A multi-swarm particle swarm optimization algorithm based on dynamical topology and purposeful detecting
•An entire population is divided into many parallel evolved sub-swarms in the early stage.•A dynamic sub-swarm number strategy (DNS) periodically reduces the number of sub-swarms aiming to balance the exploration and the exploitation ability.•A sub-swarm regrouping strategy (SRS) regrouping these su...
Gespeichert in:
| Veröffentlicht in: | Applied soft computing Jg. 67; S. 126 - 140 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.06.2018
|
| Schlagworte: | |
| ISSN: | 1568-4946, 1872-9681 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •An entire population is divided into many parallel evolved sub-swarms in the early stage.•A dynamic sub-swarm number strategy (DNS) periodically reduces the number of sub-swarms aiming to balance the exploration and the exploitation ability.•A sub-swarm regrouping strategy (SRS) regrouping these sub-swarms based on the stagnancy information of the globally best position is adopted to enhance the exploitation ability.•A purposeful detecting strategy (PDS) relying on some historical information of the search process is selected to help the population to jump out of the current local optimum for better exploration ability.•The strategies proposed in this paper have general applicability.
This paper proposes a multi-swarm particle swarm optimization (MSPSO) that consists of three novel strategies to balance the exploration and exploitation abilities. The new proposed MSPSO in this work is based on multiple swarms framework cooperating with the dynamic sub-swarm number strategy (DNS), sub-swarm regrouping strategy (SRS), and purposeful detecting strategy (PDS). Firstly, the DNS divides the entire population into many sub-swarms in the early stage and periodically reduces the number of sub-swarms (i.e., increase the size of each sub-swarm) along with the evolutionary process. This is helpful for balancing the exploration ability early and the exploitation ability late, respectively. Secondly, in each DNS period with special number of sub-swarms, the SRS is to regroup these sub-swarms based on the stagnancy information of the global best position. This is helpful for diffusing and sharing the search information among different sub-swarms to enhance the exploitation ability. Thirdly, the PDS is relying on some historical information of the search process to detect whether the population has been trapped into a potential local optimum, so as to help the population jump out of the current local optimum for better exploration ability. The comparisons among MSPSO and other 13 peer algorithms on the CEC2013 test suite and 4 real applications suggest that MSPSO is a very reliable and highly competitive optimization algorithm for solving different types of functions. Furthermore, the extensive experimental results illustrate the effectiveness and efficiency of the three proposed strategies used in MSPSO. |
|---|---|
| AbstractList | •An entire population is divided into many parallel evolved sub-swarms in the early stage.•A dynamic sub-swarm number strategy (DNS) periodically reduces the number of sub-swarms aiming to balance the exploration and the exploitation ability.•A sub-swarm regrouping strategy (SRS) regrouping these sub-swarms based on the stagnancy information of the globally best position is adopted to enhance the exploitation ability.•A purposeful detecting strategy (PDS) relying on some historical information of the search process is selected to help the population to jump out of the current local optimum for better exploration ability.•The strategies proposed in this paper have general applicability.
This paper proposes a multi-swarm particle swarm optimization (MSPSO) that consists of three novel strategies to balance the exploration and exploitation abilities. The new proposed MSPSO in this work is based on multiple swarms framework cooperating with the dynamic sub-swarm number strategy (DNS), sub-swarm regrouping strategy (SRS), and purposeful detecting strategy (PDS). Firstly, the DNS divides the entire population into many sub-swarms in the early stage and periodically reduces the number of sub-swarms (i.e., increase the size of each sub-swarm) along with the evolutionary process. This is helpful for balancing the exploration ability early and the exploitation ability late, respectively. Secondly, in each DNS period with special number of sub-swarms, the SRS is to regroup these sub-swarms based on the stagnancy information of the global best position. This is helpful for diffusing and sharing the search information among different sub-swarms to enhance the exploitation ability. Thirdly, the PDS is relying on some historical information of the search process to detect whether the population has been trapped into a potential local optimum, so as to help the population jump out of the current local optimum for better exploration ability. The comparisons among MSPSO and other 13 peer algorithms on the CEC2013 test suite and 4 real applications suggest that MSPSO is a very reliable and highly competitive optimization algorithm for solving different types of functions. Furthermore, the extensive experimental results illustrate the effectiveness and efficiency of the three proposed strategies used in MSPSO. |
| Author | Xia, Xuewen Gui, Ling Zhan, Zhi-Hui |
| Author_xml | – sequence: 1 givenname: Xuewen orcidid: 0000-0002-4938-1479 surname: Xia fullname: Xia, Xuewen email: xwxia@whu.edu.cn organization: School of Software, East China Jiaotong University, Nanchang 330013, China – sequence: 2 givenname: Ling surname: Gui fullname: Gui, Ling organization: School of Economics and Management, East China Jiaotong University, Nanchang 330013, China – sequence: 3 givenname: Zhi-Hui orcidid: 0000-0003-0862-0514 surname: Zhan fullname: Zhan, Zhi-Hui email: zhanapollo@163.com organization: Guangdong Provincial Key Lab of Computational Intelligence and Cyberspace Information, School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China |
| BookMark | eNp9kMtKAzEUhoMo2FZfwFVeYMYkM80k4KYUb1Bwo-twmmTalJnJkKRKfXpT68pFOYtzge_A_03R5eAHi9AdJSUllN_vSohel4xQURJWkppdoAkVDSskF_Qyz3MuilrW_BpNY9yRDEkmJmi7wP2-S66IXxB6PEJITncWn1Y_Jte7b0jODxi6jQ8ubXu8hmgNzidzGKB3Gjqc_Og7vzlgGAwe92H00bb7DhubrE5u2Nygqxa6aG__-gx9PD2-L1-K1dvz63KxKnQ9F6kwAEYzYqq51hJy1RVr5gRkw4mUbU3WFVgpeNWKRtZSN6QBIw1QrluheVXNkDj91cHHGGyrtEu_AVIA1ylK1NGY2qmjMXU0pghT2VhG2T90DK6HcDgPPZwgm0N9OhtU1M4O2hoXcnJlvDuH_wA6mIpO |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2024_123214 crossref_primary_10_3390_eng6080172 crossref_primary_10_1080_02286203_2023_2201043 crossref_primary_10_1155_2024_2228698 crossref_primary_10_1007_s10489_021_02803_7 crossref_primary_10_1016_j_eswa_2019_113113 crossref_primary_10_1093_jcde_qwae090 crossref_primary_10_1109_TLT_2023_3343525 crossref_primary_10_3390_sym12030465 crossref_primary_10_1109_ACCESS_2019_2960890 crossref_primary_10_1007_s10845_020_01691_x crossref_primary_10_1016_j_swevo_2025_102048 crossref_primary_10_1007_s11071_019_05414_7 crossref_primary_10_1093_jcde_qwae080 crossref_primary_10_1016_j_ins_2020_11_015 crossref_primary_10_3390_pr12020400 crossref_primary_10_1007_s13042_024_02462_3 crossref_primary_10_3390_electronics11020209 crossref_primary_10_1007_s10586_024_04628_8 crossref_primary_10_1007_s11277_021_08368_5 crossref_primary_10_1080_00223131_2019_1700844 crossref_primary_10_1016_j_knosys_2022_108281 crossref_primary_10_1016_j_ins_2023_01_103 crossref_primary_10_1016_j_neucom_2025_129460 crossref_primary_10_3390_math11204339 crossref_primary_10_1016_j_neucom_2025_130603 crossref_primary_10_1007_s13042_022_01545_3 crossref_primary_10_1007_s11277_024_11584_4 crossref_primary_10_1007_s40998_022_00527_z crossref_primary_10_1016_j_eswa_2021_116301 crossref_primary_10_1007_s10462_021_09962_6 crossref_primary_10_1109_ACCESS_2020_3030950 crossref_primary_10_1016_j_ins_2021_07_008 crossref_primary_10_1016_j_matcom_2022_12_020 crossref_primary_10_1016_j_cogsys_2021_04_003 crossref_primary_10_1177_09544062231190822 crossref_primary_10_1016_j_eswa_2020_114369 crossref_primary_10_1016_j_procs_2018_08_196 crossref_primary_10_1016_j_jpdc_2021_12_001 crossref_primary_10_1016_j_knosys_2022_108664 crossref_primary_10_1007_s00521_021_06340_9 crossref_primary_10_1007_s11042_022_13790_3 crossref_primary_10_1155_2023_9806200 crossref_primary_10_1109_TKDE_2020_3033324 crossref_primary_10_1002_cpe_5979 crossref_primary_10_1109_ACCESS_2018_2885036 crossref_primary_10_1016_j_aei_2023_101908 crossref_primary_10_1038_s41598_024_56259_z crossref_primary_10_1016_j_swevo_2019_100573 crossref_primary_10_1016_j_addma_2025_104704 crossref_primary_10_1080_23311916_2020_1788876 crossref_primary_10_1109_ACCESS_2022_3193396 crossref_primary_10_1007_s00521_025_11083_y crossref_primary_10_1007_s11831_021_09532_7 crossref_primary_10_1016_j_swevo_2021_100868 crossref_primary_10_1007_s00500_022_07283_6 crossref_primary_10_1016_j_engappai_2023_106215 crossref_primary_10_1155_2019_6706590 crossref_primary_10_1007_s00354_022_00158_2 crossref_primary_10_1016_j_neucom_2021_03_077 crossref_primary_10_1111_exsy_12779 crossref_primary_10_1007_s11042_022_13044_2 crossref_primary_10_1007_s10462_023_10412_8 crossref_primary_10_1016_j_eswa_2020_113292 crossref_primary_10_1016_j_future_2020_04_008 crossref_primary_10_1016_j_asoc_2024_111952 crossref_primary_10_1080_17517575_2019_1681518 crossref_primary_10_1007_s11280_024_01282_3 crossref_primary_10_3390_diagnostics13122023 crossref_primary_10_1016_j_jocs_2019_04_009 crossref_primary_10_1007_s00607_019_00782_9 crossref_primary_10_1016_j_ress_2020_107130 crossref_primary_10_1109_ACCESS_2021_3108890 crossref_primary_10_1109_ACCESS_2019_2938063 crossref_primary_10_1016_j_ins_2023_119302 crossref_primary_10_1007_s12065_020_00450_4 crossref_primary_10_1016_j_engappai_2022_105739 crossref_primary_10_1007_s00521_022_08179_0 crossref_primary_10_1016_j_knosys_2020_105568 crossref_primary_10_1007_s10878_023_01102_w crossref_primary_10_1016_j_jnca_2023_103705 crossref_primary_10_1016_j_knosys_2021_106894 crossref_primary_10_3390_math10071032 crossref_primary_10_1016_j_swevo_2024_101533 crossref_primary_10_1109_ACCESS_2021_3106062 crossref_primary_10_1007_s00500_021_06169_3 crossref_primary_10_1016_j_asoc_2019_01_004 crossref_primary_10_1016_j_artmed_2020_101790 crossref_primary_10_1016_j_asoc_2021_107854 crossref_primary_10_1109_ACCESS_2023_3272835 crossref_primary_10_1016_j_eswa_2020_114202 crossref_primary_10_1016_j_ins_2021_05_064 crossref_primary_10_1007_s10922_022_09658_4 crossref_primary_10_1016_j_asoc_2022_109660 crossref_primary_10_1016_j_swevo_2020_100672 crossref_primary_10_1155_2020_7081653 crossref_primary_10_1016_j_asoc_2019_105583 crossref_primary_10_3390_electronics13214199 crossref_primary_10_1007_s12293_023_00403_1 crossref_primary_10_1016_j_asoc_2022_108731 crossref_primary_10_1016_j_swevo_2018_12_009 crossref_primary_10_1016_j_sasc_2023_200057 crossref_primary_10_1016_j_swevo_2019_03_003 crossref_primary_10_1016_j_eswa_2024_125283 crossref_primary_10_1109_ACCESS_2021_3054636 crossref_primary_10_1016_j_asoc_2021_108039 crossref_primary_10_3390_en13102616 |
| Cites_doi | 10.1162/106365601750190398 10.1016/j.ins.2014.09.030 10.1016/j.asoc.2014.06.012 10.1016/j.asoc.2014.08.013 10.1109/TEVC.2009.2021465 10.1109/TSMCB.2012.2209115 10.1109/CEC.2001.934377 10.1109/TCYB.2015.2475174 10.1016/j.ins.2014.08.039 10.1145/2788397 10.1109/TEVC.2005.857610 10.1109/TIE.2014.2314075 10.1109/TEVC.2010.2052054 10.1109/TSMCC.2011.2160941 10.1109/4235.985692 10.1007/s11222-015-9574-5 10.1109/TEVC.2004.826074 10.1109/CEC.2005.1554903 10.1016/j.dsp.2016.07.013 10.1109/TEVC.2008.927706 10.1016/j.ins.2012.02.011 10.1109/ICNN.1995.488968 10.1109/TSMCB.2009.2015956 10.1007/s00500-014-1546-8 10.1016/j.asoc.2012.12.007 10.1016/j.asoc.2014.11.018 10.1109/TSMCB.2011.2171946 10.1016/j.amc.2012.11.020 10.1016/j.ins.2014.09.053 10.1504/IJICA.2015.073003 10.1007/s00500-016-2111-4 10.1109/SIS.2003.1202250 10.1109/TEVC.2009.2033584 10.1016/j.ins.2016.04.050 10.1145/2480741.2480752 10.1016/j.ins.2016.12.043 10.1016/j.asoc.2012.12.014 10.1109/TEVC.2009.2014613 10.1016/j.ins.2010.11.025 10.1109/TEVC.2004.826071 10.1109/TEVC.2010.2087271 10.1007/s10489-014-0587-0 10.1016/j.asoc.2014.06.034 10.1016/j.swevo.2015.05.002 10.1007/s00500-015-1716-3 10.1109/TEVC.2005.857077 10.1109/TFUZZ.2013.2278972 10.1109/SIS.2005.1501611 10.1109/MHS.1995.494215 |
| ContentType | Journal Article |
| Copyright | 2018 The Author(s) |
| Copyright_xml | – notice: 2018 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.asoc.2018.02.042 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-9681 |
| EndPage | 140 |
| ExternalDocumentID | 10_1016_j_asoc_2018_02_042 S1568494618301017 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6I. 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c458t-daadc20d35cc9a9a9432750a976099f40b3ae9863f87949c707ad9da16cf8c633 |
| ISICitedReferencesCount | 118 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000431913000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1568-4946 |
| IngestDate | Sat Nov 29 03:05:34 EST 2025 Tue Nov 18 21:24:00 EST 2025 Fri Feb 23 02:24:50 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Dynamic sub-swarm number Local-searching Sub-swarm regrouping Particle swarm optimization Purposeful detecting |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c458t-daadc20d35cc9a9a9432750a976099f40b3ae9863f87949c707ad9da16cf8c633 |
| ORCID | 0000-0002-4938-1479 0000-0003-0862-0514 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.asoc.2018.02.042 |
| PageCount | 15 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2018_02_042 crossref_primary_10_1016_j_asoc_2018_02_042 elsevier_sciencedirect_doi_10_1016_j_asoc_2018_02_042 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-06-01 |
| PublicationDateYYYYMMDD | 2018-06-01 |
| PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2018 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Sun, Zhao (bib0165) 2014; 41 Green, Latuszynski, Pereyra, Robert (bib0245) 2015; 25 Cheng, Jin (bib0150) 2015; 291 Clerc, Kennedy (bib0030) 2002; 6 Xia, Xie, Wei, Hu, Wang, Jin (bib0205) 2017; 385 Liu, Wei, Yuan, Zhan, Li (bib0055) 2016; 363 Qin, Huang, Suganthan (bib0265) 2009; 13 Jin, Liang, Tian, Zhuang (bib0255) 2013; 219 Hansen, Ostermeier (bib0275) 2001; 9 Eberhart, Kennedy (bib0005) 1995 Črepinšek, Liu, Mernik (bib0090) 2013; 45 Soh, Ong, Nguyen, Nguyen, Habibullah, Hung, Kuo (bib0015) 2010; 14 Shen, Zhan, Chen, Gong, Zhang, Li (bib0020) 2014; 61 Kennedy, Eberhart (bib0010) 1995 Swagatam, Suganthan (bib0285) 2010 Zhan, Liu, Gong, Zhang, Chung, Li (bib0025) 2015; 47 Haklı, Uğuz (bib0195) 2014; 23 Zhan, Li, Shi (bib0130) 2011; 15 Tanweer, Suresh, Sundararajan (bib0080) 2015; 294 Lim, Isa (bib0085) 2014; 24 Higashi, Iba (bib0185) 2003 Zhan, Zhang, Li, Chung (bib0075) 2009; 39 Marco, Montes, Thomas, Mauro, Marco (bib0060) 2009; 13 Li, Yang, Nguyen (bib0140) 2012; 42 Bengoetxea (bib0235) 2010 Zhao, Liang, Suganthan, Tasgetiren (bib0070) 2008 Sayah, Hamouda (bib0220) 2013; 13 Zhang, Sanderson (bib0260) 2009; 13 Auger, Hansen (bib0280) 2005 Shi, Eberhart (bib0095) 2001 Xia, Wang, Xie, Hu, Wei, Jin (bib0210) 2017 Martino, Elvira, Luengo, Corander, Louzada (bib0125) 2016; 58 Kiran, Gndz (bib0230) 2013; 13 Juang, Tung, Chiu (bib0110) 2011; 181 Lynn, Suganthan (bib0170) 2015; 24 Liu, Ma, Ma, Zhang (bib0155) 2017; 21 Qu, Liang, Suganthan (bib0190) 2012; 197 Shi, Eberhart (bib0040) 1998 Cheung, Ding, Shen (bib0160) 2014; 22 Pornsing, Sodhi, Lamond (bib0100) 2016; 20 Zhan, Li, Cao, Zhang, Chung, Shi (bib0175) 2013; 43 Mo, Zeng, Xu (bib0135) 2016; 20 Li, Zhan, Lin, Zhang, Luo (bib0145) 2015; 293 Xia, Liu, Hu (bib0200) 2014; 23 Kadirkamanathan, Selvarajah, Fleming (bib0035) 2006; 10 Mendes, Kennedy, Neves (bib0115) 2004; 8 Liang, Qu, Suganthan (bib0250) 2013 Kennedy, Mendes (bib0050) 2002 Wang, Cai, Zhang (bib0270) 2011; 15 Zhang, Tang, Hua, Guan (bib0105) 2015; 28 Liang, Qin, Suganthan, Baska (bib0120) 2006; 10 Ratnaweera, Halgamuge, Watson (bib0045) 2004; 8 Xu (bib0225) 2015; 6 Liang, Suganthan (bib0065) 2005 Xin, Chen, Zhang, Fang, Peng (bib0215) 2012; 42 Geyer (bib0240) 1992; 91 Gong, Li, Zhou, Li, Chung, Shi, Zhang (bib0180) 2016; 46 Jin (10.1016/j.asoc.2018.02.042_bib0255) 2013; 219 Auger (10.1016/j.asoc.2018.02.042_bib0280) 2005 Shen (10.1016/j.asoc.2018.02.042_bib0020) 2014; 61 Zhang (10.1016/j.asoc.2018.02.042_bib0260) 2009; 13 Zhao (10.1016/j.asoc.2018.02.042_bib0070) 2008 Liang (10.1016/j.asoc.2018.02.042_bib0120) 2006; 10 Zhang (10.1016/j.asoc.2018.02.042_bib0105) 2015; 28 Pornsing (10.1016/j.asoc.2018.02.042_bib0100) 2016; 20 Clerc (10.1016/j.asoc.2018.02.042_bib0030) 2002; 6 Qu (10.1016/j.asoc.2018.02.042_bib0190) 2012; 197 Haklı (10.1016/j.asoc.2018.02.042_bib0195) 2014; 23 Liu (10.1016/j.asoc.2018.02.042_bib0055) 2016; 363 Soh (10.1016/j.asoc.2018.02.042_bib0015) 2010; 14 Zhan (10.1016/j.asoc.2018.02.042_bib0025) 2015; 47 Marco (10.1016/j.asoc.2018.02.042_bib0060) 2009; 13 Green (10.1016/j.asoc.2018.02.042_bib0245) 2015; 25 Cheung (10.1016/j.asoc.2018.02.042_bib0160) 2014; 22 Cheng (10.1016/j.asoc.2018.02.042_bib0150) 2015; 291 