An exact solution algorithm for maximizing the fleet availability of a unit of aircraft subject to flight and maintenance requirements

We address the Flight and Maintenance Planning (FMP) problem, i.e., the problem of deciding which available aircraft to fly and for how long, and which grounded aircraft to perform maintenance operations on in a group of aircraft that comprise a unit. The aim is to maximize the unit fleet availabili...

Full description

Saved in:
Bibliographic Details
Published in:European journal of operational research Vol. 242; no. 2; pp. 631 - 643
Main Authors: Gavranis, Andreas, Kozanidis, George
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 16.04.2015
Elsevier Sequoia S.A
Subjects:
ISSN:0377-2217, 1872-6860
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We address the Flight and Maintenance Planning (FMP) problem, i.e., the problem of deciding which available aircraft to fly and for how long, and which grounded aircraft to perform maintenance operations on in a group of aircraft that comprise a unit. The aim is to maximize the unit fleet availability over a multi-period planning horizon, while also ensuring that certain flight and maintenance requirements are satisfied. Heuristic approaches that are used in practice to solve the FMP problem often perform poorly, generating solutions that are far from the optimum. On the other hand, the exact optimization models that have been developed to tackle the problem handle small problems effectively, but tend to be computationally inefficient for larger problems, such as the ones that arise in practice. With these in mind, we develop an exact solution algorithm for the FMP problem, which is capable of identifying the optimal solution of considerably large realistic problems in reasonable computational times. The algorithm solves suitable relaxations of the original problem, utilizing valid cuts that guide the search towards the optimal solution. We present extensive experimental results, which demonstrate that the algorithm's performance on realistic problems is superior to that of two popular commercial optimization software packages, whereas the opposite is true for a class of problems with special characteristics that deviate considerably from those of realistic problems. The important conclusion of this research is that the proposed algorithm, complemented by generic optimization software, can handle effectively a large variety of FMP problem instances. •We present an integer programming model for maximizing the fleet availability of a unit of aircraft.•We develop an exact solution algorithm for solving this model.•We present results evaluating the performance of this algorithm.•This algorithm solves realistic problems much faster than two optimization software packages.
AbstractList We address the Flight and Maintenance Planning (FMP) problem, i.e., the problem of deciding which available aircraft to fly and for how long, and which grounded aircraft to perform maintenance operations on in a group of aircraft that comprise a unit. The aim is to maximize the unit fleet availability over a multi-period planning horizon, while also ensuring that certain flight and maintenance requirements are satisfied. Heuristic approaches that are used in practice to solve the FMP problem often perform poorly, generating solutions that are far from the optimum. On the other hand, the exact optimization models that have been developed to tackle the problem handle small problems effectively, but tend to be computationally inefficient for larger problems, such as the ones that arise in practice. With these in mind, we develop an exact solution algorithm for the FMP problem, which is capable of identifying the optimal solution of considerably large realistic problems in reasonable computational times. The algorithm solves suitable relaxations of the original problem, utilizing valid cuts that guide the search towards the optimal solution. We present extensive experimental results, which demonstrate that the algorithm's performance on realistic problems is superior to that of two popular commercial optimization software packages, whereas the opposite is true for a class of problems with special characteristics that deviate considerably from those of realistic problems. The important conclusion of this research is that the proposed algorithm, complemented by generic optimization software, can handle effectively a large variety of FMP problem instances. •We present an integer programming model for maximizing the fleet availability of a unit of aircraft.•We develop an exact solution algorithm for solving this model.•We present results evaluating the performance of this algorithm.•This algorithm solves realistic problems much faster than two optimization software packages.
We address the Flight and Maintenance Planning (FMP) problem, i.e., the problem of deciding which available aircraft to fly and for how long, and which grounded aircraft to perform maintenance operations on in a group of aircraft that comprise a unit. The aim is to maximize the unit fleet availability over a multi-period planning horizon, while also ensuring that certain flight and maintenance requirements are satisfied. Heuristic approaches that are used in practice to solve the FMP problem often perform poorly, generating solutions that are far from the optimum. On the other hand, the exact optimization models that have been developed to tackle the problem handle small problems effectively, but tend to be computationally inefficient for larger problems, such as the ones that arise in practice. With these in mind, we develop an exact solution algorithm for the FMP problem, which is capable of identifying the optimal solution of considerably large realistic problems in reasonable computational times. The algorithm solves suitable relaxations of the original problem, utilizing valid cuts that guide the search towards the optimal solution. We present extensive experimental results, which demonstrate that the algorithm's performance on realistic problems is superior to that of two popular commercial optimization software packages, whereas the opposite is true for a class of problems with special characteristics that deviate considerably from those of realistic problems. The important conclusion of this research is that the proposed algorithm, complemented by generic optimization software, can handle effectively a large variety of FMP problem instances.
Author Gavranis, Andreas
Kozanidis, George
Author_xml – sequence: 1
  givenname: Andreas
  surname: Gavranis
  fullname: Gavranis, Andreas
  email: agavranis@gmail.com
  organization: 111 Combat Wing, Hellenic Air Force, N. Aghialos, Greece
– sequence: 2
  givenname: George
  orcidid: 0000-0002-4325-2975
  surname: Kozanidis
  fullname: Kozanidis, George
  email: gkoz@mie.uth.gr
  organization: Systems Optimization Laboratory, Department of Mechanical Engineering, University of Thessaly, Leoforos Athinon, Pedion Areos, 38334 Volos, Greece
BookMark eNp9kUFv1DAQhS1UJLaFP8DJEhcuWWwnTrwSl6oCilSJC5ytiXeyO1Fit7ZTtf0B_G4ctqceerL19L7n8ZtzduaDR8Y-SrGVQrZfxi2OIW6VkE0RtkV6wzbSdKpqTSvO2EbUXVcpJbt37DylUQghtdQb9vfSc3wAl3kK05IpeA7TIUTKx5kPIfIZHmimJ_IHno_Ihwkxc7gHmqCnifIjDwMHvnjK_28UXYShxC39iCU2h8LQ4Vggvy9p5DN68A55xLuFIs7oc3rP3g4wJfzwfF6wP9-__b66rm5-_fh5dXlTuUabXDnXDLXZK7cDVLWRIHrVDLsWm15r0B00fflvV6u-BzM4ZaDtZGOE7MFpLaC-YJ9Pubcx3C2Ysp0pOZwm8BiWZGXb7owWnRLF-umFdQxL9GW64mpEV55vTXGZk8vFkFLEwTrKsPaYY-nISmHXBdnRrguy64JWrUgFVS_Q20gzxMfXoa8nCEtL94TRJkdY6tyXKl22-0Cv4f8Ao9muXQ
CODEN EJORDT
CitedBy_id crossref_primary_10_1016_j_jmsy_2023_05_005
crossref_primary_10_1177_15485129251328044
crossref_primary_10_3390_aerospace5030068
crossref_primary_10_1017_dce_2024_55
crossref_primary_10_3390_pr8060670
crossref_primary_10_1155_2020_2569280
crossref_primary_10_1016_j_cie_2020_106607
crossref_primary_10_1016_j_cie_2024_110071
crossref_primary_10_1007_s00500_022_07560_4
crossref_primary_10_1016_j_eswa_2019_113158
crossref_primary_10_1016_j_cie_2017_08_028
crossref_primary_10_1080_23302674_2017_1289421
crossref_primary_10_1007_s00291_020_00591_z
crossref_primary_10_1016_j_trc_2016_09_004
crossref_primary_10_1108_JQME_07_2023_0064
crossref_primary_10_1007_s10479_022_04739_8
crossref_primary_10_1002_nav_22059
crossref_primary_10_1016_j_cor_2021_105261
crossref_primary_10_1016_j_cie_2018_04_005
crossref_primary_10_1016_j_trc_2017_07_010
crossref_primary_10_1016_j_trpro_2018_02_006
crossref_primary_10_1109_TIM_2025_3555729
crossref_primary_10_1007_s40092_017_0223_9
crossref_primary_10_1016_j_trpro_2015_09_048
crossref_primary_10_1007_s10951_023_00800_x
crossref_primary_10_1016_j_apm_2018_11_008
crossref_primary_10_1016_j_ress_2016_09_005
crossref_primary_10_1016_j_cie_2017_05_010
crossref_primary_10_1016_j_jairtraman_2023_102396
crossref_primary_10_1080_00207543_2018_1467574
crossref_primary_10_1155_2018_3525384
crossref_primary_10_1109_TII_2021_3066257
crossref_primary_10_1016_j_cor_2017_10_001
crossref_primary_10_1016_j_ress_2023_109239
crossref_primary_10_1016_j_ress_2023_109497
crossref_primary_10_1002_qre_3473
crossref_primary_10_1108_JQME_08_2023_0069
crossref_primary_10_1016_j_cor_2018_03_010
Cites_doi 10.5711/morj.15.1.53
10.1007/s10479-013-1376-6
10.1002/atr.5670430205
10.1002/nav.21483
10.1287/inte.1080.0349
10.1007/s10479-011-0885-4
10.1613/jair.3902
ContentType Journal Article
Copyright 2014
Copyright Elsevier Sequoia S.A. Apr 16, 2015
Copyright_xml – notice: 2014
– notice: Copyright Elsevier Sequoia S.A. Apr 16, 2015
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
7TA
H8D
JG9
DOI 10.1016/j.ejor.2014.10.016
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Materials Business File
Aerospace Database
Materials Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Materials Research Database
Aerospace Database
Materials Business File
DatabaseTitleList
Technology Research Database
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EISSN 1872-6860
EndPage 643
ExternalDocumentID 3538826631
10_1016_j_ejor_2014_10_016
S0377221714008376
Genre Feature
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
XPP
ZMT
~02
~G-
1OL
29G
41~
9DU
AAAKG
AALRI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HVGLF
HZ~
R2-
SEW
VH1
WUQ
~HD
7SC
7TB
8FD
AFXIZ
AGCQF
AGRNS
FR3
JQ2
L7M
L~C
L~D
SSH
7TA
H8D
JG9
ID FETCH-LOGICAL-c458t-cc4f38d2c9ae2381a0b24f96e4b55a57a4b686732bba8fc28a6714801bac550a3
ISICitedReferencesCount 50
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000349269200025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0377-2217
IngestDate Mon Sep 29 06:02:52 EDT 2025
Fri Jul 25 07:13:36 EDT 2025
Sat Nov 29 01:41:11 EST 2025
Tue Nov 18 22:28:25 EST 2025
Fri Feb 23 02:27:38 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Flight and Maintenance Planning
Mixed integer programming
Valid inequalities
Fleet availability
Exact solution algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c458t-cc4f38d2c9ae2381a0b24f96e4b55a57a4b686732bba8fc28a6714801bac550a3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4325-2975
PQID 1640738168
PQPubID 45678
PageCount 13
ParticipantIDs proquest_miscellaneous_1669850720
proquest_journals_1640738168
crossref_citationtrail_10_1016_j_ejor_2014_10_016
crossref_primary_10_1016_j_ejor_2014_10_016
elsevier_sciencedirect_doi_10_1016_j_ejor_2014_10_016
PublicationCentury 2000
PublicationDate 2015-04-16
PublicationDateYYYYMMDD 2015-04-16
PublicationDate_xml – month: 04
  year: 2015
  text: 2015-04-16
  day: 16
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle European journal of operational research
PublicationYear 2015
Publisher Elsevier B.V
Elsevier Sequoia S.A
Publisher_xml – name: Elsevier B.V
– name: Elsevier Sequoia S.A
References (bib0016) 2000
Horner (bib0005) 2006; 33
Kozanidis, Gavranis, Kostarelou (bib0008) 2012; 59
Kozanidis (bib0006) 2009; 43
Mattila, Virtanen, Raivio (bib0011) 2008; 38
(MSc thesis). Massachusetts Institute of Technology, Cambridge, MA, USA.
Kozanidis, Gavranis, Liberopoulos (bib0009) 2014; 221
Safaei, Banjevic, Jardine (bib0014) 2011; 186
(bib0010) 2011
Gavranis, A., & Kozanidis, G. (2013). An exact solution algorithm for maximizing the fleet availability of an aircraft unit subject to flight and maintenance requirements. In
Aramon Bajestani, Beck (bib0001) 2013; 47
Hong Kong, March 13–15
Sgaslik, A. (1994).
Pippin, B. W. (1998).
Cho, P. Y. (2011).
Rosenzweig, Domitrović, Bubić (bib0013) 2010
1036–1041.
Last accessed on October 26, 2014.
Kozanidis, Liberopoulos, Pitsilkas (bib0007) 2010; 15
IBM ILOG CPLEX Optimizer 12.5. (2012).
(MSc thesis). Naval Postgraduate School, Monterey, CA, USA.
10.1016/j.ejor.2014.10.016_bib0012
10.1016/j.ejor.2014.10.016_bib0002
Kozanidis (10.1016/j.ejor.2014.10.016_bib0007) 2010; 15
Kozanidis (10.1016/j.ejor.2014.10.016_bib0009) 2014; 221
Aramon Bajestani (10.1016/j.ejor.2014.10.016_bib0001) 2013; 47
10.1016/j.ejor.2014.10.016_bib0003
Horner (10.1016/j.ejor.2014.10.016_bib0005) 2006; 33
10.1016/j.ejor.2014.10.016_bib0004
10.1016/j.ejor.2014.10.016_bib0015
(10.1016/j.ejor.2014.10.016_bib0010) 2011
Kozanidis (10.1016/j.ejor.2014.10.016_bib0008) 2012; 59
(10.1016/j.ejor.2014.10.016_bib0016) 2000
Rosenzweig (10.1016/j.ejor.2014.10.016_bib0013) 2010
Kozanidis (10.1016/j.ejor.2014.10.016_bib0006) 2009; 43
Mattila (10.1016/j.ejor.2014.10.016_bib0011) 2008; 38
Safaei (10.1016/j.ejor.2014.10.016_bib0014) 2011; 186
References_xml – volume: 15
  start-page: 53
  year: 2010
  end-page: 73
  ident: bib0007
  article-title: Flight and maintenance planning of military aircraft for maximum fleet availability
  publication-title: Military Operations Research
– volume: 47
  start-page: 35
  year: 2013
  end-page: 70
  ident: bib0001
  article-title: Scheduling a dynamic aircraft repair shop with limited repair resources
  publication-title: Journal of Artificial Intelligence Research
– volume: 186
  start-page: 295
  year: 2011
  end-page: 316
  ident: bib0014
  article-title: Workforce-constrained maintenance scheduling for military aircraft fleet: A case study
  publication-title: Annals of Operations Research
– volume: 59
  start-page: 212
  year: 2012
  end-page: 229
  ident: bib0008
  article-title: Mixed integer least squares optimization for flight and maintenance planning of mission aircraft
  publication-title: Naval Research Logistics
– year: 2011
  ident: bib0010
  article-title: User's guide
– reference: (MSc thesis). Naval Postgraduate School, Monterey, CA, USA.
– reference: . Last accessed on October 26, 2014.
– reference: (MSc thesis). Massachusetts Institute of Technology, Cambridge, MA, USA.
– reference: , Hong Kong, March 13–15,
– start-page: 170
  year: 2010
  end-page: 179
  ident: bib0013
  article-title: Planning of training aircraft flight hours
  publication-title: Proceedings of the 13th international conference on operational research, Split, Croatia, September 29–October 1
– volume: 33
  start-page: 26
  year: 2006
  end-page: 28
  ident: bib0005
  article-title: Edelman award: Well worth the wait for Warner Robins
  publication-title: ORMS Today
– volume: 221
  start-page: 211
  year: 2014
  end-page: 238
  ident: bib0009
  article-title: Heuristics for flight and maintenance planning of mission aircraft
  publication-title: Annals of Operations Research
– year: 2000
  ident: bib0016
  article-title: Field manual no. 3-04.500: Army aviation maintenance (Appendix D: Maintenance management tools)
– reference: Gavranis, A., & Kozanidis, G. (2013). An exact solution algorithm for maximizing the fleet availability of an aircraft unit subject to flight and maintenance requirements. In
– reference: IBM ILOG CPLEX Optimizer 12.5. (2012).
