability and Mathematical Statistics2003New YorkWiley RibeiroCRossetiIVallejosRExploiting run time distributions to compare sequential and parallel stochastic local search algorithmsJ. Glob. Optim.201154405429297963810.1007/s10898-011-9769-z1259.90115 AlbaESpecial issue on new advances on parallel meta-heuristics for complex problemsJ. Heuristics200410323938010.1023/B:HEUR.0000026984.08350.12 Pardalos, P.M., Pitsoulis, L.S., Resende, M.G.C.: A parallel grasp for MAX-SAT problems. In: Wasniewski, J., Dongarra, J., Madsen, K., Olesen, D. (eds.) 3rd International Workshop on Applied Parallel Computing, Industrial Computation and Optimization, LNCS. Springer, Lyngby (1996) Van HentenryckPMichelLConstraint-Based Local Search2005CambridgeThe MIT Press1160.68556 Arbelaez, A., Codognet, P.: Massivelly parallel local search for SAT. In: ICTAI’12, pp. 57–64. IEEE Computer Society, Athens (2012) GonzalezTHandbook of Approximation Algorithms and Metaheuristics2007Boca RatonChapman and Hall/CRC1138.90001 Arbelaez, A., Hamadi, Y.: Improving parallel local search for SAT. In: Coello, C.A.C. (ed.) Learning and Intelligent Optimization, 5th International Conference, LION’11, LNCS, vol. 6683, pp. 46–60. Springer, Lisbon (2011) LubyMSinclairAZuckermanDOptimal speedup of Las Vegas algorithmsInf. Process. Lett.199347173180123838710.1016/0020-0190(93)90029-90797.68139 Van Hentenryck, P.: Parallel constraint satisfaction in logic programming: preliminary results of CHIP within PEPsys. In: ICLP’89, International Conference on Logic Programming, MIT Press, Lisbon, pp. 165–180 (1989) CrainicTGGendreauMHansenPMladenovicNCooperative parallel variable neighborhood search for the p-medianJ. Heuristics200410329331410.1023/B:HEUR.0000026897.40171.1a HoosHHStützleTTowards a characterisation of the behaviour of stochastic local search algorithms for SATArtif. Intell.19991121–2213232171664510.1016/S0004-3702(99)00048-X0996.68069 MichelLSeeAVan HentenryckPParallel and distributed local search in COMETComput. Oper. Res.2009362357237510.1016/j.cor.2008.08.0141179.90288 Gent, I. P., Walsh, T.: The SAT phase transition. In: ECAI’94, pp. 105–109 (1994) NadarajahSExplicit expressions for moments of order statisticsStat. Probab. Lett.2008782196205241258610.1016/j.spl.2007.05.0221290.62023 Pham, D.N., Gretton, C.: gNovelty+. In: Solver Description, SAT Competition 2007 (2007) Aida, K., Osumi, T.: A case study in running a parallel branch and bound application on the grid. In: SAINT ’05: Proceedings of the The 2005 Symposium on Applications and the Internet, pp. 164–173. IEEE Computer Society, Washington, DC (2005) de KergommeauxJCCodognetPParallel logic programming systemsACM Comput. Surv.199426329533610.1145/185403.185453 Perron, L.: Search procedures and parallelism in constraint programming. In: CP’99, 5th International Conference on Principles and Practice of Constraint Programming, Lecture Notes in Computer Science, pp. 346–360. Springer, Berlin (1999) AiexRResendeMRibeiroCTTT plots: a perl program to create time-to-target plotsOptim. Lett.20071355366234068410.1007/s11590-006-0031-41220.90102 Cai, S., Luo, C., Su, K.: CCASAT: solver description. In: SAT Challenge 2012: Solver and Benchmark Descriptions, vol. B-2012-2. Department of Computer Science Series of Publications B, University of Helsinki, pp. 13–14 (2012) Arbelaez. A., Codognet, P.: From sequential to parallel local search for SAT. In: 13th European Conference on Evolutionary Computation in Combinatorial Optimisation (EvoCOP’13) (2013) CrainicTToulouseMSpecial Issue on parallel meta-heuristicsJ. Heuristics20028324738810.1023/A:1015084116772 Kroc, L., Sabharwal, A., Selman, B.: An empirical study of optimal noise and runtime distributions in local search. In: Strichman, O., Szeider, S. (eds.) SAT’10, LNCS, vol. 6175, pp. 346–351. Springer, Edinburgh (2010) Diaz, D., Richoux, F., Caniou, Y., Codognet, P., Abreu, S.: Parallel local search for the costas array problem. In: IEEE Workshop on New Trends in Parallel Computing and Optimization (PC012), in Conjunction with IPDPS 2012, IEEE Press, Shanghai (2012) Aiex, R.M., Resende, M.G.C., Ribeiro, C.C.: Probability distribution of solution time in grasp: an experimental investigation. J. Heuristics 8(3), 343–373 (2002) Haralick, R.M., Elliott, G.L.: Increasing tree search efficiency for constraint satisfaction problems. In: IJCAI, pp. 356–364 (1979) Michel, L., See, A., Van Hentenryck, P.: Distributed constraint-based local search. In: Benhamou, F. (ed.) CP’06, 12th International Conference on Principles and Practice of Constraint Programming, Lecture Notes in Computer Science, pp. 344–358. Springer, New York (2006) VerhoevenMAartsEParallel local searchJ. Heuristics199511436510.1007/BF024303650853.68156 GendronBCrainicTParallel branch-and-bound algorithms: survey and synthesisOper. Res.199442610421066130780510.1287/opre.42.6.10420824.90096 Truchet, C., Richoux, F., Codognet, P.: Prediction of parallel speed-ups for las vegas algorithms. In: Dongarra, J., Robert, Y. (eds.) Proceedings of ICPP-2013, 42nd International Conference on Parallel Processing. IEEE Press, Lyon (2013) HutterFHoosHHLeyton-BrownKStützleTParamILS: an automatic algorithm configuration frameworkJ. Artif. Intell. Res.2009362673061192.68831 EadieWStatistical Methods in Experimental Physics1971AmsterdamNorth-Holland Publishing Co.0246.62004 Régin, J.C., Rezgui, M., Malapert, A.: Embarrassingly parallel JC Kergommeaux de (9292_CR24) 1994; 26 W Eadie (9292_CR26) 1971 9292_CR28 9292_CR7 9292_CR6 9292_CR5 9292_CR8 E Alba (9292_CR4) 2004; 10 9292_CR3 9292_CR32 A Arbelaez (9292_CR9) 2013; 13 9292_CR1 9292_CR19 9292_CR18 (9292_CR36) 2005 9292_CR17 9292_CR16 9292_CR15 H Hoos (9292_CR33) 2005 HH Hoos (9292_CR34) 1999; 112 M Luby (9292_CR38) 1993; 47 TG Crainic (9292_CR22) 2004; 10 S Nadarajah (9292_CR43) 2008; 78 9292_CR25 R Aiex (9292_CR2) 2007; 1 9292_CR20 P Hentenryck Van (9292_CR53) 2005 L Michel (9292_CR41) 2009; 36 OV Shylo (9292_CR50) 2011; 37 R Bolze (9292_CR12) 2006; 20 9292_CR48 F Hutter (9292_CR35) 2009; 36 T Crainic (9292_CR21) 2002; 8 A Balint (9292_CR11) 2010 9292_CR14 9292_CR13 CP Gomes (9292_CR29) 2001; 126 9292_CR57 9292_CR56 9292_CR10 9292_CR54 9292_CR52 9292_CR51 H David (9292_CR23) 2003 B Gendron (9292_CR27) 1994; 42 9292_CR39 9292_CR37 M Verhoeven (9292_CR55) 1995; 1 CP Gomes (9292_CR30) 2000; 24 C Ribeiro (9292_CR49) 2011; 54 (9292_CR31) 2007 9292_CR47 9292_CR46 9292_CR45 9292_CR44 9292_CR42 9292_CR40 |
| References_xml | – reference: EadieWStatistical Methods in Experimental Physics1971AmsterdamNorth-Holland Publishing Co.0246.62004 – reference: ArbelaezATruchetCCodognetPUsing sequential runtime distributions for the parallel speedup prediction of SAT local searchJ. Theory Pract. Log. Program.201313625639315012710.1017/S14710684130003921286.68405 – reference: VerhoevenMAartsEParallel local searchJ. Heuristics199511436510.1007/BF024303650853.68156 – reference: Van HentenryckPMichelLConstraint-Based Local Search2005CambridgeThe MIT Press1160.68556 – reference: Codognet, P., Diaz, D.: Yet another local search method for constraint solving. In: Proceedings of SAGA’01, pp. 73–90. Springer, New York (2001) – reference: Arbelaez, A., Codognet, P.: Massivelly parallel local search for SAT. In: ICTAI’12, pp. 57–64. IEEE Computer Society, Athens (2012) – reference: NadarajahSExplicit expressions for moments of order statisticsStat. Probab. Lett.2008782196205241258610.1016/j.spl.2007.05.0221290.62023 – reference: Bordeaux, L., Hamadi, Y., Samulowitz, H.: Experiments with massively parallel constraint solving. In: Boutilier, C. (ed.) Proceedings of IJCAI 2009, 21st International Joint Conference on Artificial Intelligence, pp. 443–448 (2009) – reference: de KergommeauxJCCodognetPParallel logic programming systemsACM Comput. Surv.199426329533610.1145/185403.185453 – reference: HoosHHStützleTTowards a characterisation of the behaviour of stochastic local search algorithms for SATArtif. Intell.19991121–2213232171664510.1016/S0004-3702(99)00048-X0996.68069 – reference: Wolfram, S.: The Mathematica Book, 5th edn. Wolfram Media, Champaign (2003). URL http://reference.wolfram.com – reference: Diaz, D., Richoux, F., Caniou, Y., Codognet, P., Abreu, S.: Parallel local search for the costas array problem. In: IEEE Workshop on New Trends in Parallel Computing and Optimization (PC012), in Conjunction with IPDPS 2012, IEEE Press, Shanghai (2012) – reference: Aida, K., Osumi, T.: A case study in running a parallel branch and bound application on the grid. In: SAINT ’05: Proceedings of the The 2005 Symposium on Applications and the Internet, pp. 164–173. IEEE Computer Society, Washington, DC (2005) – reference: Caromel. D., di Costanzo, A., Baduel, L., Matsuoka, S.: Grid’BnB: a parallel branch and bound framework for grids. In: Proceedings of HiPC’07, 14th International Conference on High Performance Computing, pp, 566–579. Springer, Berlin (2007) – reference: GendronBCrainicTParallel branch-and-bound algorithms: survey and synthesisOper. Res.199442610421066130780510.1287/opre.42.6.10420824.90096 – reference: CrainicTGGendreauMHansenPMladenovicNCooperative parallel variable neighborhood search for the p-medianJ. Heuristics200410329331410.1023/B:HEUR.0000026897.40171.1a – reference: CrainicTToulouseMSpecial Issue on parallel meta-heuristicsJ. Heuristics20028324738810.1023/A:1015084116772 – reference: LubyMSinclairAZuckermanDOptimal speedup of Las Vegas algorithmsInf. Process. Lett.199347173180123838710.1016/0020-0190(93)90029-90797.68139 – reference: Pham, D.N., Gretton, C.: gNovelty+. In: Solver Description, SAT Competition 2007 (2007) – reference: Truchet, C., Richoux, F., Codognet, P.: Prediction of parallel speed-ups for las vegas algorithms. In: Dongarra, J., Robert, Y. (eds.) Proceedings of ICPP-2013, 42nd International Conference on Parallel Processing. IEEE Press, Lyon (2013) – reference: Michel, L., See, A., Van Hentenryck, P.: Distributed constraint-based local search. In: Benhamou, F. (ed.) CP’06, 12th International Conference on Principles and Practice of Constraint Programming, Lecture Notes in Computer Science, pp. 344–358. Springer, New York (2006) – reference: RibeiroCRossetiIVallejosRExploiting run time distributions to compare sequential and parallel stochastic local search algorithmsJ. Glob. Optim.201154405429297963810.1007/s10898-011-9769-z1259.90115 – reference: DavidHNagarajaHOrder Statistics. Wiley Series in Probability and Mathematical Statistics. Probability and Mathematical Statistics2003New YorkWiley – reference: Babai, L.: Monte-Carlo algorithms in graph isomorphism testing. Research Report D.M.S. No. 79–10, Université de Montréal (1979) – reference: GonzalezTHandbook of Approximation Algorithms and Metaheuristics2007Boca RatonChapman and Hall/CRC1138.90001 – reference: Aiex, R.M., Resende, M.G.C., Ribeiro, C.C.: Probability distribution of solution time in grasp: an experimental investigation. J. Heuristics 8(3), 343–373 (2002) – reference: Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by weighting constraints. In: ECAI’ 2004, pp. 146–150 (2004) – reference: HoosHStützeTStochastic Local Search: Foundations and Applications2005San FranciscoMorgan Kaufmann – reference: Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for the automatic configuration of algorithms. In: Gent, I.P. (ed.) 15th International Conference on Principles and Practice of Constraint Programming, LNCS, vol. 5732, pp. 142–157. Springer, Lisbon (2009) – reference: Arbelaez. A., Codognet, P.: From sequential to parallel local search for SAT. In: 13th European Conference on Evolutionary Computation in Combinatorial Optimisation (EvoCOP’13) (2013) – reference: BolzeRGrid’5000: a large scale and highly reconfigurable experimental grid testbedInt. J. High Perform. Comput. Appl.200620448149410.1177/1094342006070078 – reference: Gent, I. P., Walsh, T.: The SAT phase transition. In: ECAI’94, pp. 105–109 (1994) – reference: AlbaESpecial issue on new advances on parallel meta-heuristics for complex problemsJ. Heuristics200410323938010.1023/B:HEUR.0000026984.08350.12 – reference: MichelLSeeAVan HentenryckPParallel and distributed local search in COMETComput. Oper. Res.2009362357237510.1016/j.cor.2008.08.0141179.90288 – reference: Kroc, L., Sabharwal, A., Selman, B.: An empirical study of optimal noise and runtime distributions in local search. In: Strichman, O., Szeider, S. (eds.) SAT’10, LNCS, vol. 6175, pp. 346–351. Springer, Edinburgh (2010) – reference: Codognet, P., Diaz, D.: An efficient library for solving CSP with local search. In: Ibaraki, T. (ed.) MIC’03, 5th International Conference on Metaheuristics (2003) – reference: BalintAFröhlichAStrichmanOSzeiderSImproving stochastic local search for SAT with a new probability distributionSAT’10, LNCS2010EdinburghSpringer1015 – reference: Cai, S., Luo, C., Su, K.: CCASAT: solver description. In: SAT Challenge 2012: Solver and Benchmark Descriptions, vol. B-2012-2. Department of Computer Science Series of Publications B, University of Helsinki, pp. 13–14 (2012) – reference: HutterFHoosHHLeyton-BrownKStützleTParamILS: an automatic algorithm configuration frameworkJ. Artif. Intell. Res.2009362673061192.68831 – reference: IbarakiTNonobeKYagiuraMMetaheuristics: Progress as Real Problem Solvers2005New YorkSpringer – reference: Michel, L., See, A., Van Hentenryck, P.: Parallelizing constraint programs transparently. In: Bessiere, C. (ed.) CP’07, 13th International Conference on Principles and Practice of Constraint Programming, Lecture Notes in Computer Science, pp. 514–528. Springer, New York (2007) – reference: ShyloOVMiddelkoopTPardalosPMRestart strategies in optimization: parallel and serial casesParallel Comput.20113716068279191710.1016/j.parco.2010.08.0041211.68507 – reference: Arbelaez, A., Hamadi, Y.: Improving parallel local search for SAT. In: Coello, C.A.C. (ed.) Learning and Intelligent Optimization, 5th International Conference, LION’11, LNCS, vol. 6683, pp. 46–60. Springer, Lisbon (2011) – reference: Régin, J.C., Rezgui, M., Malapert, A.: Embarrassingly parallel search. In: Schulte, C. (ed.) Proceedings of CP’2013, 19th International Conference on Principles and Practice of Constraint Programming, Lecture Notes in Computer Science, vol. 8124, pp. 596–610. Springer, Berlin (2013) – reference: Pardalos, P.M., Pitsoulis, L.S., Resende, M.G.C.: A parallel grasp for MAX-SAT problems. In: Wasniewski, J., Dongarra, J., Madsen, K., Olesen, D. (eds.) 3rd International Workshop on Applied Parallel Computing, Industrial Computation and Optimization, LNCS. Springer, Lyngby (1996) – reference: Perron, L.: Search procedures and parallelism in constraint programming. In: CP’99, 5th International Conference on Principles and Practice of Constraint Programming, Lecture Notes in Computer Science, pp. 346–360. Springer, Berlin (1999) – reference: Caniou, Y., Diaz, D., Richoux, F., Codognet, P., Abreu, S.: Performance analysis of parallel constraint-based local search. In: PPoPP 2012, 17th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, ACM Press, New Orleans, Poster Paper (2012) – reference: AiexRResendeMRibeiroCTTT plots: a perl program to create time-to-target plotsOptim. Lett.20071355366234068410.1007/s11590-006-0031-41220.90102 – reference: Moisan, T., Gaudreault, J., Quimper, C.: Parallel discrepancy-based search. In: Proceedings of the Principles and Practice of Constraint Programming—19th International Conference, CP 2013, Uppsala, Sweden, September 16–20, 2013, pp. 30–46 (2013). doi:10.1007/978-3-642-40627-0_6 – reference: Van Hentenryck, P.: Parallel constraint satisfaction in logic programming: preliminary results of CHIP within PEPsys. In: ICLP’89, International Conference on Logic Programming, MIT Press, Lisbon, pp. 165–180 (1989) – reference: Van Luong, T., Melab, N., Talbi, E.G.: Local search algorithms on graphics processing units. In: Evolutionary Computation in Combinatorial Optimization, LNCS 6022, pp. 264–275. Springer, Heidelberg (2010) – reference: Haralick, R.M., Elliott, G.L.: Increasing tree search efficiency for constraint satisfaction problems. In: IJCAI, pp. 356–364 (1979) – reference: Pardalos, P.M., Pitsoulis, L.S., Mavridou, T.D., Resende, M.G.C.: Parallel search for combinatorial optimization: genetic algorithms, simulated annealing, tabu search and GRASP. In: Parallel Algorithms for Irregularly Structured Problems (IRREGULAR), pp. 317–331 (1995) – reference: Chu, G., Schulte, C., Stuckey, P.J.: Confidence-based work stealing in parallel constraint programming. In: Gent, I.P. (ed.) CP 2009, 15th International Conference on Principles and Practice of Constraint Programming, Springer, Lecture Notes in Computer Science, vol. 5732, pp. 226–241 (2009) – reference: GomesCPSelmanBCratoNKautzHAHeavy-tailed phenomena in satisfiability and constraint satisfaction problemsJ. Autom. Reason.2000241/267100175025910.1023/A:10063143202760967.68145 – reference: GomesCPSelmanBAlgorithm portfoliosArtif. Intell.20011261–24362181548910.1016/S0004-3702(00)00081-30969.68047 – reference: Xie, F., Davenport, A.J.: Massively parallel constraint programming for supercomputers: challenges and initial results. In: CPAIOR’10, 7th International Conference on the Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, Lecture Notes in Computer Science, vol. 6140, pp. 334–338. Springer, Berlin (2010) – ident: 9292_CR19 doi: 10.1007/3-540-45322-9_5 – volume: 1 start-page: 43 issue: 1 year: 1995 ident: 9292_CR55 publication-title: J. Heuristics doi: 10.1007/BF02430365 – ident: 9292_CR3 doi: 10.1023/A:1015061802659 – ident: 9292_CR15 – volume: 10 start-page: 293 issue: 3 year: 2004 ident: 9292_CR22 publication-title: J. Heuristics doi: 10.1023/B:HEUR.0000026897.40171.1a – ident: 9292_CR25 doi: 10.1109/IPDPSW.2012.222 – volume: 24 start-page: 67 issue: 1/2 year: 2000 ident: 9292_CR30 publication-title: J. Autom. Reason. doi: 10.1023/A:1006314320276 – ident: 9292_CR20 – ident: 9292_CR16 doi: 10.1145/2145816.2145883 – ident: 9292_CR48 doi: 10.1007/978-3-642-40627-0_45 – ident: 9292_CR47 – ident: 9292_CR51 doi: 10.1109/ICPP.2013.25 – ident: 9292_CR28 – ident: 9292_CR39 doi: 10.1007/11889205_26 – volume-title: Constraint-Based Local Search year: 2005 ident: 9292_CR53 – volume: 54 start-page: 405 year: 2011 ident: 9292_CR49 publication-title: J. Glob. Optim. doi: 10.1007/s10898-011-9769-z – ident: 9292_CR6 doi: 10.1007/978-3-642-25566-3_4 – ident: 9292_CR57 doi: 10.1007/978-3-642-13520-0_36 – volume-title: Stochastic Local Search: Foundations and Applications year: 2005 ident: 9292_CR33 – ident: 9292_CR45 doi: 10.1007/3-540-62095-8_62 – volume: 13 start-page: 625 year: 2013 ident: 9292_CR9 publication-title: J. Theory Pract. Log. Program. doi: 10.1017/S1471068413000392 – volume: 20 start-page: 481 issue: 4 year: 2006 ident: 9292_CR12 publication-title: Int. J. High Perform. Comput. Appl. doi: 10.1177/1094342006070078 – start-page: 10 volume-title: SAT’10, LNCS year: 2010 ident: 9292_CR11 – volume: 126 start-page: 43 issue: 1–2 year: 2001 ident: 9292_CR29 publication-title: Artif. Intell. doi: 10.1016/S0004-3702(00)00081-3 – ident: 9292_CR32 – ident: 9292_CR46 doi: 10.1007/978-3-540-48085-3_25 – ident: 9292_CR8 doi: 10.1007/978-3-642-37198-1_14 – ident: 9292_CR42 doi: 10.1007/978-3-642-40627-0_6 – volume: 112 start-page: 213 issue: 1–2 year: 1999 ident: 9292_CR34 publication-title: Artif. Intell. doi: 10.1016/S0004-3702(99)00048-X – ident: 9292_CR13 – volume: 26 start-page: 295 issue: 3 year: 1994 ident: 9292_CR24 publication-title: ACM Comput. Surv. doi: 10.1145/185403.185453 – volume: 1 start-page: 355 year: 2007 ident: 9292_CR2 publication-title: Optim. Lett. doi: 10.1007/s11590-006-0031-4 – ident: 9292_CR44 doi: 10.1007/3-540-60321-2_26 – ident: 9292_CR54 doi: 10.1007/978-3-642-12139-5_23 – ident: 9292_CR1 doi: 10.1109/SAINT.2005.1 – volume: 78 start-page: 196 issue: 2 year: 2008 ident: 9292_CR43 publication-title: Stat. Probab. Lett. doi: 10.1016/j.spl.2007.05.022 – volume: 10 start-page: 239 issue: 3 year: 2004 ident: 9292_CR4 publication-title: J. Heuristics doi: 10.1023/B:HEUR.0000026984.08350.12 – ident: 9292_CR37 doi: 10.1007/978-3-642-14186-7_31 – ident: 9292_CR18 doi: 10.1007/978-3-642-04244-7_20 – ident: 9292_CR40 doi: 10.1007/978-3-540-74970-7_37 – ident: 9292_CR5 doi: 10.1007/978-3-642-04244-7_14 – volume-title: Metaheuristics: Progress as Real Problem Solvers year: 2005 ident: 9292_CR36 – ident: 9292_CR17 doi: 10.1007/978-3-540-77220-0_51 – ident: 9292_CR56 – ident: 9292_CR10 – ident: 9292_CR14 – ident: 9292_CR52 – volume-title: Statistical Methods in Experimental Physics year: 1971 ident: 9292_CR26 – volume-title: Order Statistics. Wiley Series in Probability and Mathematical Statistics. Probability and Mathematical Statistics year: 2003 ident: 9292_CR23 – volume: 36 start-page: 267 year: 2009 ident: 9292_CR35 publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.2861 – volume: 42 start-page: 1042 issue: 6 year: 1994 ident: 9292_CR27 publication-title: Oper. Res. doi: 10.1287/opre.42.6.1042 – volume-title: Handbook of Approximation Algorithms and Metaheuristics year: 2007 ident: 9292_CR31 – volume: 47 start-page: 173 year: 1993 ident: 9292_CR38 publication-title: Inf. Process. Lett. doi: 10.1016/0020-0190(93)90029-9 – volume: 8 start-page: 247 issue: 3 year: 2002 ident: 9292_CR21 publication-title: J. Heuristics doi: 10.1023/A:1015084116772 – volume: 36 start-page: 2357 year: 2009 ident: 9292_CR41 publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2008.08.014 – ident: 9292_CR7 doi: 10.1109/ICTAI.2012.17 – volume: 37 start-page: 60 issue: 1 year: 2011 ident: 9292_CR50 publication-title: Parallel Comput. doi: 10.1016/j.parco.2010.08.004 |
| SSID | ssj0009853 |
| Score | 2.1852252 |
| Snippet | This paper presents a detailed analysis of the scalability and parallelization of Local Search algorithms for constraint-based and SAT (Boolean satisfiability)... This paper presents a detailed analysis of the scalability and par-allelization of Local Search algorithms for constraint-based and SAT (Boolean... |
| SourceID | hal proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 613 |
| SubjectTerms | Algorithms Artificial Intelligence Boolean Calculus of Variations and Optimal Control; Optimization Combinatorics Computer Science Distributed, Parallel, and Cluster Computing Estimating techniques Management Science Mathematical analysis Mathematics Mathematics and Statistics Methods Operations Research Operations Research/Decision Theory Parallel processing Performance evaluation Propagation Random variables Studies |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58HfTgW1xfBPGkBPpIm_YoonhYRXzhrTSP6kK3K9vqwV_vTLddV1FBe0szTcIkk5k0M98AHBi04XUcZ9xNZcyF0pqngfC58fEx0hq_joW578rLy-jhIb5q4rjL1tu9vZKsd-qJYDfpkxtBwFGle9yfhlnUdhFJ4_XN_QfSblRDT7qoijhuy257lfldE5-U0fQTuUJO2JlfrkZrjXO29K-xLsNiY2Cy49GKWIEpW6zCUpu8gTWyvAoLE0iEWLoYw7eWa9A9RcGnQvHICBs8z23OCKKA4kUYmrkMNZwZ9Htv1rA0fxwMe9VTv2S9gmmyNyntRMVwVdPfinW4Ozu9PTnnTdoFrkUQV9xVmRShVSpwlcRDpkylI4xPRxstrWtD4znaCJOpOEDSKI608pS1qfR0pjzjb8BMMSjsJrAw8rJAWi8MbCa0Y7E1rZTrZEqEWkW2A07L_0Q3mOQ0xjz5QFMmTibIyYQ4mfgdOBx_8jwC5PiNeB8ndUxHUNrnx92E3qFiFpRz5NXtwE4750kjwGWChg9lu4k8rD5q53ii-qcet_5EvQ3zaICFI4fCHZiphi92F-b0a9Urh3v1un4Hf5jx8w priority: 102 providerName: Springer Nature |
| Title | Estimating parallel runtimes for randomized algorithms in constraint solving |
| URI | https://link.springer.com/article/10.1007/s10732-015-9292-3 https://www.proquest.com/docview/1811136821 https://hal.science/hal-01248168 |
| Volume | 22 |
| WOSCitedRecordID | wos000380273700012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1572-9397 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0009853 issn: 1381-1231 databaseCode: 7WY dateStart: 19970301 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1572-9397 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0009853 issn: 1381-1231 databaseCode: M0C dateStart: 19970301 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1572-9397 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0009853 issn: 1381-1231 databaseCode: P5Z dateStart: 19970301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database (ProQuest) customDbUrl: eissn: 1572-9397 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0009853 issn: 1381-1231 databaseCode: K7- dateStart: 19970301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1572-9397 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0009853 issn: 1381-1231 databaseCode: BENPR dateStart: 19970301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1572-9397 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009853 issn: 1381-1231 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFH6iGwc4MBhMdGyVhTiBLGLHiZMT2qZOkyhVNWAMLlH8I1ulLN3WsAN_Pe-lydpNYhdy8CFxbCfv2e-z_fw9gHcOMbxN04KLXKdcGWt5HqmQuxAvp70Lm7MwJyM9Hienp-mkXXCbt26V3ZjYDNRuZmmN_CNaIgo_kkjx6fKKU9Qo2l1tQ2j0YF1IKUjPP2u-JN1NGhZKgVaJ4wgtul3NxdE5HZJTQsQRIEge3rFLvXPyilyBnPd2SRvjc7jxv81-Ds9a2Mn2FnryAh75ahM2upAOrO3hm_B0hZ_wJYyGOAAQpK3OGHGEl6UvGVEV0LkRhnCXoaVzs4vpH-9YXp5hxfX5xZxNK2YJd1L4iZqhdtOqxSv4fjj8dnDE2_AL3KoorbkwhVaxNyYSRuNkU-c6UC6kKY7VXvjYycA65QqTRpg1SRNrpPE-19IWRrpwC9aqWeVfA8PvLyLtZRz5QtnAY2nWGBEURsXWJL4PQffzM9tyk1Mby2zJqkzyylBeGckrC_vw_vaVywUxx0OZ36JEb_MRpfbR3iije2igFcUeuRF92OlEmLUdeZ4t5deHD50SrDz-V43bDxf2Bp4g8ooXnoQ7sFZf__a78Nje1NP59QB6-sfPAazvD8eT40Gj05h-CQ4wnUS_MD3-evIX3ar9MQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB21BQk4UCggFgpYCC4gi8Rx4uSAUFVabdWw4lBQbyb-SLtSmi3dUAQ_it_ITD66CxK99UCOieMk9vPMczx-A_DCIYe3WVbysFAZl8ZaXsQy4i7CwynvonYvzOdcTSbp4WH2cQV-DXthKKxysImtoXYzS__I36AnovQjqQjfnX7llDWKVleHFBodLPb9j-84ZZu_3XuP_ftSiN2dg-0x77MKcCvjrOGhKZVMvDFxaBTOoVShAukiYu5W-dAnTgTWSVeaLMaiaZZaI4z3hRK2NMJFWO8qXJMShwOFCgbbC5HftFW9DNELcvQI4bCK2m3VUxEFQcQcCYng0R9-cPWYojCXKO5fq7Kts9td_9-a6Q7c7mk12-rGwV1Y8fUGrA8pK1hvwTbg1pL-4j3Id9DAEWWvjxhpoFeVrxhJMdC-GIZ0nqEnd7OT6U_vWFEd4Yc2xydzNq2ZJV5N6TUahqOX_srch09X8oUPYK2e1f4hMGzvMlZeJLEvpQ081maNCYPSyMSa1I8gGDpb2157nd6x0gvVaMKHRnxowoeORvDq4pbTTnjkssLPEUEX5UgyfLyVazqHBERSbpXzcASbA2R0b6jmeoGXEbweQLd0-V9PfHR5Zc_gxvjgQ67zvcn-Y7iJLDPpoiY3Ya05--afwHV73kznZ0_bEcTgy1Vj8TfgFFd6 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB21BSF6oFBALBSwEFxAVhPHiZMDQhXtqtWuVj0A6s3EH2lXSrNtNxTBT-PXMZOP7oJEbz2QY-I4if088xyP3wC8dsjhbZYVPMxVxqWxluexjLiL8HDKu6jZC_NlrCaT9OgoO1yBX_1eGAqr7G1iY6jdzNI_8m30RJR-JBXhdtGFRRzuDj-cnXPKIEUrrX06jRYiI__jO07f5u8PdrGv3wgx3Pv0cZ93GQa4lXFW89AUSibemDg0CudTKleBdBGxeKt86BMnAuukK0wWY9E0S60RxvtcCVsY4SKsdxVuoReOaYyNFF8I_qaNAmaIHpGjdwj7FdV2256KKCAi5khOBI_-8ImrJxSRuUR3_1qhbRzfcON_brL7cK-j22ynHR8PYMVXm7DRp7JgnWXbhPUlXcaHMN5Dw0dUvjpmpI1elr5kJNFA-2UY0nyGHt7NTqc_vWN5eYwfWp-cztm0Ypb4NqXdqBmOavpb8wg-38gXPoa1alb5J8Cw7YtYeZHEvpA28FibNSYMCiMTa1I_gKDveG07TXZ6x1Iv1KQJKxqxogkrOhrA26tbzlpBkusKv0I0XZUjKfH9nbGmc0hMJOVcuQwHsNXDR3cGbK4X2BnAux6AS5f_9cSn11f2Eu4gBPX4YDJ6BneRfCZtMOUWrNUX3_xzuG0v6-n84kUzmBh8vWko_gY6rmAg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+parallel+runtimes+for+randomized+algorithms+in+constraint+solving&rft.jtitle=Journal+of+heuristics&rft.au=Truchet%2C+Charlotte&rft.au=Arbelaez%2C+Alejandro&rft.au=Richoux%2C+Florian&rft.au=Codognet%2C+Philippe&rft.date=2016-08-01&rft.pub=Springer+Nature+B.V&rft.issn=1381-1231&rft.eissn=1572-9397&rft.volume=22&rft.issue=4&rft.spage=613&rft_id=info:doi/10.1007%2Fs10732-015-9292-3&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=4146264241 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1381-1231&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1381-1231&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1381-1231&client=summon |