Bengoetxea (10.1016/j.asoc.2018.02.042_bib0235) 2010 Kadirkamanathan (10.1016/j.asoc.2018.02.042_bib0035) 2006; 10 Kiran (10.1016/j.asoc.2018.02.042_bib0230) 2013; 13 Lim (10.1016/j.asoc.2018.02.042_bib0085) 2014; 24 Xia (10.1016/j.asoc.2018.02.042_bib0200) 2014; 23 Hansen (10.1016/j.asoc.2018.02.042_bib0275) 2001; 9 Juang (10.1016/j.asoc.2018.02.042_bib0110) 2011; 181 Shi (10.1016/j.asoc.2018.02.042_bib0095) 2001 Shi (10.1016/j.asoc.2018.02.042_bib0040) 1998 Xin (10.1016/j.asoc.2018.02.042_bib0215) 2012; 42 Wang (10.1016/j.asoc.2018.02.042_bib0270) 2011; 15 Martino (10.1016/j.asoc.2018.02.042_bib0125) 2016; 58 Higashi (10.1016/j.asoc.2018.02.042_bib0185) 2003 Ratnaweera (10.1016/j.asoc.2018.02.042_bib0045) 2004; 8 Lynn (10.1016/j.asoc.2018.02.042_bib0170) 2015; 24 Liang (10.1016/j.asoc.2018.02.042_bib0065) 2005 Li (10.1016/j.asoc.2018.02.042_bib0145) 2015; 293 Xu (10.1016/j.asoc.2018.02.042_bib0225) 2015; 6 Li (10.1016/j.asoc.2018.02.042_bib0140) 2012; 42 Swagatam (10.1016/j.asoc.2018.02.042_bib0285) 2010 Sun (10.1016/j.asoc.2018.02.042_bib0165) 2014; 41 Liu (10.1016/j.asoc.2018.02.042_bib0155) 2017; 21 Tanweer (10.1016/j.asoc.2018.02.042_bib0080) 2015; 294 Sayah (10.1016/j.asoc.2018.02.042_bib0220) 2013; 13 Črepinšek (10.1016/j.asoc.2018.02.042_bib0090) 2013; 45 Mo (10.1016/j.asoc.2018.02.042_bib0135) 2016; 20 Liang (10.1016/j.asoc.2018.02.042_bib0250) 2013 Zhan (10.1016/j.asoc.2018.02.042_bib0130) 2011; 15 Eberhart (10.1016/j.asoc.2018.02.042_bib0005) 1995 Xia (10.1016/j.asoc.2018.02.042_bib0210) 2017 Zhan (10.1016/j.asoc.2018.02.042_bib0175) 2013; 43 Geyer (10.1016/j.asoc.2018.02.042_bib0240) 1992; 91 Xia (10.1016/j.asoc.2018.02.042_bib0205) 2017; 385 Kennedy (10.1016/j.asoc.2018.02.042_bib0050) 2002 Gong (10.1016/j.asoc.2018.02.042_bib0180) 2016; 46 Qin (10.1016/j.asoc.2018.02.042_bib0265) 2009; 13 Zhan (10.1016/j.asoc.2018.02.042_bib0075) 2009; 39 Kennedy (10.1016/j.asoc.2018.02.042_bib0010) 1995 Mendes (10.1016/j.asoc.2018.02.042_bib0115) 2004; 8 |
| References_xml | – volume: 15 start-page: 832 year: 2011 end-page: 847 ident: bib0130 article-title: Orthogonal learning particle swarm optimization publication-title: IEEE Trans. Evol. Comput. – start-page: 1777 year: 2005 end-page: 1784 ident: bib0280 article-title: Performance evaluation of an advanced local search evolutionary algorithm publication-title: Proc. of Congr. on Evol. Comput., CEC’05 – volume: 42 start-page: 744 year: 2012 end-page: 767 ident: bib0215 article-title: Hybridizing differential evolution and particle swarm optimization to design powerful optimizers: a review and taxonomy publication-title: IEEE Trans. Syst. Man Cybern. C: Appl. Rev. – volume: 13 start-page: 398 year: 2009 end-page: 417 ident: bib0265 article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization publication-title: IEEE Trans. Evol. Comput. – start-page: 1671 year: 2002 end-page: 1676 ident: bib0050 article-title: Population structure and particle swarm performance publication-title: Proc. of Congr. on Evol. Comput., CEC’02 – volume: 25 start-page: 835 year: 2015 end-page: 862 ident: bib0245 article-title: Bayesian computation: a summary of the current state, and samples backwards and forwards publication-title: Stat. Comput. – volume: 23 start-page: 76 year: 2014 end-page: 90 ident: bib0200 article-title: An improved particle swarm optimizer based on tabu detecting and local learning strategy in a shrunk search space publication-title: Appl. Soft Comput. – year: 2010 ident: bib0285 article-title: Problem definitions and evaluation criteria for the CEC 2011 competition on testing evolutionary algorithm on real world optimization problems, Tech. Rep. – start-page: 3845 year: 2008 end-page: 3852 ident: bib0070 article-title: Dynamic multi-swarm particle optimizer with local search for large scale global optimization publication-title: Proc. of Congr. on Evol. Comput., CEC’08 – start-page: 101 year: 2001 end-page: 106 ident: bib0095 article-title: Fuzzy adaptive particle swarm optimization publication-title: Proc. of Congr. on Evol. Comput., CEC’01 – volume: 6 start-page: 163 year: 2015 end-page: 170 ident: bib0225 article-title: An efficient clustering method for mobile users based on hybrid PSO and ABC publication-title: Int. J. Innov. Comput. Appl. – volume: 291 start-page: 43 year: 2015 end-page: 60 ident: bib0150 article-title: A social learning particle swarm optimization algorithm for scalable optimization publication-title: Inf. Sci. – start-page: 69 year: 1998 end-page: 73 ident: bib0040 article-title: A modified particle swarm optimizer publication-title: Proc. of Congr. on Evol. Comput., CEC’98 – volume: 41 start-page: 1108 year: 2014 end-page: 1126 ident: bib0165 article-title: Dynamic partition search algorithm for global optimization publication-title: Appl. Intell. – volume: 91 start-page: 133 year: 1992 end-page: 169 ident: bib0240 article-title: Markov Chain Monte Carlo maximum likelihood publication-title: Comput. Sci. Stat. – volume: 9 start-page: 159 year: 2001 end-page: 195 ident: bib0275 article-title: Completely derandomized self-adaptation in evolution strategies publication-title: Evol. Comput. – volume: 13 start-page: 1120 year: 2009 end-page: 1132 ident: bib0060 article-title: Frankenstein's PSO: a composite particle swarm optimization algorithm publication-title: IEEE Trans. Evol. Comput. – volume: 20 start-page: 863 year: 2016 end-page: 884 ident: bib0135 article-title: Attractive and repulsive fully informed particle swarm optimization based on the modified fitness model publication-title: Soft Comput. – start-page: 124 year: 2005 end-page: 129 ident: bib0065 article-title: Dynamic multi-swarm particle swarm optimizer publication-title: Proc. of IEEE Swarm Intell. Symp., SIS’05 – volume: 45 start-page: 1 year: 2013 end-page: 33 ident: bib0090 article-title: Exploration and exploitation in evolutionary algorithms: a survey publication-title: ACM Comput. Surv. – volume: 21 start-page: 1667 year: 2017 end-page: 1691 ident: bib0155 article-title: Ecosystem particle swarm optimization publication-title: Soft Comput. – volume: 58 start-page: 64 year: 2016 end-page: 84 ident: bib0125 article-title: Orthogonal parallel MCMC methods for sampling and optimization publication-title: Digit. Signal Process. – volume: 42 start-page: 627 year: 2012 end-page: 646 ident: bib0140 article-title: A self-learning particle swarm optimizer for global optimization problems publication-title: IEEE Trans. Syst. Man Cybern. B: Cybern. – volume: 181 start-page: 4539 year: 2011 end-page: 4549 ident: bib0110 article-title: Adaptive fuzzy particle swarm optimization for global optimization of multimodal functions publication-title: Inf. Sci. – volume: 23 start-page: 333 year: 2014 end-page: 345 ident: bib0195 article-title: A novel particle swarm optimization algorithm with Levy flight publication-title: Appl. Soft Comput. – volume: 293 start-page: 370 year: 2015 end-page: 382 ident: bib0145 article-title: Competitive and cooperative particle swarm optimization with information sharing mechanism publication-title: Inf. Sci. – volume: 20 start-page: 3579 year: 2016 end-page: 3593 ident: bib0100 article-title: Novel self-adaptive particle swarm optimization methods publication-title: Soft Comput. – start-page: 1942 year: 1995 end-page: 1948 ident: bib0010 article-title: Particle swarm optimization publication-title: Proc. of IEEE Int. Conf. on Neural Network, CNN’95 – volume: 24 start-page: 623 year: 2014 end-page: 642 ident: bib0085 article-title: Particle swarm optimization with adaptive time-varying topology connectivity publication-title: Appl. Soft Comput. – volume: 13 start-page: 945 year: 2009 end-page: 958 ident: bib0260 article-title: JADE: adaptive differential evolution with optional external archive publication-title: IEEE Trans. Evol. Comput. – volume: 219 start-page: 5185 year: 2013 end-page: 5197 ident: bib0255 article-title: Particle swarm optimization using dimension selection methods publication-title: Appl. Math. Comput. – volume: 22 start-page: 919 year: 2014 end-page: 933 ident: bib0160 article-title: OptiFel: a convergent heterogeneous particle swarm optimization algorithm for Takagi–Sugeno fuzzy modeling publication-title: IEEE Trans. Fuzzy Syst. – volume: 8 start-page: 240 year: 2004 end-page: 255 ident: bib0045 article-title: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients publication-title: IEEE Trans. Evol. Comput. – volume: 43 start-page: 445 year: 2013 end-page: 463 ident: bib0175 article-title: Multiple populations for multiple objectives: a coevolutionary technique for solving multiobjective optimization problems publication-title: IEEE Trans. Cybern. – volume: 46 start-page: 2277 year: 2016 end-page: 2290 ident: bib0180 article-title: Genetic learning particle swarm optimization publication-title: IEEE Trans. Cybern. – volume: 13 start-page: 2188 year: 2013 end-page: 2203 ident: bib0230 article-title: A recombination-based hybridization of particle swarm optimization and artificial bee colony algorithm for continuous optimization problems publication-title: Appl. Soft Comput. – start-page: 39 year: 1995 end-page: 43 ident: bib0005 article-title: A new optimizer using particle swarm theory publication-title: Proc. of Int. Symp. on Micro Machine & Human Science, SMMHS’95 – volume: 6 start-page: 58 year: 2002 end-page: 73 ident: bib0030 article-title: The particle swarm – explosion, stability, and convergence in a multidimensional complex space publication-title: IEEE Trans. Evol. Comput. – volume: 13 start-page: 1608 year: 2013 end-page: 1619 ident: bib0220 article-title: A hybrid differential evolution algorithm based on particle swarm optimization for nonconvex economic dispatch problems publication-title: Appl. Soft Comput. – volume: 197 start-page: 131 year: 2012 end-page: 143 ident: bib0190 article-title: Niching particle swarm optimization with local search for multi-modal optimization publication-title: Inf. Sci. – volume: 10 start-page: 245 year: 2006 end-page: 255 ident: bib0035 article-title: Stability analysis of the particle dynamics in particle swarm optimizer publication-title: IEEE Trans. Evol. Comput. – volume: 47 start-page: 1 year: 2015 end-page: 33 ident: bib0025 article-title: Cloud computing resource scheduling and a survey of its evolutionary approaches publication-title: ACM Comput. Surv. – start-page: 72 year: 2003 end-page: 79 ident: bib0185 article-title: Particle swarm optimization with Gaussian mutation publication-title: Proc. of IEEE Swarm Intel. Symp., SIS’03 – volume: 294 start-page: 182 year: 2015 end-page: 202 ident: bib0080 article-title: Self regulating particle swarm optimization algorithm publication-title: Inf. Sci. – volume: 15 start-page: 55 year: 2011 end-page: 66 ident: bib0270 article-title: Differential evolution with composite trial vector generation strategies and control parameters publication-title: IEEE Trans. Evol. Comput. – volume: 24 start-page: 11 year: 2015 end-page: 24 ident: bib0170 article-title: Heterogeneous comprehensive learning particle swarm optimization with enhanced exploration and exploitation publication-title: Swarm Evol. Comput. – year: 2017 ident: bib0210 article-title: A sophisticated PSO based on multi-level adaptation and purposeful detection publication-title: Soft Comput. – volume: 61 start-page: 7141 year: 2014 end-page: 7151 ident: bib0020 article-title: Bi-velocity discrete particle swarm optimization and its application to multicast routing problem in communication networks publication-title: IEEE Trans. Ind. Electron. – volume: 39 start-page: 1362 year: 2009 end-page: 1381 ident: bib0075 article-title: Adaptive particle swarm optimization publication-title: IEEE Trans. Syst. Man Cybern. B: Cybern. – volume: 10 start-page: 281 year: 2006 end-page: 295 ident: bib0120 article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions publication-title: IEEE Trans. Evol. Comput. – volume: 385 start-page: 174 year: 2017 end-page: 195 ident: bib0205 article-title: Particle swarm optimization using multi-level adaptation and purposeful detection operators publication-title: Inf. Sci. – start-page: 416 year: 2010 end-page: 423 ident: bib0235 article-title: EDA-PSO: a hybrid paradigm combining estimation of distribution algorithms and particle swarm optimization publication-title: Proc. of International Conference on Swarm Intelligence, vol. 6234 – year: 2013 ident: bib0250 article-title: Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization, Tech. Rep. – volume: 28 start-page: 138 year: 2015 end-page: 149 ident: bib0105 article-title: A new particle swarm optimization algorithm with adaptive inertia weight based on Bayesian techniques publication-title: Appl. Soft Comput. – volume: 14 start-page: 419 year: 2010 end-page: 437 ident: bib0015 article-title: Discovering unique, low-energy pure water isomers: memetic exploration, optimization and landscape analysis publication-title: IEEE Trans. Evol. Comput. – volume: 363 start-page: 154 year: 2016 end-page: 173 ident: bib0055 article-title: Topology selection for particle swarm optimization publication-title: Inf. Sci. – volume: 8 start-page: 204 year: 2004 end-page: 210 ident: bib0115 article-title: The fully informed particle swarm: simpler, maybe better publication-title: IEEE Trans. Evol. Comput. – volume: 9 start-page: 159 issue: 2 year: 2001 ident: 10.1016/j.asoc.2018.02.042_bib0275 article-title: Completely derandomized self-adaptation in evolution strategies publication-title: Evol. Comput. doi: 10.1162/106365601750190398 – volume: 293 start-page: 370 issue: 3 year: 2015 ident: 10.1016/j.asoc.2018.02.042_bib0145 article-title: Competitive and cooperative particle swarm optimization with information sharing mechanism publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.09.030 – volume: 23 start-page: 76 issue: 5 year: 2014 ident: 10.1016/j.asoc.2018.02.042_bib0200 article-title: An improved particle swarm optimizer based on tabu detecting and local learning strategy in a shrunk search space publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.06.012 – year: 2017 ident: 10.1016/j.asoc.2018.02.042_bib0210 article-title: A sophisticated PSO based on multi-level adaptation and purposeful detection publication-title: Soft Comput. – volume: 24 start-page: 623 year: 2014 ident: 10.1016/j.asoc.2018.02.042_bib0085 article-title: Particle swarm optimization with adaptive time-varying topology connectivity publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.08.013 – volume: 13 start-page: 1120 issue: 5 year: 2009 ident: 10.1016/j.asoc.2018.02.042_bib0060 article-title: Frankenstein's PSO: a composite particle swarm optimization algorithm publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2009.2021465 – volume: 43 start-page: 445 issue: 2 year: 2013 ident: 10.1016/j.asoc.2018.02.042_bib0175 article-title: Multiple populations for multiple objectives: a coevolutionary technique for solving multiobjective optimization problems publication-title: IEEE Trans. Cybern. doi: 10.1109/TSMCB.2012.2209115 – start-page: 101 year: 2001 ident: 10.1016/j.asoc.2018.02.042_bib0095 article-title: Fuzzy adaptive particle swarm optimization publication-title: Proc. of Congr. on Evol. Comput., CEC’01 doi: 10.1109/CEC.2001.934377 – volume: 46 start-page: 2277 issue: 10 year: 2016 ident: 10.1016/j.asoc.2018.02.042_bib0180 article-title: Genetic learning particle swarm optimization publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2015.2475174 – volume: 291 start-page: 43 issue: 6 year: 2015 ident: 10.1016/j.asoc.2018.02.042_bib0150 article-title: A social learning particle swarm optimization algorithm for scalable optimization publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.08.039 – volume: 47 start-page: 1 issue: 4 year: 2015 ident: 10.1016/j.asoc.2018.02.042_bib0025 article-title: Cloud computing resource scheduling and a survey of its evolutionary approaches publication-title: ACM Comput. Surv. doi: 10.1145/2788397 – volume: 10 start-page: 281 issue: 3 year: 2006 ident: 10.1016/j.asoc.2018.02.042_bib0120 article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2005.857610 – volume: 61 start-page: 7141 issue: 12 year: 2014 ident: 10.1016/j.asoc.2018.02.042_bib0020 article-title: Bi-velocity discrete particle swarm optimization and its application to multicast routing problem in communication networks publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2014.2314075 – volume: 15 start-page: 832 issue: 6 year: 2011 ident: 10.1016/j.asoc.2018.02.042_bib0130 article-title: Orthogonal learning particle swarm optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2010.2052054 – volume: 42 start-page: 744 issue: 5 year: 2012 ident: 10.1016/j.asoc.2018.02.042_bib0215 article-title: Hybridizing differential evolution and particle swarm optimization to design powerful optimizers: a review and taxonomy publication-title: IEEE Trans. Syst. Man Cybern. C: Appl. Rev. doi: 10.1109/TSMCC.2011.2160941 – volume: 6 start-page: 58 issue: 2 year: 2002 ident: 10.1016/j.asoc.2018.02.042_bib0030 article-title: The particle swarm – explosion, stability, and convergence in a multidimensional complex space publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.985692 – start-page: 1671 year: 2002 ident: 10.1016/j.asoc.2018.02.042_bib0050 article-title: Population structure and particle swarm performance publication-title: Proc. of Congr. on Evol. Comput., CEC’02 – volume: 25 start-page: 835 issue: 4 year: 2015 ident: 10.1016/j.asoc.2018.02.042_bib0245 article-title: Bayesian computation: a summary of the current state, and samples backwards and forwards publication-title: Stat. Comput. doi: 10.1007/s11222-015-9574-5 – volume: 8 start-page: 204 issue: 3 year: 2004 ident: 10.1016/j.asoc.2018.02.042_bib0115 article-title: The fully informed particle swarm: simpler, maybe better publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2004.826074 – start-page: 1777 year: 2005 ident: 10.1016/j.asoc.2018.02.042_bib0280 article-title: Performance evaluation of an advanced local search evolutionary algorithm publication-title: Proc. of Congr. on Evol. Comput., CEC’05 doi: 10.1109/CEC.2005.1554903 – volume: 58 start-page: 64 year: 2016 ident: 10.1016/j.asoc.2018.02.042_bib0125 article-title: Orthogonal parallel MCMC methods for sampling and optimization publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2016.07.013 – volume: 13 start-page: 398 issue: 2 year: 2009 ident: 10.1016/j.asoc.2018.02.042_bib0265 article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2008.927706 – volume: 197 start-page: 131 issue: 197 year: 2012 ident: 10.1016/j.asoc.2018.02.042_bib0190 article-title: Niching particle swarm optimization with local search for multi-modal optimization publication-title: Inf. Sci. doi: 10.1016/j.ins.2012.02.011 – start-page: 1942 year: 1995 ident: 10.1016/j.asoc.2018.02.042_bib0010 article-title: Particle swarm optimization publication-title: Proc. of IEEE Int. Conf. on Neural Network, CNN’95 doi: 10.1109/ICNN.1995.488968 – start-page: 416 year: 2010 ident: 10.1016/j.asoc.2018.02.042_bib0235 article-title: EDA-PSO: a hybrid paradigm combining estimation of distribution algorithms and particle swarm optimization publication-title: Proc. of International Conference on Swarm Intelligence, vol. 6234 – volume: 39 start-page: 1362 issue: 6 year: 2009 ident: 10.1016/j.asoc.2018.02.042_bib0075 article-title: Adaptive particle swarm optimization publication-title: IEEE Trans. Syst. Man Cybern. B: Cybern. doi: 10.1109/TSMCB.2009.2015956 – volume: 20 start-page: 863 issue: 3 year: 2016 ident: 10.1016/j.asoc.2018.02.042_bib0135 article-title: Attractive and repulsive fully informed particle swarm optimization based on the modified fitness model publication-title: Soft Comput. doi: 10.1007/s00500-014-1546-8 – volume: 13 start-page: 2188 issue: 4 year: 2013 ident: 10.1016/j.asoc.2018.02.042_bib0230 article-title: A recombination-based hybridization of particle swarm optimization and artificial bee colony algorithm for continuous optimization problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2012.12.007 – volume: 28 start-page: 138 year: 2015 ident: 10.1016/j.asoc.2018.02.042_bib0105 article-title: A new particle swarm optimization algorithm with adaptive inertia weight based on Bayesian techniques publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.11.018 – volume: 42 start-page: 627 issue: 3 year: 2012 ident: 10.1016/j.asoc.2018.02.042_bib0140 article-title: A self-learning particle swarm optimizer for global optimization problems publication-title: IEEE Trans. Syst. Man Cybern. B: Cybern. doi: 10.1109/TSMCB.2011.2171946 – volume: 219 start-page: 5185 issue: 10 year: 2013 ident: 10.1016/j.asoc.2018.02.042_bib0255 article-title: Particle swarm optimization using dimension selection methods publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2012.11.020 – volume: 294 start-page: 182 issue: 10 year: 2015 ident: 10.1016/j.asoc.2018.02.042_bib0080 article-title: Self regulating particle swarm optimization algorithm publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.09.053 – start-page: 69 year: 1998 ident: 10.1016/j.asoc.2018.02.042_bib0040 article-title: A modified particle swarm optimizer publication-title: Proc. of Congr. on Evol. Comput., CEC’98 – year: 2013 ident: 10.1016/j.asoc.2018.02.042_bib0250 – volume: 6 start-page: 163 issue: 3 year: 2015 ident: 10.1016/j.asoc.2018.02.042_bib0225 article-title: An efficient clustering method for mobile users based on hybrid PSO and ABC publication-title: Int. J. Innov. Comput. Appl. doi: 10.1504/IJICA.2015.073003 – volume: 21 start-page: 1667 issue: 3 year: 2017 ident: 10.1016/j.asoc.2018.02.042_bib0155 article-title: Ecosystem particle swarm optimization publication-title: Soft Comput. doi: 10.1007/s00500-016-2111-4 – start-page: 72 year: 2003 ident: 10.1016/j.asoc.2018.02.042_bib0185 article-title: Particle swarm optimization with Gaussian mutation publication-title: Proc. of IEEE Swarm Intel. Symp., SIS’03 doi: 10.1109/SIS.2003.1202250 – volume: 14 start-page: 419 issue: 3 year: 2010 ident: 10.1016/j.asoc.2018.02.042_bib0015 article-title: Discovering unique, low-energy pure water isomers: memetic exploration, optimization and landscape analysis publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2009.2033584 – volume: 363 start-page: 154 year: 2016 ident: 10.1016/j.asoc.2018.02.042_bib0055 article-title: Topology selection for particle swarm optimization publication-title: Inf. Sci. doi: 10.1016/j.ins.2016.04.050 – volume: 45 start-page: 1 issue: 3 year: 2013 ident: 10.1016/j.asoc.2018.02.042_bib0090 article-title: Exploration and exploitation in evolutionary algorithms: a survey publication-title: ACM Comput. Surv. doi: 10.1145/2480741.2480752 – volume: 385 start-page: 174 year: 2017 ident: 10.1016/j.asoc.2018.02.042_bib0205 article-title: Particle swarm optimization using multi-level adaptation and purposeful detection operators publication-title: Inf. Sci. doi: 10.1016/j.ins.2016.12.043 – volume: 13 start-page: 1608 issue: 4 year: 2013 ident: 10.1016/j.asoc.2018.02.042_bib0220 article-title: A hybrid differential evolution algorithm based on particle swarm optimization for nonconvex economic dispatch problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2012.12.014 – year: 2010 ident: 10.1016/j.asoc.2018.02.042_bib0285 – volume: 13 start-page: 945 issue: 5 year: 2009 ident: 10.1016/j.asoc.2018.02.042_bib0260 article-title: JADE: adaptive differential evolution with optional external archive publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2009.2014613 – start-page: 3845 year: 2008 ident: 10.1016/j.asoc.2018.02.042_bib0070 article-title: Dynamic multi-swarm particle optimizer with local search for large scale global optimization publication-title: Proc. of Congr. on Evol. Comput., CEC’08 – volume: 181 start-page: 4539 issue: 20 year: 2011 ident: 10.1016/j.asoc.2018.02.042_bib0110 article-title: Adaptive fuzzy particle swarm optimization for global optimization of multimodal functions publication-title: Inf. Sci. doi: 10.1016/j.ins.2010.11.025 – volume: 8 start-page: 240 issue: 3 year: 2004 ident: 10.1016/j.asoc.2018.02.042_bib0045 article-title: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2004.826071 – volume: 15 start-page: 55 issue: 1 year: 2011 ident: 10.1016/j.asoc.2018.02.042_bib0270 article-title: Differential evolution with composite trial vector generation strategies and control parameters publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2010.2087271 – volume: 41 start-page: 1108 issue: 4 year: 2014 ident: 10.1016/j.asoc.2018.02.042_bib0165 article-title: Dynamic partition search algorithm for global optimization publication-title: Appl. Intell. doi: 10.1007/s10489-014-0587-0 – volume: 23 start-page: 333 year: 2014 ident: 10.1016/j.asoc.2018.02.042_bib0195 article-title: A novel particle swarm optimization algorithm with Levy flight publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.06.034 – volume: 24 start-page: 11 year: 2015 ident: 10.1016/j.asoc.2018.02.042_bib0170 article-title: Heterogeneous comprehensive learning particle swarm optimization with enhanced exploration and exploitation publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2015.05.002 – volume: 20 start-page: 3579 year: 2016 ident: 10.1016/j.asoc.2018.02.042_bib0100 article-title: Novel self-adaptive particle swarm optimization methods publication-title: Soft Comput. doi: 10.1007/s00500-015-1716-3 – volume: 91 start-page: 133 issue: 8 year: 1992 ident: 10.1016/j.asoc.2018.02.042_bib0240 article-title: Markov Chain Monte Carlo maximum likelihood publication-title: Comput. Sci. Stat. – volume: 10 start-page: 245 issue: 3 year: 2006 ident: 10.1016/j.asoc.2018.02.042_bib0035 article-title: Stability analysis of the particle dynamics in particle swarm optimizer publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2005.857077 – volume: 22 start-page: 919 issue: 4 year: 2014 ident: 10.1016/j.asoc.2018.02.042_bib0160 article-title: OptiFel: a convergent heterogeneous particle swarm optimization algorithm for Takagi–Sugeno fuzzy modeling publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2013.2278972 – start-page: 124 year: 2005 ident: 10.1016/j.asoc.2018.02.042_bib0065 article-title: Dynamic multi-swarm particle swarm optimizer publication-title: Proc. of IEEE Swarm Intell. Symp., SIS’05 doi: 10.1109/SIS.2005.1501611 – start-page: 39 year: 1995 ident: 10.1016/j.asoc.2018.02.042_bib0005 article-title: A new optimizer using particle swarm theory publication-title: Proc. of Int. Symp. on Micro Machine & Human Science, SMMHS’95 doi: 10.1109/MHS.1995.494215 |
| SSID | ssj0016928 |
| Score | 2.5430455 |
| Snippet | •An entire population is divided into many parallel evolved sub-swarms in the early stage.•A dynamic sub-swarm number strategy (DNS) periodically reduces the... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 126 |
| SubjectTerms | Dynamic sub-swarm number Local-searching Particle swarm optimization Purposeful detecting Sub-swarm regrouping |
| Title | A multi-swarm particle swarm optimization algorithm based on dynamical topology and purposeful detecting |
| URI | https://dx.doi.org/10.1016/j.asoc.2018.02.042 |
| Volume | 67 |
| WOSCitedRecordID | wos000431913000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AIEXJ dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLeg48AFxpcYsMkHbpFRPpzEPlZoMBCaOAyUW-Q4Ds20plXTsP35PMcfDQOm7YAqRbVlO21_vz6_2D-_h9BbwSvKYGYkuahCQkWUEihyIsJch7sJMz6KaL5_yU9PWVHwr1Y61I_pBPKuY1dXfP1foYY6AFsfnb0D3H5QqID3ADpcAXa43gr4uREJkv5SbJbB2rYITHEFFmJpj14G4uLHatNuF8tAz2W13jeoTYJ6rUA32RNMeKY1wLHqldYz10pvO7gJz8Wvtb5sD0Z9VKkPvgWAWRhBbjGoy93Bs49Da9cEfDu9eD1ulixacjK00wWJiO2EU86GZoxQblcWrZE1OTeslYzibDLhRiZe0x-23CwrnL8TQFOtwWNjcFUTi-v3wNnXJjQvM3QKtvNSj1HqMcowLmGM-2gvzlPOZmhv_um4-Ow3njI-puP138GeszKSwOuf5O--zMQ_OdtHj-yDBZ4buJ-ge6p7ih67pB3Y2vBnaDHHE35gxw9silN-YM8PPPIDQ5XnB3b8wMAPvOMH9vx4jr59OD57f0Jsug0iacq2pBailnFYJ6mUXMCLJjr4vwCHFR4jGhpWiVCcZUnDwIhzmYe5qHktokw2TGZJ8gLNulWnXiLMKIwVMegXJ7RiTRXmMhVNEqtI0SplByhyP1wpbSx6nRLlovw3ZAco8H3WJhLLja1Th0dpfUnjI5ZArxv6vbrTXV6jh7t_wBs0224GdYgeyJ_btt8cWW79AnE4mPM |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-swarm+particle+swarm+optimization+algorithm+based+on+dynamical+topology+and+purposeful+detecting&rft.jtitle=Applied+soft+computing&rft.au=Xia%2C+Xuewen&rft.au=Gui%2C+Ling&rft.au=Zhan%2C+Zhi-Hui&rft.date=2018-06-01&rft.issn=1568-4946&rft.volume=67&rft.spage=126&rft.epage=140&rft_id=info:doi/10.1016%2Fj.asoc.2018.02.042&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2018_02_042 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |