Evaluating CloudResearch’s Approved Group as a solution for problematic data quality on MTurk

Maintaining data quality on Amazon Mechanical Turk (MTurk) has always been a concern for researchers. These concerns have grown recently due to the bot crisis of 2018 and observations that past safeguards of data quality (e.g., approval ratings of 95%) no longer work. To address data quality concern...

Full description

Saved in:
Bibliographic Details
Published in:Behavior research methods Vol. 55; no. 8; pp. 3953 - 3964
Main Authors: Hauser, David J., Moss, Aaron J., Rosenzweig, Cheskie, Jaffe, Shalom N., Robinson, Jonathan, Litman, Leib
Format: Journal Article
Language:English
Published: New York Springer US 01.12.2023
Subjects:
ISSN:1554-3528, 1554-3528
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Maintaining data quality on Amazon Mechanical Turk (MTurk) has always been a concern for researchers. These concerns have grown recently due to the bot crisis of 2018 and observations that past safeguards of data quality (e.g., approval ratings of 95%) no longer work. To address data quality concerns, CloudResearch, a third-party website that interfaces with MTurk, has assessed ~165,000 MTurkers and categorized them into those that provide high- (~100,000, Approved) and low- (~65,000, Blocked) quality data. Here, we examined the predictive validity of CloudResearch’s vetting. In a pre-registered study, participants ( N = 900) from the Approved and Blocked groups, along with a Standard MTurk sample (95% HIT acceptance ratio, 100+ completed HITs), completed an array of data-quality measures. Across several indices, Approved participants (i) identified the content of images more accurately, (ii) answered more reading comprehension questions correctly, (iii) responded to reversed coded items more consistently, (iv) passed a greater number of attention checks, (v) self-reported less cheating and actually left the survey window less often on easily Googleable questions, (vi) replicated classic psychology experimental effects more reliably, and (vii) answered AI-stumping questions more accurately than Blocked participants, who performed at chance on multiple outcomes. Data quality of the Standard sample was generally in between the Approved and Blocked groups. We discuss how MTurk’s Approval Rating system is no longer an effective data-quality control, and we discuss the advantages afforded by using the Approved group for scientific studies on MTurk.
AbstractList Maintaining data quality on Amazon Mechanical Turk (MTurk) has always been a concern for researchers. These concerns have grown recently due to the bot crisis of 2018 and observations that past safeguards of data quality (e.g., approval ratings of 95%) no longer work. To address data quality concerns, CloudResearch, a third-party website that interfaces with MTurk, has assessed ~165,000 MTurkers and categorized them into those that provide high- (~100,000, Approved) and low- (~65,000, Blocked) quality data. Here, we examined the predictive validity of CloudResearch's vetting. In a pre-registered study, participants (N = 900) from the Approved and Blocked groups, along with a Standard MTurk sample (95% HIT acceptance ratio, 100+ completed HITs), completed an array of data-quality measures. Across several indices, Approved participants (i) identified the content of images more accurately, (ii) answered more reading comprehension questions correctly, (iii) responded to reversed coded items more consistently, (iv) passed a greater number of attention checks, (v) self-reported less cheating and actually left the survey window less often on easily Googleable questions, (vi) replicated classic psychology experimental effects more reliably, and (vii) answered AI-stumping questions more accurately than Blocked participants, who performed at chance on multiple outcomes. Data quality of the Standard sample was generally in between the Approved and Blocked groups. We discuss how MTurk's Approval Rating system is no longer an effective data-quality control, and we discuss the advantages afforded by using the Approved group for scientific studies on MTurk.
Maintaining data quality on Amazon Mechanical Turk (MTurk) has always been a concern for researchers. These concerns have grown recently due to the bot crisis of 2018 and observations that past safeguards of data quality (e.g., approval ratings of 95%) no longer work. To address data quality concerns, CloudResearch, a third-party website that interfaces with MTurk, has assessed ~165,000 MTurkers and categorized them into those that provide high- (~100,000, Approved) and low- (~65,000, Blocked) quality data. Here, we examined the predictive validity of CloudResearch’s vetting. In a pre-registered study, participants ( N = 900) from the Approved and Blocked groups, along with a Standard MTurk sample (95% HIT acceptance ratio, 100+ completed HITs), completed an array of data-quality measures. Across several indices, Approved participants (i) identified the content of images more accurately, (ii) answered more reading comprehension questions correctly, (iii) responded to reversed coded items more consistently, (iv) passed a greater number of attention checks, (v) self-reported less cheating and actually left the survey window less often on easily Googleable questions, (vi) replicated classic psychology experimental effects more reliably, and (vii) answered AI-stumping questions more accurately than Blocked participants, who performed at chance on multiple outcomes. Data quality of the Standard sample was generally in between the Approved and Blocked groups. We discuss how MTurk’s Approval Rating system is no longer an effective data-quality control, and we discuss the advantages afforded by using the Approved group for scientific studies on MTurk.
Maintaining data quality on Amazon Mechanical Turk (MTurk) has always been a concern for researchers. These concerns have grown recently due to the bot crisis of 2018 and observations that past safeguards of data quality (e.g., approval ratings of 95%) no longer work. To address data quality concerns, CloudResearch, a third-party website that interfaces with MTurk, has assessed ~165,000 MTurkers and categorized them into those that provide high- (~100,000, Approved) and low- (~65,000, Blocked) quality data. Here, we examined the predictive validity of CloudResearch's vetting. In a pre-registered study, participants (N = 900) from the Approved and Blocked groups, along with a Standard MTurk sample (95% HIT acceptance ratio, 100+ completed HITs), completed an array of data-quality measures. Across several indices, Approved participants (i) identified the content of images more accurately, (ii) answered more reading comprehension questions correctly, (iii) responded to reversed coded items more consistently, (iv) passed a greater number of attention checks, (v) self-reported less cheating and actually left the survey window less often on easily Googleable questions, (vi) replicated classic psychology experimental effects more reliably, and (vii) answered AI-stumping questions more accurately than Blocked participants, who performed at chance on multiple outcomes. Data quality of the Standard sample was generally in between the Approved and Blocked groups. We discuss how MTurk's Approval Rating system is no longer an effective data-quality control, and we discuss the advantages afforded by using the Approved group for scientific studies on MTurk.Maintaining data quality on Amazon Mechanical Turk (MTurk) has always been a concern for researchers. These concerns have grown recently due to the bot crisis of 2018 and observations that past safeguards of data quality (e.g., approval ratings of 95%) no longer work. To address data quality concerns, CloudResearch, a third-party website that interfaces with MTurk, has assessed ~165,000 MTurkers and categorized them into those that provide high- (~100,000, Approved) and low- (~65,000, Blocked) quality data. Here, we examined the predictive validity of CloudResearch's vetting. In a pre-registered study, participants (N = 900) from the Approved and Blocked groups, along with a Standard MTurk sample (95% HIT acceptance ratio, 100+ completed HITs), completed an array of data-quality measures. Across several indices, Approved participants (i) identified the content of images more accurately, (ii) answered more reading comprehension questions correctly, (iii) responded to reversed coded items more consistently, (iv) passed a greater number of attention checks, (v) self-reported less cheating and actually left the survey window less often on easily Googleable questions, (vi) replicated classic psychology experimental effects more reliably, and (vii) answered AI-stumping questions more accurately than Blocked participants, who performed at chance on multiple outcomes. Data quality of the Standard sample was generally in between the Approved and Blocked groups. We discuss how MTurk's Approval Rating system is no longer an effective data-quality control, and we discuss the advantages afforded by using the Approved group for scientific studies on MTurk.
Author Robinson, Jonathan
Rosenzweig, Cheskie
Litman, Leib
Hauser, David J.
Jaffe, Shalom N.
Moss, Aaron J.
Author_xml – sequence: 1
  givenname: David J.
  orcidid: 0000-0002-5480-5213
  surname: Hauser
  fullname: Hauser, David J.
  email: david.hauser@queensu.ca
  organization: Department of Psychology, Queen’s University
– sequence: 2
  givenname: Aaron J.
  orcidid: 0000-0003-4396-4128
  surname: Moss
  fullname: Moss, Aaron J.
  organization: CloudResearch
– sequence: 3
  givenname: Cheskie
  orcidid: 0000-0003-2403-6940
  surname: Rosenzweig
  fullname: Rosenzweig, Cheskie
  organization: CloudResearch, Department of Clinical Psychology, Columbia University
– sequence: 4
  givenname: Shalom N.
  orcidid: 0000-0002-7523-5213
  surname: Jaffe
  fullname: Jaffe, Shalom N.
  organization: CloudResearch, Department of Psychology, Lander College
– sequence: 5
  givenname: Jonathan
  orcidid: 0000-0001-5353-7969
  surname: Robinson
  fullname: Robinson, Jonathan
  organization: CloudResearch, Department of Computer Science, Lander College
– sequence: 6
  givenname: Leib
  orcidid: 0000-0001-6598-2701
  surname: Litman
  fullname: Litman, Leib
  organization: CloudResearch, Department of Psychology, Lander College
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36326997$$D View this record in MEDLINE/PubMed
BookMark eNp9kMtKxDAUQIMovn_AhWTppppHM02WMviCEUF0HW7aVKuZZkwaGXf-hr_nlxidUcSFqwTuOXmcLbTa-94itEfJIa-EPIqUl0wWhLGCUKVUMV9Bm1SIsuCCydVf-w20FeMDIVwyWq6jDT7ibKRUtYn0yTO4BEPX3-Gx86m5ttFCqO_fX98iPp7Ngn-2DT4LPs0wRAw4epeGzve49QHnsXF2mv0aNzAAfkrguuEF5_nlTQqPO2itBRft7nLdRrenJzfj82JydXYxPp4UdSnkUFgKsjTAQRouKiMVKxsiiSGjRohGSJv_K6EiyihDKtPWRtVi1DJJGWfKlnwbHSzOzS96SjYOetrF2joHvfUpalZxWtEq0xndX6LJTG2jZ6GbQnjR31EywBZAHXyMwbY_CCX6s7xelNe5vP4qr-dZkn-kuhvgM9QQoHP_q3yhxnxPf2eDfvAp9DnXf9YHvSKZ2g
CitedBy_id crossref_primary_10_1016_j_isci_2025_112833
crossref_primary_10_1177_20539517231188723
crossref_primary_10_1016_j_jenvp_2025_102608
crossref_primary_10_1016_j_ijhcs_2023_103103
crossref_primary_10_1016_j_watres_2024_121254
crossref_primary_10_1080_29984688_2025_2545754
crossref_primary_10_1007_s10862_024_10171_y
crossref_primary_10_3758_s13421_025_01760_7
crossref_primary_10_1080_10410236_2023_2282833
crossref_primary_10_1177_02654075251317425
crossref_primary_10_1002_sd_70133
crossref_primary_10_1080_14681994_2025_2506085
crossref_primary_10_1371_journal_pone_0305364
crossref_primary_10_1177_00222437241268491
crossref_primary_10_1177_10731911241256439
crossref_primary_10_1080_10410236_2025_2484024
crossref_primary_10_1002_jeab_70038
crossref_primary_10_1016_j_paid_2025_113290
crossref_primary_10_1080_07421222_2024_2415774
crossref_primary_10_1016_j_jretconser_2025_104262
crossref_primary_10_1016_j_chb_2024_108342
crossref_primary_10_1016_j_jad_2024_12_084
crossref_primary_10_1093_pnasnexus_pgaf275
crossref_primary_10_2196_38552
crossref_primary_10_1007_s41233_025_00072_7
crossref_primary_10_1002_jcop_70005
crossref_primary_10_1108_JSM_12_2024_0634
crossref_primary_10_1007_s40615_025_02602_7
crossref_primary_10_1161_CIRCOUTCOMES_124_011069
crossref_primary_10_1177_21674795251323193
crossref_primary_10_1080_10696679_2024_2385374
crossref_primary_10_1007_s00146_024_02121_9
crossref_primary_10_1080_00952990_2025_2504152
crossref_primary_10_1016_j_appet_2024_107304
crossref_primary_10_1080_13546783_2024_2443149
crossref_primary_10_1007_s11109_024_09934_w
crossref_primary_10_1016_j_electstud_2024_102760
crossref_primary_10_1080_09658211_2025_2467134
crossref_primary_10_2139_ssrn_4506020
crossref_primary_10_1016_j_brat_2024_104568
crossref_primary_10_1123_ijsc_2024_0205
crossref_primary_10_1017_jdm_2025_10
crossref_primary_10_1111_joms_13277
crossref_primary_10_1002_bdm_2353
crossref_primary_10_1017_S0034412525000198
crossref_primary_10_2196_70926
crossref_primary_10_1007_s11031_025_10133_1
crossref_primary_10_1038_s41597_025_05687_1
crossref_primary_10_1007_s11142_025_09902_7
crossref_primary_10_2196_63032
crossref_primary_10_1111_jasp_13081
crossref_primary_10_1111_1468_5973_12620
crossref_primary_10_3390_met15091012
crossref_primary_10_1007_s10508_025_03105_6
crossref_primary_10_1007_s12144_024_05895_9
crossref_primary_10_3758_s13428_023_02142_0
crossref_primary_10_1080_08959285_2024_2327656
crossref_primary_10_1521_soco_2024_42_3_233
crossref_primary_10_1891_RE_24_16
crossref_primary_10_1016_j_jocrd_2023_100806
crossref_primary_10_1111_1468_5973_12454
crossref_primary_10_1016_j_ecresq_2024_10_001
crossref_primary_10_1177_01461672241283862
crossref_primary_10_1177_08997640251343049
crossref_primary_10_1027_1864_9335_a000544
crossref_primary_10_1027_1866_5888_a000339
crossref_primary_10_1111_jomf_13072
crossref_primary_10_1038_s41598_025_90813_7
crossref_primary_10_1016_j_jretconser_2023_103652
crossref_primary_10_1073_pnas_2508479122
crossref_primary_10_2308_TAR_2022_0307
crossref_primary_10_1007_s44202_024_00229_z
crossref_primary_10_1080_08946566_2025_2469048
crossref_primary_10_1080_17522439_2025_2505513
crossref_primary_10_1016_j_eatbeh_2025_101978
crossref_primary_10_1371_journal_pone_0320570
crossref_primary_10_1007_s12144_024_07050_w
crossref_primary_10_1080_10615806_2024_2391841
crossref_primary_10_2308_TAR_2023_0027
crossref_primary_10_1016_j_jesp_2023_104489
crossref_primary_10_1038_s41598_025_93100_7
crossref_primary_10_5465_amj_2025_4004
crossref_primary_10_1177_00031224241232599
crossref_primary_10_1111_cogs_13477
crossref_primary_10_1177_07334648251317758
crossref_primary_10_1177_0272989X241275645
crossref_primary_10_1016_j_pubrev_2024_102517
crossref_primary_10_1016_j_bodyim_2024_101721
crossref_primary_10_1177_09567976251333666
crossref_primary_10_1007_s11292_025_09660_1
crossref_primary_10_1017_S0954579423000822
crossref_primary_10_3390_bs15070844
crossref_primary_10_1016_j_amepre_2024_09_009
crossref_primary_10_1007_s10591_024_09728_6
crossref_primary_10_3390_bs14080647
crossref_primary_10_1080_14681994_2024_2332622
crossref_primary_10_1016_j_jacceco_2024_101707
crossref_primary_10_1038_s41598_025_86056_1
crossref_primary_10_1080_13218719_2024_2421167
crossref_primary_10_1080_07317115_2024_2399588
crossref_primary_10_1098_rsos_250361
crossref_primary_10_1177_17456916241242734
crossref_primary_10_1080_10510974_2024_2353393
crossref_primary_10_1016_j_paid_2023_112111
crossref_primary_10_1002_ab_70005
crossref_primary_10_1016_j_chiabu_2024_106789
crossref_primary_10_1016_j_cognition_2024_106050
Cites_doi 10.1371/journal.pone.0157732
10.31234/osf.io/wr8ds
10.1093/poq/nfw030
10.3758/s13428-013-0434-y
10.1002/acp.2350050305
10.1016/j.jesp.2015.07.006
10.20982/tqmp.16.5.p472
10.1177/1745691617706516
10.1016/j.jesp.2016.09.006
10.1016/j.jesp.2009.03.009
10.1177/1948550619875149
10.1037/pspa0000056
10.3758/BF03193146
10.3758/s13428-014-0483-x
10.1016/j.jesp.2017.01.006
10.1111/ajps.12081
10.1016/0010-0285(73)90033-9
10.31234/osf.io/jbc9d
10.33774/apsa-2020-96t72
10.1093/ijpor/edw027
10.2308/bria-18-044
10.1016/j.copsyc.2016.07.001
10.1017/psrm.2020.6
10.1177/1065912919882101
10.1017/psrm.2021.57
10.1111/j.1468-0017.2006.00297.x
10.3758/s13428-016-0727-z
10.1177/2515245919838479
10.1002/bdm.1753
10.3758/s13428-015-0578-z
10.1016/j.jesp.2013.10.005
10.1037/xge0000920
10.1371/journal.pone.0226394
10.1177/1745691610393980
10.1017/S1930297500002205
10.1177/01461672952111004
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.3758/s13428-022-01999-x
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Psychology
EISSN 1554-3528
EndPage 3964
ExternalDocumentID 36326997
10_3758_s13428_022_01999_x
Genre Journal Article
GroupedDBID ---
-55
-5G
-BR
-DZ
-EM
-ET
-~C
-~X
0-V
06D
0R~
0VY
199
1N0
203
23N
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
30V
3V.
4.4
406
408
40E
53G
5GY
7X7
875
88E
8AO
8FI
8FJ
8G5
8TC
8UJ
95.
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AAKPC
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABIVO
ABJNI
ABJOX
ABJUD
ABKCH
ABMQK
ABNWP
ABPLI
ABPPZ
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHQT
ACHSB
ACHXU
ACIWK
ACKIV
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFFNX
AFKRA
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARALO
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BAWUL
BENPR
BGNMA
BPHCQ
BVXVI
C1A
C6C
CAG
CCPQU
COF
CSCUP
DDRTE
DIK
DNIVK
DPUIP
DWQXO
E3Z
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ3
GQ6
GQ7
GUQSH
H13
HF~
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
H~9
IAO
IHR
IKXTQ
INH
IPY
IRVIT
ITC
ITM
IWAJR
J-C
JBSCW
JZLTJ
KOV
LLZTM
M1P
M2M
M2O
M2R
M4Y
MVM
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
OHT
OK1
P2P
P9L
PADUT
PF-
PQQKQ
PROAC
PSQYO
PSYQQ
PT4
R9I
RIG
ROL
RPV
RSV
S16
S1Z
S27
S3B
SBS
SBU
SCLPG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
TN5
TR2
TSG
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UPT
UTJUX
UZXMN
VFIZW
VXZ
W48
WH7
WK8
XJT
XOL
XSW
Z7R
Z7S
Z7W
Z81
Z83
Z88
Z8N
Z92
ZMTXR
ZOVNA
ZUP
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ADHKG
AGQPQ
CGR
CUY
CVF
ECM
EIF
NPM
PHGZM
PHGZT
PJZUB
PPXIY
PRQQA
7X8
ID FETCH-LOGICAL-c458t-e1a84ba3a8b357b8924d080b06d55d58e7588a709b9b07bfcb9c56f2812329e43
IEDL.DBID RSV
ISICitedReferencesCount 159
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000878463800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1554-3528
IngestDate Thu Oct 02 05:35:49 EDT 2025
Mon Jul 21 06:04:50 EDT 2025
Sat Nov 29 02:18:12 EST 2025
Tue Nov 18 22:23:34 EST 2025
Fri Feb 21 02:41:01 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Response bias
Data quality
Participant recruitment
Test validity
Language English
License 2022. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c458t-e1a84ba3a8b357b8924d080b06d55d58e7588a709b9b07bfcb9c56f2812329e43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5480-5213
0000-0003-4396-4128
0000-0001-6598-2701
0000-0002-7523-5213
0000-0003-2403-6940
0000-0001-5353-7969
OpenAccessLink https://link.springer.com/10.3758/s13428-022-01999-x
PMID 36326997
PQID 2731717232
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2731717232
pubmed_primary_36326997
crossref_primary_10_3758_s13428_022_01999_x
crossref_citationtrail_10_3758_s13428_022_01999_x
springer_journals_10_3758_s13428_022_01999_x
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Behavior research methods
PublicationTitleAbbrev Behav Res
PublicationTitleAlternate Behav Res Methods
PublicationYear 2023
Publisher Springer US
Publisher_xml – name: Springer US
References TukeyJWExploratory data analysis1977Addison-Wesley
Gautam, R., Kerstein, M., Moss, A. J., & Litman, L. (2018). Understanding geolocations and their connection to data quality. [blog post]. Retrieved from: https://www.cloudresearch.com/resources/blog/understanding-geolocations-and-their-connection-to-data-quality
TverskyAKahnemanDAvailability: A heuristic for judging frequency and probabilityCognitive Psychology19735220723210.1016/0010-0285(73)90033-9
OppenheimerDMMeyvisTDavidenkoNInstructional manipulation checks: Detecting satisficing to increase statistical powerJournal of Experimental Social Psychology200945486787210.1016/j.jesp.2009.03.009
CurranPGMethods for the detection of carelessly invalid responses in survey dataJournal of Experimental Social Psychology20166641910.1016/j.jesp.2015.07.006
Moss, A. J., & Litman, L. (2018). After the bot scare: Understanding what’s been happening with data collection on MTurk and how to stop it [blog post].
HauserDJSchwarzNAttentive Turkers: MTurk participants perform better on online attention checks than do subject pool participantsBehavior Research Methods20164840040710.3758/s13428-015-0578-z25761395
MottaMPCallaghanTHSmithBLooking for answers: Identifying search behavior and improving knowledge-based data quality in online surveysInternational Journal of Public Opinion Research201729457560310.1093/ijpor/edw027
Brandt, M. J., IJzerman, H., Dijksterhuis, A., Farach, F. J., Geller, J., Giner-Sorolla, R., ...Van’t Veer, A. (2014). The replication recipe: What makes for a convincing replication? Journal of Experimental Social Psychology, 50, 217–224.https://doi.org/10.1016/j.jesp.2013.10.005
JohnOPNaumannLPSotoCJJohnOPRobinsRWPervinLAParadigm shift to the integrative Big Five trait taxonomy: History, measurement, and conceptual issuesHandbook of personality: Theory and research20083Guilford Press114158
BuhrmesterMKwangTGoslingSDAmazon's Mechanical Turk: A new source of inexpensive, yet high-quality data?Perspectives on Psychological Science201163510.1177/174569161039398026162106
Moss, A. J., Rosenzweig, C., Robinson, J., Jaffe, S. N., & Litman, L. (2021). Is it ethical to use mechanical turk for behavioral research? Relevant data from a representative survey of MTurk participants and wages. https://doi.org/10.31234/osf.io/jbc9d
KennedyRCliffordSBurleighTWaggonerPDJewellRWinterNJThe shape of and solutions to the MTurk quality crisisPolitical Science Research and Methods2020861462910.1017/psrm.2020.6
PeerEBrandimarteLSamatSAcquistiABeyond the Turk: Alternative platforms for crowdsourcing behavioral researchJournal of Experimental Social Psychology20177015316310.1016/j.jesp.2017.01.006
KaneJVVelezYRBarabasJAnalyze the attentive and bypass bias: Mock vignette checks in survey experimentsAPSA Preprints202010.33774/apsa-2020-96t72
Ryan, T. J. (2018). Data contamination on MTurk. Retrieved from: https://timryan.web.unc.edu/2018/08/12/data-contamination-on-mturk
Ahler, D. J., Roush, C. E., & Sood, G. (2019). The micro-task market for lemons: Data quality on Amazon’s Mechanical Turk. Political Science Research and Methods, 1–20. https://doi.org/10.1017/psrm.2021.57
HauserMCushmanFYoungLKang-Xing JinRMikhailJA dissociation between moral judgments and justificationsMind & Language20072212110.1111/j.1468-0017.2006.00297.x
LuttrellAPettyREXuMReplicating and fixing failed replications: The case of need for cognition and argument qualityJournal of Experimental Social Psychology20176917818310.1016/j.jesp.2016.09.006
RamscarMLearning and the replicability of priming effectsCurrent Opinion in Psychology201612808410.1016/j.copsyc.2016.07.001
StorozukAAshleyMDelageVMaloneyEAGot bots? Practical recommendations to protect online survey data from bot attacksThe Quantitative Methods for Psychology202016547248110.20982/tqmp.16.5.p472
HauserDJPaolacciGChandlerJJKardesFRHerrPMSchwarzNCommon concerns with MTurk as a participant pool: Evidence and solutionsHandbook of research methods in consumer psychology2019Routledge
LitmanLRobinsonJAbberbockTTurkPrime.com: A versatile crowdsourcing data acquisition platform for the behavioral sciencesBehavior Research Methods201749243344210.3758/s13428-016-0727-z27071389
SmithBCliffordSJeritJTRENDS: How internet search undermines the validity of political knowledge measuresPolitical Research Quarterly202073114115510.1177/1065912919882101
Mechanical Turk Replication Project (2021). #MTRP: Mechanical Turk Replication Project.https://www.mtrp.info/index.html
JacowitzKEKahnemanDMeasures of anchoring in estimation tasksPersonality and Social Psychology Bulletin1995211161116610.1177/01461672952111004
PeerEVosgerauJAcquistiAReputation as a sufficient condition for data quality on Amazon Mechanical TurkBehavior Research Methods2014461023103110.3758/s13428-013-0434-y24356996
Bai, H. (2018). Evidence that a large amount of low quality responses on MTurk can be detected with repeated GPS coordinates. Retrieved from: https://www.maxhuibai.com/blog/evidence-that-responses-from-repeating-gps-are-random
KrosnickJAResponse strategies for coping with the cognitive demands of attitude measures in surveysApplied cognitive Psychology19915321323610.1002/acp.2350050305
LitmanLRobinsonJLitmanLRobinsonJConducting ethical online research: A data-driven approachConducting online research on Amazon mechanical turk and beyond2020Sage Academic Publishing234263
DennisSAGoodsonBMPearsonCAOnline worker fraud and evolving threats to the integrity of MTurk data: A discussion of virtual private servers and the limitations of IP-based screening proceduresBehavioral Research in Accounting202032111913410.2308/bria-18-044
LitmanLRobinsonJLitmanLRobinsonJIntroductionConducting online research on Amazon mechanical turk and beyond2020Sage Academic Publishing126
NeckaEACacioppoSNormanGJCacioppoJTMeasuring the prevalence of problematic respondent behaviors among MTurk, campus, and community participantsPLOS ONE201611610.1371/journal.pone.0157732273513784924794
Levesque, H., Davis, E., & Morgenstern, L. (2012). The Winograd schema challenge. In Proceedings of KR, pp 362–372, Rome, Italy.
SchwarzNStrackFDoes merely going through the same moves make for a “direct” replication? Concepts, contexts, and operationalizationsSocial Psychology2014454305306
LitmanLRobinsonJRosenzweigCThe relationship between motivation, monetary compensation, and data quality among US- and India-based workers on Mechanical TurkBehavior Research Methods20154751952810.3758/s13428-014-0483-x24907001
GomilaRLogistic or linear? Estimating causal effects of experimental treatments on binary outcomes using regression analysisJournal of Experimental Psychology: General2020150470010.1037/xge000092032969684
ZhouHFishbachAThe pitfall of experimenting on the web: How unattended selective attrition leads to surprising (yet false) research conclusionsJournal of Personality and Social Psychology201611149350410.1037/pspa000005627295328
ChandlerJPaolacciGHauserDJLitmanLRobinsonJData quality issues on mechanical turkConducting online research on Amazon mechanical Turk and beyond2020Sage Academic Publishing. Thousand Oaks95120
Litman, L., Rosenzweig, C., Jaffe, S. N., Gautam, R., Robinson, J., & Moss, A. J. (2021). Bots or inattentive humans? Identifying sources of low-quality data in online platforms. https://doi.org/10.31234/osf.io/wr8ds
FaulFErdfelderELangAGBuchnerAG* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciencesBehavior Research Methods20073917519110.3758/BF0319314617695343
Litman, L., Rosenzweig, C., & Moss, A (2020). New solutions dramatically improve research data quality on MTurk. CloudResearch. https://www.cloudresearch.com/resources/blog/new-tools-improve-research-data-quality-mturk
PaolacciGChandlerJIpeirotisPGRunning experiments on Amazon Mechanical TurkJudgment and Decision Making2010541141910.1017/S1930297500002205
Weston, J., Bordes, A., Chopra, S., Rush, A. M., van Merriënboer, B., Joulin, A., & Mikolov, T. (2015). Towards AI-complete question answering: A set of prerequisite toy tasks. arXiv preprint arXiv:1502.05698.
Kennedy, C., Hatley, N., Lau, A., Mercer, A., Keeter, S., Ferno, J., & Asare-Marfo, D. (2020a). Assessing the risks to online polls from bogus respondents. Pew Research Center Methods. https://www.pewresearch.org/methods/2020a/02/18/assessing-the-risks-to-online-polls-from-bogus-respondents
GoodmanJKCryderCECheemaAData collection in a flat world: The strengths and weaknesses of Mechanical Turk samplesJournal of Behavioral Decision Making201326321322410.1002/bdm.1753
CliffordSJeritJCheating on political knowledge questions in online surveys: An assessment of the problem and solutionsPublic Opinion Quarterly201680485888710.1093/poq/nfw030
RobinsonJRosenzweigCMossAJLitmanLTapped out or barely tapped? Recommendations for how to harness the vast and largely unused potential of the Mechanical Turk participant poolPLOS ONE2019141210.1371/journal.pone.0226394318415346913990
BerinskyAJMargolisMFSancesMWSeparating the shirkers from the workers? Making sure respondents pay attention on self-administered surveysAmerican Journal of Political Science201458373975310.1111/ajps.12081
ChmielewskiMKuckerSCAn MTurk crisis? Shifts in data quality and the impact on study resultsSocial Psychological and Personality Science202011446447310.1177/1948550619875149
BuhrmesterMDTalaifarSGoslingSDAn evaluation of Amazon’s Mechanical Turk, its rapid rise, and its effective usePerspectives on Psychological Science20181314915410.1177/174569161770651629928846
PermutSFisherMOppenheimerDMTaskMaster: A tool for determining when subjects are on taskAdvances in Methods and Practices in Psychological Science20192218819610.1177/2515245919838479
KE Jacowitz (1999_CR19) 1995; 21
JA Krosnick (1999_CR24) 1991; 5
MD Buhrmester (1999_CR6) 2018; 13
L Litman (1999_CR26) 2020
J Robinson (1999_CR44) 2019; 14
PG Curran (1999_CR10) 2016; 66
DJ Hauser (1999_CR18) 2019
1999_CR25
OP John (1999_CR20) 2008
1999_CR22
M Ramscar (1999_CR43) 2016; 12
L Litman (1999_CR27) 2020
EA Necka (1999_CR37) 2016; 11
1999_CR35
H Zhou (1999_CR52) 2016; 111
JW Tukey (1999_CR49) 1977
J Chandler (1999_CR8) 2020
1999_CR33
DM Oppenheimer (1999_CR38) 2009; 45
1999_CR34
R Kennedy (1999_CR23) 2020; 8
1999_CR31
A Luttrell (1999_CR32) 2017; 69
F Faul (1999_CR12) 2007; 39
R Gomila (1999_CR14) 2020; 150
1999_CR30
G Paolacci (1999_CR39) 2010; 5
L Litman (1999_CR29) 2017; 49
E Peer (1999_CR40) 2014; 46
A Storozuk (1999_CR48) 2020; 16
SA Dennis (1999_CR11) 2020; 32
M Chmielewski (1999_CR9) 2020; 11
S Permut (1999_CR42) 2019; 2
E Peer (1999_CR41) 2017; 70
JV Kane (1999_CR21) 2020
S Clifford (1999_CR7) 2016; 80
1999_CR45
1999_CR1
M Buhrmester (1999_CR5) 2011; 6
M Hauser (1999_CR17) 2007; 22
1999_CR2
AJ Berinsky (1999_CR3) 2014; 58
1999_CR4
L Litman (1999_CR28) 2015; 47
B Smith (1999_CR47) 2020; 73
A Tversky (1999_CR50) 1973; 5
DJ Hauser (1999_CR16) 2016; 48
JK Goodman (1999_CR15) 2013; 26
1999_CR13
N Schwarz (1999_CR46) 2014; 45
1999_CR51
MP Motta (1999_CR36) 2017; 29
References_xml – reference: Ahler, D. J., Roush, C. E., & Sood, G. (2019). The micro-task market for lemons: Data quality on Amazon’s Mechanical Turk. Political Science Research and Methods, 1–20. https://doi.org/10.1017/psrm.2021.57
– reference: Levesque, H., Davis, E., & Morgenstern, L. (2012). The Winograd schema challenge. In Proceedings of KR, pp 362–372, Rome, Italy.
– reference: BuhrmesterMDTalaifarSGoslingSDAn evaluation of Amazon’s Mechanical Turk, its rapid rise, and its effective usePerspectives on Psychological Science20181314915410.1177/174569161770651629928846
– reference: PeerEBrandimarteLSamatSAcquistiABeyond the Turk: Alternative platforms for crowdsourcing behavioral researchJournal of Experimental Social Psychology20177015316310.1016/j.jesp.2017.01.006
– reference: Weston, J., Bordes, A., Chopra, S., Rush, A. M., van Merriënboer, B., Joulin, A., & Mikolov, T. (2015). Towards AI-complete question answering: A set of prerequisite toy tasks. arXiv preprint arXiv:1502.05698.
– reference: MottaMPCallaghanTHSmithBLooking for answers: Identifying search behavior and improving knowledge-based data quality in online surveysInternational Journal of Public Opinion Research201729457560310.1093/ijpor/edw027
– reference: LitmanLRobinsonJLitmanLRobinsonJConducting ethical online research: A data-driven approachConducting online research on Amazon mechanical turk and beyond2020Sage Academic Publishing234263
– reference: StorozukAAshleyMDelageVMaloneyEAGot bots? Practical recommendations to protect online survey data from bot attacksThe Quantitative Methods for Psychology202016547248110.20982/tqmp.16.5.p472
– reference: Ryan, T. J. (2018). Data contamination on MTurk. Retrieved from: https://timryan.web.unc.edu/2018/08/12/data-contamination-on-mturk/
– reference: HauserDJPaolacciGChandlerJJKardesFRHerrPMSchwarzNCommon concerns with MTurk as a participant pool: Evidence and solutionsHandbook of research methods in consumer psychology2019Routledge
– reference: TukeyJWExploratory data analysis1977Addison-Wesley
– reference: LuttrellAPettyREXuMReplicating and fixing failed replications: The case of need for cognition and argument qualityJournal of Experimental Social Psychology20176917818310.1016/j.jesp.2016.09.006
– reference: BerinskyAJMargolisMFSancesMWSeparating the shirkers from the workers? Making sure respondents pay attention on self-administered surveysAmerican Journal of Political Science201458373975310.1111/ajps.12081
– reference: KrosnickJAResponse strategies for coping with the cognitive demands of attitude measures in surveysApplied cognitive Psychology19915321323610.1002/acp.2350050305
– reference: LitmanLRobinsonJRosenzweigCThe relationship between motivation, monetary compensation, and data quality among US- and India-based workers on Mechanical TurkBehavior Research Methods20154751952810.3758/s13428-014-0483-x24907001
– reference: Moss, A. J., & Litman, L. (2018). After the bot scare: Understanding what’s been happening with data collection on MTurk and how to stop it [blog post].
– reference: JohnOPNaumannLPSotoCJJohnOPRobinsRWPervinLAParadigm shift to the integrative Big Five trait taxonomy: History, measurement, and conceptual issuesHandbook of personality: Theory and research20083Guilford Press114158
– reference: Kennedy, C., Hatley, N., Lau, A., Mercer, A., Keeter, S., Ferno, J., & Asare-Marfo, D. (2020a). Assessing the risks to online polls from bogus respondents. Pew Research Center Methods. https://www.pewresearch.org/methods/2020a/02/18/assessing-the-risks-to-online-polls-from-bogus-respondents/
– reference: OppenheimerDMMeyvisTDavidenkoNInstructional manipulation checks: Detecting satisficing to increase statistical powerJournal of Experimental Social Psychology200945486787210.1016/j.jesp.2009.03.009
– reference: ChandlerJPaolacciGHauserDJLitmanLRobinsonJData quality issues on mechanical turkConducting online research on Amazon mechanical Turk and beyond2020Sage Academic Publishing. Thousand Oaks95120
– reference: KennedyRCliffordSBurleighTWaggonerPDJewellRWinterNJThe shape of and solutions to the MTurk quality crisisPolitical Science Research and Methods2020861462910.1017/psrm.2020.6
– reference: GomilaRLogistic or linear? Estimating causal effects of experimental treatments on binary outcomes using regression analysisJournal of Experimental Psychology: General2020150470010.1037/xge000092032969684
– reference: RamscarMLearning and the replicability of priming effectsCurrent Opinion in Psychology201612808410.1016/j.copsyc.2016.07.001
– reference: FaulFErdfelderELangAGBuchnerAG* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciencesBehavior Research Methods20073917519110.3758/BF0319314617695343
– reference: HauserMCushmanFYoungLKang-Xing JinRMikhailJA dissociation between moral judgments and justificationsMind & Language20072212110.1111/j.1468-0017.2006.00297.x
– reference: HauserDJSchwarzNAttentive Turkers: MTurk participants perform better on online attention checks than do subject pool participantsBehavior Research Methods20164840040710.3758/s13428-015-0578-z25761395
– reference: LitmanLRobinsonJAbberbockTTurkPrime.com: A versatile crowdsourcing data acquisition platform for the behavioral sciencesBehavior Research Methods201749243344210.3758/s13428-016-0727-z27071389
– reference: Bai, H. (2018). Evidence that a large amount of low quality responses on MTurk can be detected with repeated GPS coordinates. Retrieved from: https://www.maxhuibai.com/blog/evidence-that-responses-from-repeating-gps-are-random
– reference: Moss, A. J., Rosenzweig, C., Robinson, J., Jaffe, S. N., & Litman, L. (2021). Is it ethical to use mechanical turk for behavioral research? Relevant data from a representative survey of MTurk participants and wages. https://doi.org/10.31234/osf.io/jbc9d
– reference: KaneJVVelezYRBarabasJAnalyze the attentive and bypass bias: Mock vignette checks in survey experimentsAPSA Preprints202010.33774/apsa-2020-96t72
– reference: Gautam, R., Kerstein, M., Moss, A. J., & Litman, L. (2018). Understanding geolocations and their connection to data quality. [blog post]. Retrieved from: https://www.cloudresearch.com/resources/blog/understanding-geolocations-and-their-connection-to-data-quality/
– reference: TverskyAKahnemanDAvailability: A heuristic for judging frequency and probabilityCognitive Psychology19735220723210.1016/0010-0285(73)90033-9
– reference: DennisSAGoodsonBMPearsonCAOnline worker fraud and evolving threats to the integrity of MTurk data: A discussion of virtual private servers and the limitations of IP-based screening proceduresBehavioral Research in Accounting202032111913410.2308/bria-18-044
– reference: NeckaEACacioppoSNormanGJCacioppoJTMeasuring the prevalence of problematic respondent behaviors among MTurk, campus, and community participantsPLOS ONE201611610.1371/journal.pone.0157732273513784924794
– reference: GoodmanJKCryderCECheemaAData collection in a flat world: The strengths and weaknesses of Mechanical Turk samplesJournal of Behavioral Decision Making201326321322410.1002/bdm.1753
– reference: SmithBCliffordSJeritJTRENDS: How internet search undermines the validity of political knowledge measuresPolitical Research Quarterly202073114115510.1177/1065912919882101
– reference: RobinsonJRosenzweigCMossAJLitmanLTapped out or barely tapped? Recommendations for how to harness the vast and largely unused potential of the Mechanical Turk participant poolPLOS ONE2019141210.1371/journal.pone.0226394318415346913990
– reference: CliffordSJeritJCheating on political knowledge questions in online surveys: An assessment of the problem and solutionsPublic Opinion Quarterly201680485888710.1093/poq/nfw030
– reference: PeerEVosgerauJAcquistiAReputation as a sufficient condition for data quality on Amazon Mechanical TurkBehavior Research Methods2014461023103110.3758/s13428-013-0434-y24356996
– reference: ZhouHFishbachAThe pitfall of experimenting on the web: How unattended selective attrition leads to surprising (yet false) research conclusionsJournal of Personality and Social Psychology201611149350410.1037/pspa000005627295328
– reference: Litman, L., Rosenzweig, C., Jaffe, S. N., Gautam, R., Robinson, J., & Moss, A. J. (2021). Bots or inattentive humans? Identifying sources of low-quality data in online platforms. https://doi.org/10.31234/osf.io/wr8ds
– reference: JacowitzKEKahnemanDMeasures of anchoring in estimation tasksPersonality and Social Psychology Bulletin1995211161116610.1177/01461672952111004
– reference: SchwarzNStrackFDoes merely going through the same moves make for a “direct” replication? Concepts, contexts, and operationalizationsSocial Psychology2014454305306
– reference: CurranPGMethods for the detection of carelessly invalid responses in survey dataJournal of Experimental Social Psychology20166641910.1016/j.jesp.2015.07.006
– reference: PaolacciGChandlerJIpeirotisPGRunning experiments on Amazon Mechanical TurkJudgment and Decision Making2010541141910.1017/S1930297500002205
– reference: LitmanLRobinsonJLitmanLRobinsonJIntroductionConducting online research on Amazon mechanical turk and beyond2020Sage Academic Publishing126
– reference: Litman, L., Rosenzweig, C., & Moss, A (2020). New solutions dramatically improve research data quality on MTurk. CloudResearch. https://www.cloudresearch.com/resources/blog/new-tools-improve-research-data-quality-mturk/
– reference: Mechanical Turk Replication Project (2021). #MTRP: Mechanical Turk Replication Project.https://www.mtrp.info/index.html
– reference: BuhrmesterMKwangTGoslingSDAmazon's Mechanical Turk: A new source of inexpensive, yet high-quality data?Perspectives on Psychological Science201163510.1177/174569161039398026162106
– reference: ChmielewskiMKuckerSCAn MTurk crisis? Shifts in data quality and the impact on study resultsSocial Psychological and Personality Science202011446447310.1177/1948550619875149
– reference: PermutSFisherMOppenheimerDMTaskMaster: A tool for determining when subjects are on taskAdvances in Methods and Practices in Psychological Science20192218819610.1177/2515245919838479
– reference: Brandt, M. J., IJzerman, H., Dijksterhuis, A., Farach, F. J., Geller, J., Giner-Sorolla, R., ...Van’t Veer, A. (2014). The replication recipe: What makes for a convincing replication? Journal of Experimental Social Psychology, 50, 217–224.https://doi.org/10.1016/j.jesp.2013.10.005
– volume: 11
  issue: 6
  year: 2016
  ident: 1999_CR37
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0157732
– start-page: 1
  volume-title: Conducting online research on Amazon mechanical turk and beyond
  year: 2020
  ident: 1999_CR26
– ident: 1999_CR31
  doi: 10.31234/osf.io/wr8ds
– volume: 80
  start-page: 858
  issue: 4
  year: 2016
  ident: 1999_CR7
  publication-title: Public Opinion Quarterly
  doi: 10.1093/poq/nfw030
– volume: 46
  start-page: 1023
  year: 2014
  ident: 1999_CR40
  publication-title: Behavior Research Methods
  doi: 10.3758/s13428-013-0434-y
– volume: 5
  start-page: 213
  issue: 3
  year: 1991
  ident: 1999_CR24
  publication-title: Applied cognitive Psychology
  doi: 10.1002/acp.2350050305
– ident: 1999_CR51
– ident: 1999_CR13
– volume-title: Exploratory data analysis
  year: 1977
  ident: 1999_CR49
– volume: 66
  start-page: 4
  year: 2016
  ident: 1999_CR10
  publication-title: Journal of Experimental Social Psychology
  doi: 10.1016/j.jesp.2015.07.006
– ident: 1999_CR33
– volume: 16
  start-page: 472
  issue: 5
  year: 2020
  ident: 1999_CR48
  publication-title: The Quantitative Methods for Psychology
  doi: 10.20982/tqmp.16.5.p472
– volume: 13
  start-page: 149
  year: 2018
  ident: 1999_CR6
  publication-title: Perspectives on Psychological Science
  doi: 10.1177/1745691617706516
– volume: 69
  start-page: 178
  year: 2017
  ident: 1999_CR32
  publication-title: Journal of Experimental Social Psychology
  doi: 10.1016/j.jesp.2016.09.006
– ident: 1999_CR2
– volume: 45
  start-page: 867
  issue: 4
  year: 2009
  ident: 1999_CR38
  publication-title: Journal of Experimental Social Psychology
  doi: 10.1016/j.jesp.2009.03.009
– ident: 1999_CR22
– volume: 11
  start-page: 464
  issue: 4
  year: 2020
  ident: 1999_CR9
  publication-title: Social Psychological and Personality Science
  doi: 10.1177/1948550619875149
– volume: 111
  start-page: 493
  year: 2016
  ident: 1999_CR52
  publication-title: Journal of Personality and Social Psychology
  doi: 10.1037/pspa0000056
– volume: 39
  start-page: 175
  year: 2007
  ident: 1999_CR12
  publication-title: Behavior Research Methods
  doi: 10.3758/BF03193146
– volume: 47
  start-page: 519
  year: 2015
  ident: 1999_CR28
  publication-title: Behavior Research Methods
  doi: 10.3758/s13428-014-0483-x
– volume: 70
  start-page: 153
  year: 2017
  ident: 1999_CR41
  publication-title: Journal of Experimental Social Psychology
  doi: 10.1016/j.jesp.2017.01.006
– volume: 58
  start-page: 739
  issue: 3
  year: 2014
  ident: 1999_CR3
  publication-title: American Journal of Political Science
  doi: 10.1111/ajps.12081
– volume: 5
  start-page: 207
  issue: 2
  year: 1973
  ident: 1999_CR50
  publication-title: Cognitive Psychology
  doi: 10.1016/0010-0285(73)90033-9
– ident: 1999_CR35
  doi: 10.31234/osf.io/jbc9d
– ident: 1999_CR34
– year: 2020
  ident: 1999_CR21
  publication-title: APSA Preprints
  doi: 10.33774/apsa-2020-96t72
– volume: 29
  start-page: 575
  issue: 4
  year: 2017
  ident: 1999_CR36
  publication-title: International Journal of Public Opinion Research
  doi: 10.1093/ijpor/edw027
– volume: 32
  start-page: 119
  issue: 1
  year: 2020
  ident: 1999_CR11
  publication-title: Behavioral Research in Accounting
  doi: 10.2308/bria-18-044
– volume: 12
  start-page: 80
  year: 2016
  ident: 1999_CR43
  publication-title: Current Opinion in Psychology
  doi: 10.1016/j.copsyc.2016.07.001
– volume: 8
  start-page: 614
  year: 2020
  ident: 1999_CR23
  publication-title: Political Science Research and Methods
  doi: 10.1017/psrm.2020.6
– volume-title: Handbook of research methods in consumer psychology
  year: 2019
  ident: 1999_CR18
– volume: 45
  start-page: 305
  issue: 4
  year: 2014
  ident: 1999_CR46
  publication-title: Social Psychology
– ident: 1999_CR30
– volume: 73
  start-page: 141
  issue: 1
  year: 2020
  ident: 1999_CR47
  publication-title: Political Research Quarterly
  doi: 10.1177/1065912919882101
– ident: 1999_CR1
  doi: 10.1017/psrm.2021.57
– start-page: 95
  volume-title: Conducting online research on Amazon mechanical Turk and beyond
  year: 2020
  ident: 1999_CR8
– volume: 22
  start-page: 1
  year: 2007
  ident: 1999_CR17
  publication-title: Mind & Language
  doi: 10.1111/j.1468-0017.2006.00297.x
– volume: 49
  start-page: 433
  issue: 2
  year: 2017
  ident: 1999_CR29
  publication-title: Behavior Research Methods
  doi: 10.3758/s13428-016-0727-z
– volume: 2
  start-page: 188
  issue: 2
  year: 2019
  ident: 1999_CR42
  publication-title: Advances in Methods and Practices in Psychological Science
  doi: 10.1177/2515245919838479
– volume: 26
  start-page: 213
  issue: 3
  year: 2013
  ident: 1999_CR15
  publication-title: Journal of Behavioral Decision Making
  doi: 10.1002/bdm.1753
– volume: 48
  start-page: 400
  year: 2016
  ident: 1999_CR16
  publication-title: Behavior Research Methods
  doi: 10.3758/s13428-015-0578-z
– ident: 1999_CR25
– ident: 1999_CR4
  doi: 10.1016/j.jesp.2013.10.005
– volume: 150
  start-page: 700
  issue: 4
  year: 2020
  ident: 1999_CR14
  publication-title: Journal of Experimental Psychology: General
  doi: 10.1037/xge0000920
– volume: 14
  issue: 12
  year: 2019
  ident: 1999_CR44
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0226394
– ident: 1999_CR45
– start-page: 114
  volume-title: Handbook of personality: Theory and research
  year: 2008
  ident: 1999_CR20
– volume: 6
  start-page: 3
  year: 2011
  ident: 1999_CR5
  publication-title: Perspectives on Psychological Science
  doi: 10.1177/1745691610393980
– volume: 5
  start-page: 411
  year: 2010
  ident: 1999_CR39
  publication-title: Judgment and Decision Making
  doi: 10.1017/S1930297500002205
– start-page: 234
  volume-title: Conducting online research on Amazon mechanical turk and beyond
  year: 2020
  ident: 1999_CR27
– volume: 21
  start-page: 1161
  year: 1995
  ident: 1999_CR19
  publication-title: Personality and Social Psychology Bulletin
  doi: 10.1177/01461672952111004
SSID ssj0038214
Score 2.6857338
Snippet Maintaining data quality on Amazon Mechanical Turk (MTurk) has always been a concern for researchers. These concerns have grown recently due to the bot crisis...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3953
SubjectTerms Attention
Behavioral Science and Psychology
Cognitive Psychology
Crowdsourcing - methods
Data Accuracy
Humans
Psychology
Self Report
Surveys and Questionnaires
Title Evaluating CloudResearch’s Approved Group as a solution for problematic data quality on MTurk
URI https://link.springer.com/article/10.3758/s13428-022-01999-x
https://www.ncbi.nlm.nih.gov/pubmed/36326997
https://www.proquest.com/docview/2731717232
Volume 55
WOSCitedRecordID wos000878463800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1554-3528
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0038214
  issn: 1554-3528
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1554-3528
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0038214
  issn: 1554-3528
  databaseCode: 7X7
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Psychology Database
  customDbUrl:
  eissn: 1554-3528
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0038214
  issn: 1554-3528
  databaseCode: M2M
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/psychology
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1554-3528
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0038214
  issn: 1554-3528
  databaseCode: M2O
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Social Science Database
  customDbUrl:
  eissn: 1554-3528
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0038214
  issn: 1554-3528
  databaseCode: M2R
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/socscijournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1554-3528
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038214
  issn: 1554-3528
  databaseCode: RSV
  dateStart: 20050201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1B4cCFfSmbjMQNIpo4TpwjoCIuLYhNvVneghAoRU2L6I3f4Pf4EsZZKiEEElwsJbETZ2bieRPPArBPtbZhEGpPo3R4qKFbHkfF5gUmlUFgKWeRKYpNxN0u7_WSyyooLK-93estyWKldnYlgtqj3Kehy6YcOFcCFzuPyHEG1R13BRuuru_q9ZfywA_L8Jgfxn1VQd9w5bc90ULVnC38b5KLMF9BS3JcysISTNlsGeYmK9x4BUS7yu2d3ZPTp_7I1H53H2_vOTl26cVfrCHF_ygicyJJLZkEsS2pis-4HK_EeZaSMiJzTPB652Y0eFyF27P2zem5V1VYQNYwPvSsL3moJJVcURYrjsaYQQipWpFhzDBu8Z24jFuJSlQrVqlWiWZRGnAHxBIb0jVoZP3MbgBBS0ynxlDFYrQw_VRKRHrK5beLIqZ03AS_JrrQVfpxVwXjSaAZ4mgnStoJpJ0oaCdem3AwGfNcJt_4tfdezUuB34jb-JCZ7Y9ygRDNR7MV59yE9ZLJk_vRCAFskuD8DmuOiuozzn952Obfum_BnKtTX_rBbENjOBjZHZjVL8OHfLAL03EvLlq-CzMn7e7lFR51gk7RXhStO4NS_gkCSvM3
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yCu7F92N9RvCmxbZp2vQoy4qiLqKreAt5VcSlK9vtojf_hn_PX-KkjwURBT03bdOZSeabZuYbhPaJUibwA-UosA4HPLTrMHBsjq8T4fuGMBrqotlE1O2y-_v4qioKy-ps9_pIstipbVwJoPYo80hg2ZR9m0pga-cBOU4H4LEsY_71zV29_xLme0FZHvPDfV9d0Ddc-e1MtHA1J_P_m-QCmqugJT4ubWERTZl0CTUnO9zrMuKdits7fcDt_iDXdd7dx9t7ho8tvfjYaFz8j8IiwwLXlokB2-Kq-YzleMU2sxSXFZmvGK5f9vLh0wq6Pen02qdO1WEBVEPZyDGeYIEURDBJaCQZBGMaIKR0Q02ppszANzERubGMpRvJRMlY0TDxmQVisQnIKmqkg9SsIwyRmEq0JpJGEGF6iRCA9KTltwtDKlXUQl4tdK4q-nHbBaPPIQyxsuOl7DjIjhey4y8tdDC557kk3_h19F6tSw5rxB58iNQM8owDRPMgbIU5t9BaqeTJ80gIADaOYX6HtUZ5tYyzX1628bfhu2j2tHd5wS_OuuebqGl71pc5MVuoMRrmZhvNqPHoMRvuFLb8CYg47-Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kinjx_ajPFbxpsMlmk82x1BZFLQWreFv2FRFLKk0r9ubf8O_5S5zNoyhiQTxnk2xmZne-yc58g9ARUcr4nq8cBdbhgIeuOQwcm-PpWHieIYwGOms2Ebbb7P4-6nyp4s-y3csjybymwbI0JcPTZx3bJU4A4J6mLvEts7Jn0wpsHT2gyFnfJtLbeP3mrtyLCfNcPy-V-eW-7-7oB8b8cT6auZ3W0v8nvIwWC8iJ67mNrKAZk6yihcnON15DvFlwficPuNHrj3SZj_fx9p7iuqUdfzEaZ_-psEixwKXFYsC8uGhKY7lfsc04xXml5hjD9evuaPC0jm5bzW7j3Ck6L4DKKBs6xhXMl4IIJgkNJYMgTQO0lLVAU6opM_BNTIS1SEayFspYyUjRIPaYBWiR8ckGqiT9xGwhDBGairUmkoYQebqxEIAApeW9CwIqVVhFbqkArgpactsdo8chPLGy47nsOMiOZ7Ljr1V0PLnnOSflmDr6sNQrh7VjD0REYvqjlAN0cyGchTlX0Wau8MnzSADANopgfieldnmxvNMpL9v-2_ADNN85a_Gri_blDlqwrezzVJldVBkORmYPzamX4WM62M_M-hNPZfjI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+CloudResearch%E2%80%99s+Approved+Group+as+a+solution+for+problematic+data+quality+on+MTurk&rft.jtitle=Behavior+research+methods&rft.au=Hauser%2C+David+J.&rft.au=Moss%2C+Aaron+J.&rft.au=Rosenzweig%2C+Cheskie&rft.au=Jaffe%2C+Shalom+N.&rft.date=2023-12-01&rft.issn=1554-3528&rft.eissn=1554-3528&rft.volume=55&rft.issue=8&rft.spage=3953&rft.epage=3964&rft_id=info:doi/10.3758%2Fs13428-022-01999-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_3758_s13428_022_01999_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1554-3528&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1554-3528&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1554-3528&client=summon