– volume: 38
  start-page: 187
  year: 2008
  end-page: 201
  ident: bib0011
  article-title: Improving maintenance decision making in the Finnish Air Force through simulation
  publication-title: Interfaces
– reference: , 1036–1041.
– volume: 43
  start-page: 155
  year: 2009
  end-page: 182
  ident: bib0006
  article-title: A multiobjective model for maximizing fleet availability under the presence of flight and maintenance requirements
  publication-title: Journal of Advanced Transportation
– reference: Sgaslik, A. (1994).
– reference: Cho, P. Y. (2011).
– reference: Pippin, B. W. (1998).
– year: 2011
  ident: 10.1016/j.ejor.2014.10.016_bib0010
– ident: 10.1016/j.ejor.2014.10.016_bib0002
– ident: 10.1016/j.ejor.2014.10.016_bib0003
– ident: 10.1016/j.ejor.2014.10.016_bib0004
– volume: 15
  start-page: 53
  issue: 1
  year: 2010
  ident: 10.1016/j.ejor.2014.10.016_bib0007
  article-title: Flight and maintenance planning of military aircraft for maximum fleet availability
  publication-title: Military Operations Research
  doi: 10.5711/morj.15.1.53
– volume: 221
  start-page: 211
  issue: 1
  year: 2014
  ident: 10.1016/j.ejor.2014.10.016_bib0009
  article-title: Heuristics for flight and maintenance planning of mission aircraft
  publication-title: Annals of Operations Research
  doi: 10.1007/s10479-013-1376-6
– volume: 43
  start-page: 155
  issue: 2
  year: 2009
  ident: 10.1016/j.ejor.2014.10.016_bib0006
  article-title: A multiobjective model for maximizing fleet availability under the presence of flight and maintenance requirements
  publication-title: Journal of Advanced Transportation
  doi: 10.1002/atr.5670430205
– volume: 59
  start-page: 212
  issue: 3-4
  year: 2012
  ident: 10.1016/j.ejor.2014.10.016_bib0008
  article-title: Mixed integer least squares optimization for flight and maintenance planning of mission aircraft
  publication-title: Naval Research Logistics
  doi: 10.1002/nav.21483
– volume: 38
  start-page: 187
  issue: 3
  year: 2008
  ident: 10.1016/j.ejor.2014.10.016_bib0011
  article-title: Improving maintenance decision making in the Finnish Air Force through simulation
  publication-title: Interfaces
  doi: 10.1287/inte.1080.0349
– volume: 186
  start-page: 295
  issue: 1
  year: 2011
  ident: 10.1016/j.ejor.2014.10.016_bib0014
  article-title: Workforce-constrained maintenance scheduling for military aircraft fleet: A case study
  publication-title: Annals of Operations Research
  doi: 10.1007/s10479-011-0885-4
– ident: 10.1016/j.ejor.2014.10.016_bib0015
– start-page: 170
  year: 2010
  ident: 10.1016/j.ejor.2014.10.016_bib0013
  article-title: Planning of training aircraft flight hours
  publication-title: Proceedings of the 13th international conference on operational research, Split, Croatia, September 29–October 1
– volume: 47
  start-page: 35
  year: 2013
  ident: 10.1016/j.ejor.2014.10.016_bib0001
  article-title: Scheduling a dynamic aircraft repair shop with limited repair resources
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.3902
– ident: 10.1016/j.ejor.2014.10.016_bib0012
– year: 2000
  ident: 10.1016/j.ejor.2014.10.016_bib0016
– volume: 33
  start-page: 26
  issue: 3
  year: 2006
  ident: 10.1016/j.ejor.2014.10.016_bib0005
  article-title: Edelman award: Well worth the wait for Warner Robins
  publication-title: ORMS Today
SSID ssj0001515
Score 2.3753068
Snippet We address the Flight and Maintenance Planning (FMP) problem, i.e., the problem of deciding which available aircraft to fly and for how long, and which...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 631
SubjectTerms Aircraft
Aircraft industry
Aircraft maintenance
Algorithms
Availability
Decision making models
Exact solution algorithm
Exact solutions
Fleet availability
Flight and Maintenance Planning
Heuristic
Mathematical analysis
Mathematical models
Mixed integer programming
Motor vehicle fleets
Optimization
Optimization algorithms
Repair & maintenance
Studies
Valid inequalities
Title An exact solution algorithm for maximizing the fleet availability of a unit of aircraft subject to flight and maintenance requirements
URI https://dx.doi.org/10.1016/j.ejor.2014.10.016
https://www.proquest.com/docview/1640738168
https://www.proquest.com/docview/1669850720
Volume 242
WOSCitedRecordID wos000349269200025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1872-6860
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001515
  issn: 0377-2217
  databaseCode: AIEXJ
  dateStart: 19950105
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGhhA8cBkgCgMZibcp1eI6t8cKdVw0DaR1Ut-iEzcZqdJkZG1V9gP4ffwkzontNAw2wQMvkWU7l_Z89jk-V8beSHeqUI4HByCQjvQT34mUnzhCQeRPE5Vm0AQKHwXHx-FkEn3e2vphY2FWRVCW4Xodnf9XUmMfEptCZ_-B3O1DsQPbSHS8Itnx-leEH1Lafop8tK_Zh-KsqvPFl3njUziHdT7PL22YVFaQVRpWkBc6Zfc3HTK5xLXetPJa1ZDh45YJ6WxIWM0KOtI3doc5UMKJsgk8qFNyK270jRfXavyN9IsdtdVDmoRDrWL6HayQg5o6yeRwCRuLU3WJI9O8o8_v6i1cj0wwOqxSK9NsQM0JfluVw_5Jf9jZ-wZB4Aihwzr7qd6bw0A4fqjLD9jNW0jRQanobMW-5i6_sQitrZj101lF-WBd2SfvPvcP-biPP8WHp0dH8Xg0Gf86qvk_8go8nNF7zr86VMeM7P2mqMsttiMCL8J9dmf4YTT52EoHJEA2li3zA00gl_Y5vPpN1wlLV8SGRhYaP2T3zSGGDzX4HrGttNxld2wMxS57YGuFcMM6dtm9TuLLx-z7sOQNSLkFKW9ByhGkfANSjiDlDUh5F6S8yjhwAmnTMiDlBqR8UXENUo4g5R2Q8i5In7DTw9H47XvHVARxlPTChaOUzAbhVKgIUpI14SARMov8VCaeB14AMkGABAORJBBmuAmBH7iUICkBhUdxGDxl22VVps8YD71MDYIwAxUMZISTpBslSrmuylx5IJIec-1fHyuTLp-qthSx9YucxUSumMhFfdjVY_vtPec6WcyNsz1L0diIu1qMjRGqN963Z8kfm3V7EbtkkCcngLDHXrfDyCrI_gdlWi1pjh-FeP4TB89vfsQLdnezYvfY9qJepi_ZbbVa5Bf1K4Pon5iI50o
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+exact+solution+algorithm+for+maximizing+the+fleet+availability+of+a+unit+of+aircraft+subject+to+flight+and+maintenance+requirements&rft.jtitle=European+journal+of+operational+research&rft.au=Gavranis%2C+Andreas&rft.au=Kozanidis%2C+George&rft.date=2015-04-16&rft.pub=Elsevier+Sequoia+S.A&rft.issn=0377-2217&rft.eissn=1872-6860&rft.volume=242&rft.issue=2&rft.spage=631&rft_id=info:doi/10.1016%2Fj.ejor.2014.10.016&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3538826631
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon