Antagonism between FOXO and MYC Regulates Cellular Powerhouse

Alterations in cellular metabolism are a key feature of the transformed phenotype. Enhanced macromolecule synthesis is a prerequisite for rapid proliferation but may also contribute to induction of angiogenesis, metastasis formation, and tumor progression, thereby leading to a poorer clinical outcom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in oncology Jg. 3; S. 96
Hauptverfasser: Peck, Barrie, Ferber, Emma C., Schulze, Almut
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland Frontiers Media S.A 01.01.2013
Schlagworte:
ISSN:2234-943X, 2234-943X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Alterations in cellular metabolism are a key feature of the transformed phenotype. Enhanced macromolecule synthesis is a prerequisite for rapid proliferation but may also contribute to induction of angiogenesis, metastasis formation, and tumor progression, thereby leading to a poorer clinical outcome. Metabolic adaptations enable cancer cells to survive in suboptimal growth conditions, such as the limited supply of nutrient and oxygen often found in the tumor microenvironment. Metabolic changes, including activation of glycolysis and inhibition of mitochondrial ATP production, are induced under hypoxia to promote survival in low oxygen. FOXO3a, a transcription factor that is inhibited by the phosphatidylinositol 3-kinase/Akt pathway and is upregulated in hypoxia, has emerged as an important negative regulator of MYC function. Recent studies have revealed that FOXO3a acts as a negative regulator of mitochondrial function through inhibition of MYC. Ablation of FOXO3a prevents the inhibition of mitochondrial function induced by hypoxia and results in enhanced oxidative stress. This review will focus on the antagonism between FOXO3a and MYC and discuss their role in cellular bioenergetics, reactive oxygen metabolism, and adaptation to hypoxia, raising questions about the role of FOXO proteins in cancer.
AbstractList Alterations in cellular metabolism are a key feature of the transformed phenotype. Enhanced macromolecule synthesis is a prerequisite for rapid proliferation but may also contribute to induction of angiogenesis, metastasis formation, and tumor progression, thereby leading to a poorer clinical outcome. Metabolic adaptations enable cancer cells to survive in suboptimal growth conditions, such as the limited supply of nutrient and oxygen often found in the tumor microenvironment. Metabolic changes, including activation of glycolysis and inhibition of mitochondrial ATP production, are induced under hypoxia to promote survival in low oxygen. FOXO3a, a transcription factor that is inhibited by the phosphatidylinositol 3-kinase/Akt pathway and is upregulated in hypoxia, has emerged as an important negative regulator of MYC function. Recent studies have revealed that FOXO3a acts as a negative regulator of mitochondrial function through inhibition of MYC. Ablation of FOXO3a prevents the inhibition of mitochondrial function induced by hypoxia and results in enhanced oxidative stress. This review will focus on the antagonism between FOXO3a and MYC and discuss their role in cellular bioenergetics, reactive oxygen metabolism, and adaptation to hypoxia, raising questions about the role of FOXO proteins in cancer.
Alterations in cellular metabolism are a key feature of the transformed phenotype. Enhanced macromolecule synthesis is a prerequisite for rapid proliferation but may also contribute to induction of angiogenesis, metastasis formation, and tumor progression, thereby leading to a poorer clinical outcome. Metabolic adaptations enable cancer cells to survive in suboptimal growth conditions, such as the limited supply of nutrient and oxygen often found in the tumor microenvironment. Metabolic changes, including activation of glycolysis and inhibition of mitochondrial ATP production, are induced under hypoxia to promote survival in low oxygen. FOXO3a, a transcription factor that is inhibited by the phosphatidylinositol 3-kinase/Akt pathway and is upregulated in hypoxia, has emerged as an important negative regulator of MYC function. Recent studies have revealed that FOXO3a acts as a negative regulator of mitochondrial function through inhibition of MYC. Ablation of FOXO3a prevents the inhibition of mitochondrial function induced by hypoxia and results in enhanced oxidative stress. This review will focus on the antagonism between FOXO3a and MYC and discuss their role in cellular bioenergetics, reactive oxygen metabolism, and adaptation to hypoxia, raising questions about the role of FOXO proteins in cancer.Alterations in cellular metabolism are a key feature of the transformed phenotype. Enhanced macromolecule synthesis is a prerequisite for rapid proliferation but may also contribute to induction of angiogenesis, metastasis formation, and tumor progression, thereby leading to a poorer clinical outcome. Metabolic adaptations enable cancer cells to survive in suboptimal growth conditions, such as the limited supply of nutrient and oxygen often found in the tumor microenvironment. Metabolic changes, including activation of glycolysis and inhibition of mitochondrial ATP production, are induced under hypoxia to promote survival in low oxygen. FOXO3a, a transcription factor that is inhibited by the phosphatidylinositol 3-kinase/Akt pathway and is upregulated in hypoxia, has emerged as an important negative regulator of MYC function. Recent studies have revealed that FOXO3a acts as a negative regulator of mitochondrial function through inhibition of MYC. Ablation of FOXO3a prevents the inhibition of mitochondrial function induced by hypoxia and results in enhanced oxidative stress. This review will focus on the antagonism between FOXO3a and MYC and discuss their role in cellular bioenergetics, reactive oxygen metabolism, and adaptation to hypoxia, raising questions about the role of FOXO proteins in cancer.
Alterations in cellular metabolism are a key feature of the transformed phenotype. Enhanced macromolecule synthesis is a prerequisite for rapid proliferation but may also contribute to induction of angiogenesis, metastasis formation and tumour progression, thereby leading to a poorer clinical outcome. Metabolic adaptations enable cancer cells to survive in suboptimal growth conditions, such as the limited supply of nutrient and oxygen often found in the tumour microenvironment. Metabolic changes, including activation of glycolysis and inhibition of mitochondrial ATP production, are induced under hypoxia to promote survival in low oxygen. FOXO3a, a transcription factor that is inhibited by the PI3K/Akt pathway and is upregulated in hypoxia, has emerged as an important negative regulator of Myc function. Recent studies have revealed that FOXO3a acts as a negative regulator of mitochondrial function through inhibition of Myc. Ablation of FOXO3a prevents the inhibition of mitochondrial function induced by hypoxia and results in enhanced oxidative stress. This review will focus on the antagonism between FOXO3a and Myc and discuss their role in cellular bioenergetics, reactive oxygen metabolism and adaptation to hypoxia, raising questions about the role of FOXO proteins in cancer.
Author Peck, Barrie
Ferber, Emma C.
Schulze, Almut
AuthorAffiliation 1 Gene Expression Analysis Laboratory, Cancer Research UK, London Research Institute London, UK
AuthorAffiliation_xml – name: 1 Gene Expression Analysis Laboratory, Cancer Research UK, London Research Institute London, UK
Author_xml – sequence: 1
  givenname: Barrie
  surname: Peck
  fullname: Peck, Barrie
– sequence: 2
  givenname: Emma C.
  surname: Ferber
  fullname: Ferber, Emma C.
– sequence: 3
  givenname: Almut
  surname: Schulze
  fullname: Schulze, Almut
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23630664$$D View this record in MEDLINE/PubMed
BookMark eNp1Uc9rFDEUDlKxP-zZm8zRy26TeUl2clAoi62Fyooo1FPIZF62KbNJTbIW_3sz3VpawVMeed-Px_cdkr0QAxLyhtE5QKdOXAx23lIGc0qpki_IQdsCnykOV3tP5n1ynPNNhVApKKPwiuy3IIFKyQ_I-9NQzDoGnzdNj-UOMTRnq6tVY8LQfP6xbL7iejuagrlZ4jjWMTVf4h2m67jN-Jq8dGbMePzwHpHvZx-_LT_NLlfnF8vTy5nlQpUZ6yW0StWjheXctqIdWCdcr6gdENhC9QC9VKqjIIR1BsE61XcGDJVughyRi53uEM2Nvk1-Y9JvHY3X9x8xrbVJxdsRdWeRLlomFsglHzroGB2EpMw51knjeNX6sNO63fYbHCyGksz4TPT5JvhrvY6_dM1MUGBV4N2DQIo_t5iL3vhsazgmYA1FM-CL6g1MVujbp16PJn_zr4CTHcCmmHNC9whhVE8l66lkPZWs70uuDPEPw_piio_TsX78L-8PnQKqiQ
CitedBy_id crossref_primary_10_1038_s41598_020_70941_y
crossref_primary_10_1186_s11658_020_00211_2
crossref_primary_10_1016_j_cell_2014_12_016
crossref_primary_10_31083_j_fbl2704134
crossref_primary_10_3390_cells10010046
crossref_primary_10_3892_ijo_2018_4407
crossref_primary_10_1016_j_cmet_2013_09_013
crossref_primary_10_1158_2159_8290_CD_15_0507
crossref_primary_10_1371_journal_pgen_1008097
crossref_primary_10_3390_ijms21030692
crossref_primary_10_1038_s41401_018_0108_5
crossref_primary_10_1038_s41580_023_00649_0
crossref_primary_10_1038_oncsis_2015_25
crossref_primary_10_1111_bjh_18939
crossref_primary_10_3390_ijms252312621
crossref_primary_10_1016_j_omtn_2019_09_007
crossref_primary_10_1016_j_bbamcr_2022_119359
crossref_primary_10_1158_0008_5472_CAN_21_3371
crossref_primary_10_3389_fonc_2017_00216
crossref_primary_10_1084_jem_20170697
crossref_primary_10_1038_bjc_2014_595
crossref_primary_10_1186_s13075_021_02595_8
crossref_primary_10_3390_pathophysiology30030027
crossref_primary_10_1016_j_semcancer_2022_10_001
crossref_primary_10_1128_jvi_01941_21
crossref_primary_10_1186_s13045_021_01111_4
crossref_primary_10_1038_srep16835
crossref_primary_10_3390_genes9010048
crossref_primary_10_1038_s41375_022_01594_1
crossref_primary_10_1007_s00018_024_05434_6
crossref_primary_10_1242_dmm_052005
crossref_primary_10_3390_cells9020416
crossref_primary_10_3390_cells9071586
crossref_primary_10_1016_j_tig_2020_02_003
crossref_primary_10_3390_metabo14050249
crossref_primary_10_1242_jcs_250720
crossref_primary_10_1016_j_ajpath_2016_10_016
crossref_primary_10_3390_cells10113065
crossref_primary_10_4161_15592294_2014_983371
crossref_primary_10_1016_j_tem_2014_04_002
crossref_primary_10_1177_1535370220934038
crossref_primary_10_1128_JVI_01966_19
crossref_primary_10_1016_j_smim_2016_10_002
crossref_primary_10_1016_j_compbiomed_2018_09_017
crossref_primary_10_1016_j_ccell_2016_02_011
crossref_primary_10_1186_s12967_017_1297_2
crossref_primary_10_1016_j_bbamcr_2014_11_017
crossref_primary_10_3892_mmr_2019_10735
crossref_primary_10_1016_j_ccell_2015_09_005
crossref_primary_10_1038_onc_2013_586
crossref_primary_10_3389_fimmu_2024_1324045
crossref_primary_10_1038_nature17442
crossref_primary_10_1016_j_semcancer_2022_12_011
crossref_primary_10_1186_s13578_022_00858_8
crossref_primary_10_3389_fonc_2014_00305
crossref_primary_10_4049_jimmunol_1501890
crossref_primary_10_1080_15592294_2020_1861172
ContentType Journal Article
Copyright Copyright © 2013 Peck, Ferber and Schulze. 2013
Copyright_xml – notice: Copyright © 2013 Peck, Ferber and Schulze. 2013
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fonc.2013.00096
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2234-943X
ExternalDocumentID oai_doaj_org_article_8ce072157e464d83810d5601ff186af4
PMC3635031
23630664
10_3389_fonc_2013_00096
Genre Journal Article
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EBS
EJD
EMOBN
GROUPED_DOAJ
GX1
HYE
IPNFZ
KQ8
M48
M~E
OK1
PGMZT
RIG
RNS
RPM
ACXDI
NPM
7X8
5PM
ID FETCH-LOGICAL-c459t-1b632993385c44c252d185fb90cde3179b33b69980355cfae3cf9b8a3a06fcde3
IEDL.DBID DOA
ISICitedReferencesCount 75
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000218338900063&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2234-943X
IngestDate Fri Oct 03 12:46:35 EDT 2025
Thu Aug 21 14:10:52 EDT 2025
Fri Sep 05 07:44:01 EDT 2025
Thu Apr 03 07:09:38 EDT 2025
Sat Nov 29 04:56:51 EST 2025
Tue Nov 18 20:26:18 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords FOXO
hypoxia
HIF
MYC
mitochondria
ROS
cancer
metabolism
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-1b632993385c44c252d185fb90cde3179b33b69980355cfae3cf9b8a3a06fcde3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Eric W. Lam, Imperial College London, UK
This article was submitted to Frontiers in Molecular and Cellular Oncology, a specialty of Frontiers in Oncology.
Reviewed by: Emilio Hirsch, University of Torino, Italy; Sonia Lain, Karolinska Institutet, Sweden; Sebastien Dupasquier, Université Catholique de Louvain, Belgium
OpenAccessLink https://doaj.org/article/8ce072157e464d83810d5601ff186af4
PMID 23630664
PQID 1347464316
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_8ce072157e464d83810d5601ff186af4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3635031
proquest_miscellaneous_1347464316
pubmed_primary_23630664
crossref_primary_10_3389_fonc_2013_00096
crossref_citationtrail_10_3389_fonc_2013_00096
PublicationCentury 2000
PublicationDate 2013-01-01
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in oncology
PublicationTitleAlternate Front Oncol
PublicationYear 2013
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References 10102273 - Cell. 1999 Mar 19;96(6):857-68
18158893 - Mol Cell. 2007 Dec 28;28(6):941-53
22576206 - Cancer Discov. 2012 Apr;2(4):304-7
17452451 - Mol Cell Biol. 2007 Jul;27(13):4917-30
16904903 - Semin Cancer Biol. 2006 Aug;16(4):253-64
15241468 - EMBO J. 2004 Jul 21;23 (14 ):2830-40
21215704 - Cancer Cell. 2011 Jan 18;19(1):58-71
17482131 - Cancer Cell. 2007 May;11(5):407-20
15100294 - J Immunol. 2004 May 1;172(9):5522-7
21075312 - Cancer Cell. 2010 Nov 16;18(5):472-84
15016963 - Science. 2004 Apr 23;304(5670):554
17522590 - Nat Rev Mol Cell Biol. 2007 Jun;8(6):440-50
23001348 - Nat Rev Cancer. 2012 Oct;12(10):685-98
20421486 - Proc Natl Acad Sci U S A. 2010 May 11;107(19):8788-93
18219320 - Cell Death Differ. 2008 Apr;15(4):660-6
2566386 - Cell. 1989 May 19;57(4):645-58
18371339 - Cell Stem Cell. 2007 Jun 7;1(1):101-12
20808831 - PLoS One. 2010 Aug 20;5(8):e12293
10702024 - Genes Dev. 2000 Jan 15;14(2):142-6
18371346 - Cell Stem Cell. 2007 Aug 16;1(2):140-52
21336599 - Breast Cancer Res Treat. 2011 Aug;129(1):11-21
19648934 - Nat Chem Biol. 2009 Sep;5(9):664-72
18716624 - Nature. 2008 Oct 2;455(7213):679-83
19196970 - Proc Natl Acad Sci U S A. 2009 Feb 24;106(8):2700-5
19029958 - Nat Rev Cancer. 2008 Dec;8(12):976-90
17254970 - Cell. 2007 Jan 26;128(2):325-39
15084260 - Cell. 2004 Apr 16;117(2):225-37
11994454 - J Immunol. 2002 May 15;168(10 ):5024-31
19793722 - Hum Mol Genet. 2009 Dec 15;18(24):4897-904
18391973 - Oncogene. 2008 Apr 7;27(16):2312-9
19896444 - Cell Stem Cell. 2009 Nov 6;5(5):540-53
22473468 - Nat Rev Mol Cell Biol. 2012 Apr 04;13(5):283-96
10783894 - Nature. 2000 Apr 13;404(6779):782-7
21884932 - Cell. 2011 Sep 2;146(5):697-708
17692803 - Cancer Cell. 2007 Aug;12(2):108-13
18391968 - Oncogene. 2008 Apr 7;27(16):2258-62
12239572 - Nature. 2002 Sep 19;419(6904):316-21
21329882 - Mol Cell. 2011 Feb 18;41(4):445-57
20130650 - Nature. 2010 Feb 4;463(7281):676-80
18765803 - Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):13987-92
21132100 - Genes Cancer. 2010 Jun;1(6):650-659
18794883 - Oncogene. 2008 Sep 18;27(41):5486-96
21907929 - Cancer Cell. 2011 Sep 13;20(3):400-13
11964479 - Science. 2002 Apr 19;296(5567):530-4
21376230 - Cell. 2011 Mar 4;144(5):646-74
19498040 - Mol Pharmacol. 2009 Sep;76(3):491-502
11902584 - Nat Rev Cancer. 2002 Jan;2(1):38-47
23037452 - Nat Rev Cancer. 2012 Nov;12(11):733
21835778 - Nucleic Acids Res. 2011 Dec;39(22):9498-507
18498744 - Mol Cell. 2008 May 23;30(4):393-402
18487207 - J Biol Chem. 2008 Jul 11;283(28):19201-10
18948997 - Nat Rev Cancer. 2008 Nov;8(11):875-9
21822287 - Nat Med. 2011 Aug 07;17(9):1116-20
23340844 - Mol Syst Biol. 2013;9:638
22139133 - Cell Death Differ. 2012 Jun;19(6):968-79
18204439 - Nat Cell Biol. 2008 Feb;10 (2):138-48
10880363 - Biochem J. 2000 Jul 15;349(Pt 2):629-34
20430626 - Trends Biochem Sci. 2010 Sep;35(9):505-13
20424120 - Cancer Res. 2010 Jun 1;70(11):4260-4
19460998 - Science. 2009 May 22;324(5930):1029-33
22610277 - Nat Med. 2012 Jun;18(6):892-901
22464321 - Cell. 2012 Mar 30;149(1):22-35
22169972 - Nat Rev Cancer. 2011 Dec 15;12(1):9-22
15988031 - Mol Cell Biol. 2005 Jul;25(14):6225-34
16517402 - Cell Metab. 2006 Mar;3(3):150-1
19896443 - Cell Stem Cell. 2009 Nov 6;5(5):527-39
21915097 - EMBO J. 2011 Nov 16;30(22):4554-70
References_xml – reference: 20421486 - Proc Natl Acad Sci U S A. 2010 May 11;107(19):8788-93
– reference: 22464321 - Cell. 2012 Mar 30;149(1):22-35
– reference: 23001348 - Nat Rev Cancer. 2012 Oct;12(10):685-98
– reference: 18487207 - J Biol Chem. 2008 Jul 11;283(28):19201-10
– reference: 2566386 - Cell. 1989 May 19;57(4):645-58
– reference: 21336599 - Breast Cancer Res Treat. 2011 Aug;129(1):11-21
– reference: 22473468 - Nat Rev Mol Cell Biol. 2012 Apr 04;13(5):283-96
– reference: 19648934 - Nat Chem Biol. 2009 Sep;5(9):664-72
– reference: 21376230 - Cell. 2011 Mar 4;144(5):646-74
– reference: 18716624 - Nature. 2008 Oct 2;455(7213):679-83
– reference: 21915097 - EMBO J. 2011 Nov 16;30(22):4554-70
– reference: 22576206 - Cancer Discov. 2012 Apr;2(4):304-7
– reference: 23037452 - Nat Rev Cancer. 2012 Nov;12(11):733
– reference: 17254970 - Cell. 2007 Jan 26;128(2):325-39
– reference: 18219320 - Cell Death Differ. 2008 Apr;15(4):660-6
– reference: 17452451 - Mol Cell Biol. 2007 Jul;27(13):4917-30
– reference: 21822287 - Nat Med. 2011 Aug 07;17(9):1116-20
– reference: 19029958 - Nat Rev Cancer. 2008 Dec;8(12):976-90
– reference: 22610277 - Nat Med. 2012 Jun;18(6):892-901
– reference: 21075312 - Cancer Cell. 2010 Nov 16;18(5):472-84
– reference: 10783894 - Nature. 2000 Apr 13;404(6779):782-7
– reference: 19498040 - Mol Pharmacol. 2009 Sep;76(3):491-502
– reference: 20424120 - Cancer Res. 2010 Jun 1;70(11):4260-4
– reference: 21132100 - Genes Cancer. 2010 Jun;1(6):650-659
– reference: 20808831 - PLoS One. 2010 Aug 20;5(8):e12293
– reference: 17482131 - Cancer Cell. 2007 May;11(5):407-20
– reference: 21835778 - Nucleic Acids Res. 2011 Dec;39(22):9498-507
– reference: 19460998 - Science. 2009 May 22;324(5930):1029-33
– reference: 18371346 - Cell Stem Cell. 2007 Aug 16;1(2):140-52
– reference: 18948997 - Nat Rev Cancer. 2008 Nov;8(11):875-9
– reference: 18204439 - Nat Cell Biol. 2008 Feb;10 (2):138-48
– reference: 18765803 - Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):13987-92
– reference: 10880363 - Biochem J. 2000 Jul 15;349(Pt 2):629-34
– reference: 21907929 - Cancer Cell. 2011 Sep 13;20(3):400-13
– reference: 21215704 - Cancer Cell. 2011 Jan 18;19(1):58-71
– reference: 18371339 - Cell Stem Cell. 2007 Jun 7;1(1):101-12
– reference: 19793722 - Hum Mol Genet. 2009 Dec 15;18(24):4897-904
– reference: 20130650 - Nature. 2010 Feb 4;463(7281):676-80
– reference: 16517402 - Cell Metab. 2006 Mar;3(3):150-1
– reference: 15084260 - Cell. 2004 Apr 16;117(2):225-37
– reference: 15988031 - Mol Cell Biol. 2005 Jul;25(14):6225-34
– reference: 21884932 - Cell. 2011 Sep 2;146(5):697-708
– reference: 17522590 - Nat Rev Mol Cell Biol. 2007 Jun;8(6):440-50
– reference: 18794883 - Oncogene. 2008 Sep 18;27(41):5486-96
– reference: 18391973 - Oncogene. 2008 Apr 7;27(16):2312-9
– reference: 22169972 - Nat Rev Cancer. 2011 Dec 15;12(1):9-22
– reference: 19196970 - Proc Natl Acad Sci U S A. 2009 Feb 24;106(8):2700-5
– reference: 10102273 - Cell. 1999 Mar 19;96(6):857-68
– reference: 15100294 - J Immunol. 2004 May 1;172(9):5522-7
– reference: 12239572 - Nature. 2002 Sep 19;419(6904):316-21
– reference: 19896444 - Cell Stem Cell. 2009 Nov 6;5(5):540-53
– reference: 23340844 - Mol Syst Biol. 2013;9:638
– reference: 11902584 - Nat Rev Cancer. 2002 Jan;2(1):38-47
– reference: 15016963 - Science. 2004 Apr 23;304(5670):554
– reference: 19896443 - Cell Stem Cell. 2009 Nov 6;5(5):527-39
– reference: 11994454 - J Immunol. 2002 May 15;168(10 ):5024-31
– reference: 15241468 - EMBO J. 2004 Jul 21;23 (14 ):2830-40
– reference: 22139133 - Cell Death Differ. 2012 Jun;19(6):968-79
– reference: 20430626 - Trends Biochem Sci. 2010 Sep;35(9):505-13
– reference: 10702024 - Genes Dev. 2000 Jan 15;14(2):142-6
– reference: 17692803 - Cancer Cell. 2007 Aug;12(2):108-13
– reference: 18391968 - Oncogene. 2008 Apr 7;27(16):2258-62
– reference: 21329882 - Mol Cell. 2011 Feb 18;41(4):445-57
– reference: 11964479 - Science. 2002 Apr 19;296(5567):530-4
– reference: 16904903 - Semin Cancer Biol. 2006 Aug;16(4):253-64
– reference: 18498744 - Mol Cell. 2008 May 23;30(4):393-402
– reference: 18158893 - Mol Cell. 2007 Dec 28;28(6):941-53
SSID ssj0000650103
Score 2.2488086
Snippet Alterations in cellular metabolism are a key feature of the transformed phenotype. Enhanced macromolecule synthesis is a prerequisite for rapid proliferation...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 96
SubjectTerms Cancer
HIF
hypoxia
Metabolism
Mitochondria
Oncology
ROS
Title Antagonism between FOXO and MYC Regulates Cellular Powerhouse
URI https://www.ncbi.nlm.nih.gov/pubmed/23630664
https://www.proquest.com/docview/1347464316
https://pubmed.ncbi.nlm.nih.gov/PMC3635031
https://doaj.org/article/8ce072157e464d83810d5601ff186af4
Volume 3
WOSCitedRecordID wos000218338900063&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2234-943X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000650103
  issn: 2234-943X
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2234-943X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000650103
  issn: 2234-943X
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYAIcSCeFNeMhIDSyCJE8ceAVEx0JYBpG6W44eoBAG1BYmF385dHKoWgVhYMiQ-xfkuse-zL98Rchz7JNYxsxEXuYtglEyjUuc2kplOvZOJl0Fn9qbodkW_L2-nSn1hTliQBw7AnQnjUMIrL1zGMytQkMoii_A-EVz7WgkUop4pMhXG4BwLGAQtH2Bh8sw_V6hYmKCgaYwS_VPTUK3W_1OI-T1Tcmrqaa-SlSZmpOehr2tkzlXrZKnT7IpvEODwuLdUDUZPtMm7ou1ev0d1ZWnn3dBhKDjvRhTX6THxlL5gdbQHoP1uk9y3r-4ur6OmLEJkslyOo6TkDCYReKrcZJlJ89TCpOtLGRvrIByQJWMlBxoVQyxhvHbMeFkKzXTMPTbZIgvVc-V2CC0NY4U23grps4JbAeTJGBmXkiXW6bRFTr9QUqbRDMfSFY8KuAPCqhBWhbCqGtYWOZkYvAS5jN-bXiDsk2aoc12fAO-rxvvqL--3yNGX0xR8FwiirhyAp_AXWbBhCdxoOzhxcquUcWBKHKyLGffO9GX2SjV4qLW3wTKHcXD3Pzq_R5bTurgGLujsk4Xx8NUdkEXzNh6MhodkvuiLw_q1hmPn4-oTlXP7kg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antagonism+between+FOXO+and+MYC+Regulates+Cellular+Powerhouse&rft.jtitle=Frontiers+in+oncology&rft.au=Peck%2C+Barrie&rft.au=Ferber%2C+Emma+C&rft.au=Schulze%2C+Almut&rft.date=2013-01-01&rft.issn=2234-943X&rft.eissn=2234-943X&rft.volume=3&rft.spage=96&rft_id=info:doi/10.3389%2Ffonc.2013.00096&rft_id=info%3Apmid%2F23630664&rft.externalDocID=23630664
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2234-943X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2234-943X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2234-943X&client=summon