Antagonism between FOXO and MYC Regulates Cellular Powerhouse
Alterations in cellular metabolism are a key feature of the transformed phenotype. Enhanced macromolecule synthesis is a prerequisite for rapid proliferation but may also contribute to induction of angiogenesis, metastasis formation, and tumor progression, thereby leading to a poorer clinical outcom...
Gespeichert in:
| Veröffentlicht in: | Frontiers in oncology Jg. 3; S. 96 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Switzerland
Frontiers Media S.A
01.01.2013
|
| Schlagworte: | |
| ISSN: | 2234-943X, 2234-943X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Alterations in cellular metabolism are a key feature of the transformed phenotype. Enhanced macromolecule synthesis is a prerequisite for rapid proliferation but may also contribute to induction of angiogenesis, metastasis formation, and tumor progression, thereby leading to a poorer clinical outcome. Metabolic adaptations enable cancer cells to survive in suboptimal growth conditions, such as the limited supply of nutrient and oxygen often found in the tumor microenvironment. Metabolic changes, including activation of glycolysis and inhibition of mitochondrial ATP production, are induced under hypoxia to promote survival in low oxygen. FOXO3a, a transcription factor that is inhibited by the phosphatidylinositol 3-kinase/Akt pathway and is upregulated in hypoxia, has emerged as an important negative regulator of MYC function. Recent studies have revealed that FOXO3a acts as a negative regulator of mitochondrial function through inhibition of MYC. Ablation of FOXO3a prevents the inhibition of mitochondrial function induced by hypoxia and results in enhanced oxidative stress. This review will focus on the antagonism between FOXO3a and MYC and discuss their role in cellular bioenergetics, reactive oxygen metabolism, and adaptation to hypoxia, raising questions about the role of FOXO proteins in cancer. |
|---|---|
| AbstractList | Alterations in cellular metabolism are a key feature of the transformed phenotype. Enhanced macromolecule synthesis is a prerequisite for rapid proliferation but may also contribute to induction of angiogenesis, metastasis formation, and tumor progression, thereby leading to a poorer clinical outcome. Metabolic adaptations enable cancer cells to survive in suboptimal growth conditions, such as the limited supply of nutrient and oxygen often found in the tumor microenvironment. Metabolic changes, including activation of glycolysis and inhibition of mitochondrial ATP production, are induced under hypoxia to promote survival in low oxygen. FOXO3a, a transcription factor that is inhibited by the phosphatidylinositol 3-kinase/Akt pathway and is upregulated in hypoxia, has emerged as an important negative regulator of MYC function. Recent studies have revealed that FOXO3a acts as a negative regulator of mitochondrial function through inhibition of MYC. Ablation of FOXO3a prevents the inhibition of mitochondrial function induced by hypoxia and results in enhanced oxidative stress. This review will focus on the antagonism between FOXO3a and MYC and discuss their role in cellular bioenergetics, reactive oxygen metabolism, and adaptation to hypoxia, raising questions about the role of FOXO proteins in cancer. Alterations in cellular metabolism are a key feature of the transformed phenotype. Enhanced macromolecule synthesis is a prerequisite for rapid proliferation but may also contribute to induction of angiogenesis, metastasis formation, and tumor progression, thereby leading to a poorer clinical outcome. Metabolic adaptations enable cancer cells to survive in suboptimal growth conditions, such as the limited supply of nutrient and oxygen often found in the tumor microenvironment. Metabolic changes, including activation of glycolysis and inhibition of mitochondrial ATP production, are induced under hypoxia to promote survival in low oxygen. FOXO3a, a transcription factor that is inhibited by the phosphatidylinositol 3-kinase/Akt pathway and is upregulated in hypoxia, has emerged as an important negative regulator of MYC function. Recent studies have revealed that FOXO3a acts as a negative regulator of mitochondrial function through inhibition of MYC. Ablation of FOXO3a prevents the inhibition of mitochondrial function induced by hypoxia and results in enhanced oxidative stress. This review will focus on the antagonism between FOXO3a and MYC and discuss their role in cellular bioenergetics, reactive oxygen metabolism, and adaptation to hypoxia, raising questions about the role of FOXO proteins in cancer.Alterations in cellular metabolism are a key feature of the transformed phenotype. Enhanced macromolecule synthesis is a prerequisite for rapid proliferation but may also contribute to induction of angiogenesis, metastasis formation, and tumor progression, thereby leading to a poorer clinical outcome. Metabolic adaptations enable cancer cells to survive in suboptimal growth conditions, such as the limited supply of nutrient and oxygen often found in the tumor microenvironment. Metabolic changes, including activation of glycolysis and inhibition of mitochondrial ATP production, are induced under hypoxia to promote survival in low oxygen. FOXO3a, a transcription factor that is inhibited by the phosphatidylinositol 3-kinase/Akt pathway and is upregulated in hypoxia, has emerged as an important negative regulator of MYC function. Recent studies have revealed that FOXO3a acts as a negative regulator of mitochondrial function through inhibition of MYC. Ablation of FOXO3a prevents the inhibition of mitochondrial function induced by hypoxia and results in enhanced oxidative stress. This review will focus on the antagonism between FOXO3a and MYC and discuss their role in cellular bioenergetics, reactive oxygen metabolism, and adaptation to hypoxia, raising questions about the role of FOXO proteins in cancer. Alterations in cellular metabolism are a key feature of the transformed phenotype. Enhanced macromolecule synthesis is a prerequisite for rapid proliferation but may also contribute to induction of angiogenesis, metastasis formation and tumour progression, thereby leading to a poorer clinical outcome. Metabolic adaptations enable cancer cells to survive in suboptimal growth conditions, such as the limited supply of nutrient and oxygen often found in the tumour microenvironment. Metabolic changes, including activation of glycolysis and inhibition of mitochondrial ATP production, are induced under hypoxia to promote survival in low oxygen. FOXO3a, a transcription factor that is inhibited by the PI3K/Akt pathway and is upregulated in hypoxia, has emerged as an important negative regulator of Myc function. Recent studies have revealed that FOXO3a acts as a negative regulator of mitochondrial function through inhibition of Myc. Ablation of FOXO3a prevents the inhibition of mitochondrial function induced by hypoxia and results in enhanced oxidative stress. This review will focus on the antagonism between FOXO3a and Myc and discuss their role in cellular bioenergetics, reactive oxygen metabolism and adaptation to hypoxia, raising questions about the role of FOXO proteins in cancer. |
| Author | Peck, Barrie Ferber, Emma C. Schulze, Almut |
| AuthorAffiliation | 1 Gene Expression Analysis Laboratory, Cancer Research UK, London Research Institute London, UK |
| AuthorAffiliation_xml | – name: 1 Gene Expression Analysis Laboratory, Cancer Research UK, London Research Institute London, UK |
| Author_xml | – sequence: 1 givenname: Barrie surname: Peck fullname: Peck, Barrie – sequence: 2 givenname: Emma C. surname: Ferber fullname: Ferber, Emma C. – sequence: 3 givenname: Almut surname: Schulze fullname: Schulze, Almut |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23630664$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1Uc9rFDEUDlKxP-zZm8zRy26TeUl2clAoi62Fyooo1FPIZF62KbNJTbIW_3sz3VpawVMeed-Px_cdkr0QAxLyhtE5QKdOXAx23lIGc0qpki_IQdsCnykOV3tP5n1ynPNNhVApKKPwiuy3IIFKyQ_I-9NQzDoGnzdNj-UOMTRnq6tVY8LQfP6xbL7iejuagrlZ4jjWMTVf4h2m67jN-Jq8dGbMePzwHpHvZx-_LT_NLlfnF8vTy5nlQpUZ6yW0StWjheXctqIdWCdcr6gdENhC9QC9VKqjIIR1BsE61XcGDJVughyRi53uEM2Nvk1-Y9JvHY3X9x8xrbVJxdsRdWeRLlomFsglHzroGB2EpMw51knjeNX6sNO63fYbHCyGksz4TPT5JvhrvY6_dM1MUGBV4N2DQIo_t5iL3vhsazgmYA1FM-CL6g1MVujbp16PJn_zr4CTHcCmmHNC9whhVE8l66lkPZWs70uuDPEPw_piio_TsX78L-8PnQKqiQ |
| CitedBy_id | crossref_primary_10_1038_s41598_020_70941_y crossref_primary_10_1186_s11658_020_00211_2 crossref_primary_10_1016_j_cell_2014_12_016 crossref_primary_10_31083_j_fbl2704134 crossref_primary_10_3390_cells10010046 crossref_primary_10_3892_ijo_2018_4407 crossref_primary_10_1016_j_cmet_2013_09_013 crossref_primary_10_1158_2159_8290_CD_15_0507 crossref_primary_10_1371_journal_pgen_1008097 crossref_primary_10_3390_ijms21030692 crossref_primary_10_1038_s41401_018_0108_5 crossref_primary_10_1038_s41580_023_00649_0 crossref_primary_10_1038_oncsis_2015_25 crossref_primary_10_1111_bjh_18939 crossref_primary_10_3390_ijms252312621 crossref_primary_10_1016_j_omtn_2019_09_007 crossref_primary_10_1016_j_bbamcr_2022_119359 crossref_primary_10_1158_0008_5472_CAN_21_3371 crossref_primary_10_3389_fonc_2017_00216 crossref_primary_10_1084_jem_20170697 crossref_primary_10_1038_bjc_2014_595 crossref_primary_10_1186_s13075_021_02595_8 crossref_primary_10_3390_pathophysiology30030027 crossref_primary_10_1016_j_semcancer_2022_10_001 crossref_primary_10_1128_jvi_01941_21 crossref_primary_10_1186_s13045_021_01111_4 crossref_primary_10_1038_srep16835 crossref_primary_10_3390_genes9010048 crossref_primary_10_1038_s41375_022_01594_1 crossref_primary_10_1007_s00018_024_05434_6 crossref_primary_10_1242_dmm_052005 crossref_primary_10_3390_cells9020416 crossref_primary_10_3390_cells9071586 crossref_primary_10_1016_j_tig_2020_02_003 crossref_primary_10_3390_metabo14050249 crossref_primary_10_1242_jcs_250720 crossref_primary_10_1016_j_ajpath_2016_10_016 crossref_primary_10_3390_cells10113065 crossref_primary_10_4161_15592294_2014_983371 crossref_primary_10_1016_j_tem_2014_04_002 crossref_primary_10_1177_1535370220934038 crossref_primary_10_1128_JVI_01966_19 crossref_primary_10_1016_j_smim_2016_10_002 crossref_primary_10_1016_j_compbiomed_2018_09_017 crossref_primary_10_1016_j_ccell_2016_02_011 crossref_primary_10_1186_s12967_017_1297_2 crossref_primary_10_1016_j_bbamcr_2014_11_017 crossref_primary_10_3892_mmr_2019_10735 crossref_primary_10_1016_j_ccell_2015_09_005 crossref_primary_10_1038_onc_2013_586 crossref_primary_10_3389_fimmu_2024_1324045 crossref_primary_10_1038_nature17442 crossref_primary_10_1016_j_semcancer_2022_12_011 crossref_primary_10_1186_s13578_022_00858_8 crossref_primary_10_3389_fonc_2014_00305 crossref_primary_10_4049_jimmunol_1501890 crossref_primary_10_1080_15592294_2020_1861172 |
| ContentType | Journal Article |
| Copyright | Copyright © 2013 Peck, Ferber and Schulze. 2013 |
| Copyright_xml | – notice: Copyright © 2013 Peck, Ferber and Schulze. 2013 |
| DBID | AAYXX CITATION NPM 7X8 5PM DOA |
| DOI | 10.3389/fonc.2013.00096 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2234-943X |
| ExternalDocumentID | oai_doaj_org_article_8ce072157e464d83810d5601ff186af4 PMC3635031 23630664 10_3389_fonc_2013_00096 |
| Genre | Journal Article |
| GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EBS EJD EMOBN GROUPED_DOAJ GX1 HYE IPNFZ KQ8 M48 M~E OK1 PGMZT RIG RNS RPM ACXDI NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c459t-1b632993385c44c252d185fb90cde3179b33b69980355cfae3cf9b8a3a06fcde3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 75 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000218338900063&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2234-943X |
| IngestDate | Fri Oct 03 12:46:35 EDT 2025 Thu Aug 21 14:10:52 EDT 2025 Fri Sep 05 07:44:01 EDT 2025 Thu Apr 03 07:09:38 EDT 2025 Sat Nov 29 04:56:51 EST 2025 Tue Nov 18 20:26:18 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | FOXO hypoxia HIF MYC mitochondria ROS cancer metabolism |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c459t-1b632993385c44c252d185fb90cde3179b33b69980355cfae3cf9b8a3a06fcde3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by: Eric W. Lam, Imperial College London, UK This article was submitted to Frontiers in Molecular and Cellular Oncology, a specialty of Frontiers in Oncology. Reviewed by: Emilio Hirsch, University of Torino, Italy; Sonia Lain, Karolinska Institutet, Sweden; Sebastien Dupasquier, Université Catholique de Louvain, Belgium |
| OpenAccessLink | https://doaj.org/article/8ce072157e464d83810d5601ff186af4 |
| PMID | 23630664 |
| PQID | 1347464316 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_8ce072157e464d83810d5601ff186af4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3635031 proquest_miscellaneous_1347464316 pubmed_primary_23630664 crossref_primary_10_3389_fonc_2013_00096 crossref_citationtrail_10_3389_fonc_2013_00096 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-01-01 |
| PublicationDateYYYYMMDD | 2013-01-01 |
| PublicationDate_xml | – month: 01 year: 2013 text: 2013-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland |
| PublicationTitle | Frontiers in oncology |
| PublicationTitleAlternate | Front Oncol |
| PublicationYear | 2013 |
| Publisher | Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media S.A |
| References | 10102273 - Cell. 1999 Mar 19;96(6):857-68 18158893 - Mol Cell. 2007 Dec 28;28(6):941-53 22576206 - Cancer Discov. 2012 Apr;2(4):304-7 17452451 - Mol Cell Biol. 2007 Jul;27(13):4917-30 16904903 - Semin Cancer Biol. 2006 Aug;16(4):253-64 15241468 - EMBO J. 2004 Jul 21;23 (14 ):2830-40 21215704 - Cancer Cell. 2011 Jan 18;19(1):58-71 17482131 - Cancer Cell. 2007 May;11(5):407-20 15100294 - J Immunol. 2004 May 1;172(9):5522-7 21075312 - Cancer Cell. 2010 Nov 16;18(5):472-84 15016963 - Science. 2004 Apr 23;304(5670):554 17522590 - Nat Rev Mol Cell Biol. 2007 Jun;8(6):440-50 23001348 - Nat Rev Cancer. 2012 Oct;12(10):685-98 20421486 - Proc Natl Acad Sci U S A. 2010 May 11;107(19):8788-93 18219320 - Cell Death Differ. 2008 Apr;15(4):660-6 2566386 - Cell. 1989 May 19;57(4):645-58 18371339 - Cell Stem Cell. 2007 Jun 7;1(1):101-12 20808831 - PLoS One. 2010 Aug 20;5(8):e12293 10702024 - Genes Dev. 2000 Jan 15;14(2):142-6 18371346 - Cell Stem Cell. 2007 Aug 16;1(2):140-52 21336599 - Breast Cancer Res Treat. 2011 Aug;129(1):11-21 19648934 - Nat Chem Biol. 2009 Sep;5(9):664-72 18716624 - Nature. 2008 Oct 2;455(7213):679-83 19196970 - Proc Natl Acad Sci U S A. 2009 Feb 24;106(8):2700-5 19029958 - Nat Rev Cancer. 2008 Dec;8(12):976-90 17254970 - Cell. 2007 Jan 26;128(2):325-39 15084260 - Cell. 2004 Apr 16;117(2):225-37 11994454 - J Immunol. 2002 May 15;168(10 ):5024-31 19793722 - Hum Mol Genet. 2009 Dec 15;18(24):4897-904 18391973 - Oncogene. 2008 Apr 7;27(16):2312-9 19896444 - Cell Stem Cell. 2009 Nov 6;5(5):540-53 22473468 - Nat Rev Mol Cell Biol. 2012 Apr 04;13(5):283-96 10783894 - Nature. 2000 Apr 13;404(6779):782-7 21884932 - Cell. 2011 Sep 2;146(5):697-708 17692803 - Cancer Cell. 2007 Aug;12(2):108-13 18391968 - Oncogene. 2008 Apr 7;27(16):2258-62 12239572 - Nature. 2002 Sep 19;419(6904):316-21 21329882 - Mol Cell. 2011 Feb 18;41(4):445-57 20130650 - Nature. 2010 Feb 4;463(7281):676-80 18765803 - Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):13987-92 21132100 - Genes Cancer. 2010 Jun;1(6):650-659 18794883 - Oncogene. 2008 Sep 18;27(41):5486-96 21907929 - Cancer Cell. 2011 Sep 13;20(3):400-13 11964479 - Science. 2002 Apr 19;296(5567):530-4 21376230 - Cell. 2011 Mar 4;144(5):646-74 19498040 - Mol Pharmacol. 2009 Sep;76(3):491-502 11902584 - Nat Rev Cancer. 2002 Jan;2(1):38-47 23037452 - Nat Rev Cancer. 2012 Nov;12(11):733 21835778 - Nucleic Acids Res. 2011 Dec;39(22):9498-507 18498744 - Mol Cell. 2008 May 23;30(4):393-402 18487207 - J Biol Chem. 2008 Jul 11;283(28):19201-10 18948997 - Nat Rev Cancer. 2008 Nov;8(11):875-9 21822287 - Nat Med. 2011 Aug 07;17(9):1116-20 23340844 - Mol Syst Biol. 2013;9:638 22139133 - Cell Death Differ. 2012 Jun;19(6):968-79 18204439 - Nat Cell Biol. 2008 Feb;10 (2):138-48 10880363 - Biochem J. 2000 Jul 15;349(Pt 2):629-34 20430626 - Trends Biochem Sci. 2010 Sep;35(9):505-13 20424120 - Cancer Res. 2010 Jun 1;70(11):4260-4 19460998 - Science. 2009 May 22;324(5930):1029-33 22610277 - Nat Med. 2012 Jun;18(6):892-901 22464321 - Cell. 2012 Mar 30;149(1):22-35 22169972 - Nat Rev Cancer. 2011 Dec 15;12(1):9-22 15988031 - Mol Cell Biol. 2005 Jul;25(14):6225-34 16517402 - Cell Metab. 2006 Mar;3(3):150-1 19896443 - Cell Stem Cell. 2009 Nov 6;5(5):527-39 21915097 - EMBO J. 2011 Nov 16;30(22):4554-70 |
| References_xml | – reference: 20421486 - Proc Natl Acad Sci U S A. 2010 May 11;107(19):8788-93 – reference: 22464321 - Cell. 2012 Mar 30;149(1):22-35 – reference: 23001348 - Nat Rev Cancer. 2012 Oct;12(10):685-98 – reference: 18487207 - J Biol Chem. 2008 Jul 11;283(28):19201-10 – reference: 2566386 - Cell. 1989 May 19;57(4):645-58 – reference: 21336599 - Breast Cancer Res Treat. 2011 Aug;129(1):11-21 – reference: 22473468 - Nat Rev Mol Cell Biol. 2012 Apr 04;13(5):283-96 – reference: 19648934 - Nat Chem Biol. 2009 Sep;5(9):664-72 – reference: 21376230 - Cell. 2011 Mar 4;144(5):646-74 – reference: 18716624 - Nature. 2008 Oct 2;455(7213):679-83 – reference: 21915097 - EMBO J. 2011 Nov 16;30(22):4554-70 – reference: 22576206 - Cancer Discov. 2012 Apr;2(4):304-7 – reference: 23037452 - Nat Rev Cancer. 2012 Nov;12(11):733 – reference: 17254970 - Cell. 2007 Jan 26;128(2):325-39 – reference: 18219320 - Cell Death Differ. 2008 Apr;15(4):660-6 – reference: 17452451 - Mol Cell Biol. 2007 Jul;27(13):4917-30 – reference: 21822287 - Nat Med. 2011 Aug 07;17(9):1116-20 – reference: 19029958 - Nat Rev Cancer. 2008 Dec;8(12):976-90 – reference: 22610277 - Nat Med. 2012 Jun;18(6):892-901 – reference: 21075312 - Cancer Cell. 2010 Nov 16;18(5):472-84 – reference: 10783894 - Nature. 2000 Apr 13;404(6779):782-7 – reference: 19498040 - Mol Pharmacol. 2009 Sep;76(3):491-502 – reference: 20424120 - Cancer Res. 2010 Jun 1;70(11):4260-4 – reference: 21132100 - Genes Cancer. 2010 Jun;1(6):650-659 – reference: 20808831 - PLoS One. 2010 Aug 20;5(8):e12293 – reference: 17482131 - Cancer Cell. 2007 May;11(5):407-20 – reference: 21835778 - Nucleic Acids Res. 2011 Dec;39(22):9498-507 – reference: 19460998 - Science. 2009 May 22;324(5930):1029-33 – reference: 18371346 - Cell Stem Cell. 2007 Aug 16;1(2):140-52 – reference: 18948997 - Nat Rev Cancer. 2008 Nov;8(11):875-9 – reference: 18204439 - Nat Cell Biol. 2008 Feb;10 (2):138-48 – reference: 18765803 - Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):13987-92 – reference: 10880363 - Biochem J. 2000 Jul 15;349(Pt 2):629-34 – reference: 21907929 - Cancer Cell. 2011 Sep 13;20(3):400-13 – reference: 21215704 - Cancer Cell. 2011 Jan 18;19(1):58-71 – reference: 18371339 - Cell Stem Cell. 2007 Jun 7;1(1):101-12 – reference: 19793722 - Hum Mol Genet. 2009 Dec 15;18(24):4897-904 – reference: 20130650 - Nature. 2010 Feb 4;463(7281):676-80 – reference: 16517402 - Cell Metab. 2006 Mar;3(3):150-1 – reference: 15084260 - Cell. 2004 Apr 16;117(2):225-37 – reference: 15988031 - Mol Cell Biol. 2005 Jul;25(14):6225-34 – reference: 21884932 - Cell. 2011 Sep 2;146(5):697-708 – reference: 17522590 - Nat Rev Mol Cell Biol. 2007 Jun;8(6):440-50 – reference: 18794883 - Oncogene. 2008 Sep 18;27(41):5486-96 – reference: 18391973 - Oncogene. 2008 Apr 7;27(16):2312-9 – reference: 22169972 - Nat Rev Cancer. 2011 Dec 15;12(1):9-22 – reference: 19196970 - Proc Natl Acad Sci U S A. 2009 Feb 24;106(8):2700-5 – reference: 10102273 - Cell. 1999 Mar 19;96(6):857-68 – reference: 15100294 - J Immunol. 2004 May 1;172(9):5522-7 – reference: 12239572 - Nature. 2002 Sep 19;419(6904):316-21 – reference: 19896444 - Cell Stem Cell. 2009 Nov 6;5(5):540-53 – reference: 23340844 - Mol Syst Biol. 2013;9:638 – reference: 11902584 - Nat Rev Cancer. 2002 Jan;2(1):38-47 – reference: 15016963 - Science. 2004 Apr 23;304(5670):554 – reference: 19896443 - Cell Stem Cell. 2009 Nov 6;5(5):527-39 – reference: 11994454 - J Immunol. 2002 May 15;168(10 ):5024-31 – reference: 15241468 - EMBO J. 2004 Jul 21;23 (14 ):2830-40 – reference: 22139133 - Cell Death Differ. 2012 Jun;19(6):968-79 – reference: 20430626 - Trends Biochem Sci. 2010 Sep;35(9):505-13 – reference: 10702024 - Genes Dev. 2000 Jan 15;14(2):142-6 – reference: 17692803 - Cancer Cell. 2007 Aug;12(2):108-13 – reference: 18391968 - Oncogene. 2008 Apr 7;27(16):2258-62 – reference: 21329882 - Mol Cell. 2011 Feb 18;41(4):445-57 – reference: 11964479 - Science. 2002 Apr 19;296(5567):530-4 – reference: 16904903 - Semin Cancer Biol. 2006 Aug;16(4):253-64 – reference: 18498744 - Mol Cell. 2008 May 23;30(4):393-402 – reference: 18158893 - Mol Cell. 2007 Dec 28;28(6):941-53 |
| SSID | ssj0000650103 |
| Score | 2.2488086 |
| Snippet | Alterations in cellular metabolism are a key feature of the transformed phenotype. Enhanced macromolecule synthesis is a prerequisite for rapid proliferation... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 96 |
| SubjectTerms | Cancer HIF hypoxia Metabolism Mitochondria Oncology ROS |
| Title | Antagonism between FOXO and MYC Regulates Cellular Powerhouse |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/23630664 https://www.proquest.com/docview/1347464316 https://pubmed.ncbi.nlm.nih.gov/PMC3635031 https://doaj.org/article/8ce072157e464d83810d5601ff186af4 |
| Volume | 3 |
| WOSCitedRecordID | wos000218338900063&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2234-943X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000650103 issn: 2234-943X databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2234-943X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000650103 issn: 2234-943X databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYAIcSCeFNeMhIDSyCJE8ceAVEx0JYBpG6W44eoBAG1BYmF385dHKoWgVhYMiQ-xfkuse-zL98Rchz7JNYxsxEXuYtglEyjUuc2kplOvZOJl0Fn9qbodkW_L2-nSn1hTliQBw7AnQnjUMIrL1zGMytQkMoii_A-EVz7WgkUop4pMhXG4BwLGAQtH2Bh8sw_V6hYmKCgaYwS_VPTUK3W_1OI-T1Tcmrqaa-SlSZmpOehr2tkzlXrZKnT7IpvEODwuLdUDUZPtMm7ou1ev0d1ZWnn3dBhKDjvRhTX6THxlL5gdbQHoP1uk9y3r-4ur6OmLEJkslyOo6TkDCYReKrcZJlJ89TCpOtLGRvrIByQJWMlBxoVQyxhvHbMeFkKzXTMPTbZIgvVc-V2CC0NY4U23grps4JbAeTJGBmXkiXW6bRFTr9QUqbRDMfSFY8KuAPCqhBWhbCqGtYWOZkYvAS5jN-bXiDsk2aoc12fAO-rxvvqL--3yNGX0xR8FwiirhyAp_AXWbBhCdxoOzhxcquUcWBKHKyLGffO9GX2SjV4qLW3wTKHcXD3Pzq_R5bTurgGLujsk4Xx8NUdkEXzNh6MhodkvuiLw_q1hmPn4-oTlXP7kg |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antagonism+between+FOXO+and+MYC+Regulates+Cellular+Powerhouse&rft.jtitle=Frontiers+in+oncology&rft.au=Peck%2C+Barrie&rft.au=Ferber%2C+Emma+C&rft.au=Schulze%2C+Almut&rft.date=2013-01-01&rft.issn=2234-943X&rft.eissn=2234-943X&rft.volume=3&rft.spage=96&rft_id=info:doi/10.3389%2Ffonc.2013.00096&rft_id=info%3Apmid%2F23630664&rft.externalDocID=23630664 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2234-943X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2234-943X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2234-943X&client=summon |