Applications of the Natural Language Processing Tool ChatGPT in Clinical Practice: Comparative Study and Augmented Systematic Review
This research integrates a comparative analysis of the performance of human researchers and OpenAI's ChatGPT in systematic review tasks and describes an assessment of the application of natural language processing (NLP) models in clinical practice through a review of 5 studies. This study aimed...
Saved in:
| Published in: | JMIR medical informatics Vol. 11; p. e48933 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Canada
JMIR Publications
28.11.2023
|
| Subjects: | |
| ISSN: | 2291-9694, 2291-9694 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This research integrates a comparative analysis of the performance of human researchers and OpenAI's ChatGPT in systematic review tasks and describes an assessment of the application of natural language processing (NLP) models in clinical practice through a review of 5 studies.
This study aimed to evaluate the reliability between ChatGPT and human researchers in extracting key information from clinical articles, and to investigate the practical use of NLP in clinical settings as evidenced by selected studies.
The study design comprised a systematic review of clinical articles executed independently by human researchers and ChatGPT. The level of agreement between and within raters for parameter extraction was assessed using the Fleiss and Cohen κ statistics.
The comparative analysis revealed a high degree of concordance between ChatGPT and human researchers for most parameters, with less agreement for study design, clinical task, and clinical implementation. The review identified 5 significant studies that demonstrated the diverse applications of NLP in clinical settings. These studies' findings highlight the potential of NLP to improve clinical efficiency and patient outcomes in various contexts, from enhancing allergy detection and classification to improving quality metrics in psychotherapy treatments for veterans with posttraumatic stress disorder.
Our findings underscore the potential of NLP models, including ChatGPT, in performing systematic reviews and other clinical tasks. Despite certain limitations, NLP models present a promising avenue for enhancing health care efficiency and accuracy. Future studies must focus on broadening the range of clinical applications and exploring the ethical considerations of implementing NLP applications in health care settings. |
|---|---|
| AbstractList | Background:This research integrates a comparative analysis of the performance of human researchers and OpenAI's ChatGPT in systematic review tasks and describes an assessment of the application of natural language processing (NLP) models in clinical practice through a review of 5 studies.Objective:This study aimed to evaluate the reliability between ChatGPT and human researchers in extracting key information from clinical articles, and to investigate the practical use of NLP in clinical settings as evidenced by selected studies.Methods:The study design comprised a systematic review of clinical articles executed independently by human researchers and ChatGPT. The level of agreement between and within raters for parameter extraction was assessed using the Fleiss and Cohen κ statistics.Results:The comparative analysis revealed a high degree of concordance between ChatGPT and human researchers for most parameters, with less agreement for study design, clinical task, and clinical implementation. The review identified 5 significant studies that demonstrated the diverse applications of NLP in clinical settings. These studies’ findings highlight the potential of NLP to improve clinical efficiency and patient outcomes in various contexts, from enhancing allergy detection and classification to improving quality metrics in psychotherapy treatments for veterans with posttraumatic stress disorder.Conclusions:Our findings underscore the potential of NLP models, including ChatGPT, in performing systematic reviews and other clinical tasks. Despite certain limitations, NLP models present a promising avenue for enhancing health care efficiency and accuracy. Future studies must focus on broadening the range of clinical applications and exploring the ethical considerations of implementing NLP applications in health care settings. This research integrates a comparative analysis of the performance of human researchers and OpenAI's ChatGPT in systematic review tasks and describes an assessment of the application of natural language processing (NLP) models in clinical practice through a review of 5 studies.BACKGROUNDThis research integrates a comparative analysis of the performance of human researchers and OpenAI's ChatGPT in systematic review tasks and describes an assessment of the application of natural language processing (NLP) models in clinical practice through a review of 5 studies.This study aimed to evaluate the reliability between ChatGPT and human researchers in extracting key information from clinical articles, and to investigate the practical use of NLP in clinical settings as evidenced by selected studies.OBJECTIVEThis study aimed to evaluate the reliability between ChatGPT and human researchers in extracting key information from clinical articles, and to investigate the practical use of NLP in clinical settings as evidenced by selected studies.The study design comprised a systematic review of clinical articles executed independently by human researchers and ChatGPT. The level of agreement between and within raters for parameter extraction was assessed using the Fleiss and Cohen κ statistics.METHODSThe study design comprised a systematic review of clinical articles executed independently by human researchers and ChatGPT. The level of agreement between and within raters for parameter extraction was assessed using the Fleiss and Cohen κ statistics.The comparative analysis revealed a high degree of concordance between ChatGPT and human researchers for most parameters, with less agreement for study design, clinical task, and clinical implementation. The review identified 5 significant studies that demonstrated the diverse applications of NLP in clinical settings. These studies' findings highlight the potential of NLP to improve clinical efficiency and patient outcomes in various contexts, from enhancing allergy detection and classification to improving quality metrics in psychotherapy treatments for veterans with posttraumatic stress disorder.RESULTSThe comparative analysis revealed a high degree of concordance between ChatGPT and human researchers for most parameters, with less agreement for study design, clinical task, and clinical implementation. The review identified 5 significant studies that demonstrated the diverse applications of NLP in clinical settings. These studies' findings highlight the potential of NLP to improve clinical efficiency and patient outcomes in various contexts, from enhancing allergy detection and classification to improving quality metrics in psychotherapy treatments for veterans with posttraumatic stress disorder.Our findings underscore the potential of NLP models, including ChatGPT, in performing systematic reviews and other clinical tasks. Despite certain limitations, NLP models present a promising avenue for enhancing health care efficiency and accuracy. Future studies must focus on broadening the range of clinical applications and exploring the ethical considerations of implementing NLP applications in health care settings.CONCLUSIONSOur findings underscore the potential of NLP models, including ChatGPT, in performing systematic reviews and other clinical tasks. Despite certain limitations, NLP models present a promising avenue for enhancing health care efficiency and accuracy. Future studies must focus on broadening the range of clinical applications and exploring the ethical considerations of implementing NLP applications in health care settings. BackgroundThis research integrates a comparative analysis of the performance of human researchers and OpenAI's ChatGPT in systematic review tasks and describes an assessment of the application of natural language processing (NLP) models in clinical practice through a review of 5 studies. ObjectiveThis study aimed to evaluate the reliability between ChatGPT and human researchers in extracting key information from clinical articles, and to investigate the practical use of NLP in clinical settings as evidenced by selected studies. MethodsThe study design comprised a systematic review of clinical articles executed independently by human researchers and ChatGPT. The level of agreement between and within raters for parameter extraction was assessed using the Fleiss and Cohen κ statistics. ResultsThe comparative analysis revealed a high degree of concordance between ChatGPT and human researchers for most parameters, with less agreement for study design, clinical task, and clinical implementation. The review identified 5 significant studies that demonstrated the diverse applications of NLP in clinical settings. These studies’ findings highlight the potential of NLP to improve clinical efficiency and patient outcomes in various contexts, from enhancing allergy detection and classification to improving quality metrics in psychotherapy treatments for veterans with posttraumatic stress disorder. ConclusionsOur findings underscore the potential of NLP models, including ChatGPT, in performing systematic reviews and other clinical tasks. Despite certain limitations, NLP models present a promising avenue for enhancing health care efficiency and accuracy. Future studies must focus on broadening the range of clinical applications and exploring the ethical considerations of implementing NLP applications in health care settings. This research integrates a comparative analysis of the performance of human researchers and OpenAI's ChatGPT in systematic review tasks and describes an assessment of the application of natural language processing (NLP) models in clinical practice through a review of 5 studies. This study aimed to evaluate the reliability between ChatGPT and human researchers in extracting key information from clinical articles, and to investigate the practical use of NLP in clinical settings as evidenced by selected studies. The study design comprised a systematic review of clinical articles executed independently by human researchers and ChatGPT. The level of agreement between and within raters for parameter extraction was assessed using the Fleiss and Cohen κ statistics. The comparative analysis revealed a high degree of concordance between ChatGPT and human researchers for most parameters, with less agreement for study design, clinical task, and clinical implementation. The review identified 5 significant studies that demonstrated the diverse applications of NLP in clinical settings. These studies' findings highlight the potential of NLP to improve clinical efficiency and patient outcomes in various contexts, from enhancing allergy detection and classification to improving quality metrics in psychotherapy treatments for veterans with posttraumatic stress disorder. Our findings underscore the potential of NLP models, including ChatGPT, in performing systematic reviews and other clinical tasks. Despite certain limitations, NLP models present a promising avenue for enhancing health care efficiency and accuracy. Future studies must focus on broadening the range of clinical applications and exploring the ethical considerations of implementing NLP applications in health care settings. |
| Author | Baur, David Osterhoff, Georg Schopow, Nikolas |
| AuthorAffiliation | 1 Department for Orthopedics, Trauma Surgery and Plastic Surgery University Hospital Leipzig Leipzig Germany |
| AuthorAffiliation_xml | – name: 1 Department for Orthopedics, Trauma Surgery and Plastic Surgery University Hospital Leipzig Leipzig Germany |
| Author_xml | – sequence: 1 givenname: Nikolas orcidid: 0000-0002-6754-5692 surname: Schopow fullname: Schopow, Nikolas – sequence: 2 givenname: Georg orcidid: 0000-0001-5051-0998 surname: Osterhoff fullname: Osterhoff, Georg – sequence: 3 givenname: David orcidid: 0000-0001-8602-617X surname: Baur fullname: Baur, David |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38015610$$D View this record in MEDLINE/PubMed |
| BookMark | eNpdklFv0zAUhSM0xMboX0CWEBISKthO4ti8oKqCMamCiZVn68ZxUleJHWynqO_8cLx2Q-uebPl-Pjrn3vsyO7PO6iybEfyBEsE-Flzk-bPsglJB5oKJ4uzR_TybhbDFGJOCMMaqF9l5zjEpGcEX2d_FOPZGQTTOBuRaFDcafYc4eejRCmw3QafRjXdKh2Bsh9bO9Wi5gXh1s0bGomVvbPrfJwZUNEp_Qks3jOCT5E6j2zg1ewS2QYupG7SNukG3-xD1kOoK_dQ7o_-8yp630Ac9uz8vs19fv6yX3-arH1fXy8VqroqSx7lmraIlawitANdMAcN5qVVNMRaUtVWNU2TWFhXFCrjgpBUt43VeN5pARXl-mV0fdRsHWzl6M4DfSwdGHh6c7yT4ZKvXkpdFARXWbUnqgkDJy0YQ3gIB0jQ1oUnr81FrnOpBNypFSy07ET2tWLORndtJgivCqkIkhXf3Ct79nnSIcjBB6b4Hq90UJOXiLkpZkIS-eYJu3eRt6pVMkXmJOeZ5ol4_tvTfy8O0E_D-CCjvQvC6lcrEw-iTQ9Mna_JuneRhnRL99gn9IHjK_QPtjMfd |
| CitedBy_id | crossref_primary_10_1007_s40593_025_00467_9 crossref_primary_10_1002_jrsm_1732 crossref_primary_10_1186_s12874_024_02320_4 crossref_primary_10_1016_j_jval_2025_04_2167 crossref_primary_10_1038_s41598_025_97500_7 crossref_primary_10_1007_s00330_025_11416_4 crossref_primary_10_1017_dap_2025_10030 crossref_primary_10_1093_eurpub_ckaf072 crossref_primary_10_3390_diagnostics14242792 crossref_primary_10_2196_52992 crossref_primary_10_1007_s00404_024_07565_4 crossref_primary_10_3390_info16060489 crossref_primary_10_2196_66232 crossref_primary_10_1016_j_physio_2025_101838 crossref_primary_10_25259_GJMPBU_31_2025 crossref_primary_10_1016_j_jval_2025_07_001 crossref_primary_10_1186_s12874_024_02253_y crossref_primary_10_21105_joss_07616 crossref_primary_10_2196_62865 crossref_primary_10_1186_s12929_025_01131_z crossref_primary_10_3390_jcm14061983 crossref_primary_10_1017_rsm_2025_16 crossref_primary_10_2196_56500 crossref_primary_10_1016_j_jval_2025_06_018 crossref_primary_10_2196_55957 crossref_primary_10_1016_j_jval_2024_10_3846 crossref_primary_10_1016_j_ajic_2024_03_016 crossref_primary_10_1093_jamia_ocaf063 crossref_primary_10_1007_s11135_024_01946_2 crossref_primary_10_1016_j_jsurg_2025_103629 crossref_primary_10_1002_jaba_70029 crossref_primary_10_1007_s10805_024_09589_6 |
| Cites_doi | 10.18653/v1/p19-1355 10.1162/daed_a_01905 10.1186/s13643-019-1074-9 10.1038/s41591-021-01614-0 10.1016/j.jbi.2020.103526 10.1016/j.jbusres.2019.07.039 10.1093/jamia/ocab236 10.1056/nejmra2302038 10.1001/jama.2017.18391 10.1016/j.jpi.2022.100139 10.18653/v1/w19-1909 10.1093/jamia/ocac066 10.1145/3571730 10.1136/bmj.e7031 10.1186/s12911-023-02101-x 10.3163/1536-5050.104.3.014 10.1002/clc.23687 10.1371/journal.pmed.1000097 10.1186/2046-4053-3-74 10.1111/jep.13587 10.1007/s11192-010-0202-z 10.1136/amiajnl-2011-000163 10.1002/9780470712184 10.1055/s-0038-1638592 10.1136/amiajnl-2013-001935 10.1093/jamia/ocac121 10.1136/bmj.n71 10.1097/SPC.0000000000000645 10.1037/h0031619 10.1093/bioinformatics/btz682 10.2196/28946 10.1016/j.jbi.2017.11.011 10.1186/s12911-017-0556-8 10.1016/j.jclinepi.2012.11.011 10.1177/001316446002000104 10.1200/cci.18.00084 |
| ContentType | Journal Article |
| Copyright | Nikolas Schopow, Georg Osterhoff, David Baur. Originally published in JMIR Medical Informatics (https://medinform.jmir.org), 28.11.2023. 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Nikolas Schopow, Georg Osterhoff, David Baur. Originally published in JMIR Medical Informatics (https://medinform.jmir.org), 28.11.2023. 2023 |
| Copyright_xml | – notice: Nikolas Schopow, Georg Osterhoff, David Baur. Originally published in JMIR Medical Informatics (https://medinform.jmir.org), 28.11.2023. – notice: 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Nikolas Schopow, Georg Osterhoff, David Baur. Originally published in JMIR Medical Informatics (https://medinform.jmir.org), 28.11.2023. 2023 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88C 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M0T PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
| DOI | 10.2196/48933 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Healthcare Administration Database (Alumni) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Healthcare Administration Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest One Academic Eastern Edition ProQuest Health Management ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Health Management (Alumni Edition) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2291-9694 |
| ExternalDocumentID | oai_doaj_org_article_8544a70ef51b41a585d918fa1a1ddb12 PMC10716749 38015610 10_2196_48933 |
| Genre | Journal Article |
| GroupedDBID | 53G 5VS 7X7 8FI 8FJ AAFWJ AAYXX ABUWG ADBBV AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BENPR CCPQU CITATION DIK EMOBN FYUFA GROUPED_DOAJ HMCUK HYE KQ8 M0T M48 M~E OK1 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY RPM UKHRP ALIPV NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQQKQ PQUKI 7X8 5PM |
| ID | FETCH-LOGICAL-c458t-e6fc256d127a0b6ca6035ecb200926f7b02916f4720ca8981f9f68b3bde1a7283 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 30 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001115534200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2291-9694 |
| IngestDate | Mon Nov 10 04:28:05 EST 2025 Tue Nov 04 02:06:26 EST 2025 Sun Nov 09 11:00:31 EST 2025 Tue Oct 07 07:26:02 EDT 2025 Thu Jan 02 22:36:57 EST 2025 Sat Nov 29 02:59:13 EST 2025 Tue Nov 18 22:29:02 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | review methods natural language processing clinical practice language model review methodology systematic extraction machine learning systematic review artificial intelligence healthcare NLP extract ChatGPT unstructured large language models text GPT-4 clinical decision support systems health care GPT-3 |
| Language | English |
| License | Nikolas Schopow, Georg Osterhoff, David Baur. Originally published in JMIR Medical Informatics (https://medinform.jmir.org), 28.11.2023. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Medical Informatics, is properly cited. The complete bibliographic information, a link to the original publication on https://medinform.jmir.org/, as well as this copyright and license information must be included. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c458t-e6fc256d127a0b6ca6035ecb200926f7b02916f4720ca8981f9f68b3bde1a7283 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-6754-5692 0000-0001-8602-617X 0000-0001-5051-0998 |
| OpenAccessLink | https://www.proquest.com/docview/2918508083?pq-origsite=%requestingapplication% |
| PMID | 38015610 |
| PQID | 2918508083 |
| PQPubID | 4997117 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_8544a70ef51b41a585d918fa1a1ddb12 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10716749 proquest_miscellaneous_2894720541 proquest_journals_2918508083 pubmed_primary_38015610 crossref_citationtrail_10_2196_48933 crossref_primary_10_2196_48933 |
| PublicationCentury | 2000 |
| PublicationDate | 20231128 |
| PublicationDateYYYYMMDD | 2023-11-28 |
| PublicationDate_xml | – month: 11 year: 2023 text: 20231128 day: 28 |
| PublicationDecade | 2020 |
| PublicationPlace | Canada |
| PublicationPlace_xml | – name: Canada – name: Toronto – name: Toronto, Canada |
| PublicationTitle | JMIR medical informatics |
| PublicationTitleAlternate | JMIR Med Inform |
| PublicationYear | 2023 |
| Publisher | JMIR Publications |
| Publisher_xml | – name: JMIR Publications |
| References | ref35 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref10 ref32 ref2 ref1 Devlin, J (ref12) ref17 Higgins, J (ref33) 2008 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref41 ref22 ref21 Brown, T (ref13) ref28 ref27 ref29 ref8 ref7 Higgins, JPT (ref34) 2022 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref17 doi: 10.18653/v1/p19-1355 – ident: ref23 doi: 10.1162/daed_a_01905 – ident: ref32 doi: 10.1186/s13643-019-1074-9 – ident: ref1 – ident: ref5 doi: 10.1038/s41591-021-01614-0 – ident: ref21 doi: 10.1016/j.jbi.2020.103526 – ident: ref30 doi: 10.1016/j.jbusres.2019.07.039 – ident: ref22 doi: 10.1093/jamia/ocab236 – ident: ref3 doi: 10.1056/nejmra2302038 – ident: ref20 doi: 10.1001/jama.2017.18391 – ident: ref38 doi: 10.1016/j.jpi.2022.100139 – ident: ref13 publication-title: arXiv. Preprint posted online May 28, 2020 – ident: ref15 doi: 10.18653/v1/w19-1909 – ident: ref12 publication-title: arXiv. Preprint posted online October 11, 2018 – ident: ref11 doi: 10.1093/jamia/ocac066 – ident: ref18 doi: 10.1145/3571730 – ident: ref27 doi: 10.1136/bmj.e7031 – ident: ref37 doi: 10.1186/s12911-023-02101-x – ident: ref26 doi: 10.3163/1536-5050.104.3.014 – ident: ref40 doi: 10.1002/clc.23687 – ident: ref24 doi: 10.1371/journal.pmed.1000097 – ident: ref31 doi: 10.1186/2046-4053-3-74 – ident: ref41 doi: 10.1111/jep.13587 – ident: ref28 doi: 10.1007/s11192-010-0202-z – ident: ref2 doi: 10.1136/amiajnl-2011-000163 – year: 2008 ident: ref33 publication-title: Cochrane Handbook for Systematic Reviews of Interventions: Cochrane Book Series doi: 10.1002/9780470712184 – ident: ref4 doi: 10.1055/s-0038-1638592 – ident: ref7 doi: 10.1136/amiajnl-2013-001935 – ident: ref8 doi: 10.1093/jamia/ocac121 – ident: ref25 doi: 10.1136/bmj.n71 – ident: ref9 doi: 10.1097/SPC.0000000000000645 – ident: ref35 doi: 10.1037/h0031619 – ident: ref14 doi: 10.1093/bioinformatics/btz682 – ident: ref39 doi: 10.2196/28946 – ident: ref6 doi: 10.1016/j.jbi.2017.11.011 – ident: ref19 doi: 10.1186/s12911-017-0556-8 – ident: ref29 doi: 10.1016/j.jclinepi.2012.11.011 – year: 2022 ident: ref34 publication-title: Cochrane Handbook for Systematic Reviews of Interventions version 6.3 – ident: ref36 doi: 10.1177/001316446002000104 – ident: ref10 doi: 10.1200/cci.18.00084 – ident: ref16 |
| SSID | ssj0001416667 |
| Score | 2.4365075 |
| Snippet | This research integrates a comparative analysis of the performance of human researchers and OpenAI's ChatGPT in systematic review tasks and describes an... Background:This research integrates a comparative analysis of the performance of human researchers and OpenAI's ChatGPT in systematic review tasks and... BackgroundThis research integrates a comparative analysis of the performance of human researchers and OpenAI's ChatGPT in systematic review tasks and describes... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e48933 |
| SubjectTerms | Artificial intelligence Automation Chatbots Clinical outcomes Data mining Decision making Disease Electronic health records Human performance Language Medical diagnosis Multimedia Natural language processing Original Paper Performance evaluation Researchers Subject heading schemes Systematic review |
| SummonAdditionalLinks | – databaseName: DOAJ dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB1KCKFQSvrtNg1TyNXEsmVL7m2zNO2hXRa6hdyMZEnNwmKXZLeQe354R7Li7IZCL71aOkgzI-aNZ-YNwIkyZeGkzVNeSgpQuBGpKhVPi9bpjBNiEJqHYRNiNpMXF_V8a9SXrwkb6IEHwZ3KknMlMutKpjlThG5NzaRTTDFjdJgvnBPq2Qqmwt8V7tNh4gCe-FpnsrJTT7JS7DifwNH_N2D5sD5yy-GcH8LTiBRxMpzwGTyy3XM4-BZz4S_gdrKVe8beIUE5nKnAo4Ff429IjI0A5KBw0fcrnF6q9ef5ApcdRkrQFc5jp9RHnN5zgaOvMLxB1RmcbH4G6k6D30feZxySCi_hx_mnxfRLGmcqpC1pY53ayrWEcgzLhcp01aoqK0rb6kC-VDmhs5wAo-Miz1ola8lc7SqpC20sU4KwyCvY6_rOvgHMFa-tH6VOguIsU1KQ97cUInHPL1pmCZzcCbtpI-G4n3uxaijw8Dppgk4SOB63_RoYNh5uOPOaGhc9IXb4QGbSRDNp_mUmCRzd6bmJr_S6oatKAqiEQhP4MC7T-_JJE9XZfkN7ZO2FUXKWwOvBLMaTFNI3ojO6qdwxmJ2j7q50y8vA4U1Rt-__qN_-j8u9g8c5YS_fIpnLI9hbX23se9hvf6-X11fH4WX8AdN2FFw priority: 102 providerName: Directory of Open Access Journals |
| Title | Applications of the Natural Language Processing Tool ChatGPT in Clinical Practice: Comparative Study and Augmented Systematic Review |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38015610 https://www.proquest.com/docview/2918508083 https://www.proquest.com/docview/2894720541 https://pubmed.ncbi.nlm.nih.gov/PMC10716749 https://doaj.org/article/8544a70ef51b41a585d918fa1a1ddb12 |
| Volume | 11 |
| WOSCitedRecordID | wos001115534200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2291-9694 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001416667 issn: 2291-9694 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2291-9694 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001416667 issn: 2291-9694 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2291-9694 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001416667 issn: 2291-9694 databaseCode: 7X7 dateStart: 20130101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Healthcare Administration Database customDbUrl: eissn: 2291-9694 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001416667 issn: 2291-9694 databaseCode: M0T dateStart: 20130101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthmanagement providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2291-9694 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001416667 issn: 2291-9694 databaseCode: BENPR dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2291-9694 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001416667 issn: 2291-9694 databaseCode: PIMPY dateStart: 20130101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6xXbRCQrwfgaUy0l6jjRMndrigbrULSLSKoEjlFDmxvVupSpY-kLjzwxm7brpdIS5cfLB9sD1-fDPj-QbgRKo0MULHIUsFKihM8VCmkoVJbaqIIWLgFXPJJvh4LKbTvPAGt6X_Vrm9E91Frdra2shP4xxfFoQ3Inl__SO0WaOsd9Wn0DiAQ8tUxnpweHY-Lr7srCzMusX4Edy3f55xt51aspVk7xFyXP1_A5i3_0neeHguHv7vkB_BAw85yWCzRx7DHd08gaORd6o_hd-DG05s0hqCmJCMpSPkIJ-9PZP4iAJ86cikbedkeCVXH4oJmTXEc4vOSeFDrt6R4Y5UnNivir-IbBQZrC8dB6giXzsCabLxTjyDbxfnk-HH0CdnCGsU6yrUmakRLikacxlVWS2zKEl1XTkWp8zwKsLpZ4bxOKqlyAU1uclElVRKU8kR1DyHXtM2-iWQWLJc25zsuNKMRlJwhBEadS1miUrTKICTrbTK2jOX2wQa8xI1GCvU0gk1gH7X7XpD1XG7w5kVdddombVdRbu4LP1BLUXKmOSRNimtGJWoTSkUo5FUUqUqGgdwvBV26Y_7stxJOoC3XTMeVOt9kY1u19hH5HYxUkYDeLHZV91IEmEj2inOVOztuL2h7rc0sytHBo7quw0kyV_9e1yv4V6M8MxGUcbiGHqrxVq_gbv1z9VsuejDAZ9yV4q-P0J9Z53AchRNsK74NCq-_wE7_ik0 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aAw0kxP0SGMNI4zFa7Dixg4RQKYxN66pKFKlvmZPYW6UqGb2A9s7v4TdynDjtOiHe9sBrbLWO8_lcfM75DsCuKqLQSM18Hkl0UHghfBUp7oe5yQKOFoPIeN1sQvT7cjRKBhvwu62FsWmVrUysBXVR5faOfI8lqFnQvJHhh_Pvvu0aZaOrbQuNBhZH-uInumyz94ef8Pu-ZWz_87B74LuuAn6O65n7OjY56vmCMqGCLM5VHISRzrOafig2Igvwr2LDBQtyJRNJTWJimYVZoakSqI3xd2_ATZTjwqaQiZFY3elwG4QTW3DXZlgjtvcstUu4pvLqzgB_M2evZmVeUnP79_-3DXoA95xBTTrNCXgIG7p8BFvHLmXgMfzqXArRk8oQtHhJX9V0I6TnbmuJq5dAPU6GVTUh3TM1_zIYknFJHHPqhAxcQdk70l1RphObiHlBVFmQzuK0ZjgtyNclPTZpYi9P4Nu17MFT2CyrUj8HwhRPtO04j1-W00BJgUaSRk-SWxrWKPBgt0VHmjtedtseZJKif2ZBlNYg8mBnOe28ISK5OuGjhdZy0PKG1w-q6WnqxFAqI86VCLSJaMapQl-xQNgYRRUtiowyD7ZbcKVOmM3SFbI8eLMcRjFkY0uq1NUC58jEbkbEqQfPGhwvVxJKW69P8U3lGsLXlro-Uo7PaqpzihZwLHjy4t_reg23D4bHvbR32D96CXcYGqK2XpTJbdicTxf6FdzKf8zHs-lOfWAJnFz3AfgDNAp-eQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aA1VIiPulMIaRxmPU2HFiBwmh0lGYtlWVKNLegpPYW6UqGb2A9s6v4tdxnDjpOiHe9sBrbCWO8-VcfM75DsCeysPASM08Hkp0UHguPBUq7gWZSX2OFoNIedVsQoxG8uQkHm_B76YWxqZVNjKxEtR5mdkz8h6LUbOgeSODnnFpEeP94fvz757tIGUjrU07jRoih_riJ7pvi3cH-_it3zA2_DgZfPZchwEvw7UtPR2ZDHV-TplQfhplKvKDUGdpRUUUGZH6-NjIcMH8TMlYUhObSKZBmmuqBGpmvO8NuCl4yGw62bE_WZ_vcBuQEx24Y7OtEec9S_MSbKi_qkvA30zbqxmal1Te8N7_vFn34a4ztEm__jMewJYuHkLn2KUSPIJf_Uuhe1IagpYwGamKhoQcuVNc4uooUL-TSVnOyOBMLT-NJ2RaEMeoOiNjV2j2lgzWVOrEJmheEFXkpL86rZhPc_Klpc0mdUzmMXy9lj14AttFWehnQJjisbad6PErc-orKdB40uhhckvPGvpd2GuQkmSOr922DZkl6LdZQCUVoLqw2047rwlKrk74YGHWDlo-8epCOT9NnHhKZMi5Er42IU05VehD5ggho6iieZ5S1oWdBmiJE3KLZI2yLrxuh1E82ZiTKnS5wjkytpsRctqFpzWm25UE0tbxU3xTuYH2jaVujhTTs4oCnaJlHAkeP__3ul5BB3GfHB2MDl_AbYb2qS0jZXIHtpfzlX4Jt7Ify-livlv9uwS-XTf-_wCxZYdJ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applications+of+the+Natural+Language+Processing+Tool+ChatGPT+in+Clinical+Practice%3A+Comparative+Study+and+Augmented+Systematic+Review&rft.jtitle=JMIR+medical+informatics&rft.au=Schopow%2C+Nikolas&rft.au=Osterhoff%2C+Georg&rft.au=Baur%2C+David&rft.date=2023-11-28&rft.issn=2291-9694&rft.eissn=2291-9694&rft.volume=11&rft.spage=e48933&rft_id=info:doi/10.2196%2F48933&rft.externalDBID=n%2Fa&rft.externalDocID=10_2196_48933 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2291-9694&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2291-9694&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2291-9694&client=summon |