A multi-swarm particle swarm optimization algorithm based on dynamical topology and purposeful detecting

•An entire population is divided into many parallel evolved sub-swarms in the early stage.•A dynamic sub-swarm number strategy (DNS) periodically reduces the number of sub-swarms aiming to balance the exploration and the exploitation ability.•A sub-swarm regrouping strategy (SRS) regrouping these su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied soft computing Jg. 67; S. 126 - 140
Hauptverfasser: Xia, Xuewen, Gui, Ling, Zhan, Zhi-Hui
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.06.2018
Schlagworte:
ISSN:1568-4946, 1872-9681
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •An entire population is divided into many parallel evolved sub-swarms in the early stage.•A dynamic sub-swarm number strategy (DNS) periodically reduces the number of sub-swarms aiming to balance the exploration and the exploitation ability.•A sub-swarm regrouping strategy (SRS) regrouping these sub-swarms based on the stagnancy information of the globally best position is adopted to enhance the exploitation ability.•A purposeful detecting strategy (PDS) relying on some historical information of the search process is selected to help the population to jump out of the current local optimum for better exploration ability.•The strategies proposed in this paper have general applicability. This paper proposes a multi-swarm particle swarm optimization (MSPSO) that consists of three novel strategies to balance the exploration and exploitation abilities. The new proposed MSPSO in this work is based on multiple swarms framework cooperating with the dynamic sub-swarm number strategy (DNS), sub-swarm regrouping strategy (SRS), and purposeful detecting strategy (PDS). Firstly, the DNS divides the entire population into many sub-swarms in the early stage and periodically reduces the number of sub-swarms (i.e., increase the size of each sub-swarm) along with the evolutionary process. This is helpful for balancing the exploration ability early and the exploitation ability late, respectively. Secondly, in each DNS period with special number of sub-swarms, the SRS is to regroup these sub-swarms based on the stagnancy information of the global best position. This is helpful for diffusing and sharing the search information among different sub-swarms to enhance the exploitation ability. Thirdly, the PDS is relying on some historical information of the search process to detect whether the population has been trapped into a potential local optimum, so as to help the population jump out of the current local optimum for better exploration ability. The comparisons among MSPSO and other 13 peer algorithms on the CEC2013 test suite and 4 real applications suggest that MSPSO is a very reliable and highly competitive optimization algorithm for solving different types of functions. Furthermore, the extensive experimental results illustrate the effectiveness and efficiency of the three proposed strategies used in MSPSO.
AbstractList •An entire population is divided into many parallel evolved sub-swarms in the early stage.•A dynamic sub-swarm number strategy (DNS) periodically reduces the number of sub-swarms aiming to balance the exploration and the exploitation ability.•A sub-swarm regrouping strategy (SRS) regrouping these sub-swarms based on the stagnancy information of the globally best position is adopted to enhance the exploitation ability.•A purposeful detecting strategy (PDS) relying on some historical information of the search process is selected to help the population to jump out of the current local optimum for better exploration ability.•The strategies proposed in this paper have general applicability. This paper proposes a multi-swarm particle swarm optimization (MSPSO) that consists of three novel strategies to balance the exploration and exploitation abilities. The new proposed MSPSO in this work is based on multiple swarms framework cooperating with the dynamic sub-swarm number strategy (DNS), sub-swarm regrouping strategy (SRS), and purposeful detecting strategy (PDS). Firstly, the DNS divides the entire population into many sub-swarms in the early stage and periodically reduces the number of sub-swarms (i.e., increase the size of each sub-swarm) along with the evolutionary process. This is helpful for balancing the exploration ability early and the exploitation ability late, respectively. Secondly, in each DNS period with special number of sub-swarms, the SRS is to regroup these sub-swarms based on the stagnancy information of the global best position. This is helpful for diffusing and sharing the search information among different sub-swarms to enhance the exploitation ability. Thirdly, the PDS is relying on some historical information of the search process to detect whether the population has been trapped into a potential local optimum, so as to help the population jump out of the current local optimum for better exploration ability. The comparisons among MSPSO and other 13 peer algorithms on the CEC2013 test suite and 4 real applications suggest that MSPSO is a very reliable and highly competitive optimization algorithm for solving different types of functions. Furthermore, the extensive experimental results illustrate the effectiveness and efficiency of the three proposed strategies used in MSPSO.
Author Xia, Xuewen
Gui, Ling
Zhan, Zhi-Hui
Author_xml – sequence: 1
  givenname: Xuewen
  orcidid: 0000-0002-4938-1479
  surname: Xia
  fullname: Xia, Xuewen
  email: xwxia@whu.edu.cn
  organization: School of Software, East China Jiaotong University, Nanchang 330013, China
– sequence: 2
  givenname: Ling
  surname: Gui
  fullname: Gui, Ling
  organization: School of Economics and Management, East China Jiaotong University, Nanchang 330013, China
– sequence: 3
  givenname: Zhi-Hui
  orcidid: 0000-0003-0862-0514
  surname: Zhan
  fullname: Zhan, Zhi-Hui
  email: zhanapollo@163.com
  organization: Guangdong Provincial Key Lab of Computational Intelligence and Cyberspace Information, School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China
BookMark eNp9kMtKAzEUhoMo2FZfwFVeYMYkM80k4KYUb1Bwo-twmmTalJnJkKRKfXpT68pFOYtzge_A_03R5eAHi9AdJSUllN_vSohel4xQURJWkppdoAkVDSskF_Qyz3MuilrW_BpNY9yRDEkmJmi7wP2-S66IXxB6PEJITncWn1Y_Jte7b0jODxi6jQ8ubXu8hmgNzidzGKB3Gjqc_Og7vzlgGAwe92H00bb7DhubrE5u2Nygqxa6aG__-gx9PD2-L1-K1dvz63KxKnQ9F6kwAEYzYqq51hJy1RVr5gRkw4mUbU3WFVgpeNWKRtZSN6QBIw1QrluheVXNkDj91cHHGGyrtEu_AVIA1ylK1NGY2qmjMXU0pghT2VhG2T90DK6HcDgPPZwgm0N9OhtU1M4O2hoXcnJlvDuH_wA6mIpO
CitedBy_id crossref_primary_10_1016_j_eswa_2024_123214
crossref_primary_10_3390_eng6080172
crossref_primary_10_1080_02286203_2023_2201043
crossref_primary_10_1155_2024_2228698
crossref_primary_10_1007_s10489_021_02803_7
crossref_primary_10_1016_j_eswa_2019_113113
crossref_primary_10_1093_jcde_qwae090
crossref_primary_10_1109_TLT_2023_3343525
crossref_primary_10_3390_sym12030465
crossref_primary_10_1109_ACCESS_2019_2960890
crossref_primary_10_1007_s10845_020_01691_x
crossref_primary_10_1016_j_swevo_2025_102048
crossref_primary_10_1007_s11071_019_05414_7
crossref_primary_10_1093_jcde_qwae080
crossref_primary_10_1016_j_ins_2020_11_015
crossref_primary_10_3390_pr12020400
crossref_primary_10_1007_s13042_024_02462_3
crossref_primary_10_3390_electronics11020209
crossref_primary_10_1007_s10586_024_04628_8
crossref_primary_10_1007_s11277_021_08368_5
crossref_primary_10_1080_00223131_2019_1700844
crossref_primary_10_1016_j_knosys_2022_108281
crossref_primary_10_1016_j_ins_2023_01_103
crossref_primary_10_1016_j_neucom_2025_129460
crossref_primary_10_3390_math11204339
crossref_primary_10_1016_j_neucom_2025_130603
crossref_primary_10_1007_s13042_022_01545_3
crossref_primary_10_1007_s11277_024_11584_4
crossref_primary_10_1007_s40998_022_00527_z
crossref_primary_10_1016_j_eswa_2021_116301
crossref_primary_10_1007_s10462_021_09962_6
crossref_primary_10_1109_ACCESS_2020_3030950
crossref_primary_10_1016_j_ins_2021_07_008
crossref_primary_10_1016_j_matcom_2022_12_020
crossref_primary_10_1016_j_cogsys_2021_04_003
crossref_primary_10_1177_09544062231190822
crossref_primary_10_1016_j_eswa_2020_114369
crossref_primary_10_1016_j_procs_2018_08_196
crossref_primary_10_1016_j_jpdc_2021_12_001
crossref_primary_10_1016_j_knosys_2022_108664
crossref_primary_10_1007_s00521_021_06340_9
crossref_primary_10_1007_s11042_022_13790_3
crossref_primary_10_1155_2023_9806200
crossref_primary_10_1109_TKDE_2020_3033324
crossref_primary_10_1002_cpe_5979
crossref_primary_10_1109_ACCESS_2018_2885036
crossref_primary_10_1016_j_aei_2023_101908
crossref_primary_10_1038_s41598_024_56259_z
crossref_primary_10_1016_j_swevo_2019_100573
crossref_primary_10_1016_j_addma_2025_104704
crossref_primary_10_1080_23311916_2020_1788876
crossref_primary_10_1109_ACCESS_2022_3193396
crossref_primary_10_1007_s00521_025_11083_y
crossref_primary_10_1007_s11831_021_09532_7
crossref_primary_10_1016_j_swevo_2021_100868
crossref_primary_10_1007_s00500_022_07283_6
crossref_primary_10_1016_j_engappai_2023_106215
crossref_primary_10_1155_2019_6706590
crossref_primary_10_1007_s00354_022_00158_2
crossref_primary_10_1016_j_neucom_2021_03_077
crossref_primary_10_1111_exsy_12779
crossref_primary_10_1007_s11042_022_13044_2
crossref_primary_10_1007_s10462_023_10412_8
crossref_primary_10_1016_j_eswa_2020_113292
crossref_primary_10_1016_j_future_2020_04_008
crossref_primary_10_1016_j_asoc_2024_111952
crossref_primary_10_1080_17517575_2019_1681518
crossref_primary_10_1007_s11280_024_01282_3
crossref_primary_10_3390_diagnostics13122023
crossref_primary_10_1016_j_jocs_2019_04_009
crossref_primary_10_1007_s00607_019_00782_9
crossref_primary_10_1016_j_ress_2020_107130
crossref_primary_10_1109_ACCESS_2021_3108890
crossref_primary_10_1109_ACCESS_2019_2938063
crossref_primary_10_1016_j_ins_2023_119302
crossref_primary_10_1007_s12065_020_00450_4
crossref_primary_10_1016_j_engappai_2022_105739
crossref_primary_10_1007_s00521_022_08179_0
crossref_primary_10_1016_j_knosys_2020_105568
crossref_primary_10_1007_s10878_023_01102_w
crossref_primary_10_1016_j_jnca_2023_103705
crossref_primary_10_1016_j_knosys_2021_106894
crossref_primary_10_3390_math10071032
crossref_primary_10_1016_j_swevo_2024_101533
crossref_primary_10_1109_ACCESS_2021_3106062
crossref_primary_10_1007_s00500_021_06169_3
crossref_primary_10_1016_j_asoc_2019_01_004
crossref_primary_10_1016_j_artmed_2020_101790
crossref_primary_10_1016_j_asoc_2021_107854
crossref_primary_10_1109_ACCESS_2023_3272835
crossref_primary_10_1016_j_eswa_2020_114202
crossref_primary_10_1016_j_ins_2021_05_064
crossref_primary_10_1007_s10922_022_09658_4
crossref_primary_10_1016_j_asoc_2022_109660
crossref_primary_10_1016_j_swevo_2020_100672
crossref_primary_10_1155_2020_7081653
crossref_primary_10_1016_j_asoc_2019_105583
crossref_primary_10_3390_electronics13214199
crossref_primary_10_1007_s12293_023_00403_1
crossref_primary_10_1016_j_asoc_2022_108731
crossref_primary_10_1016_j_swevo_2018_12_009
crossref_primary_10_1016_j_sasc_2023_200057
crossref_primary_10_1016_j_swevo_2019_03_003
crossref_primary_10_1016_j_eswa_2024_125283
crossref_primary_10_1109_ACCESS_2021_3054636
crossref_primary_10_1016_j_asoc_2021_108039
crossref_primary_10_3390_en13102616
Cites_doi 10.1162/106365601750190398
10.1016/j.ins.2014.09.030
10.1016/j.asoc.2014.06.012
10.1016/j.asoc.2014.08.013
10.1109/TEVC.2009.2021465
10.1109/TSMCB.2012.2209115
10.1109/CEC.2001.934377
10.1109/TCYB.2015.2475174
10.1016/j.ins.2014.08.039
10.1145/2788397
10.1109/TEVC.2005.857610
10.1109/TIE.2014.2314075
10.1109/TEVC.2010.2052054
10.1109/TSMCC.2011.2160941
10.1109/4235.985692
10.1007/s11222-015-9574-5
10.1109/TEVC.2004.826074
10.1109/CEC.2005.1554903
10.1016/j.dsp.2016.07.013
10.1109/TEVC.2008.927706
10.1016/j.ins.2012.02.011
10.1109/ICNN.1995.488968
10.1109/TSMCB.2009.2015956
10.1007/s00500-014-1546-8
10.1016/j.asoc.2012.12.007
10.1016/j.asoc.2014.11.018
10.1109/TSMCB.2011.2171946
10.1016/j.amc.2012.11.020
10.1016/j.ins.2014.09.053
10.1504/IJICA.2015.073003
10.1007/s00500-016-2111-4
10.1109/SIS.2003.1202250
10.1109/TEVC.2009.2033584
10.1016/j.ins.2016.04.050
10.1145/2480741.2480752
10.1016/j.ins.2016.12.043
10.1016/j.asoc.2012.12.014
10.1109/TEVC.2009.2014613
10.1016/j.ins.2010.11.025
10.1109/TEVC.2004.826071
10.1109/TEVC.2010.2087271
10.1007/s10489-014-0587-0
10.1016/j.asoc.2014.06.034
10.1016/j.swevo.2015.05.002
10.1007/s00500-015-1716-3
10.1109/TEVC.2005.857077
10.1109/TFUZZ.2013.2278972
10.1109/SIS.2005.1501611
10.1109/MHS.1995.494215
ContentType Journal Article
Copyright 2018 The Author(s)
Copyright_xml – notice: 2018 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.asoc.2018.02.042
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 140
ExternalDocumentID 10_1016_j_asoc_2018_02_042
S1568494618301017
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6I.
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c458t-daadc20d35cc9a9a9432750a976099f40b3ae9863f87949c707ad9da16cf8c633
ISICitedReferencesCount 118
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000431913000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Sat Nov 29 03:05:34 EST 2025
Tue Nov 18 21:24:00 EST 2025
Fri Feb 23 02:24:50 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Dynamic sub-swarm number
Local-searching
Sub-swarm regrouping
Particle swarm optimization
Purposeful detecting
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c458t-daadc20d35cc9a9a9432750a976099f40b3ae9863f87949c707ad9da16cf8c633
ORCID 0000-0002-4938-1479
0000-0003-0862-0514
OpenAccessLink https://dx.doi.org/10.1016/j.asoc.2018.02.042
PageCount 15
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2018_02_042
crossref_primary_10_1016_j_asoc_2018_02_042
elsevier_sciencedirect_doi_10_1016_j_asoc_2018_02_042
PublicationCentury 2000
PublicationDate 2018-06-01
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Sun, Zhao (bib0165) 2014; 41
Green, Latuszynski, Pereyra, Robert (bib0245) 2015; 25
Cheng, Jin (bib0150) 2015; 291
Clerc, Kennedy (bib0030) 2002; 6
Xia, Xie, Wei, Hu, Wang, Jin (bib0205) 2017; 385
Liu, Wei, Yuan, Zhan, Li (bib0055) 2016; 363
Qin, Huang, Suganthan (bib0265) 2009; 13
Jin, Liang, Tian, Zhuang (bib0255) 2013; 219
Hansen, Ostermeier (bib0275) 2001; 9
Eberhart, Kennedy (bib0005) 1995
Črepinšek, Liu, Mernik (bib0090) 2013; 45
Soh, Ong, Nguyen, Nguyen, Habibullah, Hung, Kuo (bib0015) 2010; 14
Shen, Zhan, Chen, Gong, Zhang, Li (bib0020) 2014; 61
Kennedy, Eberhart (bib0010) 1995
Swagatam, Suganthan (bib0285) 2010
Zhan, Liu, Gong, Zhang, Chung, Li (bib0025) 2015; 47
Haklı, Uğuz (bib0195) 2014; 23
Zhan, Li, Shi (bib0130) 2011; 15
Tanweer, Suresh, Sundararajan (bib0080) 2015; 294
Lim, Isa (bib0085) 2014; 24
Higashi, Iba (bib0185) 2003
Zhan, Zhang, Li, Chung (bib0075) 2009; 39
Marco, Montes, Thomas, Mauro, Marco (bib0060) 2009; 13
Li, Yang, Nguyen (bib0140) 2012; 42
Bengoetxea (bib0235) 2010
Zhao, Liang, Suganthan, Tasgetiren (bib0070) 2008
Sayah, Hamouda (bib0220) 2013; 13
Zhang, Sanderson (bib0260) 2009; 13
Auger, Hansen (bib0280) 2005
Shi, Eberhart (bib0095) 2001
Xia, Wang, Xie, Hu, Wei, Jin (bib0210) 2017
Martino, Elvira, Luengo, Corander, Louzada (bib0125) 2016; 58
Kiran, Gndz (bib0230) 2013; 13
Juang, Tung, Chiu (bib0110) 2011; 181
Lynn, Suganthan (bib0170) 2015; 24
Liu, Ma, Ma, Zhang (bib0155) 2017; 21
Qu, Liang, Suganthan (bib0190) 2012; 197
Shi, Eberhart (bib0040) 1998
Cheung, Ding, Shen (bib0160) 2014; 22
Pornsing, Sodhi, Lamond (bib0100) 2016; 20
Zhan, Li, Cao, Zhang, Chung, Shi (bib0175) 2013; 43
Mo, Zeng, Xu (bib0135) 2016; 20
Li, Zhan, Lin, Zhang, Luo (bib0145) 2015; 293
Xia, Liu, Hu (bib0200) 2014; 23
Kadirkamanathan, Selvarajah, Fleming (bib0035) 2006; 10
Mendes, Kennedy, Neves (bib0115) 2004; 8
Liang, Qu, Suganthan (bib0250) 2013
Kennedy, Mendes (bib0050) 2002
Wang, Cai, Zhang (bib0270) 2011; 15
Zhang, Tang, Hua, Guan (bib0105) 2015; 28
Liang, Qin, Suganthan, Baska (bib0120) 2006; 10
Ratnaweera, Halgamuge, Watson (bib0045) 2004; 8
Xu (bib0225) 2015; 6
Liang, Suganthan (bib0065) 2005
Xin, Chen, Zhang, Fang, Peng (bib0215) 2012; 42
Geyer (bib0240) 1992; 91
Gong, Li, Zhou, Li, Chung, Shi, Zhang (bib0180) 2016; 46
Jin (10.1016/j.asoc.2018.02.042_bib0255) 2013; 219
Auger (10.1016/j.asoc.2018.02.042_bib0280) 2005
Shen (10.1016/j.asoc.2018.02.042_bib0020) 2014; 61
Zhang (10.1016/j.asoc.2018.02.042_bib0260) 2009; 13
Zhao (10.1016/j.asoc.2018.02.042_bib0070) 2008
Liang (10.1016/j.asoc.2018.02.042_bib0120) 2006; 10
Zhang (10.1016/j.asoc.2018.02.042_bib0105) 2015; 28
Pornsing (10.1016/j.asoc.2018.02.042_bib0100) 2016; 20
Clerc (10.1016/j.asoc.2018.02.042_bib0030) 2002; 6
Qu (10.1016/j.asoc.2018.02.042_bib0190) 2012; 197
Haklı (10.1016/j.asoc.2018.02.042_bib0195) 2014; 23
Liu (10.1016/j.asoc.2018.02.042_bib0055) 2016; 363
Soh (10.1016/j.asoc.2018.02.042_bib0015) 2010; 14
Zhan (10.1016/j.asoc.2018.02.042_bib0025) 2015; 47
Marco (10.1016/j.asoc.2018.02.042_bib0060) 2009; 13
Green (10.1016/j.asoc.2018.02.042_bib0245) 2015; 25
Cheung (10.1016/j.asoc.2018.02.042_bib0160) 2014; 22
Cheng (10.1016/j.asoc.2018.02.042_bib0150) 2015; 291
Bengoetxea (10.1016/j.asoc.2018.02.042_bib0235) 2010
Kadirkamanathan (10.1016/j.asoc.2018.02.042_bib0035) 2006; 10
Kiran (10.1016/j.asoc.2018.02.042_bib0230) 2013; 13
Lim (10.1016/j.asoc.2018.02.042_bib0085) 2014; 24
Xia (10.1016/j.asoc.2018.02.042_bib0200) 2014; 23
Hansen (10.1016/j.asoc.2018.02.042_bib0275) 2001; 9
Juang (10.1016/j.asoc.2018.02.042_bib0110) 2011; 181
Shi (10.1016/j.asoc.2018.02.042_bib0095) 2001
Shi (10.1016/j.asoc.2018.02.042_bib0040) 1998
Xin (10.1016/j.asoc.2018.02.042_bib0215) 2012; 42
Wang (10.1016/j.asoc.2018.02.042_bib0270) 2011; 15
Martino (10.1016/j.asoc.2018.02.042_bib0125) 2016; 58
Higashi (10.1016/j.asoc.2018.02.042_bib0185) 2003
Ratnaweera (10.1016/j.asoc.2018.02.042_bib0045) 2004; 8
Lynn (10.1016/j.asoc.2018.02.042_bib0170) 2015; 24
Liang (10.1016/j.asoc.2018.02.042_bib0065) 2005
Li (10.1016/j.asoc.2018.02.042_bib0145) 2015; 293
Xu (10.1016/j.asoc.2018.02.042_bib0225) 2015; 6
Li (10.1016/j.asoc.2018.02.042_bib0140) 2012; 42
Swagatam (10.1016/j.asoc.2018.02.042_bib0285) 2010
Sun (10.1016/j.asoc.2018.02.042_bib0165) 2014; 41
Liu (10.1016/j.asoc.2018.02.042_bib0155) 2017; 21
Tanweer (10.1016/j.asoc.2018.02.042_bib0080) 2015; 294
Sayah (10.1016/j.asoc.2018.02.042_bib0220) 2013; 13
Črepinšek (10.1016/j.asoc.2018.02.042_bib0090) 2013; 45
Mo (10.1016/j.asoc.2018.02.042_bib0135) 2016; 20
Liang (10.1016/j.asoc.2018.02.042_bib0250) 2013
Zhan (10.1016/j.asoc.2018.02.042_bib0130) 2011; 15
Eberhart (10.1016/j.asoc.2018.02.042_bib0005) 1995
Xia (10.1016/j.asoc.2018.02.042_bib0210) 2017
Zhan (10.1016/j.asoc.2018.02.042_bib0175) 2013; 43
Geyer (10.1016/j.asoc.2018.02.042_bib0240) 1992; 91
Xia (10.1016/j.asoc.2018.02.042_bib0205) 2017; 385
Kennedy (10.1016/j.asoc.2018.02.042_bib0050) 2002
Gong (10.1016/j.asoc.2018.02.042_bib0180) 2016; 46
Qin (10.1016/j.asoc.2018.02.042_bib0265) 2009; 13
Zhan (10.1016/j.asoc.2018.02.042_bib0075) 2009; 39
Kennedy (10.1016/j.asoc.2018.02.042_bib0010) 1995
Mendes (10.1016/j.asoc.2018.02.042_bib0115) 2004; 8
References_xml – volume: 15
  start-page: 832
  year: 2011
  end-page: 847
  ident: bib0130
  article-title: Orthogonal learning particle swarm optimization
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 1777
  year: 2005
  end-page: 1784
  ident: bib0280
  article-title: Performance evaluation of an advanced local search evolutionary algorithm
  publication-title: Proc. of Congr. on Evol. Comput., CEC’05
– volume: 42
  start-page: 744
  year: 2012
  end-page: 767
  ident: bib0215
  article-title: Hybridizing differential evolution and particle swarm optimization to design powerful optimizers: a review and taxonomy
  publication-title: IEEE Trans. Syst. Man Cybern. C: Appl. Rev.
– volume: 13
  start-page: 398
  year: 2009
  end-page: 417
  ident: bib0265
  article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 1671
  year: 2002
  end-page: 1676
  ident: bib0050
  article-title: Population structure and particle swarm performance
  publication-title: Proc. of Congr. on Evol. Comput., CEC’02
– volume: 25
  start-page: 835
  year: 2015
  end-page: 862
  ident: bib0245
  article-title: Bayesian computation: a summary of the current state, and samples backwards and forwards
  publication-title: Stat. Comput.
– volume: 23
  start-page: 76
  year: 2014
  end-page: 90
  ident: bib0200
  article-title: An improved particle swarm optimizer based on tabu detecting and local learning strategy in a shrunk search space
  publication-title: Appl. Soft Comput.
– year: 2010
  ident: bib0285
  article-title: Problem definitions and evaluation criteria for the CEC 2011 competition on testing evolutionary algorithm on real world optimization problems, Tech. Rep.
– start-page: 3845
  year: 2008
  end-page: 3852
  ident: bib0070
  article-title: Dynamic multi-swarm particle optimizer with local search for large scale global optimization
  publication-title: Proc. of Congr. on Evol. Comput., CEC’08
– start-page: 101
  year: 2001
  end-page: 106
  ident: bib0095
  article-title: Fuzzy adaptive particle swarm optimization
  publication-title: Proc. of Congr. on Evol. Comput., CEC’01
– volume: 6
  start-page: 163
  year: 2015
  end-page: 170
  ident: bib0225
  article-title: An efficient clustering method for mobile users based on hybrid PSO and ABC
  publication-title: Int. J. Innov. Comput. Appl.
– volume: 291
  start-page: 43
  year: 2015
  end-page: 60
  ident: bib0150
  article-title: A social learning particle swarm optimization algorithm for scalable optimization
  publication-title: Inf. Sci.
– start-page: 69
  year: 1998
  end-page: 73
  ident: bib0040
  article-title: A modified particle swarm optimizer
  publication-title: Proc. of Congr. on Evol. Comput., CEC’98
– volume: 41
  start-page: 1108
  year: 2014
  end-page: 1126
  ident: bib0165
  article-title: Dynamic partition search algorithm for global optimization
  publication-title: Appl. Intell.
– volume: 91
  start-page: 133
  year: 1992
  end-page: 169
  ident: bib0240
  article-title: Markov Chain Monte Carlo maximum likelihood
  publication-title: Comput. Sci. Stat.
– volume: 9
  start-page: 159
  year: 2001
  end-page: 195
  ident: bib0275
  article-title: Completely derandomized self-adaptation in evolution strategies
  publication-title: Evol. Comput.
– volume: 13
  start-page: 1120
  year: 2009
  end-page: 1132
  ident: bib0060
  article-title: Frankenstein's PSO: a composite particle swarm optimization algorithm
  publication-title: IEEE Trans. Evol. Comput.
– volume: 20
  start-page: 863
  year: 2016
  end-page: 884
  ident: bib0135
  article-title: Attractive and repulsive fully informed particle swarm optimization based on the modified fitness model
  publication-title: Soft Comput.
– start-page: 124
  year: 2005
  end-page: 129
  ident: bib0065
  article-title: Dynamic multi-swarm particle swarm optimizer
  publication-title: Proc. of IEEE Swarm Intell. Symp., SIS’05
– volume: 45
  start-page: 1
  year: 2013
  end-page: 33
  ident: bib0090
  article-title: Exploration and exploitation in evolutionary algorithms: a survey
  publication-title: ACM Comput. Surv.
– volume: 21
  start-page: 1667
  year: 2017
  end-page: 1691
  ident: bib0155
  article-title: Ecosystem particle swarm optimization
  publication-title: Soft Comput.
– volume: 58
  start-page: 64
  year: 2016
  end-page: 84
  ident: bib0125
  article-title: Orthogonal parallel MCMC methods for sampling and optimization
  publication-title: Digit. Signal Process.
– volume: 42
  start-page: 627
  year: 2012
  end-page: 646
  ident: bib0140
  article-title: A self-learning particle swarm optimizer for global optimization problems
  publication-title: IEEE Trans. Syst. Man Cybern. B: Cybern.
– volume: 181
  start-page: 4539
  year: 2011
  end-page: 4549
  ident: bib0110
  article-title: Adaptive fuzzy particle swarm optimization for global optimization of multimodal functions
  publication-title: Inf. Sci.
– volume: 23
  start-page: 333
  year: 2014
  end-page: 345
  ident: bib0195
  article-title: A novel particle swarm optimization algorithm with Levy flight
  publication-title: Appl. Soft Comput.
– volume: 293
  start-page: 370
  year: 2015
  end-page: 382
  ident: bib0145
  article-title: Competitive and cooperative particle swarm optimization with information sharing mechanism
  publication-title: Inf. Sci.
– volume: 20
  start-page: 3579
  year: 2016
  end-page: 3593
  ident: bib0100
  article-title: Novel self-adaptive particle swarm optimization methods
  publication-title: Soft Comput.
– start-page: 1942
  year: 1995
  end-page: 1948
  ident: bib0010
  article-title: Particle swarm optimization
  publication-title: Proc. of IEEE Int. Conf. on Neural Network, CNN’95
– volume: 24
  start-page: 623
  year: 2014
  end-page: 642
  ident: bib0085
  article-title: Particle swarm optimization with adaptive time-varying topology connectivity
  publication-title: Appl. Soft Comput.
– volume: 13
  start-page: 945
  year: 2009
  end-page: 958
  ident: bib0260
  article-title: JADE: adaptive differential evolution with optional external archive
  publication-title: IEEE Trans. Evol. Comput.
– volume: 219
  start-page: 5185
  year: 2013
  end-page: 5197
  ident: bib0255
  article-title: Particle swarm optimization using dimension selection methods
  publication-title: Appl. Math. Comput.
– volume: 22
  start-page: 919
  year: 2014
  end-page: 933
  ident: bib0160
  article-title: OptiFel: a convergent heterogeneous particle swarm optimization algorithm for Takagi–Sugeno fuzzy modeling
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 8
  start-page: 240
  year: 2004
  end-page: 255
  ident: bib0045
  article-title: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients
  publication-title: IEEE Trans. Evol. Comput.
– volume: 43
  start-page: 445
  year: 2013
  end-page: 463
  ident: bib0175
  article-title: Multiple populations for multiple objectives: a coevolutionary technique for solving multiobjective optimization problems
  publication-title: IEEE Trans. Cybern.
– volume: 46
  start-page: 2277
  year: 2016
  end-page: 2290
  ident: bib0180
  article-title: Genetic learning particle swarm optimization
  publication-title: IEEE Trans. Cybern.
– volume: 13
  start-page: 2188
  year: 2013
  end-page: 2203
  ident: bib0230
  article-title: A recombination-based hybridization of particle swarm optimization and artificial bee colony algorithm for continuous optimization problems
  publication-title: Appl. Soft Comput.
– start-page: 39
  year: 1995
  end-page: 43
  ident: bib0005
  article-title: A new optimizer using particle swarm theory
  publication-title: Proc. of Int. Symp. on Micro Machine & Human Science, SMMHS’95
– volume: 6
  start-page: 58
  year: 2002
  end-page: 73
  ident: bib0030
  article-title: The particle swarm – explosion, stability, and convergence in a multidimensional complex space
  publication-title: IEEE Trans. Evol. Comput.
– volume: 13
  start-page: 1608
  year: 2013
  end-page: 1619
  ident: bib0220
  article-title: A hybrid differential evolution algorithm based on particle swarm optimization for nonconvex economic dispatch problems
  publication-title: Appl. Soft Comput.
– volume: 197
  start-page: 131
  year: 2012
  end-page: 143
  ident: bib0190
  article-title: Niching particle swarm optimization with local search for multi-modal optimization
  publication-title: Inf. Sci.
– volume: 10
  start-page: 245
  year: 2006
  end-page: 255
  ident: bib0035
  article-title: Stability analysis of the particle dynamics in particle swarm optimizer
  publication-title: IEEE Trans. Evol. Comput.
– volume: 47
  start-page: 1
  year: 2015
  end-page: 33
  ident: bib0025
  article-title: Cloud computing resource scheduling and a survey of its evolutionary approaches
  publication-title: ACM Comput. Surv.
– start-page: 72
  year: 2003
  end-page: 79
  ident: bib0185
  article-title: Particle swarm optimization with Gaussian mutation
  publication-title: Proc. of IEEE Swarm Intel. Symp., SIS’03
– volume: 294
  start-page: 182
  year: 2015
  end-page: 202
  ident: bib0080
  article-title: Self regulating particle swarm optimization algorithm
  publication-title: Inf. Sci.
– volume: 15
  start-page: 55
  year: 2011
  end-page: 66
  ident: bib0270
  article-title: Differential evolution with composite trial vector generation strategies and control parameters
  publication-title: IEEE Trans. Evol. Comput.
– volume: 24
  start-page: 11
  year: 2015
  end-page: 24
  ident: bib0170
  article-title: Heterogeneous comprehensive learning particle swarm optimization with enhanced exploration and exploitation
  publication-title: Swarm Evol. Comput.
– year: 2017
  ident: bib0210
  article-title: A sophisticated PSO based on multi-level adaptation and purposeful detection
  publication-title: Soft Comput.
– volume: 61
  start-page: 7141
  year: 2014
  end-page: 7151
  ident: bib0020
  article-title: Bi-velocity discrete particle swarm optimization and its application to multicast routing problem in communication networks
  publication-title: IEEE Trans. Ind. Electron.
– volume: 39
  start-page: 1362
  year: 2009
  end-page: 1381
  ident: bib0075
  article-title: Adaptive particle swarm optimization
  publication-title: IEEE Trans. Syst. Man Cybern. B: Cybern.
– volume: 10
  start-page: 281
  year: 2006
  end-page: 295
  ident: bib0120
  article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions
  publication-title: IEEE Trans. Evol. Comput.
– volume: 385
  start-page: 174
  year: 2017
  end-page: 195
  ident: bib0205
  article-title: Particle swarm optimization using multi-level adaptation and purposeful detection operators
  publication-title: Inf. Sci.
– start-page: 416
  year: 2010
  end-page: 423
  ident: bib0235
  article-title: EDA-PSO: a hybrid paradigm combining estimation of distribution algorithms and particle swarm optimization
  publication-title: Proc. of International Conference on Swarm Intelligence, vol. 6234
– year: 2013
  ident: bib0250
  article-title: Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization, Tech. Rep.
– volume: 28
  start-page: 138
  year: 2015
  end-page: 149
  ident: bib0105
  article-title: A new particle swarm optimization algorithm with adaptive inertia weight based on Bayesian techniques
  publication-title: Appl. Soft Comput.
– volume: 14
  start-page: 419
  year: 2010
  end-page: 437
  ident: bib0015
  article-title: Discovering unique, low-energy pure water isomers: memetic exploration, optimization and landscape analysis
  publication-title: IEEE Trans. Evol. Comput.
– volume: 363
  start-page: 154
  year: 2016
  end-page: 173
  ident: bib0055
  article-title: Topology selection for particle swarm optimization
  publication-title: Inf. Sci.
– volume: 8
  start-page: 204
  year: 2004
  end-page: 210
  ident: bib0115
  article-title: The fully informed particle swarm: simpler, maybe better
  publication-title: IEEE Trans. Evol. Comput.
– volume: 9
  start-page: 159
  issue: 2
  year: 2001
  ident: 10.1016/j.asoc.2018.02.042_bib0275
  article-title: Completely derandomized self-adaptation in evolution strategies
  publication-title: Evol. Comput.
  doi: 10.1162/106365601750190398
– volume: 293
  start-page: 370
  issue: 3
  year: 2015
  ident: 10.1016/j.asoc.2018.02.042_bib0145
  article-title: Competitive and cooperative particle swarm optimization with information sharing mechanism
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.09.030
– volume: 23
  start-page: 76
  issue: 5
  year: 2014
  ident: 10.1016/j.asoc.2018.02.042_bib0200
  article-title: An improved particle swarm optimizer based on tabu detecting and local learning strategy in a shrunk search space
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.06.012
– year: 2017
  ident: 10.1016/j.asoc.2018.02.042_bib0210
  article-title: A sophisticated PSO based on multi-level adaptation and purposeful detection
  publication-title: Soft Comput.
– volume: 24
  start-page: 623
  year: 2014
  ident: 10.1016/j.asoc.2018.02.042_bib0085
  article-title: Particle swarm optimization with adaptive time-varying topology connectivity
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.08.013
– volume: 13
  start-page: 1120
  issue: 5
  year: 2009
  ident: 10.1016/j.asoc.2018.02.042_bib0060
  article-title: Frankenstein's PSO: a composite particle swarm optimization algorithm
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2009.2021465
– volume: 43
  start-page: 445
  issue: 2
  year: 2013
  ident: 10.1016/j.asoc.2018.02.042_bib0175
  article-title: Multiple populations for multiple objectives: a coevolutionary technique for solving multiobjective optimization problems
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TSMCB.2012.2209115
– start-page: 101
  year: 2001
  ident: 10.1016/j.asoc.2018.02.042_bib0095
  article-title: Fuzzy adaptive particle swarm optimization
  publication-title: Proc. of Congr. on Evol. Comput., CEC’01
  doi: 10.1109/CEC.2001.934377
– volume: 46
  start-page: 2277
  issue: 10
  year: 2016
  ident: 10.1016/j.asoc.2018.02.042_bib0180
  article-title: Genetic learning particle swarm optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2015.2475174
– volume: 291
  start-page: 43
  issue: 6
  year: 2015
  ident: 10.1016/j.asoc.2018.02.042_bib0150
  article-title: A social learning particle swarm optimization algorithm for scalable optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.08.039
– volume: 47
  start-page: 1
  issue: 4
  year: 2015
  ident: 10.1016/j.asoc.2018.02.042_bib0025
  article-title: Cloud computing resource scheduling and a survey of its evolutionary approaches
  publication-title: ACM Comput. Surv.
  doi: 10.1145/2788397
– volume: 10
  start-page: 281
  issue: 3
  year: 2006
  ident: 10.1016/j.asoc.2018.02.042_bib0120
  article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2005.857610
– volume: 61
  start-page: 7141
  issue: 12
  year: 2014
  ident: 10.1016/j.asoc.2018.02.042_bib0020
  article-title: Bi-velocity discrete particle swarm optimization and its application to multicast routing problem in communication networks
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2014.2314075
– volume: 15
  start-page: 832
  issue: 6
  year: 2011
  ident: 10.1016/j.asoc.2018.02.042_bib0130
  article-title: Orthogonal learning particle swarm optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2010.2052054
– volume: 42
  start-page: 744
  issue: 5
  year: 2012
  ident: 10.1016/j.asoc.2018.02.042_bib0215
  article-title: Hybridizing differential evolution and particle swarm optimization to design powerful optimizers: a review and taxonomy
  publication-title: IEEE Trans. Syst. Man Cybern. C: Appl. Rev.
  doi: 10.1109/TSMCC.2011.2160941
– volume: 6
  start-page: 58
  issue: 2
  year: 2002
  ident: 10.1016/j.asoc.2018.02.042_bib0030
  article-title: The particle swarm – explosion, stability, and convergence in a multidimensional complex space
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.985692
– start-page: 1671
  year: 2002
  ident: 10.1016/j.asoc.2018.02.042_bib0050
  article-title: Population structure and particle swarm performance
  publication-title: Proc. of Congr. on Evol. Comput., CEC’02
– volume: 25
  start-page: 835
  issue: 4
  year: 2015
  ident: 10.1016/j.asoc.2018.02.042_bib0245
  article-title: Bayesian computation: a summary of the current state, and samples backwards and forwards
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-015-9574-5
– volume: 8
  start-page: 204
  issue: 3
  year: 2004
  ident: 10.1016/j.asoc.2018.02.042_bib0115
  article-title: The fully informed particle swarm: simpler, maybe better
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2004.826074
– start-page: 1777
  year: 2005
  ident: 10.1016/j.asoc.2018.02.042_bib0280
  article-title: Performance evaluation of an advanced local search evolutionary algorithm
  publication-title: Proc. of Congr. on Evol. Comput., CEC’05
  doi: 10.1109/CEC.2005.1554903
– volume: 58
  start-page: 64
  year: 2016
  ident: 10.1016/j.asoc.2018.02.042_bib0125
  article-title: Orthogonal parallel MCMC methods for sampling and optimization
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2016.07.013
– volume: 13
  start-page: 398
  issue: 2
  year: 2009
  ident: 10.1016/j.asoc.2018.02.042_bib0265
  article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.927706
– volume: 197
  start-page: 131
  issue: 197
  year: 2012
  ident: 10.1016/j.asoc.2018.02.042_bib0190
  article-title: Niching particle swarm optimization with local search for multi-modal optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2012.02.011
– start-page: 1942
  year: 1995
  ident: 10.1016/j.asoc.2018.02.042_bib0010
  article-title: Particle swarm optimization
  publication-title: Proc. of IEEE Int. Conf. on Neural Network, CNN’95
  doi: 10.1109/ICNN.1995.488968
– start-page: 416
  year: 2010
  ident: 10.1016/j.asoc.2018.02.042_bib0235
  article-title: EDA-PSO: a hybrid paradigm combining estimation of distribution algorithms and particle swarm optimization
  publication-title: Proc. of International Conference on Swarm Intelligence, vol. 6234
– volume: 39
  start-page: 1362
  issue: 6
  year: 2009
  ident: 10.1016/j.asoc.2018.02.042_bib0075
  article-title: Adaptive particle swarm optimization
  publication-title: IEEE Trans. Syst. Man Cybern. B: Cybern.
  doi: 10.1109/TSMCB.2009.2015956
– volume: 20
  start-page: 863
  issue: 3
  year: 2016
  ident: 10.1016/j.asoc.2018.02.042_bib0135
  article-title: Attractive and repulsive fully informed particle swarm optimization based on the modified fitness model
  publication-title: Soft Comput.
  doi: 10.1007/s00500-014-1546-8
– volume: 13
  start-page: 2188
  issue: 4
  year: 2013
  ident: 10.1016/j.asoc.2018.02.042_bib0230
  article-title: A recombination-based hybridization of particle swarm optimization and artificial bee colony algorithm for continuous optimization problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.12.007
– volume: 28
  start-page: 138
  year: 2015
  ident: 10.1016/j.asoc.2018.02.042_bib0105
  article-title: A new particle swarm optimization algorithm with adaptive inertia weight based on Bayesian techniques
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.11.018
– volume: 42
  start-page: 627
  issue: 3
  year: 2012
  ident: 10.1016/j.asoc.2018.02.042_bib0140
  article-title: A self-learning particle swarm optimizer for global optimization problems
  publication-title: IEEE Trans. Syst. Man Cybern. B: Cybern.
  doi: 10.1109/TSMCB.2011.2171946
– volume: 219
  start-page: 5185
  issue: 10
  year: 2013
  ident: 10.1016/j.asoc.2018.02.042_bib0255
  article-title: Particle swarm optimization using dimension selection methods
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2012.11.020
– volume: 294
  start-page: 182
  issue: 10
  year: 2015
  ident: 10.1016/j.asoc.2018.02.042_bib0080
  article-title: Self regulating particle swarm optimization algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.09.053
– start-page: 69
  year: 1998
  ident: 10.1016/j.asoc.2018.02.042_bib0040
  article-title: A modified particle swarm optimizer
  publication-title: Proc. of Congr. on Evol. Comput., CEC’98
– year: 2013
  ident: 10.1016/j.asoc.2018.02.042_bib0250
– volume: 6
  start-page: 163
  issue: 3
  year: 2015
  ident: 10.1016/j.asoc.2018.02.042_bib0225
  article-title: An efficient clustering method for mobile users based on hybrid PSO and ABC
  publication-title: Int. J. Innov. Comput. Appl.
  doi: 10.1504/IJICA.2015.073003
– volume: 21
  start-page: 1667
  issue: 3
  year: 2017
  ident: 10.1016/j.asoc.2018.02.042_bib0155
  article-title: Ecosystem particle swarm optimization
  publication-title: Soft Comput.
  doi: 10.1007/s00500-016-2111-4
– start-page: 72
  year: 2003
  ident: 10.1016/j.asoc.2018.02.042_bib0185
  article-title: Particle swarm optimization with Gaussian mutation
  publication-title: Proc. of IEEE Swarm Intel. Symp., SIS’03
  doi: 10.1109/SIS.2003.1202250
– volume: 14
  start-page: 419
  issue: 3
  year: 2010
  ident: 10.1016/j.asoc.2018.02.042_bib0015
  article-title: Discovering unique, low-energy pure water isomers: memetic exploration, optimization and landscape analysis
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2009.2033584
– volume: 363
  start-page: 154
  year: 2016
  ident: 10.1016/j.asoc.2018.02.042_bib0055
  article-title: Topology selection for particle swarm optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.04.050
– volume: 45
  start-page: 1
  issue: 3
  year: 2013
  ident: 10.1016/j.asoc.2018.02.042_bib0090
  article-title: Exploration and exploitation in evolutionary algorithms: a survey
  publication-title: ACM Comput. Surv.
  doi: 10.1145/2480741.2480752
– volume: 385
  start-page: 174
  year: 2017
  ident: 10.1016/j.asoc.2018.02.042_bib0205
  article-title: Particle swarm optimization using multi-level adaptation and purposeful detection operators
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.12.043
– volume: 13
  start-page: 1608
  issue: 4
  year: 2013
  ident: 10.1016/j.asoc.2018.02.042_bib0220
  article-title: A hybrid differential evolution algorithm based on particle swarm optimization for nonconvex economic dispatch problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.12.014
– year: 2010
  ident: 10.1016/j.asoc.2018.02.042_bib0285
– volume: 13
  start-page: 945
  issue: 5
  year: 2009
  ident: 10.1016/j.asoc.2018.02.042_bib0260
  article-title: JADE: adaptive differential evolution with optional external archive
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2009.2014613
– start-page: 3845
  year: 2008
  ident: 10.1016/j.asoc.2018.02.042_bib0070
  article-title: Dynamic multi-swarm particle optimizer with local search for large scale global optimization
  publication-title: Proc. of Congr. on Evol. Comput., CEC’08
– volume: 181
  start-page: 4539
  issue: 20
  year: 2011
  ident: 10.1016/j.asoc.2018.02.042_bib0110
  article-title: Adaptive fuzzy particle swarm optimization for global optimization of multimodal functions
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2010.11.025
– volume: 8
  start-page: 240
  issue: 3
  year: 2004
  ident: 10.1016/j.asoc.2018.02.042_bib0045
  article-title: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2004.826071
– volume: 15
  start-page: 55
  issue: 1
  year: 2011
  ident: 10.1016/j.asoc.2018.02.042_bib0270
  article-title: Differential evolution with composite trial vector generation strategies and control parameters
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2010.2087271
– volume: 41
  start-page: 1108
  issue: 4
  year: 2014
  ident: 10.1016/j.asoc.2018.02.042_bib0165
  article-title: Dynamic partition search algorithm for global optimization
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-014-0587-0
– volume: 23
  start-page: 333
  year: 2014
  ident: 10.1016/j.asoc.2018.02.042_bib0195
  article-title: A novel particle swarm optimization algorithm with Levy flight
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.06.034
– volume: 24
  start-page: 11
  year: 2015
  ident: 10.1016/j.asoc.2018.02.042_bib0170
  article-title: Heterogeneous comprehensive learning particle swarm optimization with enhanced exploration and exploitation
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2015.05.002
– volume: 20
  start-page: 3579
  year: 2016
  ident: 10.1016/j.asoc.2018.02.042_bib0100
  article-title: Novel self-adaptive particle swarm optimization methods
  publication-title: Soft Comput.
  doi: 10.1007/s00500-015-1716-3
– volume: 91
  start-page: 133
  issue: 8
  year: 1992
  ident: 10.1016/j.asoc.2018.02.042_bib0240
  article-title: Markov Chain Monte Carlo maximum likelihood
  publication-title: Comput. Sci. Stat.
– volume: 10
  start-page: 245
  issue: 3
  year: 2006
  ident: 10.1016/j.asoc.2018.02.042_bib0035
  article-title: Stability analysis of the particle dynamics in particle swarm optimizer
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2005.857077
– volume: 22
  start-page: 919
  issue: 4
  year: 2014
  ident: 10.1016/j.asoc.2018.02.042_bib0160
  article-title: OptiFel: a convergent heterogeneous particle swarm optimization algorithm for Takagi–Sugeno fuzzy modeling
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2013.2278972
– start-page: 124
  year: 2005
  ident: 10.1016/j.asoc.2018.02.042_bib0065
  article-title: Dynamic multi-swarm particle swarm optimizer
  publication-title: Proc. of IEEE Swarm Intell. Symp., SIS’05
  doi: 10.1109/SIS.2005.1501611
– start-page: 39
  year: 1995
  ident: 10.1016/j.asoc.2018.02.042_bib0005
  article-title: A new optimizer using particle swarm theory
  publication-title: Proc. of Int. Symp. on Micro Machine & Human Science, SMMHS’95
  doi: 10.1109/MHS.1995.494215
SSID ssj0016928
Score 2.5430455
Snippet •An entire population is divided into many parallel evolved sub-swarms in the early stage.•A dynamic sub-swarm number strategy (DNS) periodically reduces the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 126
SubjectTerms Dynamic sub-swarm number
Local-searching
Particle swarm optimization
Purposeful detecting
Sub-swarm regrouping
Title A multi-swarm particle swarm optimization algorithm based on dynamical topology and purposeful detecting
URI https://dx.doi.org/10.1016/j.asoc.2018.02.042
Volume 67
WOSCitedRecordID wos000431913000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLeg48AFxpcYsMkHbpFRPpzEPlZoMBCaOAyUW-Q4Ds20plXTsP35PMcfDQOm7YAqRbVlO21_vz6_2D-_h9BbwSvKYGYkuahCQkWUEihyIsJch7sJMz6KaL5_yU9PWVHwr1Y61I_pBPKuY1dXfP1foYY6AFsfnb0D3H5QqID3ADpcAXa43gr4uREJkv5SbJbB2rYITHEFFmJpj14G4uLHatNuF8tAz2W13jeoTYJ6rUA32RNMeKY1wLHqldYz10pvO7gJz8Wvtb5sD0Z9VKkPvgWAWRhBbjGoy93Bs49Da9cEfDu9eD1ulixacjK00wWJiO2EU86GZoxQblcWrZE1OTeslYzibDLhRiZe0x-23CwrnL8TQFOtwWNjcFUTi-v3wNnXJjQvM3QKtvNSj1HqMcowLmGM-2gvzlPOZmhv_um4-Ow3njI-puP138GeszKSwOuf5O--zMQ_OdtHj-yDBZ4buJ-ge6p7ih67pB3Y2vBnaDHHE35gxw9silN-YM8PPPIDQ5XnB3b8wMAPvOMH9vx4jr59OD57f0Jsug0iacq2pBailnFYJ6mUXMCLJjr4vwCHFR4jGhpWiVCcZUnDwIhzmYe5qHktokw2TGZJ8gLNulWnXiLMKIwVMegXJ7RiTRXmMhVNEqtI0SplByhyP1wpbSx6nRLlovw3ZAco8H3WJhLLja1Th0dpfUnjI5ZArxv6vbrTXV6jh7t_wBs0224GdYgeyJ_btt8cWW79AnE4mPM
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-swarm+particle+swarm+optimization+algorithm+based+on+dynamical+topology+and+purposeful+detecting&rft.jtitle=Applied+soft+computing&rft.au=Xia%2C+Xuewen&rft.au=Gui%2C+Ling&rft.au=Zhan%2C+Zhi-Hui&rft.date=2018-06-01&rft.issn=1568-4946&rft.volume=67&rft.spage=126&rft.epage=140&rft_id=info:doi/10.1016%2Fj.asoc.2018.02.042&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2018_02_042
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon