Prediction of daily maximum temperature using a support vector regression algorithm

Daily maximum temperature can be used a good indicator of peak energy consumption, since it can be used to predict the massive use of heating or air conditioning systems. Thus, the prediction of daily maximum temperature is an important problem with interesting applications in the energy field, sinc...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Renewable energy Ročník 36; číslo 11; s. 3054 - 3060
Hlavní autoři: Paniagua-Tineo, A., Salcedo-Sanz, S., Casanova-Mateo, C., Ortiz-García, E.G., Cony, M.A., Hernández-Martín, E.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Elsevier Ltd 01.11.2011
Elsevier
Témata:
ISSN:0960-1481, 1879-0682
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Daily maximum temperature can be used a good indicator of peak energy consumption, since it can be used to predict the massive use of heating or air conditioning systems. Thus, the prediction of daily maximum temperature is an important problem with interesting applications in the energy field, since it has been proven that electricity demand depends much on weather conditions. This paper presents a novel methodology for daily maximum temperature prediction, based on a Support Vector Regression approach. The paper is focused on different measuring stations in Europe, from which different meteorological variables have been obtained, including temperature, precipitation, relative humidity and air pressure. Two more variables are also included, specifically synoptic situation of the day and monthly cycle. Using this pool of prediction variables, it is shown that the SVMr algorithm is able to give an accurate prediction of the maximum temperature 24 h later. In the paper SVMr technique applied is fully described, including some bounds on the machine hyper-parameters in order to speed up the SVMr training process. The performance of the SVMr has been compared to that of different neural networks in the literature: a Multi-layer perceptron and an Extreme Learning Machine. ► This paper presents a SVMr approach to daily temperature prediction. ► Different measuring stations in Europe, with different meteorological variables are considered. ► Comparisons with alternative neural methods have shown the good performance of the proposed approach.
AbstractList Daily maximum temperature can be used a good indicator of peak energy consumption, since it can be used to predict the massive use of heating or air conditioning systems. Thus, the prediction of daily maximum temperature is an important problem with interesting applications in the energy field, since it has been proven that electricity demand depends much on weather conditions. This paper presents a novel methodology for daily maximum temperature prediction, based on a Support Vector Regression approach. The paper is focused on different measuring stations in Europe, from which different meteorological variables have been obtained, including temperature, precipitation, relative humidity and air pressure. Two more variables are also included, specifically synoptic situation of the day and monthly cycle. Using this pool of prediction variables, it is shown that the SVMr algorithm is able to give an accurate prediction of the maximum temperature 24 h later. In the paper SVMr technique applied is fully described, including some bounds on the machine hyper-parameters in order to speed up the SVMr training process. The performance of the SVMr has been compared to that of different neural networks in the literature: a Multi-layer perceptron and an Extreme Learning Machine.
Daily maximum temperature can be used a good indicator of peak energy consumption, since it can be used to predict the massive use of heating or air conditioning systems. Thus, the prediction of daily maximum temperature is an important problem with interesting applications in the energy field, since it has been proven that electricity demand depends much on weather conditions. This paper presents a novel methodology for daily maximum temperature prediction, based on a Support Vector Regression approach. The paper is focused on different measuring stations in Europe, from which different meteorological variables have been obtained, including temperature, precipitation, relative humidity and air pressure. Two more variables are also included, specifically synoptic situation of the day and monthly cycle. Using this pool of prediction variables, it is shown that the SVMr algorithm is able to give an accurate prediction of the maximum temperature 24 h later. In the paper SVMr technique applied is fully described, including some bounds on the machine hyper-parameters in order to speed up the SVMr training process. The performance of the SVMr has been compared to that of different neural networks in the literature: a Multi-layer perceptron and an Extreme Learning Machine. This paper presents a SVMr approach to daily temperature prediction. Different measuring stations in Europe, with different meteorological variables are considered. Comparisons with alternative neural methods have shown the good performance of the proposed approach.
Daily maximum temperature can be used a good indicator of peak energy consumption, since it can be used to predict the massive use of heating or air conditioning systems. Thus, the prediction of daily maximum temperature is an important problem with interesting applications in the energy field, since it has been proven that electricity demand depends much on weather conditions. This paper presents a novel methodology for daily maximum temperature prediction, based on a Support Vector Regression approach. The paper is focused on different measuring stations in Europe, from which different meteorological variables have been obtained, including temperature, precipitation, relative humidity and air pressure. Two more variables are also included, specifically synoptic situation of the day and monthly cycle. Using this pool of prediction variables, it is shown that the SVMr algorithm is able to give an accurate prediction of the maximum temperature 24 h later. In the paper SVMr technique applied is fully described, including some bounds on the machine hyper-parameters in order to speed up the SVMr training process. The performance of the SVMr has been compared to that of different neural networks in the literature: a Multi-layer perceptron and an Extreme Learning Machine.
Daily maximum temperature can be used a good indicator of peak energy consumption, since it can be used to predict the massive use of heating or air conditioning systems. Thus, the prediction of daily maximum temperature is an important problem with interesting applications in the energy field, since it has been proven that electricity demand depends much on weather conditions. This paper presents a novel methodology for daily maximum temperature prediction, based on a Support Vector Regression approach. The paper is focused on different measuring stations in Europe, from which different meteorological variables have been obtained, including temperature, precipitation, relative humidity and air pressure. Two more variables are also included, specifically synoptic situation of the day and monthly cycle. Using this pool of prediction variables, it is shown that the SVMr algorithm is able to give an accurate prediction of the maximum temperature 24 h later. In the paper SVMr technique applied is fully described, including some bounds on the machine hyper-parameters in order to speed up the SVMr training process. The performance of the SVMr has been compared to that of different neural networks in the literature: a Multi-layer perceptron and an Extreme Learning Machine. ► This paper presents a SVMr approach to daily temperature prediction. ► Different measuring stations in Europe, with different meteorological variables are considered. ► Comparisons with alternative neural methods have shown the good performance of the proposed approach.
Author Ortiz-García, E.G.
Cony, M.A.
Hernández-Martín, E.
Paniagua-Tineo, A.
Casanova-Mateo, C.
Salcedo-Sanz, S.
Author_xml – sequence: 1
  givenname: A.
  surname: Paniagua-Tineo
  fullname: Paniagua-Tineo, A.
  organization: Department of Signal Theory and Communications, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
– sequence: 2
  givenname: S.
  surname: Salcedo-Sanz
  fullname: Salcedo-Sanz, S.
  email: sancho.salcedo@uah.es
  organization: Department of Signal Theory and Communications, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
– sequence: 3
  givenname: C.
  surname: Casanova-Mateo
  fullname: Casanova-Mateo, C.
  organization: Department of Physics of the Earth, Astronomy and Astrophysics II, Universidad Complutense de Madrid, Spain
– sequence: 4
  givenname: E.G.
  surname: Ortiz-García
  fullname: Ortiz-García, E.G.
  organization: Department of Signal Theory and Communications, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
– sequence: 5
  givenname: M.A.
  surname: Cony
  fullname: Cony, M.A.
  organization: Department of Renewable Energy, Center for Energy, Environmental and Technologic Research (CIEMAT), Spain
– sequence: 6
  givenname: E.
  surname: Hernández-Martín
  fullname: Hernández-Martín, E.
  organization: Department of Physics of the Earth, Astronomy and Astrophysics II, Universidad Complutense de Madrid, Spain
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24272923$$DView record in Pascal Francis
BookMark eNqFkkFrFTEQx4NU8LX6DQRzEb3sM8lmk6wHQYpWoaBQew7T7Owzj93NmmSL_fZm2eKhh5YM5PL7T2b45ZScTGFCQl5ztueMqw_HfcSpnL1gnO9ZXYo9IztudFsxZcQJ2bFWsYpLw1-Q05SOjPHGaLkjVz8jdt5lHyYaetqBH-7oCH_9uIw04zhjhLxEpEvy04ECTcs8h5jpLbocIo14iJjSGofhEKLPv8eX5HkPQ8JX9_cZuf765df5t-ryx8X388-XlZONyVV342rlmOobANMKIaBjzjllsGdStr1snOG17F3HbzotVI3SIAPeIWLbQlOfkXdb3zmGPwumbEefHA4DTBiWZMuC3CitV_L9oyTXWvOGKyOfRlVpybRga9e39ygkB0MfYXI-2Tn6EeKdFVJo0Yq6cHLjXAwpRez_I5zZVaA92k2gXQVaVpdiJfbxQcz5DKupHIump8JvtnAPwcIhlrmurwrQFPNlTaML8WkjsCi69Rhtch4nV75DLG5tF_zjT_wDp47FQA
CitedBy_id crossref_primary_10_1371_journal_pone_0304754
crossref_primary_10_3390_electronics12071535
crossref_primary_10_1016_j_engappai_2012_10_018
crossref_primary_10_1088_2634_4505_acef57
crossref_primary_10_1007_s40808_025_02457_1
crossref_primary_10_1016_j_renene_2015_07_004
crossref_primary_10_1007_s11227_024_06909_w
crossref_primary_10_1007_s10661_023_11143_7
crossref_primary_10_1016_j_compag_2017_11_038
crossref_primary_10_3390_en13164215
crossref_primary_10_1007_s12517_021_08484_3
crossref_primary_10_1016_j_asoc_2023_110118
crossref_primary_10_3390_en10050722
crossref_primary_10_3390_s25175295
crossref_primary_10_1016_j_enconman_2016_08_020
crossref_primary_10_1007_s12040_024_02501_1
crossref_primary_10_1016_j_egyr_2021_04_010
crossref_primary_10_1016_j_spasta_2015_05_008
crossref_primary_10_1007_s11600_022_00879_4
crossref_primary_10_1016_j_rser_2017_09_078
crossref_primary_10_1007_s00477_020_01898_7
crossref_primary_10_1080_10298436_2024_2381658
crossref_primary_10_1007_s10462_025_11247_1
crossref_primary_10_1016_j_atmosres_2014_01_012
crossref_primary_10_1007_s12145_022_00792_w
crossref_primary_10_1016_j_atmosres_2023_106608
crossref_primary_10_1007_s00704_015_1480_4
crossref_primary_10_1016_j_applthermaleng_2012_09_030
crossref_primary_10_3390_math11051213
crossref_primary_10_1007_s00704_022_04103_7
crossref_primary_10_1016_j_cie_2023_109785
crossref_primary_10_1016_j_gloplacha_2015_03_006
crossref_primary_10_1007_s00343_020_0062_1
crossref_primary_10_1016_j_compag_2014_09_007
crossref_primary_10_1007_s12040_023_02091_4
crossref_primary_10_1016_j_renene_2012_01_084
crossref_primary_10_1016_j_aquaculture_2023_739284
crossref_primary_10_1002_joc_7988
crossref_primary_10_3390_forecast6030041
crossref_primary_10_1007_s41870_023_01185_y
crossref_primary_10_1016_j_engappai_2014_05_016
crossref_primary_10_1016_j_renene_2014_02_041
crossref_primary_10_1007_s00704_023_04571_5
crossref_primary_10_1007_s12040_014_0434_z
crossref_primary_10_1016_j_jobe_2020_101996
crossref_primary_10_1109_TVT_2024_3361160
crossref_primary_10_1016_j_jksuci_2017_12_004
crossref_primary_10_1016_j_eneco_2022_106291
crossref_primary_10_1080_0954898X_2020_1759833
crossref_primary_10_1016_j_rser_2013_03_004
crossref_primary_10_1016_j_renene_2014_06_010
crossref_primary_10_1002_joc_4249
crossref_primary_10_1007_s12273_021_0811_x
crossref_primary_10_1080_10789669_2013_789371
crossref_primary_10_46632_cset_3_2_24
crossref_primary_10_1016_j_jhydrol_2018_11_069
crossref_primary_10_1016_j_agrformet_2024_109991
crossref_primary_10_1109_ACCESS_2022_3142174
crossref_primary_10_1016_j_compag_2016_01_019
Cites_doi 10.1016/0960-1481(94)00097-P
10.1016/S0960-1481(01)00082-9
10.1016/j.jmarsys.2008.11.026
10.1177/0309133309346647
10.5194/cp-5-259-2009
10.1016/S0140-9883(01)00082-2
10.1016/j.neucom.2009.07.009
10.1016/j.gloplacha.2004.06.005
10.1002/met.83
10.1007/s00704-005-0164-x
10.1002/joc.773
10.1002/(SICI)1099-131X(199603)15:2<97::AID-FOR608>3.0.CO;2-L
10.1016/j.compag.2009.04.003
10.1016/j.envsoft.2005.07.010
10.1016/j.renene.2003.11.009
10.1016/j.renene.2008.07.007
10.5194/nhess-9-1161-2009
10.1016/j.enbuild.2005.09.007
10.1007/s00704-009-0153-6
10.1002/joc.906
10.1016/S0196-8904(96)00117-3
10.1016/j.renene.2010.06.024
10.1127/0941-2948/2008/0314
10.1002/joc.3370060607
10.1109/72.329697
10.1115/1.1748466
10.1016/j.neucom.2005.12.126
10.1016/j.energy.2005.02.016
10.1016/j.engappai.2004.04.002
10.1007/s00704-008-0097-2
10.1017/S1350482704001318
10.1016/S0960-1481(98)00010-X
10.2134/agronj2009.0085
10.1002/joc.3370140606
ContentType Journal Article
Copyright 2011 Elsevier Ltd
2014 INIST-CNRS
Copyright_xml – notice: 2011 Elsevier Ltd
– notice: 2014 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
7S9
L.6
7SU
7TB
8FD
C1K
FR3
7ST
7U6
SOI
DOI 10.1016/j.renene.2011.03.030
DatabaseName AGRIS
CrossRef
Pascal-Francis
AGRICOLA
AGRICOLA - Academic
Environmental Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Environment Abstracts
Sustainability Science Abstracts
Environment Abstracts
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Environmental Engineering Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
Sustainability Science Abstracts
DatabaseTitleList
Engineering Research Database
AGRICOLA

Environment Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1879-0682
EndPage 3060
ExternalDocumentID 24272923
10_1016_j_renene_2011_03_030
US201500168487
S0960148111001443
GeographicLocations Europe
GeographicLocations_xml – name: Europe
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMC
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SEN
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
WUQ
ZCA
~02
~G-
ABPIF
ABPTK
FBQ
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
7S9
L.6
7SU
7TB
8FD
C1K
FR3
7ST
7U6
SOI
ID FETCH-LOGICAL-c458t-dbc36c06f5aa89222ad0ccc68ef0449f45c8134fcd1bd7263e48e0a1deee99a53
ISICitedReferencesCount 144
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000292441400036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0960-1481
IngestDate Tue Oct 07 09:45:20 EDT 2025
Tue Oct 07 09:37:21 EDT 2025
Thu Oct 02 05:11:52 EDT 2025
Mon Jul 21 09:16:16 EDT 2025
Tue Nov 18 21:51:35 EST 2025
Sat Nov 29 06:21:03 EST 2025
Wed Dec 27 19:00:57 EST 2023
Fri Feb 23 02:26:23 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Support vector regression algorithms
Daily maximum temperature prediction
Neural networks
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c458t-dbc36c06f5aa89222ad0ccc68ef0449f45c8134fcd1bd7263e48e0a1deee99a53
Notes http://dx.doi.org/10.1016/j.renene.2011.03.030
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1686707205
PQPubID 23462
PageCount 7
ParticipantIDs proquest_miscellaneous_874186775
proquest_miscellaneous_1777151684
proquest_miscellaneous_1686707205
pascalfrancis_primary_24272923
crossref_primary_10_1016_j_renene_2011_03_030
crossref_citationtrail_10_1016_j_renene_2011_03_030
fao_agris_US201500168487
elsevier_sciencedirect_doi_10_1016_j_renene_2011_03_030
PublicationCentury 2000
PublicationDate 2011-11-01
PublicationDateYYYYMMDD 2011-11-01
PublicationDate_xml – month: 11
  year: 2011
  text: 2011-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Renewable energy
PublicationYear 2011
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Prieto, García-Herrera, Daz, Hernández, del Teso (bib26) 2004; 44
Tasaduqq, Rehman Bubshait (bib11) 2002; 25
Pardo, Meneu, Valor (bib7) 2002; 24
Ododo (bib10) 1997; 38
Cahynová, Huth (bib32) 2009; 96
Kysely, Huth (bib36) 2006; 85
Huld, Suri, Dunlop, Micale (bib16) 2006; 21
Huang, Zhu, Siew (bib40) 2006; 70
Parishwad, Bhardwaj, Nema (bib3) 1998; 13
Begert, Zenklusen, Häberli, Appenzeller, Klok (bib23) 2008; 17
Abdel-Aal (bib1) 2004; 17
Chandler, Whitlock, Stackhouse (bib31) 2004; 126
Dombayc, Gölcü (bib4) 2009; 34
Bai, Chen, Dobermann, Yang, Cassman, Zhang (bib30) 2009; 102
Al Zayer, Al Ibrahim (bib6) 1996; 15
Smola, Schlkopf (bib17) 1998
Smith, Hoogenboom, McClendon (bib13) 2009; 68
Klein-Tank, Wijngaard, Können, Böhm, Demarée, Gocheva (bib22) 2002; 22
Ododo, Sulaiman, Aidan, Yuguda, Ogbu (bib9) 1995; 6
Chen, Liu, Wu, Xie (bib20) 2011; 36
Hurrell, Deser (bib35) 2009; 78
Peterson, Easterling (bib27) 1994; 14
Hagan, Menhaj (bib39) 1994; 5
Mohandes, Halawani, Rehman, Hussain (bib19) 2004; 29
Jones, Lister (bib33) 2009; 5
Ruano, Crispim, Conceiao, Lúcio (bib2) 2006; 38
.
Mirasgedis, Sarafidis, Georgopoulou, Lalas, Moschovits, Karagiannis (bib8) 2006; 31
Smith, Hoogenboom, McClendon (bib12) 2007; 3
Kidd, Levizzani, Bauer (bib28) 2009; 33
Planchon Quénol, Dupont, Corgne (bib37) 2009; 9
Camia, Bovio, Aguando, Stach (bib5) 1999
Smola, Murata, Scholkopf, Muller (bib18) 1998
Ortiz-García, Salcedo-Sanz, Pérez-Bellido, Portilla-Figueras (bib21) 2009; 72
Alexandersson (bib25) 1986; 6
Van den Besselaar, Klein-Tank, Van der Schrier (bib34) 2010; 99
Wijngaard, Klein-Tank, Können (bib24) 2003; 23
Ustaoglu, Cigizoglu, Karaca (bib14) 2008; 15
Boi (bib15) 2004; 11
Bishop (bib38) 1995
Kidd (10.1016/j.renene.2011.03.030_bib28) 2009; 33
Ruano (10.1016/j.renene.2011.03.030_bib2) 2006; 38
Huld (10.1016/j.renene.2011.03.030_bib16) 2006; 21
Peterson (10.1016/j.renene.2011.03.030_bib27) 1994; 14
Pardo (10.1016/j.renene.2011.03.030_bib7) 2002; 24
Cahynová (10.1016/j.renene.2011.03.030_bib32) 2009; 96
10.1016/j.renene.2011.03.030_bib29
Smith (10.1016/j.renene.2011.03.030_bib12) 2007; 3
Alexandersson (10.1016/j.renene.2011.03.030_bib25) 1986; 6
Kysely (10.1016/j.renene.2011.03.030_bib36) 2006; 85
Tasaduqq (10.1016/j.renene.2011.03.030_bib11) 2002; 25
Smola (10.1016/j.renene.2011.03.030_bib18) 1998
Bishop (10.1016/j.renene.2011.03.030_bib38) 1995
Bai (10.1016/j.renene.2011.03.030_bib30) 2009; 102
Hagan (10.1016/j.renene.2011.03.030_bib39) 1994; 5
Jones (10.1016/j.renene.2011.03.030_bib33) 2009; 5
Boi (10.1016/j.renene.2011.03.030_bib15) 2004; 11
Ortiz-García (10.1016/j.renene.2011.03.030_bib21) 2009; 72
Wijngaard (10.1016/j.renene.2011.03.030_bib24) 2003; 23
Ododo (10.1016/j.renene.2011.03.030_bib9) 1995; 6
Hurrell (10.1016/j.renene.2011.03.030_bib35) 2009; 78
Dombayc (10.1016/j.renene.2011.03.030_bib4) 2009; 34
Mirasgedis (10.1016/j.renene.2011.03.030_bib8) 2006; 31
Mohandes (10.1016/j.renene.2011.03.030_bib19) 2004; 29
Chandler (10.1016/j.renene.2011.03.030_bib31) 2004; 126
Al Zayer (10.1016/j.renene.2011.03.030_bib6) 1996; 15
Ustaoglu (10.1016/j.renene.2011.03.030_bib14) 2008; 15
Planchon Quénol (10.1016/j.renene.2011.03.030_bib37) 2009; 9
Prieto (10.1016/j.renene.2011.03.030_bib26) 2004; 44
Huang (10.1016/j.renene.2011.03.030_bib40) 2006; 70
Smith (10.1016/j.renene.2011.03.030_bib13) 2009; 68
Smola (10.1016/j.renene.2011.03.030_bib17) 1998
Begert (10.1016/j.renene.2011.03.030_bib23) 2008; 17
Abdel-Aal (10.1016/j.renene.2011.03.030_bib1) 2004; 17
Camia (10.1016/j.renene.2011.03.030_bib5) 1999
Chen (10.1016/j.renene.2011.03.030_bib20) 2011; 36
Van den Besselaar (10.1016/j.renene.2011.03.030_bib34) 2010; 99
Ododo (10.1016/j.renene.2011.03.030_bib10) 1997; 38
Parishwad (10.1016/j.renene.2011.03.030_bib3) 1998; 13
Klein-Tank (10.1016/j.renene.2011.03.030_bib22) 2002; 22
References_xml – volume: 24
  start-page: 55
  year: 2002
  end-page: 70
  ident: bib7
  article-title: Temperature and seasonality influences on Spanish electricity load
  publication-title: Energy Economics
– volume: 78
  start-page: 28
  year: 2009
  end-page: 41
  ident: bib35
  article-title: North Atlantic climate variability: the role of the north Atlantic Oscillation
  publication-title: Journal of Marine Systems
– volume: 85
  start-page: 19
  year: 2006
  end-page: 36
  ident: bib36
  article-title: Changes in atmospheric circulation over Europe detected by objective and subjective methods
  publication-title: Theoretical and Applied Climatology
– volume: 23
  start-page: 679
  year: 2003
  end-page: 692
  ident: bib24
  article-title: Homogeneity of 20th century European daily temperature and precipitation series
  publication-title: International Journal of Climatology
– volume: 34
  start-page: 1158
  year: 2009
  end-page: 1161
  ident: bib4
  article-title: Daily means ambient temperature prediction using artificial neural networks method: a case study of Turkey
  publication-title: Renewable Energy
– year: 1995
  ident: bib38
  article-title: Neural networks for pattern recognition
– volume: 6
  start-page: 751
  year: 1995
  end-page: 763
  ident: bib9
  article-title: The importance of maximum air temperature in the parameterisation of solar radiation in Nigeria
  publication-title: Renewable Energy
– volume: 22
  start-page: 1441
  year: 2002
  end-page: 1453
  ident: bib22
  article-title: Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment
  publication-title: International Journal of Climatology
– volume: 15
  start-page: 97
  year: 1996
  end-page: 106
  ident: bib6
  article-title: Modelling the impact of temperature on electricity consumption in the eastern province of Saudi Arabia
  publication-title: Journal of Forecasting
– volume: 5
  start-page: 259
  year: 2009
  end-page: 267
  ident: bib33
  article-title: The influence of the circulation on surface temperature and precipitation patterns over Europe
  publication-title: Climate of the Past
– volume: 5
  start-page: 989
  year: 1994
  end-page: 993
  ident: bib39
  article-title: Training feed forward network with the Marquardt algorithm
  publication-title: IEEE Transactions on Neural Networks
– volume: 17
  start-page: 663
  year: 2008
  end-page: 672
  ident: bib23
  article-title: An automated procedure to detect discontinuities; performance assessment and application to a large European climate data set
  publication-title: Meteorologische Zeitschrift
– volume: 17
  start-page: 543
  year: 2004
  end-page: 556
  ident: bib1
  article-title: Hourly temperature forecasting using abductive networks
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 31
  start-page: 208
  year: 2006
  end-page: 227
  ident: bib8
  article-title: Models for mid-term electricity demand forecasting incorporating weather influences
  publication-title: Energy
– volume: 99
  start-page: 431
  year: 2010
  end-page: 439
  ident: bib34
  article-title: Influence of circulation types on temperature extremes in Europe
  publication-title: Theoretical and Applied Climatology
– year: 1998
  ident: bib18
  article-title: Asymptotically optimal choice of ϵ-loss for support vector machines
  publication-title: Proc. of the 8th international conference on artificial neural networks, perspectives in neural computing
– volume: 29
  start-page: 939
  year: 2004
  end-page: 947
  ident: bib19
  article-title: Support vector machines for wind speed prediction
  publication-title: Renewable Energy
– volume: 70
  start-page: 489
  year: 2006
  end-page: 501
  ident: bib40
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
– volume: 3
  start-page: 179
  year: 2007
  end-page: 186
  ident: bib12
  article-title: Improving air temperature prediction with artificial neural networks
  publication-title: International Journal of Computational Intelligence
– volume: 33
  start-page: 474
  year: 2009
  end-page: 489
  ident: bib28
  article-title: A review of satellite meteorology and climatology at the start of the twenty-first century
  publication-title: Progress in Physical Geography
– volume: 102
  start-page: 9
  year: 2009
  end-page: 16
  ident: bib30
  article-title: Evaluation of NASA satellite and model derived weather data for simulation of maize yield potential in China
  publication-title: Agronomy Journal
– volume: 96
  start-page: 57
  year: 2009
  end-page: 68
  ident: bib32
  article-title: Changes of atmospheric circulation in central Europe and their influence on climatic trends in the Czech Republic
  publication-title: Theoretical and Applied Climatology
– volume: 38
  start-page: 1807
  year: 1997
  end-page: 1814
  ident: bib10
  article-title: Prediction of solar radiation using only maximum temperature and relative humidity: South-east and north-east Nigeria
  publication-title: Energy Conversion and Management
– volume: 36
  start-page: 413
  year: 2011
  end-page: 420
  ident: bib20
  article-title: Estimation of monthly solar radiation from measured temperatures using support vector machines - A case study
  publication-title: Renewable Energy
– volume: 21
  start-page: 1650
  year: 2006
  end-page: 1661
  ident: bib16
  article-title: Estimating average daytime and daily temperature profiles within Europe
  publication-title: Environmental Modelling and Software
– volume: 13
  start-page: 363
  year: 1998
  end-page: 380
  ident: bib3
  article-title: Prediction of monthly-mean hourly relative humidity, ambient temperature and wind velocity for India
  publication-title: Renewable Energy
– volume: 11
  start-page: 245
  year: 2004
  end-page: 251
  ident: bib15
  article-title: A statistical method for forecasting extreme daily temperatures using ECMWF 2-m temperatures and ground station measurements
  publication-title: Meteorological Applications
– volume: 68
  start-page: 52
  year: 2009
  end-page: 61
  ident: bib13
  article-title: Artificial neural networks for automated year-round temperature prediction
  publication-title: Computers and Electronics in Agriculture
– year: 1999
  ident: bib5
  article-title: “Meteorological fire danger indices and remote sensing,” Remote sensing of large wildfires in the European mediterranean basis
– volume: 72
  start-page: 3683
  year: 2009
  end-page: 3691
  ident: bib21
  article-title: Improving the training time of support vector regression algorithms through novel hyper-parameters search space reductions
  publication-title: Neurocomputing
– volume: 9
  start-page: 1161
  year: 2009
  end-page: 1173
  ident: bib37
  article-title: Application of the Hess-Brezowsky classification to the identification of weather patterns causing heavy winter rainfall in Brittany (France)
  publication-title: Natural Hazards and Earth System Sciences
– year: 1998
  ident: bib17
  article-title: A tutorial on support vector regression
  publication-title: Statistics and Computing
– volume: 44
  start-page: 59
  year: 2004
  end-page: 71
  ident: bib26
  article-title: Minimum extreme temperatures over Peninsular Spain
  publication-title: Global and Planetary Change
– volume: 14
  start-page: 671
  year: 1994
  end-page: 679
  ident: bib27
  article-title: Creation of homogeneous composite climatological reference series
  publication-title: International Journal of Climatology
– volume: 15
  start-page: 431
  year: 2008
  end-page: 445
  ident: bib14
  article-title: Forecast of daily mean, maximum and minimum temperature time series by three artificial neural network methods
  publication-title: Meteorological Applications
– volume: 25
  start-page: 545
  year: 2002
  end-page: 554
  ident: bib11
  article-title: Application of neural networks for the prediction of hourly mean surface temperatures in Saudi Arabia
  publication-title: Renewable Energy
– volume: 6
  start-page: 661
  year: 1986
  end-page: 675
  ident: bib25
  article-title: A homogeneity test applied to precipitation data
  publication-title: Journal of Climatology
– volume: 38
  start-page: 682
  year: 2006
  end-page: 694
  ident: bib2
  article-title: Prediction of building’s temperature using neural networks models
  publication-title: Energy and Buidings
– volume: 126
  start-page: 945
  year: 2004
  end-page: 950
  ident: bib31
  article-title: NASA climatological data for renewable energy assessment
  publication-title: Journal of Solar Energy Engineering-transaction of the ASME
– reference: .
– volume: 6
  start-page: 751
  issue: no. 7
  year: 1995
  ident: 10.1016/j.renene.2011.03.030_bib9
  article-title: The importance of maximum air temperature in the parameterisation of solar radiation in Nigeria
  publication-title: Renewable Energy
  doi: 10.1016/0960-1481(94)00097-P
– volume: 25
  start-page: 545
  year: 2002
  ident: 10.1016/j.renene.2011.03.030_bib11
  article-title: Application of neural networks for the prediction of hourly mean surface temperatures in Saudi Arabia
  publication-title: Renewable Energy
  doi: 10.1016/S0960-1481(01)00082-9
– year: 1998
  ident: 10.1016/j.renene.2011.03.030_bib18
  article-title: Asymptotically optimal choice of ϵ-loss for support vector machines
– year: 1995
  ident: 10.1016/j.renene.2011.03.030_bib38
– volume: 78
  start-page: 28
  issue: no. 1
  year: 2009
  ident: 10.1016/j.renene.2011.03.030_bib35
  article-title: North Atlantic climate variability: the role of the north Atlantic Oscillation
  publication-title: Journal of Marine Systems
  doi: 10.1016/j.jmarsys.2008.11.026
– volume: 33
  start-page: 474
  issue: no. 4
  year: 2009
  ident: 10.1016/j.renene.2011.03.030_bib28
  article-title: A review of satellite meteorology and climatology at the start of the twenty-first century
  publication-title: Progress in Physical Geography
  doi: 10.1177/0309133309346647
– volume: 5
  start-page: 259
  year: 2009
  ident: 10.1016/j.renene.2011.03.030_bib33
  article-title: The influence of the circulation on surface temperature and precipitation patterns over Europe
  publication-title: Climate of the Past
  doi: 10.5194/cp-5-259-2009
– volume: 24
  start-page: 55
  year: 2002
  ident: 10.1016/j.renene.2011.03.030_bib7
  article-title: Temperature and seasonality influences on Spanish electricity load
  publication-title: Energy Economics
  doi: 10.1016/S0140-9883(01)00082-2
– volume: 72
  start-page: 3683
  year: 2009
  ident: 10.1016/j.renene.2011.03.030_bib21
  article-title: Improving the training time of support vector regression algorithms through novel hyper-parameters search space reductions
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2009.07.009
– volume: 44
  start-page: 59
  issue: no. 1–4
  year: 2004
  ident: 10.1016/j.renene.2011.03.030_bib26
  article-title: Minimum extreme temperatures over Peninsular Spain
  publication-title: Global and Planetary Change
  doi: 10.1016/j.gloplacha.2004.06.005
– volume: 15
  start-page: 431
  year: 2008
  ident: 10.1016/j.renene.2011.03.030_bib14
  article-title: Forecast of daily mean, maximum and minimum temperature time series by three artificial neural network methods
  publication-title: Meteorological Applications
  doi: 10.1002/met.83
– volume: 85
  start-page: 19
  year: 2006
  ident: 10.1016/j.renene.2011.03.030_bib36
  article-title: Changes in atmospheric circulation over Europe detected by objective and subjective methods
  publication-title: Theoretical and Applied Climatology
  doi: 10.1007/s00704-005-0164-x
– volume: 22
  start-page: 1441
  issue: no. 12
  year: 2002
  ident: 10.1016/j.renene.2011.03.030_bib22
  article-title: Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment
  publication-title: International Journal of Climatology
  doi: 10.1002/joc.773
– volume: 15
  start-page: 97
  year: 1996
  ident: 10.1016/j.renene.2011.03.030_bib6
  article-title: Modelling the impact of temperature on electricity consumption in the eastern province of Saudi Arabia
  publication-title: Journal of Forecasting
  doi: 10.1002/(SICI)1099-131X(199603)15:2<97::AID-FOR608>3.0.CO;2-L
– year: 1999
  ident: 10.1016/j.renene.2011.03.030_bib5
– volume: 68
  start-page: 52
  year: 2009
  ident: 10.1016/j.renene.2011.03.030_bib13
  article-title: Artificial neural networks for automated year-round temperature prediction
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2009.04.003
– volume: 21
  start-page: 1650
  year: 2006
  ident: 10.1016/j.renene.2011.03.030_bib16
  article-title: Estimating average daytime and daily temperature profiles within Europe
  publication-title: Environmental Modelling and Software
  doi: 10.1016/j.envsoft.2005.07.010
– volume: 29
  start-page: 939
  issue: no. 6
  year: 2004
  ident: 10.1016/j.renene.2011.03.030_bib19
  article-title: Support vector machines for wind speed prediction
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2003.11.009
– volume: 34
  start-page: 1158
  year: 2009
  ident: 10.1016/j.renene.2011.03.030_bib4
  article-title: Daily means ambient temperature prediction using artificial neural networks method: a case study of Turkey
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2008.07.007
– ident: 10.1016/j.renene.2011.03.030_bib29
– volume: 9
  start-page: 1161
  year: 2009
  ident: 10.1016/j.renene.2011.03.030_bib37
  article-title: Application of the Hess-Brezowsky classification to the identification of weather patterns causing heavy winter rainfall in Brittany (France)
  publication-title: Natural Hazards and Earth System Sciences
  doi: 10.5194/nhess-9-1161-2009
– volume: 38
  start-page: 682
  year: 2006
  ident: 10.1016/j.renene.2011.03.030_bib2
  article-title: Prediction of building’s temperature using neural networks models
  publication-title: Energy and Buidings
  doi: 10.1016/j.enbuild.2005.09.007
– volume: 99
  start-page: 431
  year: 2010
  ident: 10.1016/j.renene.2011.03.030_bib34
  article-title: Influence of circulation types on temperature extremes in Europe
  publication-title: Theoretical and Applied Climatology
  doi: 10.1007/s00704-009-0153-6
– volume: 23
  start-page: 679
  issue: no. 6
  year: 2003
  ident: 10.1016/j.renene.2011.03.030_bib24
  article-title: Homogeneity of 20th century European daily temperature and precipitation series
  publication-title: International Journal of Climatology
  doi: 10.1002/joc.906
– volume: 38
  start-page: 1807
  issue: no. 18
  year: 1997
  ident: 10.1016/j.renene.2011.03.030_bib10
  article-title: Prediction of solar radiation using only maximum temperature and relative humidity: South-east and north-east Nigeria
  publication-title: Energy Conversion and Management
  doi: 10.1016/S0196-8904(96)00117-3
– volume: 36
  start-page: 413
  issue: no. 1
  year: 2011
  ident: 10.1016/j.renene.2011.03.030_bib20
  article-title: Estimation of monthly solar radiation from measured temperatures using support vector machines - A case study
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2010.06.024
– volume: 17
  start-page: 663
  issue: no. 5
  year: 2008
  ident: 10.1016/j.renene.2011.03.030_bib23
  article-title: An automated procedure to detect discontinuities; performance assessment and application to a large European climate data set
  publication-title: Meteorologische Zeitschrift
  doi: 10.1127/0941-2948/2008/0314
– volume: 6
  start-page: 661
  year: 1986
  ident: 10.1016/j.renene.2011.03.030_bib25
  article-title: A homogeneity test applied to precipitation data
  publication-title: Journal of Climatology
  doi: 10.1002/joc.3370060607
– volume: 5
  start-page: 989
  issue: no. 6
  year: 1994
  ident: 10.1016/j.renene.2011.03.030_bib39
  article-title: Training feed forward network with the Marquardt algorithm
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.329697
– volume: 126
  start-page: 945
  issue: no. 3
  year: 2004
  ident: 10.1016/j.renene.2011.03.030_bib31
  article-title: NASA climatological data for renewable energy assessment
  publication-title: Journal of Solar Energy Engineering-transaction of the ASME
  doi: 10.1115/1.1748466
– volume: 70
  start-page: 489
  issue: no. 1–3
  year: 2006
  ident: 10.1016/j.renene.2011.03.030_bib40
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 31
  start-page: 208
  year: 2006
  ident: 10.1016/j.renene.2011.03.030_bib8
  article-title: Models for mid-term electricity demand forecasting incorporating weather influences
  publication-title: Energy
  doi: 10.1016/j.energy.2005.02.016
– volume: 17
  start-page: 543
  year: 2004
  ident: 10.1016/j.renene.2011.03.030_bib1
  article-title: Hourly temperature forecasting using abductive networks
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2004.04.002
– volume: 3
  start-page: 179
  issue: no. 3
  year: 2007
  ident: 10.1016/j.renene.2011.03.030_bib12
  article-title: Improving air temperature prediction with artificial neural networks
  publication-title: International Journal of Computational Intelligence
– volume: 96
  start-page: 57
  issue: no. 1–2
  year: 2009
  ident: 10.1016/j.renene.2011.03.030_bib32
  article-title: Changes of atmospheric circulation in central Europe and their influence on climatic trends in the Czech Republic
  publication-title: Theoretical and Applied Climatology
  doi: 10.1007/s00704-008-0097-2
– volume: 11
  start-page: 245
  year: 2004
  ident: 10.1016/j.renene.2011.03.030_bib15
  article-title: A statistical method for forecasting extreme daily temperatures using ECMWF 2-m temperatures and ground station measurements
  publication-title: Meteorological Applications
  doi: 10.1017/S1350482704001318
– volume: 13
  start-page: 363
  year: 1998
  ident: 10.1016/j.renene.2011.03.030_bib3
  article-title: Prediction of monthly-mean hourly relative humidity, ambient temperature and wind velocity for India
  publication-title: Renewable Energy
  doi: 10.1016/S0960-1481(98)00010-X
– year: 1998
  ident: 10.1016/j.renene.2011.03.030_bib17
  article-title: A tutorial on support vector regression
  publication-title: Statistics and Computing
– volume: 102
  start-page: 9
  year: 2009
  ident: 10.1016/j.renene.2011.03.030_bib30
  article-title: Evaluation of NASA satellite and model derived weather data for simulation of maize yield potential in China
  publication-title: Agronomy Journal
  doi: 10.2134/agronj2009.0085
– volume: 14
  start-page: 671
  year: 1994
  ident: 10.1016/j.renene.2011.03.030_bib27
  article-title: Creation of homogeneous composite climatological reference series
  publication-title: International Journal of Climatology
  doi: 10.1002/joc.3370140606
SSID ssj0015874
Score 2.415268
Snippet Daily maximum temperature can be used a good indicator of peak energy consumption, since it can be used to predict the massive use of heating or air...
SourceID proquest
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3054
SubjectTerms air conditioning
Algorithms
Applied sciences
atmospheric pressure
Daily maximum temperature prediction
electricity
Energy
Europe
Exact sciences and technology
heat
Heating
Mathematical analysis
Neural networks
prediction
Regression
Relative humidity
Stations
Support vector regression algorithms
temperature
Vectors (mathematics)
Title Prediction of daily maximum temperature using a support vector regression algorithm
URI https://dx.doi.org/10.1016/j.renene.2011.03.030
https://www.proquest.com/docview/1686707205
https://www.proquest.com/docview/1777151684
https://www.proquest.com/docview/874186775
Volume 36
WOSCitedRecordID wos000292441400036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0682
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015874
  issn: 0960-1481
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6jQd44DKYVi6TkXirPDmJYzuPUSmjCNpp7dC0l8hN7NKpTafe6M_gJ3NybcoYhQekKIosO7fv8_E5xz7HCL3T2pPac0IyiIwiTHFGBpRpYhyquacMsyKabjYhOh15deWd12o_iliY1VjEsVyvvdv_CjWUAdhJ6Ow_wF3eFArgGkCHM8AO578C_nyWzL0UimCkEv_FRK1Hk-WkkSSiyrMoN5apl0A15svbRAdvrFL_fWOmh9nS2LihxsPpbLT4NqlqsBcgHL-n8VY6DRssZavfaftnlz7ptzut7paXtOd_brbed0nP71xveVubPhR1v_rki9_P2pQ-2-5Fv31NzvyLZttP5fVpvgtYVLpcrS0PRRE6U_U9ckrADrOqYjjLg1LQzaoIVRBJrDJAg5FDfyv8Mz_EzWmSCzTWeXpWBw66GeyKCf5fxsByZSJoLGBu2M4eOrCF68l9dOC3W1efypkpV2aZvYtPKMIx0zWDd598n7qzZ9Q0WYer5tAVTbaHyh11INVx-k_R49w4wX5GqmeopuND9CQ3VHA-DMwP0aNKFsvnqLdhHJ4anDIO54zDFcbhlHFY4ZxxOGMc3jAOl4x7gS4_tPrNjyTfq4OEzJULEg1Ch4eUG1cp6YHSqSIahiGX2lDGPMPcUFoOM2FkDSJhc0czqamyIg3SwlOuc4T242msjxFmNLSEY7hRRjBjczDIue0pKpXDXRB8deQUvzQI80T2yX4q46BYsXgTZEAECRABdeCgdUTKVrdZIpcd9UWBVpAro5mSGQDddrQ8BnADNYRROrjs2YlPEepKJkUdnWwhXr5JQbs6eltQIAA5n0zeqVhPl_MAbsAFFTZ1_1BHCAEaPDyqjvA9dWSSrooL4b7c9S6v0MNNb36N9hezpX6DHoSrxWg-O8n7xU9Dld16
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+daily+maximum+temperature+using+a+support+vector+regression+algorithm&rft.jtitle=Renewable+energy&rft.au=PANIAGUA-TINEO%2C+A&rft.au=SALCEDO-SANZ%2C+S&rft.au=CASANOVA-MATEO%2C+C&rft.au=ORTIZ-GARCIA%2C+E.+G&rft.date=2011-11-01&rft.pub=Elsevier&rft.issn=0960-1481&rft.volume=36&rft.issue=11&rft.spage=3054&rft.epage=3060&rft_id=info:doi/10.1016%2Fj.renene.2011.03.030&rft.externalDBID=n%2Fa&rft.externalDocID=24272923
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon