The transcription factor BATF operates as an essential differentiation checkpoint in early effector CD8+ T cells
The transcription factor BATF is required for differentiation of certain helper T cell subsets. Haining and colleagues show that BATF crucially regulates CD8 + effector cells by coordinating a transcription factor network. The transcription factor BATF is required for the differentiation of interleu...
Gespeichert in:
| Veröffentlicht in: | Nature immunology Jg. 15; H. 4; S. 373 - 383 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Nature Publishing Group US
01.04.2014
Nature Publishing Group |
| Schlagworte: | |
| ISSN: | 1529-2908, 1529-2916, 1529-2916 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The transcription factor BATF is required for differentiation of certain helper T cell subsets. Haining and colleagues show that BATF crucially regulates CD8
+
effector cells by coordinating a transcription factor network.
The transcription factor BATF is required for the differentiation of interleukin 17 (IL-17)-producing helper T cells (T
H
17 cells) and follicular helper T cells (T
FH
cells). Here we identified a fundamental role for BATF in regulating the differentiation of effector of CD8
+
T cells. BATF-deficient CD8
+
T cells showed profound defects in effector population expansion and underwent proliferative and metabolic catastrophe early after encountering antigen. BATF, together with the transcription factors IRF4 and Jun proteins, bound to and promoted early expression of genes encoding lineage-specific transcription-factors (T-bet and Blimp-1) and cytokine receptors while paradoxically repressing genes encoding effector molecules (IFN-γ and granzyme B). Thus, BATF amplifies T cell antigen receptor (TCR)-dependent expression of transcription factors and augments the propagation of inflammatory signals but restrains the expression of genes encoding effector molecules. This checkpoint prevents irreversible commitment to an effector fate until a critical threshold of downstream transcriptional activity has been achieved. |
|---|---|
| AbstractList | The transcription factor BATF is required for the differentiation of interleukin 17 (IL-17)-producing helper T cells (TH17 cells) and follicular helper T cells (TFH cells). Here we identified a fundamental role for BATF in regulating the differentiation of effector of CD8(+) T cells. BATF-deficient CD8(+) T cells showed profound defects in effector population expansion and underwent proliferative and metabolic catastrophe early after encountering antigen. BATF, together with the transcription factors IRF4 and Jun proteins, bound to and promoted early expression of genes encoding lineage-specific transcription-factors (T-bet and Blimp-1) and cytokine receptors while paradoxically repressing genes encoding effector molecules (IFN-γ and granzyme B). Thus, BATF amplifies T cell antigen receptor (TCR)-dependent expression of transcription factors and augments the propagation of inflammatory signals but restrains the expression of genes encoding effector molecules. This checkpoint prevents irreversible commitment to an effector fate until a critical threshold of downstream transcriptional activity has been achieved. The transcription factor BATF is required for interleukin 17 (IL-17)-producing helper T cell (TH17) and follicular helper T cell (TFH) differentiation. Here, we show that BATF also has a fundamental role in regulating effector CD8+ T cell differentiation. BATF-deficient CD8+ T cells show profound defects in effector expansion and undergo proliferative and metabolic catastrophe early after antigen encounter. BATF, together with IRF4 and Jun proteins, binds to and promotes early expression of genes encoding lineage-specific transcription-factors (T-bet and Blimp-1) and cytokine receptors, while paradoxically repressing genes encoding effector molecules (IFN-γ and granzyme B). Thus, BATF amplifies TCR-dependent transcription factor expression and augments inflammatory signal propagation but restrains effector gene expression. This checkpoint prevents irreversible commitment to an effector fate until a critical threshold of downstream transcriptional activity has been achieved. The transcription factor BATF is required for differentiation of certain helper T cell subsets. Haining and colleagues show that BATF crucially regulates CD8+ effector cells by coordinating a transcription factor network.The transcription factor BATF is required for the differentiation of interleukin 17 (IL-17)-producing helper T cells (TH17 cells) and follicular helper T cells (TFH cells). Here we identified a fundamental role for BATF in regulating the differentiation of effector of CD8+ T cells. BATF-deficient CD8+ T cells showed profound defects in effector population expansion and underwent proliferative and metabolic catastrophe early after encountering antigen. BATF, together with the transcription factors IRF4 and Jun proteins, bound to and promoted early expression of genes encoding lineage-specific transcription-factors (T-bet and Blimp-1) and cytokine receptors while paradoxically repressing genes encoding effector molecules (IFN-γ and granzyme B). Thus, BATF amplifies T cell antigen receptor (TCR)-dependent expression of transcription factors and augments the propagation of inflammatory signals but restrains the expression of genes encoding effector molecules. This checkpoint prevents irreversible commitment to an effector fate until a critical threshold of downstream transcriptional activity has been achieved. The transcription factor BATF is required for the differentiation of interleukin 17 (IL-17)-producing helper T cells (TH17 cells) and follicular helper T cells (TFH cells). Here we identified a fundamental role for BATF in regulating the differentiation of effector of CD8(+) T cells. BATF-deficient CD8(+) T cells showed profound defects in effector population expansion and underwent proliferative and metabolic catastrophe early after encountering antigen. BATF, together with the transcription factors IRF4 and Jun proteins, bound to and promoted early expression of genes encoding lineage-specific transcription-factors (T-bet and Blimp-1) and cytokine receptors while paradoxically repressing genes encoding effector molecules (IFN-γ and granzyme B). Thus, BATF amplifies T cell antigen receptor (TCR)-dependent expression of transcription factors and augments the propagation of inflammatory signals but restrains the expression of genes encoding effector molecules. This checkpoint prevents irreversible commitment to an effector fate until a critical threshold of downstream transcriptional activity has been achieved.The transcription factor BATF is required for the differentiation of interleukin 17 (IL-17)-producing helper T cells (TH17 cells) and follicular helper T cells (TFH cells). Here we identified a fundamental role for BATF in regulating the differentiation of effector of CD8(+) T cells. BATF-deficient CD8(+) T cells showed profound defects in effector population expansion and underwent proliferative and metabolic catastrophe early after encountering antigen. BATF, together with the transcription factors IRF4 and Jun proteins, bound to and promoted early expression of genes encoding lineage-specific transcription-factors (T-bet and Blimp-1) and cytokine receptors while paradoxically repressing genes encoding effector molecules (IFN-γ and granzyme B). Thus, BATF amplifies T cell antigen receptor (TCR)-dependent expression of transcription factors and augments the propagation of inflammatory signals but restrains the expression of genes encoding effector molecules. This checkpoint prevents irreversible commitment to an effector fate until a critical threshold of downstream transcriptional activity has been achieved. The transcription factor BATF is required for differentiation of certain helper T cell subsets. Haining and colleagues show that BATF crucially regulates CD8 + effector cells by coordinating a transcription factor network. The transcription factor BATF is required for the differentiation of interleukin 17 (IL-17)-producing helper T cells (T H 17 cells) and follicular helper T cells (T FH cells). Here we identified a fundamental role for BATF in regulating the differentiation of effector of CD8 + T cells. BATF-deficient CD8 + T cells showed profound defects in effector population expansion and underwent proliferative and metabolic catastrophe early after encountering antigen. BATF, together with the transcription factors IRF4 and Jun proteins, bound to and promoted early expression of genes encoding lineage-specific transcription-factors (T-bet and Blimp-1) and cytokine receptors while paradoxically repressing genes encoding effector molecules (IFN-γ and granzyme B). Thus, BATF amplifies T cell antigen receptor (TCR)-dependent expression of transcription factors and augments the propagation of inflammatory signals but restrains the expression of genes encoding effector molecules. This checkpoint prevents irreversible commitment to an effector fate until a critical threshold of downstream transcriptional activity has been achieved. |
| Author | Godec, Jernej Barnitz, R Anthony DiIorio, Michael A Lemieux, Madeleine E Haining, W Nicholas Yates, Kathleen Klatt, Martin G Regev, Aviv Odorizzi, Pamela M Wherry, E John Kurachi, Makoto Yosef, Nir |
| AuthorAffiliation | 6 Bioinfo, Plantagenet, Ontario, Canada 4 Division of Hematology/Oncology, Children’s Hospital, Harvard Medical School, Boston, MA, USA 2 Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA, USA 3 Department of Pediatric Oncology, Dana-Farber Cancer Institute Children’s Hospital, Harvard Medical School, Boston, MA, USA 7 Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA 1 Department of Microbiology University of Pennsylvania Perelman School Medicine, Philadelphia, PA, USA 5 Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA, USA |
| AuthorAffiliation_xml | – name: 3 Department of Pediatric Oncology, Dana-Farber Cancer Institute Children’s Hospital, Harvard Medical School, Boston, MA, USA – name: 7 Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA – name: 6 Bioinfo, Plantagenet, Ontario, Canada – name: 1 Department of Microbiology University of Pennsylvania Perelman School Medicine, Philadelphia, PA, USA – name: 4 Division of Hematology/Oncology, Children’s Hospital, Harvard Medical School, Boston, MA, USA – name: 2 Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA, USA – name: 5 Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA, USA |
| Author_xml | – sequence: 1 givenname: Makoto surname: Kurachi fullname: Kurachi, Makoto organization: Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Institute for Immunology, University of Pennsylvania Perelman School of Medicine – sequence: 2 givenname: R Anthony surname: Barnitz fullname: Barnitz, R Anthony organization: Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School – sequence: 3 givenname: Nir surname: Yosef fullname: Yosef, Nir organization: Broad Institute of MIT and Harvard – sequence: 4 givenname: Pamela M surname: Odorizzi fullname: Odorizzi, Pamela M organization: Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Institute for Immunology, University of Pennsylvania Perelman School of Medicine – sequence: 5 givenname: Michael A surname: DiIorio fullname: DiIorio, Michael A organization: Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School – sequence: 6 givenname: Madeleine E surname: Lemieux fullname: Lemieux, Madeleine E organization: Bioinfo – sequence: 7 givenname: Kathleen surname: Yates fullname: Yates, Kathleen organization: Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School – sequence: 8 givenname: Jernej surname: Godec fullname: Godec, Jernej organization: Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School – sequence: 9 givenname: Martin G surname: Klatt fullname: Klatt, Martin G organization: Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School – sequence: 10 givenname: Aviv surname: Regev fullname: Regev, Aviv organization: Bioinfo, Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology – sequence: 11 givenname: E John surname: Wherry fullname: Wherry, E John email: wherry@mail.med.upenn.edu organization: Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Institute for Immunology, University of Pennsylvania Perelman School of Medicine – sequence: 12 givenname: W Nicholas surname: Haining fullname: Haining, W Nicholas email: nicholas_haining@dfci.harvard.edu organization: Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Broad Institute of MIT and Harvard, Division of Hematology/Oncology, Children's Hospital, Harvard Medical School |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24584090$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kl1rFDEUhoNU7IfiP5CAFxbK1HxP5qZQt60VCt6s1yGTSbqps8mYZIX-e7PbdamLFAInIc95eV_OOQYHIQYLwHuMzjGi8nPw50RS9gocYU66hnRYHOzuSB6C45wfEMKsFewNOCSMS4Y6dASm-cLCknTIJvmp-Big06bEBL9czm9gnGzSxWao6wnQ5mxD8XqEg3fOps1j02QW1vycog8F-srpND5CW5GN1OxKnsE5NHYc81vw2ukx23fbegJ-3FzPZ7fN3fev32aXd42p3krjkOPSSNkLQ6nhvXMMM9JTbLjuNeGYtrrng8GaMdxaxnoucd8Og7MdNcbQE3DxpDut-qUdTLWa9Kim5Jc6Paqovfr3J_iFuo-_FUMIEdpWgdOtQIq_VjYXtfR5HUEHG1dZYY46hqnAuKIf99CHuEqhxlOEC4EZpwK9RGHBW9IJ0fFKfXjue2f478gq8OkJMCnmnKzbIRip9TLUJGq9DJVs9kjjy2ZcNbAf_8NvE-eqGO5temZwD_0Dwv3DtQ |
| CitedBy_id | crossref_primary_10_3390_cancers14030571 crossref_primary_10_1186_s10020_024_00792_0 crossref_primary_10_1084_jem_20160206 crossref_primary_10_1126_sciimmunol_adf6717 crossref_primary_10_1038_srep35521 crossref_primary_10_1189_jlb_2A0416_187RR crossref_primary_10_1038_s41590_022_01301_3 crossref_primary_10_1016_j_cmet_2022_02_003 crossref_primary_10_1016_j_jbc_2025_110754 crossref_primary_10_4049_jimmunol_2200037 crossref_primary_10_1111_imr_12742 crossref_primary_10_1007_s00281_019_00744_5 crossref_primary_10_1038_s41467_019_09882_8 crossref_primary_10_3389_fimmu_2024_1412731 crossref_primary_10_1038_ni_3714 crossref_primary_10_3389_fimmu_2019_00184 crossref_primary_10_3390_cells12030365 crossref_primary_10_1038_s41467_022_29869_2 crossref_primary_10_1073_pnas_1919259117 crossref_primary_10_3389_fimmu_2018_02826 crossref_primary_10_1002_advs_202410241 crossref_primary_10_1093_bjd_ljac043 crossref_primary_10_1016_j_copbio_2021_02_003 crossref_primary_10_1097_TP_0000000000000802 crossref_primary_10_3389_fimmu_2019_01719 crossref_primary_10_3389_fmolb_2020_614427 crossref_primary_10_1016_j_molcel_2023_02_026 crossref_primary_10_1126_science_aae0491 crossref_primary_10_3389_fimmu_2022_798346 crossref_primary_10_1016_j_immuni_2019_09_010 crossref_primary_10_1097_COH_0000000000000091 crossref_primary_10_1371_journal_ppat_1007715 crossref_primary_10_1016_j_immuni_2019_09_013 crossref_primary_10_3389_fimmu_2018_02738 crossref_primary_10_1093_intimm_dxae063 crossref_primary_10_3389_fimmu_2021_684240 crossref_primary_10_3389_fimmu_2022_882721 crossref_primary_10_1084_jem_20230183 crossref_primary_10_1111_acel_12960 crossref_primary_10_1016_j_immuni_2017_08_012 crossref_primary_10_1016_j_immuni_2023_10_002 crossref_primary_10_1038_ncomms15632 crossref_primary_10_1111_ajt_14221 crossref_primary_10_1186_s13045_023_01504_7 crossref_primary_10_1038_s41467_020_17944_5 crossref_primary_10_1111_imcb_70002 crossref_primary_10_3390_cells8080939 crossref_primary_10_1038_s41467_023_40959_7 crossref_primary_10_1002_cac2_12658 crossref_primary_10_1038_s41467_019_11233_6 crossref_primary_10_4049_jimmunol_2001459 crossref_primary_10_1172_jci_insight_193048 crossref_primary_10_1002_advs_202505729 crossref_primary_10_1111_imr_12954 crossref_primary_10_1016_j_immuni_2018_03_028 crossref_primary_10_3389_fimmu_2023_1026368 crossref_primary_10_1016_j_immuni_2016_04_022 crossref_primary_10_1172_JCI176586 crossref_primary_10_1016_j_ccell_2021_10_008 crossref_primary_10_1016_j_immuni_2025_04_030 crossref_primary_10_1038_ni_3644 crossref_primary_10_1084_jem_20221288 crossref_primary_10_4049_jimmunol_1900065 crossref_primary_10_1084_jem_20191388 crossref_primary_10_1038_s41590_020_0786_2 crossref_primary_10_1038_s41590_025_02100_2 crossref_primary_10_1038_s41586_019_1821_z crossref_primary_10_1084_jem_20232068 crossref_primary_10_3389_fimmu_2023_1086803 crossref_primary_10_3389_fimmu_2022_907172 crossref_primary_10_13005_bpj_3173 crossref_primary_10_1038_cmi_2015_32 crossref_primary_10_1126_sciimmunol_abj9123 crossref_primary_10_1016_j_immuni_2023_05_005 crossref_primary_10_1016_j_immuni_2023_05_008 crossref_primary_10_1007_s11882_025_01199_5 crossref_primary_10_1038_s41590_025_02113_x crossref_primary_10_1038_s41392_022_01147_z crossref_primary_10_1038_s42255_025_01245_6 crossref_primary_10_1073_pnas_2009192117 crossref_primary_10_1161_CIRCRESAHA_120_316770 crossref_primary_10_1038_s41598_019_39215_0 crossref_primary_10_1073_pnas_2007224117 crossref_primary_10_1038_s41467_025_56029_z crossref_primary_10_1038_s41590_021_00965_7 crossref_primary_10_1182_bloodadvances_2019000053 crossref_primary_10_1038_s41467_018_07735_4 crossref_primary_10_1111_acel_12957 crossref_primary_10_1038_s41590_022_01369_x crossref_primary_10_3389_fimmu_2018_02347 crossref_primary_10_1186_s13059_019_1921_y crossref_primary_10_4049_jimmunol_2100633 crossref_primary_10_1073_pnas_1524490113 crossref_primary_10_1126_sciimmunol_abi4919 crossref_primary_10_1111_are_14864 crossref_primary_10_1126_sciimmunol_adg1094 crossref_primary_10_1128_MCB_00376_18 crossref_primary_10_1136_jitc_2023_008628 crossref_primary_10_1038_s41577_019_0223_7 crossref_primary_10_3390_cancers13205039 crossref_primary_10_1016_j_immuni_2016_07_008 crossref_primary_10_1016_j_ccell_2022_09_013 crossref_primary_10_1016_j_cmet_2024_06_006 crossref_primary_10_1038_s41598_020_80165_9 crossref_primary_10_1126_scitranslmed_aba6006 crossref_primary_10_1002_eji_201747360 crossref_primary_10_1038_s41467_020_15413_7 crossref_primary_10_1016_j_immuni_2021_12_012 crossref_primary_10_1038_s41588_018_0156_2 crossref_primary_10_1016_j_immuni_2017_11_021 crossref_primary_10_1038_s41467_023_44387_5 crossref_primary_10_1038_s41423_023_01075_0 crossref_primary_10_1016_j_molimm_2025_03_001 crossref_primary_10_1371_journal_pone_0285926 crossref_primary_10_1038_s41392_023_01522_4 crossref_primary_10_1146_annurev_immunol_041015_055318 crossref_primary_10_3390_ijms232214122 crossref_primary_10_1038_ni_3775 crossref_primary_10_4049_jimmunol_1900853 crossref_primary_10_1038_s41590_023_01607_w crossref_primary_10_1186_s12967_024_05367_5 crossref_primary_10_1016_j_immuni_2016_07_011 crossref_primary_10_1002_eji_201344279 crossref_primary_10_3389_fimmu_2015_00652 crossref_primary_10_1084_jem_20231758 crossref_primary_10_1002_eji_201646732 crossref_primary_10_1126_sciimmunol_abe3702 crossref_primary_10_1158_0008_5472_CAN_22_2155 crossref_primary_10_1161_CIRCULATIONAHA_116_026046 crossref_primary_10_1111_imr_12199 crossref_primary_10_1038_s41577_021_00539_6 crossref_primary_10_1186_s12943_024_01987_z crossref_primary_10_3390_cancers13061263 crossref_primary_10_1093_intimm_dxac059 crossref_primary_10_1038_s41598_019_44827_7 crossref_primary_10_1038_ncomms7046 crossref_primary_10_1073_pnas_1711160114 crossref_primary_10_3389_fimmu_2016_00076 crossref_primary_10_3390_ijms21228626 crossref_primary_10_3389_fimmu_2023_1198551 crossref_primary_10_1016_j_scib_2025_03_054 crossref_primary_10_1155_2016_8941260 crossref_primary_10_1080_2162402X_2020_1866287 crossref_primary_10_1371_journal_ppat_1004740 crossref_primary_10_3390_ijms24065623 crossref_primary_10_1038_s41467_019_09656_2 crossref_primary_10_1073_pnas_1620498114 crossref_primary_10_1080_2162402X_2020_1747349 crossref_primary_10_1093_nar_gky1094 crossref_primary_10_1016_j_tem_2025_08_009 crossref_primary_10_1126_sciimmunol_aag0192 crossref_primary_10_3390_ijms25169022 crossref_primary_10_1126_sciimmunol_aaz8154 crossref_primary_10_1038_s41573_021_00155_y crossref_primary_10_1080_14728222_2021_1937123 crossref_primary_10_4049_jimmunol_2200681 crossref_primary_10_3390_biom9100600 crossref_primary_10_1371_journal_pone_0322706 crossref_primary_10_1038_s43018_022_00391_0 crossref_primary_10_1016_j_cmet_2016_06_007 crossref_primary_10_1038_nri3874 crossref_primary_10_1172_JCI157549 crossref_primary_10_1016_j_tibs_2024_08_002 crossref_primary_10_1038_ni_3441 crossref_primary_10_1038_ni_3683 crossref_primary_10_1073_pnas_1413291112 crossref_primary_10_1038_nri_2016_80 crossref_primary_10_3390_ijms21197357 crossref_primary_10_1016_j_clim_2024_109939 crossref_primary_10_1038_s41590_020_0644_2 crossref_primary_10_1126_science_aad0616 crossref_primary_10_1016_j_cytogfr_2014_07_012 crossref_primary_10_1016_j_scib_2023_11_029 crossref_primary_10_1093_jimmun_vkaf239 crossref_primary_10_1186_s40425_018_0399_6 crossref_primary_10_1038_s41467_022_35238_w crossref_primary_10_1038_s41551_023_01052_y crossref_primary_10_1016_j_immuni_2017_07_008 crossref_primary_10_1038_s41590_019_0515_x crossref_primary_10_1016_j_immuni_2019_03_031 crossref_primary_10_1084_jem_20211861 crossref_primary_10_1371_journal_pbio_3002124 crossref_primary_10_3390_genes15030268 crossref_primary_10_1016_j_cyto_2014_12_001 crossref_primary_10_1111_imcb_12566 crossref_primary_10_1007_s12026_022_09353_1 crossref_primary_10_1016_j_bbrc_2025_152313 crossref_primary_10_15252_embj_2021109803 crossref_primary_10_4049_jimmunol_1800952 crossref_primary_10_1007_s10620_018_5392_x crossref_primary_10_1016_j_cytogfr_2016_03_004 crossref_primary_10_1126_sciimmunol_abk0957 crossref_primary_10_1016_j_immuni_2016_10_028 crossref_primary_10_1038_s41590_023_01685_w crossref_primary_10_1016_j_celrep_2025_116129 crossref_primary_10_1186_s13148_017_0358_y crossref_primary_10_1186_s40364_025_00733_x crossref_primary_10_2217_imt_2023_0170 crossref_primary_10_1084_jem_20220686 crossref_primary_10_2217_imt_2016_0111 crossref_primary_10_1038_s43587_022_00233_9 crossref_primary_10_1073_pnas_2013452118 crossref_primary_10_1172_JCI86437 crossref_primary_10_1016_j_intimp_2024_112571 crossref_primary_10_1371_journal_pone_0144826 crossref_primary_10_1038_s41590_021_00964_8 crossref_primary_10_1097_MD_0000000000040820 crossref_primary_10_1182_blood_2020009309 crossref_primary_10_3390_cells9112470 crossref_primary_10_3389_fonc_2022_861392 crossref_primary_10_3748_wjg_v26_i2_134 crossref_primary_10_1038_s41467_022_29718_2 crossref_primary_10_1016_j_coi_2023_102397 crossref_primary_10_1002_advs_202206692 crossref_primary_10_3389_fimmu_2023_1146077 crossref_primary_10_1038_s41586_019_1620_6 crossref_primary_10_2217_imt_2017_0055 crossref_primary_10_1038_ncomms9306 crossref_primary_10_1038_nprot_2017_083 crossref_primary_10_1038_s41423_025_01299_2 crossref_primary_10_1111_imr_12942 crossref_primary_10_1038_s41590_025_02232_5 crossref_primary_10_1084_jem_20222090 crossref_primary_10_1038_s41590_024_01923_9 crossref_primary_10_1080_2162402X_2018_1494110 crossref_primary_10_1016_j_stem_2022_06_014 crossref_primary_10_1016_j_immuni_2019_06_023 crossref_primary_10_1038_s41467_025_59784_1 crossref_primary_10_1038_s41392_023_01502_8 crossref_primary_10_1038_s41467_021_27666_x crossref_primary_10_1111_ajt_13595 crossref_primary_10_3390_ijms21249773 crossref_primary_10_1016_j_immuni_2019_12_002 crossref_primary_10_3390_ijms26020555 crossref_primary_10_1128_JVI_03478_14 crossref_primary_10_1016_j_neo_2024_101072 crossref_primary_10_1038_cmi_2015_032 crossref_primary_10_1146_annurev_cancerbio_070120_094725 crossref_primary_10_1126_sciimmunol_abq2424 crossref_primary_10_1084_jem_20171820 crossref_primary_10_1042_BST20170003 crossref_primary_10_1016_j_immuni_2023_03_001 crossref_primary_10_3389_fimmu_2020_585168 crossref_primary_10_4049_jimmunol_1801431 crossref_primary_10_1038_s41598_021_89754_8 crossref_primary_10_1038_s41590_023_01575_1 crossref_primary_10_1158_2159_8290_CD_22_1175 crossref_primary_10_1016_j_intimp_2025_114843 crossref_primary_10_1038_d41586_019_03731_w crossref_primary_10_1038_s42003_022_03319_7 crossref_primary_10_1093_nar_gkw800 crossref_primary_10_1016_j_canlet_2022_01_006 crossref_primary_10_1038_ni_3706 crossref_primary_10_1038_s41590_025_02231_6 crossref_primary_10_1111_nyas_14381 crossref_primary_10_1002_mc_23715 crossref_primary_10_1016_j_cell_2021_02_019 crossref_primary_10_1038_cmi_2017_38 crossref_primary_10_1038_ni_3031 crossref_primary_10_1126_science_aba1786 crossref_primary_10_1126_sciimmunol_abc9934 crossref_primary_10_1186_s12929_017_0354_8 crossref_primary_10_1007_s00005_014_0293_y crossref_primary_10_1002_mco2_70048 crossref_primary_10_1016_j_cyto_2018_11_016 crossref_primary_10_4049_jimmunol_2200345 crossref_primary_10_3389_fimmu_2020_01350 crossref_primary_10_1111_imr_13324 crossref_primary_10_4049_jimmunol_1401513 crossref_primary_10_1111_cas_15541 crossref_primary_10_1038_s41540_023_00297_2 crossref_primary_10_1016_j_it_2016_06_005 crossref_primary_10_1038_gene_2016_12 crossref_primary_10_1158_0008_5472_CAN_20_3213 |
| Cites_doi | 10.1038/nri3470 10.1016/j.immuni.2007.07.010 10.1016/j.immuni.2007.08.007 10.1016/j.immuni.2009.06.021 10.1038/nature08114 10.1016/j.coi.2010.03.008 10.1186/gb-2008-9-9-r137 10.1038/nature11981 10.1073/pnas.84.5.1182 10.1093/nar/gkl1041 10.4049/jimmunol.0713344 10.1126/science.1229620 10.1186/gb-2009-10-3-r25 10.1038/ni.2710 10.1084/jem.20102101 10.1038/75556 10.1126/science.1228309 10.1016/j.stem.2010.07.016 10.1016/j.immuni.2010.05.003 10.1038/nri3307 10.1038/ni1403 10.1016/j.immuni.2009.05.014 10.1093/bioinformatics/btq466 10.1126/science.1090148 10.1038/ni.2037 10.1093/bioinformatics/btn439 10.1038/nri778 10.1111/j.0105-2896.2010.00901.x 10.1084/jem.20081242 10.1111/j.1600-065X.2012.01150.x 10.1016/j.cell.2012.01.040 10.1093/biostatistics/4.2.249 10.1101/gr.076117.108 10.1016/j.immuni.2012.08.021 10.1038/nature11531 10.1073/pnas.1105133108 10.1093/bioinformatics/btr260 10.1016/j.jmb.2005.12.003 10.1038/ni1268 10.1101/gr.136184.111 10.1093/bioinformatics/btr189 10.1038/nm.2232 10.1073/pnas.2133841100 10.1093/bioinformatics/btq033 10.1016/j.immuni.2013.10.007 10.1016/j.cell.2011.02.015 10.1038/ni.1995 10.1093/nar/gng015 10.1093/bioinformatics/btp352 10.4049/jimmunol.181.4.2277 10.1084/jem.20050821 10.1038/ni.2046 10.1016/j.cell.2012.09.044 10.1093/bioinformatics/19.2.185 10.1038/nature11530 10.1084/jem.20110278 10.1038/nature09906 10.1016/j.cell.2012.09.016 10.1038/nbt.1508 10.1038/ni1541 10.1084/jem.20091548 10.1126/science.1179050 10.1038/nature07885 |
| ContentType | Journal Article |
| Copyright | Springer Nature America, Inc. 2014 Copyright Nature Publishing Group Apr 2014 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2014. |
| Copyright_xml | – notice: Springer Nature America, Inc. 2014 – notice: Copyright Nature Publishing Group Apr 2014 – notice: Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2014. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7QR 7T5 7TK 7TM 7U9 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7N M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM |
| DOI | 10.1038/ni.2834 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest One Academic ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Public Health ProQuest SciTech Collection ProQuest Medical Library Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE ProQuest Central Student ProQuest Central Student MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Biology |
| EISSN | 1529-2916 |
| EndPage | 383 |
| ExternalDocumentID | PMC4000237 3601495251 24584090 10_1038_ni_2834 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIAID NIH HHS grantid: AI095608 – fundername: NIAID NIH HHS grantid: R01 AI097333 – fundername: NIAID NIH HHS grantid: U19 AI082630 – fundername: NIAID NIH HHS grantid: U19 AI083022 – fundername: NIAID NIH HHS grantid: AI083022 – fundername: NIAID NIH HHS grantid: R01 AI091493 – fundername: NIAID NIH HHS grantid: AI082630 – fundername: NIAID NIH HHS grantid: U01 AI095608 – fundername: NIAID NIH HHS grantid: AI091493 – fundername: NIAID NIH HHS grantid: HHSN266200500030C |
| GroupedDBID | --- .55 0R~ 123 29M 2FS 36B 39C 3V. 4.4 53G 5BI 5RE 70F 7X7 88E 8AO 8C1 8FE 8FH 8FI 8FJ 8R4 8R5 AAEEF AAHBH AARCD AAYZH AAZLF ABAWZ ABDBF ABJNI ABLJU ABNNU ABOCM ABUWG ACBWK ACGFS ACIWK ACPRK ACRPL ACUHS ADBBV ADNMO AENEX AEUYN AFBBN AFKRA AFRAH AFSHS AGAYW AGGDT AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ AIYXT ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 DB5 DU5 EAD EAP EAS EBS EE. EJD EMB EMK EMOBN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ IAO IHR INH INR ISR ITC L-9 LK8 M1P M7P N9A NNMJJ O9- ODYON P2P PQQKQ PROAC PSQYO Q2X RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP WH7 X7M Y6R ZXP AAYXX AFANA AFFHD ALPWD ATHPR CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NFIDA NPM 7QP 7QR 7T5 7TK 7TM 7U9 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ H94 K9. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c458t-f0f58c88b6c33c5bff4142b31c5aba25137ab5dc1a4417e44b581b7ddfe93ccc3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 293 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000333252000012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1529-2908 1529-2916 |
| IngestDate | Tue Nov 04 01:57:44 EST 2025 Wed Oct 01 10:28:24 EDT 2025 Tue Oct 07 05:13:24 EDT 2025 Sun Nov 30 04:47:26 EST 2025 Thu Apr 03 07:27:08 EDT 2025 Sat Nov 29 04:35:56 EST 2025 Tue Nov 18 22:15:22 EST 2025 Fri Feb 21 02:38:55 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c458t-f0f58c88b6c33c5bff4142b31c5aba25137ab5dc1a4417e44b581b7ddfe93ccc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally. M.K. and P.O. performed the experiments in the animal models; R.A.B, M.A.D., K.Y., J. G. and M.G.K. performed the gene expression and ChIP experiments; N.Y. and M.E.L. designed and performed analytic experiments; A.R., W.N.H. and E.J.W. designed the analytic experiments; W.N.H and E.J.W conceived the project; M.K., R.A.B., E.J.W. and W.N.H. wrote the paper. Author contributions |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC4000237 |
| PMID | 24584090 |
| PQID | 1657296695 |
| PQPubID | 45782 |
| PageCount | 11 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4000237 proquest_miscellaneous_1509413611 proquest_journals_2566145360 proquest_journals_1657296695 pubmed_primary_24584090 crossref_primary_10_1038_ni_2834 crossref_citationtrail_10_1038_ni_2834 springer_journals_10_1038_ni_2834 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-04-01 |
| PublicationDateYYYYMMDD | 2014-04-01 |
| PublicationDate_xml | – month: 04 year: 2014 text: 2014-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationTitle | Nature immunology |
| PublicationTitleAbbrev | Nat Immunol |
| PublicationTitleAlternate | Nat Immunol |
| PublicationYear | 2014 |
| Publisher | Nature Publishing Group US Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
| References | Linhart, Halperin, Shamir (CR51) 2008; 18 Zheng (CR52) 2008; 24 Li (CR41) 2009; 25 Awasthi (CR57) 2007; 8 Jiang, Xuan, Zhao, Zhang (CR56) 2007; 35 Irizarry (CR48) 2003; 31 Quigley (CR19) 2010; 16 Quinlan, Hall (CR44) 2010; 26 Betz (CR15) 2010; 207 Kurachi (CR39) 2011; 208 Shi (CR63) 2011; 208 Langmead, Trapnell, Pop, Salzberg (CR40) 2009; 10 Ise (CR16) 2011; 12 Vahedi (CR37) 2012; 151 van der Windt, Pearce (CR4) 2012; 249 Grigoryan, Reinke, Keating (CR18) 2009; 458 Man (CR24) 2013; 14 Ashburner (CR26) 2000; 25 Xiao (CR58) 2008; 181 Murphy, Tussiwand, Murphy (CR17) 2013; 13 Paley (CR28) 2012; 338 Bolstad, Irizarry, Astrand, Speed (CR49) 2003; 19 Kaech, Wherry (CR3) 2007; 27 CR47 Glasmacher (CR20) 2012; 338 Kuroda (CR29) 2011; 108 Irizarry (CR50) 2003; 4 Rutishauser (CR11) 2009; 31 Rutishauser, Kaech (CR5) 2010; 235 Mangan, Alon (CR33) 2003; 100 Doering (CR2) 2012; 37 Kallies, Xin, Belz, Nutt (CR12) 2009; 31 Yang (CR62) 2011; 12 Kaech, Cui (CR7) 2012; 12 Cruz-Guilloty (CR30) 2009; 206 Yao (CR34) 2013; 39 Yosef, Regev (CR31) 2011; 144 Machanick, Bailey (CR46) 2011; 27 Pearce (CR8) 2003; 302 Intlekofer (CR9) 2005; 6 Kolumam, Thomas, Thompson, Sprent, Murali-Krishna (CR36) 2005; 202 Wang (CR23) 2012; 148 Kao (CR38) 2011; 12 Mangan, Itzkovitz, Zaslaver, Alon (CR32) 2006; 356 Schraml (CR14) 2009; 460 Durant (CR61) 2010; 32 Joshi (CR10) 2007; 27 Cannarile (CR13) 2006; 7 Tussiwand (CR35) 2012; 490 Amit (CR59) 2009; 326 Li (CR21) 2012; 490 Ernst (CR25) 2011; 473 Jux, Kadow, Esser (CR60) 2009; 182 Lau, Nathans (CR27) 1987; 84 Kharchenko, Tolstorukov, Park (CR42) 2008; 26 Landt (CR45) 2012; 22 Wilson (CR53) 2010; 7 Belz, Kallies (CR6) 2010; 22 Ciofani (CR22) 2012; 151 Kaech, Wherry, Ahmed (CR1) 2002; 2 Liberzon (CR55) 2011; 27 Lachmann (CR54) 2010; 26 Zhang (CR43) 2008; 9 Yosef (CR64) 2013; 496 GJ van der Windt (BFni2834_CR4) 2012; 249 SM Kaech (BFni2834_CR3) 2007; 27 SM Kaech (BFni2834_CR7) 2012; 12 C Kao (BFni2834_CR38) 2011; 12 M Quigley (BFni2834_CR19) 2010; 16 S Kuroda (BFni2834_CR29) 2011; 108 PV Kharchenko (BFni2834_CR42) 2008; 26 XP Yang (BFni2834_CR62) 2011; 12 RL Rutishauser (BFni2834_CR5) 2010; 235 TL Murphy (BFni2834_CR17) 2013; 13 S Mangan (BFni2834_CR33) 2003; 100 RA Irizarry (BFni2834_CR48) 2003; 31 F Cruz-Guilloty (BFni2834_CR30) 2009; 206 G Grigoryan (BFni2834_CR18) 2009; 458 GT Belz (BFni2834_CR6) 2010; 22 A Lachmann (BFni2834_CR54) 2010; 26 SG Landt (BFni2834_CR45) 2012; 22 LZ Shi (BFni2834_CR63) 2011; 208 A Kallies (BFni2834_CR12) 2009; 31 B Jux (BFni2834_CR60) 2009; 182 N Yosef (BFni2834_CR31) 2011; 144 M Ashburner (BFni2834_CR26) 2000; 25 B Langmead (BFni2834_CR40) 2009; 10 NS Joshi (BFni2834_CR10) 2007; 27 W Ise (BFni2834_CR16) 2011; 12 L Durant (BFni2834_CR61) 2010; 32 S Yao (BFni2834_CR34) 2013; 39 AR Quinlan (BFni2834_CR44) 2010; 26 R Tussiwand (BFni2834_CR35) 2012; 490 SM Kaech (BFni2834_CR1) 2002; 2 TA Doering (BFni2834_CR2) 2012; 37 EL Pearce (BFni2834_CR8) 2003; 302 H Li (BFni2834_CR41) 2009; 25 M Kurachi (BFni2834_CR39) 2011; 208 I Amit (BFni2834_CR59) 2009; 326 J Ernst (BFni2834_CR25) 2011; 473 C Jiang (BFni2834_CR56) 2007; 35 J Wang (BFni2834_CR23) 2012; 148 A Awasthi (BFni2834_CR57) 2007; 8 K Man (BFni2834_CR24) 2013; 14 RL Rutishauser (BFni2834_CR11) 2009; 31 LF Lau (BFni2834_CR27) 1987; 84 BU Schraml (BFni2834_CR14) 2009; 460 MA Paley (BFni2834_CR28) 2012; 338 P Li (BFni2834_CR21) 2012; 490 AM Intlekofer (BFni2834_CR9) 2005; 6 NK Wilson (BFni2834_CR53) 2010; 7 S Mangan (BFni2834_CR32) 2006; 356 P Machanick (BFni2834_CR46) 2011; 27 Y Zhang (BFni2834_CR43) 2008; 9 M Ciofani (BFni2834_CR22) 2012; 151 A Liberzon (BFni2834_CR55) 2011; 27 S Xiao (BFni2834_CR58) 2008; 181 C Linhart (BFni2834_CR51) 2008; 18 N Yosef (BFni2834_CR64) 2013; 496 E Glasmacher (BFni2834_CR20) 2012; 338 RA Irizarry (BFni2834_CR50) 2003; 4 GA Kolumam (BFni2834_CR36) 2005; 202 BM Bolstad (BFni2834_CR49) 2003; 19 BC Betz (BFni2834_CR15) 2010; 207 G Zheng (BFni2834_CR52) 2008; 24 BFni2834_CR47 MA Cannarile (BFni2834_CR13) 2006; 7 G Vahedi (BFni2834_CR37) 2012; 151 |
| References_xml | – volume: 13 start-page: 499 year: 2013 end-page: 509 ident: CR17 article-title: Specificity through cooperation: BATF-IRF interactions control immune-regulatory networks publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3470 – volume: 27 start-page: 281 year: 2007 end-page: 295 ident: CR10 article-title: Inflammation directs memory precursor and short-lived effector CD8 T cell fates via the graded expression of T-bet transcription factor publication-title: Immunity doi: 10.1016/j.immuni.2007.07.010 – volume: 27 start-page: 393 year: 2007 end-page: 405 ident: CR3 article-title: Heterogeneity and cell-fate decisions in effector and memory CD8 T cell differentiation during viral infection publication-title: Immunity doi: 10.1016/j.immuni.2007.08.007 – volume: 31 start-page: 283 year: 2009 end-page: 295 ident: CR12 article-title: Blimp-1 transcription factor is required for the differentiation of effector CD8 T cells and memory responses publication-title: Immunity doi: 10.1016/j.immuni.2009.06.021 – volume: 460 start-page: 405 year: 2009 end-page: 409 ident: CR14 article-title: The AP-1 transcription factor Batf controls T 17 differentiation publication-title: Nature doi: 10.1038/nature08114 – volume: 22 start-page: 279 year: 2010 end-page: 285 ident: CR6 article-title: Effector and memory CD8 T cell differentiation: toward a molecular understanding of fate determination publication-title: Curr. Opin. Immunol. doi: 10.1016/j.coi.2010.03.008 – volume: 9 start-page: R137 year: 2008 ident: CR43 article-title: Model-based analysis of ChIP-Seq (MACS) publication-title: Genome Biol. doi: 10.1186/gb-2008-9-9-r137 – volume: 496 start-page: 461 year: 2013 end-page: 468 ident: CR64 article-title: Dynamic regulatory network controlling T 17 cell differentiation publication-title: Nature doi: 10.1038/nature11981 – volume: 84 start-page: 1182 year: 1987 end-page: 1186 ident: CR27 article-title: Expression of a set of growth-related immediate early genes in BALB/c 3T3 cells: coordinate regulation with c-fos or c-myc publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.84.5.1182 – volume: 35 start-page: D137 year: 2007 end-page: D140 ident: CR56 article-title: TRED: a transcriptional regulatory element database, new entries and other development publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkl1041 – volume: 182 start-page: 6709 year: 2009 end-page: 6717 ident: CR60 article-title: Langerhans cell maturation and contact hypersensitivity are impaired in aryl hydrocarbon receptor-null mice publication-title: J. Immunol. doi: 10.4049/jimmunol.0713344 – volume: 338 start-page: 1220 year: 2012 end-page: 1225 ident: CR28 article-title: Progenitor and terminal subsets of CD8 T cells cooperate to contain chronic viral infection publication-title: Science doi: 10.1126/science.1229620 – volume: 10 start-page: R25 year: 2009 ident: CR40 article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome publication-title: Genome Biol. doi: 10.1186/gb-2009-10-3-r25 – volume: 14 start-page: 1155 year: 2013 end-page: 1165 ident: CR24 article-title: The transcription factor IRF4 is essential for TCR affinity-mediated metabolic programming and clonal expansion of T cells publication-title: Nat. Immunol. doi: 10.1038/ni.2710 – volume: 208 start-page: 1605 year: 2011 end-page: 1620 ident: CR39 article-title: Chemokine receptor CXCR3 facilitates CD8 T cell differentiation into short-lived effector cells leading to memory degeneration publication-title: J. Exp. Med. doi: 10.1084/jem.20102101 – volume: 25 start-page: 25 year: 2000 end-page: 29 ident: CR26 article-title: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium publication-title: Nat. Genet. doi: 10.1038/75556 – volume: 338 start-page: 975 year: 2012 end-page: 980 ident: CR20 article-title: A genomic regulatory element that directs assembly and function of immune-specific AP-1-IRF complexes publication-title: Science doi: 10.1126/science.1228309 – volume: 7 start-page: 532 year: 2010 end-page: 544 ident: CR53 article-title: Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators publication-title: Cell Stem Cell doi: 10.1016/j.stem.2010.07.016 – volume: 32 start-page: 605 year: 2010 end-page: 615 ident: CR61 article-title: Diverse targets of the transcription factor STAT3 contribute to T cell pathogenicity and homeostasis publication-title: Immunity doi: 10.1016/j.immuni.2010.05.003 – volume: 12 start-page: 749 year: 2012 end-page: 761 ident: CR7 article-title: Transcriptional control of effector and memory CD8 T cell differentiation publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3307 – volume: 7 start-page: 1317 year: 2006 end-page: 1325 ident: CR13 article-title: Transcriptional regulator Id2 mediates CD8 T cell immunity publication-title: Nat. Immunol. doi: 10.1038/ni1403 – volume: 31 start-page: 296 year: 2009 end-page: 308 ident: CR11 article-title: Transcriptional repressor Blimp-1 promotes CD8 T cell terminal differentiation and represses the acquisition of central memory T cell properties publication-title: Immunity doi: 10.1016/j.immuni.2009.05.014 – volume: 26 start-page: 2438 year: 2010 end-page: 2444 ident: CR54 article-title: transcription factor regulation inferred from integrating genome-wide ChIP-X experiments publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq466 – volume: 302 start-page: 1041 year: 2003 end-page: 1043 ident: CR8 article-title: Control of effector CD8 T cell function by the transcription factor Eomesodermin publication-title: Science doi: 10.1126/science.1090148 – volume: 12 start-page: 536 year: 2011 end-page: 543 ident: CR16 article-title: The transcription factor BATF controls the global regulators of class-switch recombination in both B cells and T cells publication-title: Nat. Immunol. doi: 10.1038/ni.2037 – volume: 24 start-page: 2416 year: 2008 end-page: 2417 ident: CR52 article-title: ITFP: an integrated platform of mammalian transcription factors publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn439 – volume: 2 start-page: 251 year: 2002 end-page: 262 ident: CR1 article-title: Effector and memory T-cell differentiation: implications for vaccine development publication-title: Nat. Rev. Immunol. doi: 10.1038/nri778 – volume: 235 start-page: 219 year: 2010 end-page: 233 ident: CR5 article-title: Generating diversity: transcriptional regulation of effector and memory CD8 T-cell differentiation publication-title: Immunol. Rev. doi: 10.1111/j.0105-2896.2010.00901.x – volume: 206 start-page: 51 year: 2009 end-page: 59 ident: CR30 article-title: Runx3 and T-box proteins cooperate to establish the transcriptional program of effector CTLs publication-title: J. Exp. Med. doi: 10.1084/jem.20081242 – volume: 249 start-page: 27 year: 2012 end-page: 42 ident: CR4 article-title: Metabolic switching and fuel choice during T-cell differentiation and memory development publication-title: Immunol. Rev. doi: 10.1111/j.1600-065X.2012.01150.x – volume: 148 start-page: 1001 year: 2012 end-page: 1014 ident: CR23 article-title: A differentiation checkpoint limits hematopoietic stem cell self-renewal in response to DNA damage publication-title: Cell doi: 10.1016/j.cell.2012.01.040 – volume: 4 start-page: 249 year: 2003 end-page: 264 ident: CR50 article-title: Exploration, normalization, and summaries of high density oligonucleotide array probe level data publication-title: Biostatistics doi: 10.1093/biostatistics/4.2.249 – volume: 18 start-page: 1180 year: 2008 end-page: 1189 ident: CR51 article-title: Transcription factor and microRNA motif discovery: the Amadeus platform and a compendium of metazoan target sets publication-title: Genome Res. doi: 10.1101/gr.076117.108 – volume: 37 start-page: 1130 year: 2012 end-page: 1144 ident: CR2 article-title: Network analysis reveals centrally connected genes and pathways involved in CD8 T cell exhaustion versus memory publication-title: Immunity doi: 10.1016/j.immuni.2012.08.021 – volume: 490 start-page: 502 year: 2012 end-page: 507 ident: CR35 article-title: Compensatory dendritic cell development mediated by BATF-IRF interactions publication-title: Nature doi: 10.1038/nature11531 – volume: 108 start-page: 14885 year: 2011 end-page: 14889 ident: CR29 article-title: Basic leucine zipper transcription factor, ATF-like (BATF) regulates epigenetically and energetically effector CD8 T-cell differentiation via Sirt1 expression publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1105133108 – volume: 27 start-page: 1739 year: 2011 end-page: 1740 ident: CR55 article-title: Molecular signatures database (MSigDB) 3.0 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr260 – volume: 356 start-page: 1073 year: 2006 end-page: 1081 ident: CR32 article-title: The incoherent feed-forward loop accelerates the response-time of the gal system of publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2005.12.003 – ident: CR47 – volume: 6 start-page: 1236 year: 2005 end-page: 1244 ident: CR9 article-title: Effector and memory CD8 T cell fate coupled by T-bet and eomesodermin publication-title: Nat. Immunol. doi: 10.1038/ni1268 – volume: 22 start-page: 1813 year: 2012 end-page: 1831 ident: CR45 article-title: ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia publication-title: Genome Res. doi: 10.1101/gr.136184.111 – volume: 27 start-page: 1696 year: 2011 end-page: 1697 ident: CR46 article-title: MEME-ChIP: motif analysis of large DNA datasets publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr189 – volume: 16 start-page: 1147 year: 2010 end-page: 1151 ident: CR19 article-title: Transcriptional analysis of HIV-specific CD8 T cells shows that PD-1 inhibits T cell function by upregulating BATF publication-title: Nat. Med. doi: 10.1038/nm.2232 – volume: 100 start-page: 11980 year: 2003 end-page: 11985 ident: CR33 article-title: Structure and function of the feed-forward loop network motif publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2133841100 – volume: 26 start-page: 841 year: 2010 end-page: 842 ident: CR44 article-title: BEDTools: a flexible suite of utilities for comparing genomic features publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq033 – volume: 39 start-page: 833 year: 2013 end-page: 845 ident: CR34 article-title: Interferon regulatory factor 4 sustains CD8 T cell expansion and effector differentiation publication-title: Immunity doi: 10.1016/j.immuni.2013.10.007 – volume: 144 start-page: 886 year: 2011 end-page: 896 ident: CR31 article-title: Impulse control: temporal dynamics in gene transcription publication-title: Cell doi: 10.1016/j.cell.2011.02.015 – volume: 12 start-page: 247 year: 2011 end-page: 254 ident: CR62 article-title: Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5 publication-title: Nat. Immunol. doi: 10.1038/ni.1995 – volume: 31 start-page: e15 year: 2003 ident: CR48 article-title: Summaries of Affymetrix GeneChip probe level data publication-title: Nucleic Acids Res. doi: 10.1093/nar/gng015 – volume: 25 start-page: 2078 year: 2009 end-page: 2079 ident: CR41 article-title: The Sequence Alignment/Map format and SAMtools publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp352 – volume: 181 start-page: 2277 year: 2008 end-page: 2284 ident: CR58 article-title: Retinoic acid increases Foxp3 regulatory T cells and inhibits development of Th17 cells by enhancing TGF-β-driven Smad3 signaling and inhibiting IL-6 and IL-23 receptor expression publication-title: J. Immunol. doi: 10.4049/jimmunol.181.4.2277 – volume: 202 start-page: 637 year: 2005 end-page: 650 ident: CR36 article-title: Type I interferons act directly on CD8 T cells to allow clonal expansion and memory formation in response to viral infection publication-title: J. Exp. Med. doi: 10.1084/jem.20050821 – volume: 12 start-page: 663 year: 2011 end-page: 671 ident: CR38 article-title: Transcription factor T-bet represses expression of the inhibitory receptor PD-1 and sustains virus-specific CD8 T cell responses during chronic infection publication-title: Nat. Immunol. doi: 10.1038/ni.2046 – volume: 151 start-page: 981 year: 2012 end-page: 993 ident: CR37 article-title: STATs shape the active enhancer landscape of T cell populations publication-title: Cell doi: 10.1016/j.cell.2012.09.044 – volume: 19 start-page: 185 year: 2003 end-page: 193 ident: CR49 article-title: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias publication-title: Bioinformatics doi: 10.1093/bioinformatics/19.2.185 – volume: 490 start-page: 543 year: 2012 end-page: 546 ident: CR21 article-title: BATF-JUN is critical for IRF4-mediated transcription in T cells publication-title: Nature doi: 10.1038/nature11530 – volume: 208 start-page: 1367 year: 2011 end-page: 1376 ident: CR63 article-title: HIF1α-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells publication-title: J. Exp. Med. doi: 10.1084/jem.20110278 – volume: 473 start-page: 43 year: 2011 end-page: 49 ident: CR25 article-title: Mapping and analysis of chromatin state dynamics in nine human cell types publication-title: Nature doi: 10.1038/nature09906 – volume: 151 start-page: 289 year: 2012 end-page: 303 ident: CR22 article-title: A validated regulatory network for Th17 cell specification publication-title: Cell doi: 10.1016/j.cell.2012.09.016 – volume: 26 start-page: 1351 year: 2008 end-page: 1359 ident: CR42 article-title: Design and analysis of ChIP-seq experiments for DNA-binding proteins publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1508 – volume: 8 start-page: 1380 year: 2007 end-page: 1389 ident: CR57 article-title: A dominant function for interleukin 27 in generating interleukin 10-producing anti-inflammatory T cells publication-title: Nat. Immunol. doi: 10.1038/ni1541 – volume: 207 start-page: 933 year: 2010 end-page: 942 ident: CR15 article-title: Batf coordinates multiple aspects of B and T cell function required for normal antibody responses publication-title: J. Exp. Med. doi: 10.1084/jem.20091548 – volume: 326 start-page: 257 year: 2009 end-page: 263 ident: CR59 article-title: Unbiased reconstruction of a mammalian transcriptional network mediating pathogen responses publication-title: Science doi: 10.1126/science.1179050 – volume: 458 start-page: 859 year: 2009 end-page: 864 ident: CR18 article-title: Design of protein-interaction specificity gives selective bZIP-binding peptides publication-title: Nature doi: 10.1038/nature07885 – volume: 39 start-page: 833 year: 2013 ident: BFni2834_CR34 publication-title: Immunity doi: 10.1016/j.immuni.2013.10.007 – volume: 25 start-page: 25 year: 2000 ident: BFni2834_CR26 publication-title: Nat. Genet. doi: 10.1038/75556 – volume: 4 start-page: 249 year: 2003 ident: BFni2834_CR50 publication-title: Biostatistics doi: 10.1093/biostatistics/4.2.249 – volume: 458 start-page: 859 year: 2009 ident: BFni2834_CR18 publication-title: Nature doi: 10.1038/nature07885 – volume: 302 start-page: 1041 year: 2003 ident: BFni2834_CR8 publication-title: Science doi: 10.1126/science.1090148 – volume: 473 start-page: 43 year: 2011 ident: BFni2834_CR25 publication-title: Nature doi: 10.1038/nature09906 – volume: 7 start-page: 532 year: 2010 ident: BFni2834_CR53 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2010.07.016 – volume: 26 start-page: 2438 year: 2010 ident: BFni2834_CR54 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq466 – volume: 24 start-page: 2416 year: 2008 ident: BFni2834_CR52 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn439 – volume: 22 start-page: 279 year: 2010 ident: BFni2834_CR6 publication-title: Curr. Opin. Immunol. doi: 10.1016/j.coi.2010.03.008 – volume: 356 start-page: 1073 year: 2006 ident: BFni2834_CR32 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2005.12.003 – volume: 31 start-page: e15 year: 2003 ident: BFni2834_CR48 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gng015 – volume: 12 start-page: 749 year: 2012 ident: BFni2834_CR7 publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3307 – volume: 25 start-page: 2078 year: 2009 ident: BFni2834_CR41 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp352 – volume: 151 start-page: 981 year: 2012 ident: BFni2834_CR37 publication-title: Cell doi: 10.1016/j.cell.2012.09.044 – volume: 12 start-page: 663 year: 2011 ident: BFni2834_CR38 publication-title: Nat. Immunol. doi: 10.1038/ni.2046 – volume: 35 start-page: D137 year: 2007 ident: BFni2834_CR56 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkl1041 – volume: 208 start-page: 1605 year: 2011 ident: BFni2834_CR39 publication-title: J. Exp. Med. doi: 10.1084/jem.20102101 – volume: 26 start-page: 841 year: 2010 ident: BFni2834_CR44 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq033 – volume: 16 start-page: 1147 year: 2010 ident: BFni2834_CR19 publication-title: Nat. Med. doi: 10.1038/nm.2232 – volume: 9 start-page: R137 year: 2008 ident: BFni2834_CR43 publication-title: Genome Biol. doi: 10.1186/gb-2008-9-9-r137 – volume: 12 start-page: 536 year: 2011 ident: BFni2834_CR16 publication-title: Nat. Immunol. doi: 10.1038/ni.2037 – volume: 32 start-page: 605 year: 2010 ident: BFni2834_CR61 publication-title: Immunity doi: 10.1016/j.immuni.2010.05.003 – volume: 26 start-page: 1351 year: 2008 ident: BFni2834_CR42 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1508 – volume: 460 start-page: 405 year: 2009 ident: BFni2834_CR14 publication-title: Nature doi: 10.1038/nature08114 – volume: 490 start-page: 543 year: 2012 ident: BFni2834_CR21 publication-title: Nature doi: 10.1038/nature11530 – volume: 338 start-page: 975 year: 2012 ident: BFni2834_CR20 publication-title: Science doi: 10.1126/science.1228309 – volume: 22 start-page: 1813 year: 2012 ident: BFni2834_CR45 publication-title: Genome Res. doi: 10.1101/gr.136184.111 – volume: 208 start-page: 1367 year: 2011 ident: BFni2834_CR63 publication-title: J. Exp. Med. doi: 10.1084/jem.20110278 – volume: 18 start-page: 1180 year: 2008 ident: BFni2834_CR51 publication-title: Genome Res. doi: 10.1101/gr.076117.108 – volume: 27 start-page: 1739 year: 2011 ident: BFni2834_CR55 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr260 – volume: 8 start-page: 1380 year: 2007 ident: BFni2834_CR57 publication-title: Nat. Immunol. doi: 10.1038/ni1541 – volume: 148 start-page: 1001 year: 2012 ident: BFni2834_CR23 publication-title: Cell doi: 10.1016/j.cell.2012.01.040 – volume: 100 start-page: 11980 year: 2003 ident: BFni2834_CR33 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2133841100 – volume: 12 start-page: 247 year: 2011 ident: BFni2834_CR62 publication-title: Nat. Immunol. doi: 10.1038/ni.1995 – volume: 7 start-page: 1317 year: 2006 ident: BFni2834_CR13 publication-title: Nat. Immunol. doi: 10.1038/ni1403 – volume: 249 start-page: 27 year: 2012 ident: BFni2834_CR4 publication-title: Immunol. Rev. doi: 10.1111/j.1600-065X.2012.01150.x – volume: 202 start-page: 637 year: 2005 ident: BFni2834_CR36 publication-title: J. Exp. Med. doi: 10.1084/jem.20050821 – volume: 84 start-page: 1182 year: 1987 ident: BFni2834_CR27 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.84.5.1182 – volume: 338 start-page: 1220 year: 2012 ident: BFni2834_CR28 publication-title: Science doi: 10.1126/science.1229620 – volume: 19 start-page: 185 year: 2003 ident: BFni2834_CR49 publication-title: Bioinformatics doi: 10.1093/bioinformatics/19.2.185 – volume: 2 start-page: 251 year: 2002 ident: BFni2834_CR1 publication-title: Nat. Rev. Immunol. doi: 10.1038/nri778 – volume: 27 start-page: 1696 year: 2011 ident: BFni2834_CR46 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr189 – volume: 31 start-page: 283 year: 2009 ident: BFni2834_CR12 publication-title: Immunity doi: 10.1016/j.immuni.2009.06.021 – volume: 13 start-page: 499 year: 2013 ident: BFni2834_CR17 publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3470 – volume: 10 start-page: R25 year: 2009 ident: BFni2834_CR40 publication-title: Genome Biol. doi: 10.1186/gb-2009-10-3-r25 – volume: 144 start-page: 886 year: 2011 ident: BFni2834_CR31 publication-title: Cell doi: 10.1016/j.cell.2011.02.015 – volume: 206 start-page: 51 year: 2009 ident: BFni2834_CR30 publication-title: J. Exp. Med. doi: 10.1084/jem.20081242 – volume: 27 start-page: 281 year: 2007 ident: BFni2834_CR10 publication-title: Immunity doi: 10.1016/j.immuni.2007.07.010 – volume: 181 start-page: 2277 year: 2008 ident: BFni2834_CR58 publication-title: J. Immunol. doi: 10.4049/jimmunol.181.4.2277 – volume: 151 start-page: 289 year: 2012 ident: BFni2834_CR22 publication-title: Cell doi: 10.1016/j.cell.2012.09.016 – volume: 37 start-page: 1130 year: 2012 ident: BFni2834_CR2 publication-title: Immunity doi: 10.1016/j.immuni.2012.08.021 – volume: 14 start-page: 1155 year: 2013 ident: BFni2834_CR24 publication-title: Nat. Immunol. doi: 10.1038/ni.2710 – ident: BFni2834_CR47 – volume: 182 start-page: 6709 year: 2009 ident: BFni2834_CR60 publication-title: J. Immunol. doi: 10.4049/jimmunol.0713344 – volume: 326 start-page: 257 year: 2009 ident: BFni2834_CR59 publication-title: Science doi: 10.1126/science.1179050 – volume: 27 start-page: 393 year: 2007 ident: BFni2834_CR3 publication-title: Immunity doi: 10.1016/j.immuni.2007.08.007 – volume: 235 start-page: 219 year: 2010 ident: BFni2834_CR5 publication-title: Immunol. Rev. doi: 10.1111/j.0105-2896.2010.00901.x – volume: 6 start-page: 1236 year: 2005 ident: BFni2834_CR9 publication-title: Nat. Immunol. doi: 10.1038/ni1268 – volume: 490 start-page: 502 year: 2012 ident: BFni2834_CR35 publication-title: Nature doi: 10.1038/nature11531 – volume: 108 start-page: 14885 year: 2011 ident: BFni2834_CR29 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1105133108 – volume: 207 start-page: 933 year: 2010 ident: BFni2834_CR15 publication-title: J. Exp. Med. doi: 10.1084/jem.20091548 – volume: 31 start-page: 296 year: 2009 ident: BFni2834_CR11 publication-title: Immunity doi: 10.1016/j.immuni.2009.05.014 – volume: 496 start-page: 461 year: 2013 ident: BFni2834_CR64 publication-title: Nature doi: 10.1038/nature11981 |
| SSID | ssj0014764 |
| Score | 2.5763764 |
| Snippet | The transcription factor BATF is required for differentiation of certain helper T cell subsets. Haining and colleagues show that BATF crucially regulates CD8
+... The transcription factor BATF is required for the differentiation of interleukin 17 (IL-17)-producing helper T cells (TH17 cells) and follicular helper T cells... The transcription factor BATF is required for differentiation of certain helper T cell subsets. Haining and colleagues show that BATF crucially regulates CD8+... The transcription factor BATF is required for interleukin 17 (IL-17)-producing helper T cell (TH17) and follicular helper T cell (TFH) differentiation. Here,... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 373 |
| SubjectTerms | 13 13/31 38 38/15 38/23 38/77 42/44 631/250/2152/1566/1571 631/250/2152/1566/1618 64/60 Animals Antigens Basic-Leucine Zipper Transcription Factors - genetics Basic-Leucine Zipper Transcription Factors - immunology Basic-Leucine Zipper Transcription Factors - metabolism Biomedicine CD8 antigen CD8-Positive T-Lymphocytes - immunology Cell differentiation Cell Differentiation - genetics Cell Growth Processes - genetics Cells, Cultured Cytokine receptors Down-Regulation Effector cells Granzyme B Granzymes - genetics Granzymes - metabolism Helper cells Immunology Infectious Diseases Inflammation Interferon regulatory factor 4 Interferon Regulatory Factors - metabolism Interferon-gamma - genetics Interferon-gamma - metabolism Interleukin 17 Lymphocyte Activation - genetics Lymphocytes Lymphocytes T Male Mice Mice, Inbred C57BL Mice, Knockout Population growth Positive Regulatory Domain I-Binding Factor 1 Proto-Oncogene Proteins c-jun - metabolism T cell receptors T-Box Domain Proteins - genetics T-Box Domain Proteins - metabolism Th17 Cells - immunology Transcription factors Transcription Factors - genetics Transcription Factors - metabolism Transcriptional Activation - genetics γ-Interferon |
| Title | The transcription factor BATF operates as an essential differentiation checkpoint in early effector CD8+ T cells |
| URI | https://link.springer.com/article/10.1038/ni.2834 https://www.ncbi.nlm.nih.gov/pubmed/24584090 https://www.proquest.com/docview/1657296695 https://www.proquest.com/docview/2566145360 https://www.proquest.com/docview/1509413611 https://pubmed.ncbi.nlm.nih.gov/PMC4000237 |
| Volume | 15 |
| WOSCitedRecordID | wos000333252000012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1529-2916 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0014764 issn: 1529-2908 databaseCode: M7P dateStart: 20000701 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1529-2916 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0014764 issn: 1529-2908 databaseCode: 7X7 dateStart: 20000701 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1529-2916 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0014764 issn: 1529-2908 databaseCode: BENPR dateStart: 20000701 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1529-2916 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0014764 issn: 1529-2908 databaseCode: 8C1 dateStart: 20000701 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoC4gLj1JgS1kZCXFBoUn8zAm1S1dcWK3QIu0tiieOiFo5oUmR-Pcd57GwLOKCFCUHO35kxp6RZ_J9hLzhWuZoKESQSwsB51kcGJB5YI1BawGZSuKebEItFnq9TpbDgVszpFWOe2K3UecV-DPy00gK9AOlTMSH-nvgWaN8dHWg0NgjBx4lgXWpe8tNFIGrDj4KO02COAl1_9OshwQ_deV7NKx82xrtuJi7mZJ_hEs7KzR_9L_jf0weDv4nPesV5gm5Y90hudczUv48JPc_D7H2p6RGDaKtN2XjxkJ7ch56fraa06r2cMy2oRlejnoIcoe7xRUdKVfaXugUtQIu66p0LS2xngdUpn0WCTY1-6jf0RX14YPmiHydX6xmn4KBnyEALnQbFGEhNGhtJDAGwhQFj3hsWAQiMxk6TkxlRuQQZZ7nzHJuBDrJKs8LmzAAYM_IvqucfUEoxAC5thDmJuYZJKawwqgwxocshOQT8naUUwoDeLnn0LhKuyA606krUy_QCbY1Vqx7vI7dKiejhNJhwTbpL_H8tRgdQ_RjBJPhhLzeFONK9N8nc7a6wSY8FmHEZBRNyPNebTZDiH04OkzwbbWlUJsKHuV7u8SV3zq0b95hEinsd1S930a9PbPjf8_sJXmA7t6Qd3RC9tvrG_uK3IUfbdlcT8meWqvurvGuZ9GUHJxfLJZfpt2iugUWMynH |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwELVK-bzwUQosFDAScEFpE8d2nANCpWXVqu2qh0XqLcQTR0RU3tCkoP4pfiPjOFlYFnHrASlSDnacOHmemWQm7xHykitZoKMQQSENBJznLNAgi8Bojd4C8iRlXmwimUzUyUl6vEJ-DP_CuLLKwSZ2hrqYgftGvhVJgXGglKl4V38NnGqUy64OEhoeFgfm4ju-sjVv93fx-b5ibPxhurMX9KoCAXCh2qAMS6FAKS0hjkHosuQRZzqOQOQ6R3cfJ7kWBUS5U-cynGuBoV1SFKVJYwCIcdwr5Co2MtWVCh7PsxY86eiqcJJpwNJQ-Z90HQX5lq020ZHzRe-3FNIuV2b-kZ7tvN74zv92v-6S2318Tbf9grhHVoxdI9e94ubFGrlx1NcS3Cc1rhDaOlc9GE7qxYfo--3pmM5qRzdtGprjZqmjWLdoDU_pICnTelBTRD18qWeVbWmF_RxhNPVVMjjUzq56Q6fUpUeadfLxUmb-gKzamTWPCAUGUCgDYaEZzyHVpRE6CRnuZCkkH5HXAy4y6MnZnUbIadYVCcQqs1XmADTCsYaOtecjWe6yMSAi6w1Sk_2Cw1-bMfDFOE3EMhyRF_NmtDTu_uTWzM5xCMe1GMUyikbkoYfp_BKYS7eHKR6dLAB43sGxmC-22Opzx2bOO86lBM87QP23q16c2eN_z-w5ubk3PTrMDvcnB0_ILQxt-xqrDbLanp2bp-QafGur5uxZt2wp-XTZuP8JiTuE1A |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKgYoLj_JaKGAk4ILC5mE7zgGhssuKqrDqYZF6S-OJo0atnNCkoP41fh3jOFlYFnHrASlSDnYcO_k8M4nH30fICyZFjo6Ce7nQ4DGWhZ4CkXtaKfQWkMVJ6MQm4vlcHh4mBxvkx7AXxqZVDjaxM9R5BfYf-TgQHONAIRI-Lvq0iIPp7F391bMKUnaldZDTcBDZ1xff8fOtebs3xXf9MgxnHxaTj16vMOAB47L1Cr_gEqRUAqIIuCoKFrBQRQHwTGXo-qM4UzyHILNKXZoxxTHMi_O80EkEABG2e4VcjSNEsd2lPlmmlwQs7qircMCJFya-dBt2LR352JRv0KmzVU-4Ft6uZ2n-sVTbecDZrf_52d0mN_u4m-66iXKHbGizTa47Jc6LbbL1uc8xuEtqnDm0tS58MKjUiRLR97uLGa1qS0OtG5rhYailXjdoJU_pIDXTOrBTnA1wUlelaWmJ9SyRNHXZM9jUZCpf0wW1yybNPfLlUkZ-n2yayuiHhEIIkEsNfq5ClkGiCs1V7Id4EgUXbEReDRhJoSdtt9ohp2mXPBDJ1JSpBdMI2xoq1o6nZL3KzoCOtDdUTfoLGn8txoAY4zceCX9Eni-L0QLZ55MZXZ1jE5aDMYhEEIzIAwfZZRdCuwzvJ3h1vALmZQXLbr5aYsrjjuWcdVxMMd53gP1vvV4d2aN_j-wZ2UK4p5_25vuPyQ2MePvUqx2y2Z6d6yfkGnxry-bsaTeDKTm6bNj_BINMjUo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+transcription+factor+BATF+operates+as+an+essential+differentiation+checkpoint+in+early+effector+CD8%2B+T+cells&rft.jtitle=Nature+immunology&rft.au=Kurachi%2C+Makoto&rft.au=Barnitz%2C+R+Anthony&rft.au=Yosef%2C+Nir&rft.au=Odorizzi%2C+Pamela+M&rft.date=2014-04-01&rft.pub=Nature+Publishing+Group+US&rft.issn=1529-2908&rft.eissn=1529-2916&rft.volume=15&rft.issue=4&rft.spage=373&rft.epage=383&rft_id=info:doi/10.1038%2Fni.2834&rft.externalDocID=10_1038_ni_2834 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1529-2908&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1529-2908&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1529-2908&client=summon |