Applications of the Natural Language Processing Tool ChatGPT in Clinical Practice: Comparative Study and Augmented Systematic Review

This research integrates a comparative analysis of the performance of human researchers and OpenAI's ChatGPT in systematic review tasks and describes an assessment of the application of natural language processing (NLP) models in clinical practice through a review of 5 studies. This study aimed...

Full description

Saved in:
Bibliographic Details
Published in:JMIR medical informatics Vol. 11; p. e48933
Main Authors: Schopow, Nikolas, Osterhoff, Georg, Baur, David
Format: Journal Article
Language:English
Published: Canada JMIR Publications 28.11.2023
Subjects:
ISSN:2291-9694, 2291-9694
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This research integrates a comparative analysis of the performance of human researchers and OpenAI's ChatGPT in systematic review tasks and describes an assessment of the application of natural language processing (NLP) models in clinical practice through a review of 5 studies. This study aimed to evaluate the reliability between ChatGPT and human researchers in extracting key information from clinical articles, and to investigate the practical use of NLP in clinical settings as evidenced by selected studies. The study design comprised a systematic review of clinical articles executed independently by human researchers and ChatGPT. The level of agreement between and within raters for parameter extraction was assessed using the Fleiss and Cohen κ statistics. The comparative analysis revealed a high degree of concordance between ChatGPT and human researchers for most parameters, with less agreement for study design, clinical task, and clinical implementation. The review identified 5 significant studies that demonstrated the diverse applications of NLP in clinical settings. These studies' findings highlight the potential of NLP to improve clinical efficiency and patient outcomes in various contexts, from enhancing allergy detection and classification to improving quality metrics in psychotherapy treatments for veterans with posttraumatic stress disorder. Our findings underscore the potential of NLP models, including ChatGPT, in performing systematic reviews and other clinical tasks. Despite certain limitations, NLP models present a promising avenue for enhancing health care efficiency and accuracy. Future studies must focus on broadening the range of clinical applications and exploring the ethical considerations of implementing NLP applications in health care settings.
AbstractList Background:This research integrates a comparative analysis of the performance of human researchers and OpenAI's ChatGPT in systematic review tasks and describes an assessment of the application of natural language processing (NLP) models in clinical practice through a review of 5 studies.Objective:This study aimed to evaluate the reliability between ChatGPT and human researchers in extracting key information from clinical articles, and to investigate the practical use of NLP in clinical settings as evidenced by selected studies.Methods:The study design comprised a systematic review of clinical articles executed independently by human researchers and ChatGPT. The level of agreement between and within raters for parameter extraction was assessed using the Fleiss and Cohen κ statistics.Results:The comparative analysis revealed a high degree of concordance between ChatGPT and human researchers for most parameters, with less agreement for study design, clinical task, and clinical implementation. The review identified 5 significant studies that demonstrated the diverse applications of NLP in clinical settings. These studies’ findings highlight the potential of NLP to improve clinical efficiency and patient outcomes in various contexts, from enhancing allergy detection and classification to improving quality metrics in psychotherapy treatments for veterans with posttraumatic stress disorder.Conclusions:Our findings underscore the potential of NLP models, including ChatGPT, in performing systematic reviews and other clinical tasks. Despite certain limitations, NLP models present a promising avenue for enhancing health care efficiency and accuracy. Future studies must focus on broadening the range of clinical applications and exploring the ethical considerations of implementing NLP applications in health care settings.
This research integrates a comparative analysis of the performance of human researchers and OpenAI's ChatGPT in systematic review tasks and describes an assessment of the application of natural language processing (NLP) models in clinical practice through a review of 5 studies.BACKGROUNDThis research integrates a comparative analysis of the performance of human researchers and OpenAI's ChatGPT in systematic review tasks and describes an assessment of the application of natural language processing (NLP) models in clinical practice through a review of 5 studies.This study aimed to evaluate the reliability between ChatGPT and human researchers in extracting key information from clinical articles, and to investigate the practical use of NLP in clinical settings as evidenced by selected studies.OBJECTIVEThis study aimed to evaluate the reliability between ChatGPT and human researchers in extracting key information from clinical articles, and to investigate the practical use of NLP in clinical settings as evidenced by selected studies.The study design comprised a systematic review of clinical articles executed independently by human researchers and ChatGPT. The level of agreement between and within raters for parameter extraction was assessed using the Fleiss and Cohen κ statistics.METHODSThe study design comprised a systematic review of clinical articles executed independently by human researchers and ChatGPT. The level of agreement between and within raters for parameter extraction was assessed using the Fleiss and Cohen κ statistics.The comparative analysis revealed a high degree of concordance between ChatGPT and human researchers for most parameters, with less agreement for study design, clinical task, and clinical implementation. The review identified 5 significant studies that demonstrated the diverse applications of NLP in clinical settings. These studies' findings highlight the potential of NLP to improve clinical efficiency and patient outcomes in various contexts, from enhancing allergy detection and classification to improving quality metrics in psychotherapy treatments for veterans with posttraumatic stress disorder.RESULTSThe comparative analysis revealed a high degree of concordance between ChatGPT and human researchers for most parameters, with less agreement for study design, clinical task, and clinical implementation. The review identified 5 significant studies that demonstrated the diverse applications of NLP in clinical settings. These studies' findings highlight the potential of NLP to improve clinical efficiency and patient outcomes in various contexts, from enhancing allergy detection and classification to improving quality metrics in psychotherapy treatments for veterans with posttraumatic stress disorder.Our findings underscore the potential of NLP models, including ChatGPT, in performing systematic reviews and other clinical tasks. Despite certain limitations, NLP models present a promising avenue for enhancing health care efficiency and accuracy. Future studies must focus on broadening the range of clinical applications and exploring the ethical considerations of implementing NLP applications in health care settings.CONCLUSIONSOur findings underscore the potential of NLP models, including ChatGPT, in performing systematic reviews and other clinical tasks. Despite certain limitations, NLP models present a promising avenue for enhancing health care efficiency and accuracy. Future studies must focus on broadening the range of clinical applications and exploring the ethical considerations of implementing NLP applications in health care settings.
BackgroundThis research integrates a comparative analysis of the performance of human researchers and OpenAI's ChatGPT in systematic review tasks and describes an assessment of the application of natural language processing (NLP) models in clinical practice through a review of 5 studies. ObjectiveThis study aimed to evaluate the reliability between ChatGPT and human researchers in extracting key information from clinical articles, and to investigate the practical use of NLP in clinical settings as evidenced by selected studies. MethodsThe study design comprised a systematic review of clinical articles executed independently by human researchers and ChatGPT. The level of agreement between and within raters for parameter extraction was assessed using the Fleiss and Cohen κ statistics. ResultsThe comparative analysis revealed a high degree of concordance between ChatGPT and human researchers for most parameters, with less agreement for study design, clinical task, and clinical implementation. The review identified 5 significant studies that demonstrated the diverse applications of NLP in clinical settings. These studies’ findings highlight the potential of NLP to improve clinical efficiency and patient outcomes in various contexts, from enhancing allergy detection and classification to improving quality metrics in psychotherapy treatments for veterans with posttraumatic stress disorder. ConclusionsOur findings underscore the potential of NLP models, including ChatGPT, in performing systematic reviews and other clinical tasks. Despite certain limitations, NLP models present a promising avenue for enhancing health care efficiency and accuracy. Future studies must focus on broadening the range of clinical applications and exploring the ethical considerations of implementing NLP applications in health care settings.
This research integrates a comparative analysis of the performance of human researchers and OpenAI's ChatGPT in systematic review tasks and describes an assessment of the application of natural language processing (NLP) models in clinical practice through a review of 5 studies. This study aimed to evaluate the reliability between ChatGPT and human researchers in extracting key information from clinical articles, and to investigate the practical use of NLP in clinical settings as evidenced by selected studies. The study design comprised a systematic review of clinical articles executed independently by human researchers and ChatGPT. The level of agreement between and within raters for parameter extraction was assessed using the Fleiss and Cohen κ statistics. The comparative analysis revealed a high degree of concordance between ChatGPT and human researchers for most parameters, with less agreement for study design, clinical task, and clinical implementation. The review identified 5 significant studies that demonstrated the diverse applications of NLP in clinical settings. These studies' findings highlight the potential of NLP to improve clinical efficiency and patient outcomes in various contexts, from enhancing allergy detection and classification to improving quality metrics in psychotherapy treatments for veterans with posttraumatic stress disorder. Our findings underscore the potential of NLP models, including ChatGPT, in performing systematic reviews and other clinical tasks. Despite certain limitations, NLP models present a promising avenue for enhancing health care efficiency and accuracy. Future studies must focus on broadening the range of clinical applications and exploring the ethical considerations of implementing NLP applications in health care settings.
Author Baur, David
Osterhoff, Georg
Schopow, Nikolas
AuthorAffiliation 1 Department for Orthopedics, Trauma Surgery and Plastic Surgery University Hospital Leipzig Leipzig Germany
AuthorAffiliation_xml – name: 1 Department for Orthopedics, Trauma Surgery and Plastic Surgery University Hospital Leipzig Leipzig Germany
Author_xml – sequence: 1
  givenname: Nikolas
  orcidid: 0000-0002-6754-5692
  surname: Schopow
  fullname: Schopow, Nikolas
– sequence: 2
  givenname: Georg
  orcidid: 0000-0001-5051-0998
  surname: Osterhoff
  fullname: Osterhoff, Georg
– sequence: 3
  givenname: David
  orcidid: 0000-0001-8602-617X
  surname: Baur
  fullname: Baur, David
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38015610$$D View this record in MEDLINE/PubMed
BookMark eNpdklFv0zAUhSM0xMboX0CWEBISKthO4ti8oKqCMamCiZVn68ZxUleJHWynqO_8cLx2Q-uebPl-Pjrn3vsyO7PO6iybEfyBEsE-Flzk-bPsglJB5oKJ4uzR_TybhbDFGJOCMMaqF9l5zjEpGcEX2d_FOPZGQTTOBuRaFDcafYc4eejRCmw3QafRjXdKh2Bsh9bO9Wi5gXh1s0bGomVvbPrfJwZUNEp_Qks3jOCT5E6j2zg1ewS2QYupG7SNukG3-xD1kOoK_dQ7o_-8yp630Ac9uz8vs19fv6yX3-arH1fXy8VqroqSx7lmraIlawitANdMAcN5qVVNMRaUtVWNU2TWFhXFCrjgpBUt43VeN5pARXl-mV0fdRsHWzl6M4DfSwdGHh6c7yT4ZKvXkpdFARXWbUnqgkDJy0YQ3gIB0jQ1oUnr81FrnOpBNypFSy07ET2tWLORndtJgivCqkIkhXf3Ct79nnSIcjBB6b4Hq90UJOXiLkpZkIS-eYJu3eRt6pVMkXmJOeZ5ol4_tvTfy8O0E_D-CCjvQvC6lcrEw-iTQ9Mna_JuneRhnRL99gn9IHjK_QPtjMfd
CitedBy_id crossref_primary_10_1007_s40593_025_00467_9
crossref_primary_10_1002_jrsm_1732
crossref_primary_10_1186_s12874_024_02320_4
crossref_primary_10_1016_j_jval_2025_04_2167
crossref_primary_10_1038_s41598_025_97500_7
crossref_primary_10_1007_s00330_025_11416_4
crossref_primary_10_1017_dap_2025_10030
crossref_primary_10_1093_eurpub_ckaf072
crossref_primary_10_3390_diagnostics14242792
crossref_primary_10_2196_52992
crossref_primary_10_1007_s00404_024_07565_4
crossref_primary_10_3390_info16060489
crossref_primary_10_2196_66232
crossref_primary_10_1016_j_physio_2025_101838
crossref_primary_10_25259_GJMPBU_31_2025
crossref_primary_10_1016_j_jval_2025_07_001
crossref_primary_10_1186_s12874_024_02253_y
crossref_primary_10_21105_joss_07616
crossref_primary_10_2196_62865
crossref_primary_10_1186_s12929_025_01131_z
crossref_primary_10_3390_jcm14061983
crossref_primary_10_1017_rsm_2025_16
crossref_primary_10_2196_56500
crossref_primary_10_1016_j_jval_2025_06_018
crossref_primary_10_2196_55957
crossref_primary_10_1016_j_jval_2024_10_3846
crossref_primary_10_1016_j_ajic_2024_03_016
crossref_primary_10_1093_jamia_ocaf063
crossref_primary_10_1007_s11135_024_01946_2
crossref_primary_10_1016_j_jsurg_2025_103629
crossref_primary_10_1002_jaba_70029
crossref_primary_10_1007_s10805_024_09589_6
Cites_doi 10.18653/v1/p19-1355
10.1162/daed_a_01905
10.1186/s13643-019-1074-9
10.1038/s41591-021-01614-0
10.1016/j.jbi.2020.103526
10.1016/j.jbusres.2019.07.039
10.1093/jamia/ocab236
10.1056/nejmra2302038
10.1001/jama.2017.18391
10.1016/j.jpi.2022.100139
10.18653/v1/w19-1909
10.1093/jamia/ocac066
10.1145/3571730
10.1136/bmj.e7031
10.1186/s12911-023-02101-x
10.3163/1536-5050.104.3.014
10.1002/clc.23687
10.1371/journal.pmed.1000097
10.1186/2046-4053-3-74
10.1111/jep.13587
10.1007/s11192-010-0202-z
10.1136/amiajnl-2011-000163
10.1002/9780470712184
10.1055/s-0038-1638592
10.1136/amiajnl-2013-001935
10.1093/jamia/ocac121
10.1136/bmj.n71
10.1097/SPC.0000000000000645
10.1037/h0031619
10.1093/bioinformatics/btz682
10.2196/28946
10.1016/j.jbi.2017.11.011
10.1186/s12911-017-0556-8
10.1016/j.jclinepi.2012.11.011
10.1177/001316446002000104
10.1200/cci.18.00084
ContentType Journal Article
Copyright Nikolas Schopow, Georg Osterhoff, David Baur. Originally published in JMIR Medical Informatics (https://medinform.jmir.org), 28.11.2023.
2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Nikolas Schopow, Georg Osterhoff, David Baur. Originally published in JMIR Medical Informatics (https://medinform.jmir.org), 28.11.2023. 2023
Copyright_xml – notice: Nikolas Schopow, Georg Osterhoff, David Baur. Originally published in JMIR Medical Informatics (https://medinform.jmir.org), 28.11.2023.
– notice: 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Nikolas Schopow, Georg Osterhoff, David Baur. Originally published in JMIR Medical Informatics (https://medinform.jmir.org), 28.11.2023. 2023
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88C
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M0T
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.2196/48933
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Healthcare Administration Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest One Academic Eastern Edition
ProQuest Health Management
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2291-9694
ExternalDocumentID oai_doaj_org_article_8544a70ef51b41a585d918fa1a1ddb12
PMC10716749
38015610
10_2196_48933
Genre Journal Article
GroupedDBID 53G
5VS
7X7
8FI
8FJ
AAFWJ
AAYXX
ABUWG
ADBBV
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BENPR
CCPQU
CITATION
DIK
EMOBN
FYUFA
GROUPED_DOAJ
HMCUK
HYE
KQ8
M0T
M48
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
RPM
UKHRP
ALIPV
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQQKQ
PQUKI
7X8
5PM
ID FETCH-LOGICAL-c458t-e6fc256d127a0b6ca6035ecb200926f7b02916f4720ca8981f9f68b3bde1a7283
IEDL.DBID BENPR
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001115534200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2291-9694
IngestDate Mon Nov 10 04:28:05 EST 2025
Tue Nov 04 02:06:26 EST 2025
Sun Nov 09 11:00:31 EST 2025
Tue Oct 07 07:26:02 EDT 2025
Thu Jan 02 22:36:57 EST 2025
Sat Nov 29 02:59:13 EST 2025
Tue Nov 18 22:29:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords review methods
natural language processing
clinical practice
language model
review methodology
systematic
extraction
machine learning
systematic review
artificial intelligence
healthcare
NLP
extract
ChatGPT
unstructured
large language models
text
GPT-4
clinical decision support systems
health care
GPT-3
Language English
License Nikolas Schopow, Georg Osterhoff, David Baur. Originally published in JMIR Medical Informatics (https://medinform.jmir.org), 28.11.2023.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Medical Informatics, is properly cited. The complete bibliographic information, a link to the original publication on https://medinform.jmir.org/, as well as this copyright and license information must be included.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c458t-e6fc256d127a0b6ca6035ecb200926f7b02916f4720ca8981f9f68b3bde1a7283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6754-5692
0000-0001-8602-617X
0000-0001-5051-0998
OpenAccessLink https://www.proquest.com/docview/2918508083?pq-origsite=%requestingapplication%
PMID 38015610
PQID 2918508083
PQPubID 4997117
ParticipantIDs doaj_primary_oai_doaj_org_article_8544a70ef51b41a585d918fa1a1ddb12
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10716749
proquest_miscellaneous_2894720541
proquest_journals_2918508083
pubmed_primary_38015610
crossref_citationtrail_10_2196_48933
crossref_primary_10_2196_48933
PublicationCentury 2000
PublicationDate 20231128
PublicationDateYYYYMMDD 2023-11-28
PublicationDate_xml – month: 11
  year: 2023
  text: 20231128
  day: 28
PublicationDecade 2020
PublicationPlace Canada
PublicationPlace_xml – name: Canada
– name: Toronto
– name: Toronto, Canada
PublicationTitle JMIR medical informatics
PublicationTitleAlternate JMIR Med Inform
PublicationYear 2023
Publisher JMIR Publications
Publisher_xml – name: JMIR Publications
References ref35
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref10
ref32
ref2
ref1
Devlin, J (ref12)
ref17
Higgins, J (ref33) 2008
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref41
ref22
ref21
Brown, T (ref13)
ref28
ref27
ref29
ref8
ref7
Higgins, JPT (ref34) 2022
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref17
  doi: 10.18653/v1/p19-1355
– ident: ref23
  doi: 10.1162/daed_a_01905
– ident: ref32
  doi: 10.1186/s13643-019-1074-9
– ident: ref1
– ident: ref5
  doi: 10.1038/s41591-021-01614-0
– ident: ref21
  doi: 10.1016/j.jbi.2020.103526
– ident: ref30
  doi: 10.1016/j.jbusres.2019.07.039
– ident: ref22
  doi: 10.1093/jamia/ocab236
– ident: ref3
  doi: 10.1056/nejmra2302038
– ident: ref20
  doi: 10.1001/jama.2017.18391
– ident: ref38
  doi: 10.1016/j.jpi.2022.100139
– ident: ref13
  publication-title: arXiv. Preprint posted online May 28, 2020
– ident: ref15
  doi: 10.18653/v1/w19-1909
– ident: ref12
  publication-title: arXiv. Preprint posted online October 11, 2018
– ident: ref11
  doi: 10.1093/jamia/ocac066
– ident: ref18
  doi: 10.1145/3571730
– ident: ref27
  doi: 10.1136/bmj.e7031
– ident: ref37
  doi: 10.1186/s12911-023-02101-x
– ident: ref26
  doi: 10.3163/1536-5050.104.3.014
– ident: ref40
  doi: 10.1002/clc.23687
– ident: ref24
  doi: 10.1371/journal.pmed.1000097
– ident: ref31
  doi: 10.1186/2046-4053-3-74
– ident: ref41
  doi: 10.1111/jep.13587
– ident: ref28
  doi: 10.1007/s11192-010-0202-z
– ident: ref2
  doi: 10.1136/amiajnl-2011-000163
– year: 2008
  ident: ref33
  publication-title: Cochrane Handbook for Systematic Reviews of Interventions: Cochrane Book Series
  doi: 10.1002/9780470712184
– ident: ref4
  doi: 10.1055/s-0038-1638592
– ident: ref7
  doi: 10.1136/amiajnl-2013-001935
– ident: ref8
  doi: 10.1093/jamia/ocac121
– ident: ref25
  doi: 10.1136/bmj.n71
– ident: ref9
  doi: 10.1097/SPC.0000000000000645
– ident: ref35
  doi: 10.1037/h0031619
– ident: ref14
  doi: 10.1093/bioinformatics/btz682
– ident: ref39
  doi: 10.2196/28946
– ident: ref6
  doi: 10.1016/j.jbi.2017.11.011
– ident: ref19
  doi: 10.1186/s12911-017-0556-8
– ident: ref29
  doi: 10.1016/j.jclinepi.2012.11.011
– year: 2022
  ident: ref34
  publication-title: Cochrane Handbook for Systematic Reviews of Interventions version 6.3
– ident: ref36
  doi: 10.1177/001316446002000104
– ident: ref10
  doi: 10.1200/cci.18.00084
– ident: ref16
SSID ssj0001416667
Score 2.4365075
Snippet This research integrates a comparative analysis of the performance of human researchers and OpenAI's ChatGPT in systematic review tasks and describes an...
Background:This research integrates a comparative analysis of the performance of human researchers and OpenAI's ChatGPT in systematic review tasks and...
BackgroundThis research integrates a comparative analysis of the performance of human researchers and OpenAI's ChatGPT in systematic review tasks and describes...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e48933
SubjectTerms Artificial intelligence
Automation
Chatbots
Clinical outcomes
Data mining
Decision making
Disease
Electronic health records
Human performance
Language
Medical diagnosis
Multimedia
Natural language processing
Original Paper
Performance evaluation
Researchers
Subject heading schemes
Systematic review
SummonAdditionalLinks – databaseName: DOAJ
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB1KCKFQSvrtNg1TyNXEsmVL7m2zNO2hXRa6hdyMZEnNwmKXZLeQe354R7Li7IZCL71aOkgzI-aNZ-YNwIkyZeGkzVNeSgpQuBGpKhVPi9bpjBNiEJqHYRNiNpMXF_V8a9SXrwkb6IEHwZ3KknMlMutKpjlThG5NzaRTTDFjdJgvnBPq2Qqmwt8V7tNh4gCe-FpnsrJTT7JS7DifwNH_N2D5sD5yy-GcH8LTiBRxMpzwGTyy3XM4-BZz4S_gdrKVe8beIUE5nKnAo4Ff429IjI0A5KBw0fcrnF6q9ef5ApcdRkrQFc5jp9RHnN5zgaOvMLxB1RmcbH4G6k6D30feZxySCi_hx_mnxfRLGmcqpC1pY53ayrWEcgzLhcp01aoqK0rb6kC-VDmhs5wAo-Miz1ola8lc7SqpC20sU4KwyCvY6_rOvgHMFa-tH6VOguIsU1KQ97cUInHPL1pmCZzcCbtpI-G4n3uxaijw8Dppgk4SOB63_RoYNh5uOPOaGhc9IXb4QGbSRDNp_mUmCRzd6bmJr_S6oatKAqiEQhP4MC7T-_JJE9XZfkN7ZO2FUXKWwOvBLMaTFNI3ojO6qdwxmJ2j7q50y8vA4U1Rt-__qN_-j8u9g8c5YS_fIpnLI9hbX23se9hvf6-X11fH4WX8AdN2FFw
  priority: 102
  providerName: Directory of Open Access Journals
Title Applications of the Natural Language Processing Tool ChatGPT in Clinical Practice: Comparative Study and Augmented Systematic Review
URI https://www.ncbi.nlm.nih.gov/pubmed/38015610
https://www.proquest.com/docview/2918508083
https://www.proquest.com/docview/2894720541
https://pubmed.ncbi.nlm.nih.gov/PMC10716749
https://doaj.org/article/8544a70ef51b41a585d918fa1a1ddb12
Volume 11
WOSCitedRecordID wos001115534200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2291-9694
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001416667
  issn: 2291-9694
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2291-9694
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001416667
  issn: 2291-9694
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2291-9694
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001416667
  issn: 2291-9694
  databaseCode: 7X7
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Healthcare Administration Database
  customDbUrl:
  eissn: 2291-9694
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001416667
  issn: 2291-9694
  databaseCode: M0T
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthmanagement
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2291-9694
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001416667
  issn: 2291-9694
  databaseCode: BENPR
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2291-9694
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001416667
  issn: 2291-9694
  databaseCode: PIMPY
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6xXbRCQrwfgaUy0l6jjRMndrigbrULSLSKoEjlFDmxvVupSpY-kLjzwxm7brpdIS5cfLB9sD1-fDPj-QbgRKo0MULHIUsFKihM8VCmkoVJbaqIIWLgFXPJJvh4LKbTvPAGt6X_Vrm9E91Frdra2shP4xxfFoQ3Inl__SO0WaOsd9Wn0DiAQ8tUxnpweHY-Lr7srCzMusX4Edy3f55xt51aspVk7xFyXP1_A5i3_0neeHguHv7vkB_BAw85yWCzRx7DHd08gaORd6o_hd-DG05s0hqCmJCMpSPkIJ-9PZP4iAJ86cikbedkeCVXH4oJmTXEc4vOSeFDrt6R4Y5UnNivir-IbBQZrC8dB6giXzsCabLxTjyDbxfnk-HH0CdnCGsU6yrUmakRLikacxlVWS2zKEl1XTkWp8zwKsLpZ4bxOKqlyAU1uclElVRKU8kR1DyHXtM2-iWQWLJc25zsuNKMRlJwhBEadS1miUrTKICTrbTK2jOX2wQa8xI1GCvU0gk1gH7X7XpD1XG7w5kVdddombVdRbu4LP1BLUXKmOSRNimtGJWoTSkUo5FUUqUqGgdwvBV26Y_7stxJOoC3XTMeVOt9kY1u19hH5HYxUkYDeLHZV91IEmEj2inOVOztuL2h7rc0sytHBo7quw0kyV_9e1yv4V6M8MxGUcbiGHqrxVq_gbv1z9VsuejDAZ9yV4q-P0J9Z53AchRNsK74NCq-_wE7_ik0
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aAw0kxP0SGMNI4zFa7Dixg4RQKYxN66pKFKlvmZPYW6UqGb2A9s7v4TdynDjtOiHe9sBrbLWO8_lcfM75DsCuKqLQSM18Hkl0UHghfBUp7oe5yQKOFoPIeN1sQvT7cjRKBhvwu62FsWmVrUysBXVR5faOfI8lqFnQvJHhh_Pvvu0aZaOrbQuNBhZH-uInumyz94ef8Pu-ZWz_87B74LuuAn6O65n7OjY56vmCMqGCLM5VHISRzrOafig2Igvwr2LDBQtyJRNJTWJimYVZoakSqI3xd2_ATZTjwqaQiZFY3elwG4QTW3DXZlgjtvcstUu4pvLqzgB_M2evZmVeUnP79_-3DXoA95xBTTrNCXgIG7p8BFvHLmXgMfzqXArRk8oQtHhJX9V0I6TnbmuJq5dAPU6GVTUh3TM1_zIYknFJHHPqhAxcQdk70l1RphObiHlBVFmQzuK0ZjgtyNclPTZpYi9P4Nu17MFT2CyrUj8HwhRPtO04j1-W00BJgUaSRk-SWxrWKPBgt0VHmjtedtseZJKif2ZBlNYg8mBnOe28ISK5OuGjhdZy0PKG1w-q6WnqxFAqI86VCLSJaMapQl-xQNgYRRUtiowyD7ZbcKVOmM3SFbI8eLMcRjFkY0uq1NUC58jEbkbEqQfPGhwvVxJKW69P8U3lGsLXlro-Uo7PaqpzihZwLHjy4t_reg23D4bHvbR32D96CXcYGqK2XpTJbdicTxf6FdzKf8zHs-lOfWAJnFz3AfgDNAp-eQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aA1VIiPulMIaRxmPU2HFiBwmh0lGYtlWVKNLegpPYW6UqGb2A9s6v4tdxnDjpOiHe9sBrbCWO8-VcfM75DsCeysPASM08Hkp0UHguPBUq7gWZSX2OFoNIedVsQoxG8uQkHm_B76YWxqZVNjKxEtR5mdkz8h6LUbOgeSODnnFpEeP94fvz757tIGUjrU07jRoih_riJ7pvi3cH-_it3zA2_DgZfPZchwEvw7UtPR2ZDHV-TplQfhplKvKDUGdpRUUUGZH6-NjIcMH8TMlYUhObSKZBmmuqBGpmvO8NuCl4yGw62bE_WZ_vcBuQEx24Y7OtEec9S_MSbKi_qkvA30zbqxmal1Te8N7_vFn34a4ztEm__jMewJYuHkLn2KUSPIJf_Uuhe1IagpYwGamKhoQcuVNc4uooUL-TSVnOyOBMLT-NJ2RaEMeoOiNjV2j2lgzWVOrEJmheEFXkpL86rZhPc_Klpc0mdUzmMXy9lj14AttFWehnQJjisbad6PErc-orKdB40uhhckvPGvpd2GuQkmSOr922DZkl6LdZQCUVoLqw2047rwlKrk74YGHWDlo-8epCOT9NnHhKZMi5Er42IU05VehD5ggho6iieZ5S1oWdBmiJE3KLZI2yLrxuh1E82ZiTKnS5wjkytpsRctqFpzWm25UE0tbxU3xTuYH2jaVujhTTs4oCnaJlHAkeP__3ul5BB3GfHB2MDl_AbYb2qS0jZXIHtpfzlX4Jt7Ify-livlv9uwS-XTf-_wCxZYdJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applications+of+the+Natural+Language+Processing+Tool+ChatGPT+in+Clinical+Practice%3A+Comparative+Study+and+Augmented+Systematic+Review&rft.jtitle=JMIR+medical+informatics&rft.au=Schopow%2C+Nikolas&rft.au=Osterhoff%2C+Georg&rft.au=Baur%2C+David&rft.date=2023-11-28&rft.issn=2291-9694&rft.eissn=2291-9694&rft.volume=11&rft.spage=e48933&rft_id=info:doi/10.2196%2F48933&rft.externalDBID=n%2Fa&rft.externalDocID=10_2196_48933
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2291-9694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2291-9694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2291-9694&client=summon