Comprehensive Evaluation of Fast-Response, Reynolds-Averaged Navier–Stokes, and Large-Eddy Simulation Methods Against High-Spatial-Resolution Wind-Tunnel Data in Step-Down Street Canyons
Three computational fluid dynamics (CFD) methods with different levels of flow-physics modelling are comprehensively evaluated against high-spatial-resolution wind-tunnel velocity data from step-down street canyons (i.e., a short building downwind of a tall building). The first method is a semi-empi...
Gespeichert in:
| Veröffentlicht in: | Boundary-layer meteorology Jg. 164; H. 2; S. 217 - 247 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Dordrecht
Springer Netherlands
01.08.2017
Springer Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0006-8314, 1573-1472 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Three computational fluid dynamics (CFD) methods with different levels of flow-physics modelling are comprehensively evaluated against high-spatial-resolution wind-tunnel velocity data from step-down street canyons (i.e., a short building downwind of a tall building). The first method is a semi-empirical fast-response approach using the Quick Urban Industrial Complex (QUIC-URB) model. The second method solves the Reynolds-averaged Navier–Stokes (RANS) equations, and the third one utilizes a fully-coupled fluid-structure interaction large-eddy simulation (LES) model with a grid-turbulence inflow generator. Unlike typical point-by-point evaluation comparisons, here the entire two-dimensional wind-tunnel dataset is used to evaluate the dynamics of dominant flow topological features in the street canyon. Each CFD method is scrutinized for several geometric configurations by varying the downwind-to-upwind building-height ratio (
H
d
/
H
u
) and street canyon-width to building-width aspect ratio (
S
/
W
) for inflow winds perpendicular to the upwind building front face. Disparities between the numerical results and experimental data are quantified in terms of their ability to capture flow topological features for different geometric configurations. Overall, all three methods qualitatively predict the primary flow topological features, including a saddle point and a primary vortex. However, the secondary flow topological features, namely an in-canyon separation point and secondary vortices, are only well represented by the LES method despite its failure for taller downwind building cases. Misrepresentation of flow-regime transitions, exaggeration of the coherence of recirculation zones and wake fields, and overestimation of downwards vertical velocity into the canyon are the main defects in QUIC-URB, RANS and LES results, respectively. All three methods underestimate the updrafts and, surprisingly, QUIC-URB outperforms RANS for the streamwise velocity component, while RANS is superior to QUIC-URB for the vertical velocity component in the street canyon. |
|---|---|
| AbstractList | Three computational fluid dynamics (CFD) methods with different levels of flow-physics modelling are comprehensively evaluated against high-spatial-resolution wind-tunnel velocity data from step-down street canyons (i.e., a short building downwind of a tall building). The first method is a semi-empirical fast-response approach using the Quick Urban Industrial Complex (QUIC-URB) model. The second method solves the Reynolds-averaged Navier-Stokes (RANS) equations, and the third one utilizes a fully-coupled fluid-structure interaction large-eddy simulation (LES) model with a grid-turbulence inflow generator. Unlike typical point-by-point evaluation comparisons, here the entire two-dimensional wind-tunnel dataset is used to evaluate the dynamics of dominant flow topological features in the street canyon. Each CFD method is scrutinized for several geometric configurations by varying the downwind-to-upwind building-height ratio ( [Formula omitted]) and street canyon-width to building-width aspect ratio (S / W) for inflow winds perpendicular to the upwind building front face. Disparities between the numerical results and experimental data are quantified in terms of their ability to capture flow topological features for different geometric configurations. Overall, all three methods qualitatively predict the primary flow topological features, including a saddle point and a primary vortex. However, the secondary flow topological features, namely an in-canyon separation point and secondary vortices, are only well represented by the LES method despite its failure for taller downwind building cases. Misrepresentation of flow-regime transitions, exaggeration of the coherence of recirculation zones and wake fields, and overestimation of downwards vertical velocity into the canyon are the main defects in QUIC-URB, RANS and LES results, respectively. All three methods underestimate the updrafts and, surprisingly, QUIC-URB outperforms RANS for the streamwise velocity component, while RANS is superior to QUIC-URB for the vertical velocity component in the street canyon. Three computational fluid dynamics (CFD) methods with different levels of flow-physics modelling are comprehensively evaluated against high-spatial-resolution wind-tunnel velocity data from step-down street canyons (i.e., a short building downwind of a tall building). The first method is a semi-empirical fast-response approach using the Quick Urban Industrial Complex (QUIC-URB) model. The second method solves the Reynolds-averaged Navier–Stokes (RANS) equations, and the third one utilizes a fully-coupled fluid-structure interaction large-eddy simulation (LES) model with a grid-turbulence inflow generator. Unlike typical point-by-point evaluation comparisons, here the entire two-dimensional wind-tunnel dataset is used to evaluate the dynamics of dominant flow topological features in the street canyon. Each CFD method is scrutinized for several geometric configurations by varying the downwind-to-upwind building-height ratio ([Formula: see text]) and street canyon-width to building-width aspect ratio (S / W) for inflow winds perpendicular to the upwind building front face. Disparities between the numerical results and experimental data are quantified in terms of their ability to capture flow topological features for different geometric configurations. Overall, all three methods qualitatively predict the primary flow topological features, including a saddle point and a primary vortex. However, the secondary flow topological features, namely an in-canyon separation point and secondary vortices, are only well represented by the LES method despite its failure for taller downwind building cases. Misrepresentation of flow-regime transitions, exaggeration of the coherence of recirculation zones and wake fields, and overestimation of downwards vertical velocity into the canyon are the main defects in QUIC-URB, RANS and LES results, respectively. All three methods underestimate the updrafts and, surprisingly, QUIC-URB outperforms RANS for the streamwise velocity component, while RANS is superior to QUIC-URB for the vertical velocity component in the street canyon. (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) Three computational fluid dynamics (CFD) methods with different levels of flow-physics modelling are comprehensively evaluated against high-spatial-resolution wind-tunnel velocity data from step-down street canyons (i.e., a short building downwind of a tall building). The first method is a semi-empirical fast-response approach using the Quick Urban Industrial Complex (QUIC-URB) model. The second method solves the Reynolds-averaged Navier-Stokes (RANS) equations, and the third one utilizes a fully-coupled fluid-structure interaction large-eddy simulation (LES) model with a grid-turbulence inflow generator. Unlike typical point-by-point evaluation comparisons, here the entire two-dimensional wind-tunnel dataset is used to evaluate the dynamics of dominant flow topological features in the street canyon. Each CFD method is scrutinized for several geometric configurations by varying the downwind-to-upwind building-height ratio (...) and street canyon-width to building-width aspect ratio (S / W) for inflow winds perpendicular to the upwind building front face. Disparities between the numerical results and experimental data are quantified in terms of their ability to capture flow topological features for different geometric configurations. Overall, all three methods qualitatively predict the primary flow topological features, including a saddle point and a primary vortex. However, the secondary flow topological features, namely an in-canyon separation point and secondary vortices, are only well represented by the LES method despite its failure for taller downwind building cases. Misrepresentation of flow-regime transitions, exaggeration of the coherence of recirculation zones and wake fields, and overestimation of downwards vertical velocity into the canyon are the main defects in QUIC-URB, RANS and LES results, respectively. All three methods underestimate the updrafts and, surprisingly, QUIC-URB outperforms RANS for the streamwise velocity component, while RANS is superior to QUIC-URB for the vertical velocity component in the street canyon. Three computational fluid dynamics (CFD) methods with different levels of flow-physics modelling are comprehensively evaluated against high-spatial-resolution wind-tunnel velocity data from step-down street canyons (i.e., a short building downwind of a tall building). The first method is a semi-empirical fast-response approach using the Quick Urban Industrial Complex (QUIC-URB) model. The second method solves the Reynolds-averaged Navier–Stokes (RANS) equations, and the third one utilizes a fully-coupled fluid-structure interaction large-eddy simulation (LES) model with a grid-turbulence inflow generator. Unlike typical point-by-point evaluation comparisons, here the entire two-dimensional wind-tunnel dataset is used to evaluate the dynamics of dominant flow topological features in the street canyon. Each CFD method is scrutinized for several geometric configurations by varying the downwind-to-upwind building-height ratio (Hd/Hu) and street canyon-width to building-width aspect ratio (S / W) for inflow winds perpendicular to the upwind building front face. Disparities between the numerical results and experimental data are quantified in terms of their ability to capture flow topological features for different geometric configurations. Ultimately, all three methods qualitatively predict the primary flow topological features, including a saddle point and a primary vortex. But, the secondary flow topological features, namely an in-canyon separation point and secondary vortices, are only well represented by the LES method despite its failure for taller downwind building cases. Misrepresentation of flow-regime transitions, exaggeration of the coherence of recirculation zones and wake fields, and overestimation of downwards vertical velocity into the canyon are the main defects in QUIC-URB, RANS and LES results, respectively. All three methods underestimate the updrafts and, surprisingly, QUIC-URB outperforms RANS for the streamwise velocity component, while RANS is superior to QUIC-URB for the vertical velocity component in the street canyon. Three computational fluid dynamics (CFD) methods with different levels of flow-physics modelling are comprehensively evaluated against high-spatial-resolution wind-tunnel velocity data from step-down street canyons (i.e., a short building downwind of a tall building). The first method is a semi-empirical fast-response approach using the Quick Urban Industrial Complex (QUIC-URB) model. The second method solves the Reynolds-averaged Navier–Stokes (RANS) equations, and the third one utilizes a fully-coupled fluid-structure interaction large-eddy simulation (LES) model with a grid-turbulence inflow generator. Unlike typical point-by-point evaluation comparisons, here the entire two-dimensional wind-tunnel dataset is used to evaluate the dynamics of dominant flow topological features in the street canyon. Each CFD method is scrutinized for several geometric configurations by varying the downwind-to-upwind building-height ratio ( H d / H u ) and street canyon-width to building-width aspect ratio ( S / W ) for inflow winds perpendicular to the upwind building front face. Disparities between the numerical results and experimental data are quantified in terms of their ability to capture flow topological features for different geometric configurations. Overall, all three methods qualitatively predict the primary flow topological features, including a saddle point and a primary vortex. However, the secondary flow topological features, namely an in-canyon separation point and secondary vortices, are only well represented by the LES method despite its failure for taller downwind building cases. Misrepresentation of flow-regime transitions, exaggeration of the coherence of recirculation zones and wake fields, and overestimation of downwards vertical velocity into the canyon are the main defects in QUIC-URB, RANS and LES results, respectively. All three methods underestimate the updrafts and, surprisingly, QUIC-URB outperforms RANS for the streamwise velocity component, while RANS is superior to QUIC-URB for the vertical velocity component in the street canyon. |
| Audience | Academic |
| Author | Brown, Michael J. Harman, Todd Kim, J. J. Hayati, Arash Nemati Nelson, Matthew A. Pardyjak, Eric R. Stoll, Rob |
| Author_xml | – sequence: 1 givenname: Arash Nemati surname: Hayati fullname: Hayati, Arash Nemati organization: Department of Mechanical Engineering, University of Utah – sequence: 2 givenname: Rob surname: Stoll fullname: Stoll, Rob organization: Department of Mechanical Engineering, University of Utah – sequence: 3 givenname: J. J. surname: Kim fullname: Kim, J. J. organization: Department of Environmental Atmospheric Sciences, Pukyong National University – sequence: 4 givenname: Todd surname: Harman fullname: Harman, Todd organization: Department of Mechanical Engineering, University of Utah – sequence: 5 givenname: Matthew A. surname: Nelson fullname: Nelson, Matthew A. organization: Los Alamos National Laboratory, Information Systems and modelling Group – sequence: 6 givenname: Michael J. surname: Brown fullname: Brown, Michael J. organization: Los Alamos National Laboratory, Information Systems and modelling Group – sequence: 7 givenname: Eric R. surname: Pardyjak fullname: Pardyjak, Eric R. email: pardyjak@mech.utah.edu organization: Department of Mechanical Engineering, University of Utah |
| BackLink | https://www.osti.gov/servlets/purl/1392886$$D View this record in Osti.gov |
| BookMark | eNp9ks9u1DAQxiNUJLaFB-BmwYVDXezEiZPjarulSAtI3SKOlpNMsi5eO7WdRXvjHXgdnoYnwWk4oEogH_zv9818M5rT5MRYA0nykpILSgh_6ynJWYEJ5ZikLMfpk2RBc55hynh6kiwIIQUuM8qeJafe38UrpzlZJD9Xdj842IHx6gBofZB6lEFZg2yHrqQP-Ab8YI2Hc3QDR2N16_HyAE720KKP8qDA_fr-YxvsV_DnSJoWbaTrAa_b9oi2aj_qOdwHCDvberTspTI-oGvV7_B2iJ9STzmsHh-4L8q0-HY0BjS6lEEiZdA2wIAv7bfp5AACWklzjJ6eJ087qT28-LOfJZ-v1rera7z59O79arnBDcvLgJuiYCyroE6pzGRFSplVbZ7WbVU2RVZXddky3jAo8i7vaKTqjJC8qkkqO-BVlp0lr-a41gclfKMCNLvGRo9NEDSr0rIsIvRmhgZn70fwQeyVb0BracCOXqSx56yKhmhEXz9C7-zoTCxB0IoWlHDOWaQuZqqXGoQynQ1ONnG1sFcxO3Qqvi9ZxUtalDyNAj4LGme9d9CJ6PSh-1GotKBETLMi5lkRcVbENCtiUtJHysGpvXTH_2rSWeMja3pwfxXxT9Fv3rHVCg |
| CitedBy_id | crossref_primary_10_1007_s10546_017_0265_y crossref_primary_10_1007_s10546_023_00853_7 crossref_primary_10_1016_j_envsoft_2021_104958 crossref_primary_10_3389_feart_2023_1251056 crossref_primary_10_1016_j_buildenv_2020_107293 crossref_primary_10_1016_j_agrformet_2022_109273 crossref_primary_10_1016_j_uclim_2017_08_006 crossref_primary_10_1088_1361_6501_aa7c77 crossref_primary_10_1016_j_buildenv_2019_04_028 crossref_primary_10_1007_s10652_018_9646_0 crossref_primary_10_3390_atmos15060681 crossref_primary_10_3390_fluids6070254 crossref_primary_10_1016_j_uclim_2022_101083 crossref_primary_10_1016_j_atmosenv_2021_118636 crossref_primary_10_1071_WF21057 |
| Cites_doi | 10.1016/S0167-6105(97)00087-1 10.1109/38.79452 10.1007/s00366-006-0047-5 10.1002/joc.859 10.1017/S0022112066000338 10.1016/j.foar.2012.05.002 10.1016/j.jweia.2011.01.010 10.1175/JAMC-D-15-0020.1 10.1016/j.buildenv.2014.08.004 10.1016/j.atmosenv.2004.02.047 10.1017/jfm.2011.353 10.1016/j.atmosenv.2005.03.043 10.1007/s10546-016-0127-z 10.1016/j.atmosenv.2009.03.038 10.1080/10473289.2000.10464017 10.1146/annurev.fluid.35.101101.161147 10.1007/s10652-014-9366-z 10.1175/JAM2410.1 10.1016/j.future.2005.04.001 10.1016/j.jweia.2008.01.004 10.1016/j.compfluid.2013.03.006 10.1016/j.jweia.2009.06.007 10.1007/s10666-007-9110-x 10.1016/j.jweia.2010.12.005 10.1504/IJEP.2013.058458 10.1016/j.compfluid.2009.10.007 10.1016/S0167-6105(97)00230-4 10.1016/j.buildenv.2013.10.021 10.1016/j.buildenv.2012.10.012 10.1080/14685248.2015.1090575 10.1007/s10652-008-9084-5 10.1016/j.jweia.2013.08.008 10.1007/s10652-012-9240-9 10.1016/0167-6105(80)90002-1 10.1007/s00376-009-9095-2 10.1007/s10652-009-9152-5 10.1016/j.atmosenv.2008.10.040 10.1007/s10546-006-9123-z 10.1016/j.buildenv.2010.04.004 10.1109/TVCG.2010.93 10.1016/S1352-2310(99)00410-0 10.1016/j.jweia.2012.09.003 10.1063/1.857955 10.2174/2352631901401010001 10.1256/qj.05.199 10.1016/j.jweia.2012.02.027 10.1016/S0167-6105(98)00004-X 10.1023/A:1021349232026 10.1016/j.jweia.2010.12.002 10.1191/0309133306pp484pr 10.1016/j.compstruc.2007.01.031 10.1023/A:1011504001479 10.1063/1.858280 10.1016/j.buildenv.2015.11.007 10.1002/cpe.3099 10.1016/j.atmosenv.2011.03.058 10.1016/j.buildenv.2015.02.015 10.1016/S0167-6105(99)00009-4 10.7763/JOCET.2013.V1.13 10.1127/metz/6/1997/130 10.1063/1.4913572 10.1063/1.2795211 10.52842/conf.caadria.2010.357 10.1007/978-94-007-4786-9_21 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media Dordrecht 2017 COPYRIGHT 2017 Springer Boundary-Layer Meteorology is a copyright of Springer, 2017. |
| Copyright_xml | – notice: Springer Science+Business Media Dordrecht 2017 – notice: COPYRIGHT 2017 Springer – notice: Boundary-Layer Meteorology is a copyright of Springer, 2017. |
| CorporateAuthor | Los Alamos National Lab. (LANL), Los Alamos, NM (United States) |
| CorporateAuthor_xml | – name: Los Alamos National Lab. (LANL), Los Alamos, NM (United States) |
| DBID | AAYXX CITATION 3V. 7TG 7TN 7UA 7XB 88F 88I 8FD 8FE 8FG 8FK ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H8D H96 HCIFZ KL. L.G L7M M1Q M2P P5Z P62 PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PYCSY Q9U 7S9 L.6 OIOZB OTOTI |
| DOI | 10.1007/s10546-017-0245-2 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Military Database (Alumni Edition) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection (ProQuest) Natural Science Collection (ProQuest) Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Military Database Science Database (ProQuest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Environmental Science Collection (ProQuest) ProQuest Central Basic AGRICOLA AGRICOLA - Academic OSTI.GOV - Hybrid OSTI.GOV |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Military Collection Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest Military Collection (Alumni Edition) ProQuest SciTech Collection Environmental Science Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology Biology |
| EISSN | 1573-1472 |
| EndPage | 247 |
| ExternalDocumentID | 1392886 A497816872 10_1007_s10546_017_0245_2 |
| GrantInformation_xml | – fundername: Directorate for Geosciences grantid: 1512740 funderid: http://dx.doi.org/10.13039/100000085 – fundername: Directorate for Engineering grantid: 1134580 funderid: http://dx.doi.org/10.13039/100000084 |
| GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C -~X .86 .HR .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 23N 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2XV 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67M 67Z 6NX 6TJ 78A 7XC 88I 8FE 8FG 8FH 8TC 8UJ 8WZ 95- 95. 95~ 96X A6W AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPPZ ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIDUJ AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CSCUP D1K DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBLON EBS EDH EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IEP IFM IHE IJ- IKXTQ ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6- KDC KOV KOW LAK LK5 LLZTM M1Q M2P M4Y M7R MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P0- P19 P62 PATMY PCBAR PF0 PQQKQ PROAC PT4 PT5 PYCSY Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SC5 SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK6 WK8 YLTOR Z45 Z7R Z7Y Z7Z Z86 Z8M Z8S Z8T ZY4 ~02 ~8M ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABRTQ ADHKG AFDZB AFFHD AFOHR AGQPQ AHPBZ ATHPR AYFIA BANNL CITATION PHGZM PHGZT PQGLB 7TG 7TN 7UA 7XB 8FD 8FK C1K F1W H8D H96 KL. L.G L7M PKEHL PQEST PQUKI Q9U 7S9 L.6 AAFGU AAPBV ABFGW ABKAS ABPTK ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ADMDM AEFTE AESTI AEVTX AGGBP AIMYW AJDOV AKQUC N95 OIOZB OTOTI UNUBA |
| ID | FETCH-LOGICAL-c458t-c664439eb21a3a908a39d52bd98c63b9b8d47c4e65f5f1b21b30059b02afe7933 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 22 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000404989800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0006-8314 |
| IngestDate | Fri May 19 01:15:33 EDT 2023 Sun Nov 09 10:05:14 EST 2025 Fri Nov 07 23:32:19 EST 2025 Sun Nov 23 09:02:45 EST 2025 Tue Nov 18 22:36:14 EST 2025 Sat Nov 29 06:37:22 EST 2025 Fri Feb 21 02:34:10 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Flow topology Street-canyon flow Reynolds-averaged Navier–Stokes Large-eddy simulation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c458t-c664439eb21a3a908a39d52bd98c63b9b8d47c4e65f5f1b21b30059b02afe7933 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE AC52-06NA25396; CBET-PDM 1134580; CBET 1512740; ACI-1053575 National Science Foundation (NSF) LA-UR-17-27285 |
| ORCID | 0000000280690835 0000000168835512 |
| OpenAccessLink | https://www.osti.gov/servlets/purl/1392886 |
| PQID | 1916107774 |
| PQPubID | 105435 |
| PageCount | 31 |
| ParticipantIDs | osti_scitechconnect_1392886 proquest_miscellaneous_2000494581 proquest_journals_1916107774 gale_infotracacademiconefile_A497816872 crossref_citationtrail_10_1007_s10546_017_0245_2 crossref_primary_10_1007_s10546_017_0245_2 springer_journals_10_1007_s10546_017_0245_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-08-01 |
| PublicationDateYYYYMMDD | 2017-08-01 |
| PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht – name: United States |
| PublicationSubtitle | An International Journal of Physical, Chemical and Biological Processes in the Atmospheric Boundary Layer |
| PublicationTitle | Boundary-layer meteorology |
| PublicationTitleAbbrev | Boundary-Layer Meteorol |
| PublicationYear | 2017 |
| Publisher | Springer Netherlands Springer Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer – name: Springer Nature B.V |
| References | Kim, Baik (CR35) 2010; 27 Parker (CR52) 2006; 22 Britter, Hanna (CR9) 2003; 35 Parker, Guilkey, Harman (CR53) 2006; 22 Collier (CR13) 2006; 132 Yang, Meneveau (CR84) 2016; 17 Gowardhan, Brown, Pardyjak (CR20) 2010; 10 Meng, Berzins (CR41) 2014; 26 Tominaga, Stathopoulos (CR69) 2009; 43 Lilly (CR39) 1992; 4 CR79 CR34 Neophytou, Gowardhan, Brown (CR51) 2011; 99 CR33 CR32 CR76 Germano, Piomelli, Moin, Cabot (CR17) 1991; 3 Warner, Platt, Heagy, Jordan, Bieberbach (CR77) 2006; 45 Comte-Bellot, Corrsin (CR14) 1966; 25 Santiago, Martilli, Martin (CR60) 2007; 122 Helman, Hesselink (CR27) 1991; 11 Kim, Baik (CR36) 2004; 38 CR3 CR49 CR48 Neofytou, Haakana, Venetsanos, Kousa, Bartzis, Kukkonen (CR50) 2008; 13 CR44 Alegrini, Dorer, Carmeliet (CR2) 2014; 72 Blocken (CR6) 2015; 19 Tominaga, Mochida, Murakami, Sawaki (CR72) 2008; 96 Weinkauf, Theisel, Gelder, Pang (CR78) 2011; 17 CR82 Murakami (CR46) 1998; 74–76 Blocken, Persoon (CR7) 2009; 97 Wu, Kriksic (CR81) 2012; 104–106 Munters, Meneveau, Meyers (CR43) 2016; 159 Gross (CR21) 1997; 6 Guilkey, Harman, Banerjee (CR22) 2007; 85 Hanna, White, Trolier, Vernot, Brown, Gowardhan, Kaplan, Alexander, Moussafir, Wang, Williamson, Hannan, Hendrick (CR24) 2011; 45 Toparlar, Blocken, Vos, Heijst, Janssen, Hooff (CR73) 2015; 83 Kochanski, Pardyjak, Stoll, Gowardhan, Brown, Steenburgh (CR37) 2015; 54 Schulman, Strimaitis, Scire (CR61) 2000; 50 CR19 Moonen, Defraeye, Dorer, Blocken, Carmeliet (CR42) 2012; 1 Souch, Grimmond (CR66) 2006; 30 CR16 CR59 Tominaga, Stathopoulos (CR71) 2011; 99 Hertwig, Efthimiou, Bartzis, Leitl (CR28) 2012; 111 Gousseau, Blocken, van Heijst (CR18) 2013; 79 CR12 CR56 Singh, Laefer (CR65) 2015; 1 CR55 Salim, Buccolieri, Chan, Di Sabatino (CR58) 2011; 99 Xie, Huang, Wang (CR83) 2005; 39 CR10 CR54 Valente, Vassilicos (CR75) 2011; 687 Tominaga, Stathopoulos (CR70) 2010; 45 Blocken, Stathopoulos (CR8) 2013; 121 Uehara, Murakami, Oikawa, Wakamatsu (CR74) 2000; 34 Fernando, Lee, Anderson, Princevac, Pardyjak, Grossman-Clarke (CR15) 2001; 1 Brown, Gowardhan, Nelson, Williams, Pardyjak (CR11) 2013; 52 Janssen, Blocken, van Hooff (CR31) 2013; 59 Hussain, Lee (CR30) 1980; 6 Murakami, Ooka, Mochida, Yoshida, Kim (CR47) 1999; 81 Wilson (CR80) 1979; 85 Liu, Niu (CR40) 2016; 96 Arnfield (CR5) 2003; 23 CR29 Koutsourakis, Bartzis, Markatos (CR38) 2012; 12 Murakami (CR45) 1997; 67 CR26 CR25 Sahm, Louka, Ketzel, Guilloteau, Sini (CR57) 2002; 2 CR68 Addepalli, Pardyjak (CR1) 2015; 15 CR63 CR62 Singh, Hansen, Brown, Pardyjak (CR64) 2008; 8 Hang, Sandberg, Li (CR23) 2009; 43 Tabor, Baba-Ahmadi (CR67) 2010; 39 Apsley, Castro (CR4) 1997; 67–68 J Liu (245_CR40) 2016; 96 Y Tominaga (245_CR71) 2011; 99 G Collier (245_CR13) 2006; 132 P Neofytou (245_CR50) 2008; 13 245_CR29 DJ Wilson (245_CR80) 1979; 85 SG Parker (245_CR53) 2006; 22 S Murakami (245_CR46) 1998; 74–76 DK Lilly (245_CR39) 1992; 4 245_CR32 245_CR76 245_CR33 G Gross (245_CR21) 1997; 6 S Salim (245_CR58) 2011; 99 245_CR34 245_CR79 HJS Fernando (245_CR15) 2001; 1 M Neophytou (245_CR51) 2011; 99 JL Helman (245_CR27) 1991; 11 A Arnfield (245_CR5) 2003; 23 LL Schulman (245_CR61) 2000; 50 W Munters (245_CR43) 2016; 159 K Uehara (245_CR74) 2000; 34 J Santiago (245_CR60) 2007; 122 S Warner (245_CR77) 2006; 45 T Weinkauf (245_CR78) 2011; 17 Y Toparlar (245_CR73) 2015; 83 P Sahm (245_CR57) 2002; 2 245_CR44 D Apsley (245_CR4) 1997; 67–68 245_CR48 P Gousseau (245_CR18) 2013; 79 N Koutsourakis (245_CR38) 2012; 12 B Blocken (245_CR7) 2009; 97 B Blocken (245_CR6) 2015; 19 R Britter (245_CR9) 2003; 35 AK Kochanski (245_CR37) 2015; 54 245_CR82 B Blocken (245_CR8) 2013; 121 Y Tominaga (245_CR69) 2009; 43 S Hanna (245_CR24) 2011; 45 S Murakami (245_CR47) 1999; 81 B Singh (245_CR64) 2008; 8 JJ Kim (245_CR36) 2004; 38 XIA Yang (245_CR84) 2016; 17 245_CR49 B Addepalli (245_CR1) 2015; 15 J Kim (245_CR35) 2010; 27 245_CR10 245_CR54 245_CR55 J Alegrini (245_CR2) 2014; 72 245_CR3 W Janssen (245_CR31) 2013; 59 245_CR59 245_CR12 245_CR56 M Germano (245_CR17) 1991; 3 A Gowardhan (245_CR20) 2010; 10 D Hertwig (245_CR28) 2012; 111 Q Meng (245_CR41) 2014; 26 G Comte-Bellot (245_CR14) 1966; 25 P Valente (245_CR75) 2011; 687 C Souch (245_CR66) 2006; 30 M Brown (245_CR11) 2013; 52 M Singh (245_CR65) 2015; 1 245_CR19 P Moonen (245_CR42) 2012; 1 245_CR16 S Murakami (245_CR45) 1997; 67 SG Parker (245_CR52) 2006; 22 Y Tominaga (245_CR70) 2010; 45 M Hussain (245_CR30) 1980; 6 245_CR63 245_CR25 245_CR26 X Xie (245_CR83) 2005; 39 245_CR68 J Hang (245_CR23) 2009; 43 G Tabor (245_CR67) 2010; 39 Y Tominaga (245_CR72) 2008; 96 J Guilkey (245_CR22) 2007; 85 245_CR62 H Wu (245_CR81) 2012; 104–106 |
| References_xml | – volume: 67–68 start-page: 375 year: 1997 end-page: 386 ident: CR4 article-title: Flow and dispersion over hills: comparison between numerical predictions and experimental data publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/S0167-6105(97)00087-1 – volume: 11 start-page: 36 issue: 3 year: 1991 end-page: 46 ident: CR27 article-title: Visualizing vector field topology in fluid flows publication-title: IEEE Comput Graphics Appl doi: 10.1109/38.79452 – ident: CR49 – volume: 22 start-page: 277 year: 2006 end-page: 292 ident: CR53 article-title: A component-based parallel infrastructure for the simulation of fluid-structure interaction publication-title: Eng Comput doi: 10.1007/s00366-006-0047-5 – ident: CR68 – volume: 23 start-page: 1 year: 2003 end-page: 26 ident: CR5 article-title: Two decades of urban climate research: a review of turbulence exchanges of energy and water and the urban heat island publication-title: Int J Clim doi: 10.1002/joc.859 – volume: 25 start-page: 657 issue: 4 year: 1966 end-page: 682 ident: CR14 article-title: The use of a contraction to improve the isotropy of grid-generated turbulence publication-title: J Fluid Mech doi: 10.1017/S0022112066000338 – volume: 1 start-page: 197 year: 2012 end-page: 228 ident: CR42 article-title: Urban Physics: effect of micro climate on comfort, health and energy demand publication-title: Front Arch Res doi: 10.1016/j.foar.2012.05.002 – ident: CR16 – ident: CR12 – volume: 99 start-page: 357 issue: 4 year: 2011 end-page: 368 ident: CR51 article-title: An inter-comparison of three urban wind models using the Oklahoma City Joint Urban 2003 wind field measurements publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/j.jweia.2011.01.010 – volume: 54 start-page: 2119 issue: 10 year: 2015 end-page: 2139 ident: CR37 article-title: One-way coupling of the WRF-QUIC urban dispersion modeling system publication-title: J Appl Meteorol Clim doi: 10.1175/JAMC-D-15-0020.1 – ident: CR29 – ident: CR54 – volume: 83 start-page: 79 year: 2015 end-page: 90 ident: CR73 article-title: CFD simulation and validation of urban microclimate: a case study for Bergpolder Zuid, Rotterdam publication-title: Build Environ doi: 10.1016/j.buildenv.2014.08.004 – volume: 38 start-page: 3039 issue: 19 year: 2004 end-page: 3048 ident: CR36 article-title: A numerical study of the effects of ambient wind direction on flow and dispersion in urban street canyons using the rng k- turbulence model publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2004.02.047 – volume: 687 start-page: 300 year: 2011 end-page: 340 ident: CR75 article-title: The decay of turbulence generated by a class of multi-scale grids publication-title: J Fluid Mech doi: 10.1017/jfm.2011.353 – volume: 39 start-page: 4519 year: 2005 end-page: 4530 ident: CR83 article-title: Impact of building configuration on air quality in street canyons publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2005.03.043 – ident: CR25 – volume: 159 start-page: 305 issue: 2 year: 2016 end-page: 328 ident: CR43 article-title: Turbulent inflow precursor method with time-varying direction for large-eddy simulations and applications to wind farms publication-title: Boundary-Layer Meteorol doi: 10.1007/s10546-016-0127-z – volume: 43 start-page: 3200 issue: 20 year: 2009 end-page: 3210 ident: CR69 article-title: Numerical simulation of dispersion around an isolated cubic building: comparison of various types of k- models publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2009.03.038 – volume: 6 start-page: 130 year: 1997 end-page: 136 ident: CR21 article-title: ASMUS-ein numerisches modell zur berechnung der stromung und der schadtstoffverteilung im bereich einzelner gebaude. ii: Schadstoffausbreitung und anwendung publication-title: Meteorol Zeitschrift – volume: 50 start-page: 378 issue: 3 year: 2000 end-page: 390 ident: CR61 article-title: Development and evaluation of the PRIME plume rise and building downwash model publication-title: J Air Waste Manag Assoc doi: 10.1080/10473289.2000.10464017 – volume: 35 start-page: 1817 year: 2003 end-page: 1831 ident: CR9 article-title: Flow and dispersion in urban areas publication-title: Annu Rev Fluid Mech doi: 10.1146/annurev.fluid.35.101101.161147 – volume: 15 start-page: 439 year: 2015 end-page: 481 ident: CR1 article-title: A study of flow fields in step-down street canyons publication-title: Environ Fluid Mech doi: 10.1007/s10652-014-9366-z – ident: CR19 – volume: 45 start-page: 1414 issue: 10 year: 2006 end-page: 1428 ident: CR77 article-title: Comparisons of transport and dispersion model predictions of the mock urban setting test field experiment publication-title: J Appl Meteorol Clim doi: 10.1175/JAM2410.1 – volume: 22 start-page: 204 year: 2006 end-page: 216 ident: CR52 article-title: A component-based architecture for parallel multi-physics PDE simulation publication-title: Future Gen Comput Sys doi: 10.1016/j.future.2005.04.001 – volume: 96 start-page: 389 issue: 4 year: 2008 end-page: 411 ident: CR72 article-title: Comparison of various revised k- models and les applied to flow around a high-rise building model with 1:1:2 shape placed within the surface boundary layer publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/j.jweia.2008.01.004 – volume: 79 start-page: 120 year: 2013 end-page: 133 ident: CR18 article-title: Quality assessment of large-eddy simulation of wind flow around a high-rise building: validation and solution verification publication-title: Comput Fluids doi: 10.1016/j.compfluid.2013.03.006 – volume: 97 start-page: 255 issue: 5–6 year: 2009 end-page: 270 ident: CR7 article-title: Pedestrian wind comfort around a large football stadium in an urban environment: CFD simulation, validation and application of the new Dutch wind nuisance standard publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/j.jweia.2009.06.007 – volume: 13 start-page: 439 issue: 3 year: 2008 end-page: 448 ident: CR50 article-title: Computational fluid dynamics modelling of the pollution dispersion and comparison with measurements in a street canyon in Helsinki publication-title: Environ Model Assess doi: 10.1007/s10666-007-9110-x – volume: 99 start-page: 340 issue: 4 year: 2011 end-page: 348 ident: CR71 article-title: CFD modeling of pollution dispersion in a street canyon: comparison between LES and RANS publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/j.jweia.2010.12.005 – volume: 52 start-page: 263 issue: 3–4 year: 2013 end-page: 287 ident: CR11 article-title: QUIC transport and dispersion modelling of two releases from the Joint Urban 2003 field experiment publication-title: Int J Environ Pollut doi: 10.1504/IJEP.2013.058458 – ident: CR32 – volume: 39 start-page: 553 year: 2010 end-page: 567 ident: CR67 article-title: Inlet conditions for large eddy simulation: a review publication-title: Comput Fluids doi: 10.1016/j.compfluid.2009.10.007 – volume: 67 start-page: 3 year: 1997 end-page: 34 ident: CR45 article-title: Current status and future trends in computational wind engineering publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/S0167-6105(97)00230-4 – volume: 72 start-page: 63 year: 2014 end-page: 74 ident: CR2 article-title: Buoyant flows in street canyons: validation of CFD simulations with wind tunnel measurements publication-title: Build Environ doi: 10.1016/j.buildenv.2013.10.021 – volume: 59 start-page: 547 year: 2013 end-page: 562 ident: CR31 article-title: Pedestrian wind comfort around buildings: comparison of wind comfort criteria based on whole-flow field data for a complex case study publication-title: Build Environ doi: 10.1016/j.buildenv.2012.10.012 – volume: 17 start-page: 75 issue: 1 year: 2016 end-page: 93 ident: CR84 article-title: Recycling inflow method for simulations of spatially evolving turbulent boundary layers over rough surfaces publication-title: J Turb doi: 10.1080/14685248.2015.1090575 – ident: CR26 – volume: 8 start-page: 281 issue: 4 year: 2008 end-page: 312 ident: CR64 article-title: Evaluation of the QUIC-URB fast response urban wind model for a cubical building array and wide building street canyon publication-title: Environ Fluid Mech doi: 10.1007/s10652-008-9084-5 – volume: 121 start-page: 138 year: 2013 end-page: 145 ident: CR8 article-title: CFD simulation of pedestrian-level wind conditions around buildings: past achievements and prospects publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/j.jweia.2013.08.008 – volume: 12 start-page: 379 year: 2012 end-page: 403 ident: CR38 article-title: Evaluation of Reynolds stress, k- and RNG k- turbulence models in street canyon flows using various experimental datasets publication-title: Environ Fluid Mech doi: 10.1007/s10652-012-9240-9 – volume: 6 start-page: 207 issue: 3–4 year: 1980 end-page: 225 ident: CR30 article-title: A wind tunnel study of the mean pressure forces acting on large groups of low-rise buildings publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/0167-6105(80)90002-1 – volume: 27 start-page: 513 issue: 3 year: 2010 end-page: 527 ident: CR35 article-title: Effects of street-bottom and building roof heating on flow in three-dimensional street canyons publication-title: Adv Atmos Sci doi: 10.1007/s00376-009-9095-2 – volume: 10 start-page: 311 year: 2010 end-page: 328 ident: CR20 article-title: Evaluation of a fast response pressure solver for flow around isolated cube publication-title: Environ Fluid Mech doi: 10.1007/s10652-009-9152-5 – volume: 43 start-page: 869 year: 2009 end-page: 878 ident: CR23 article-title: Effect of urban morphology on wind condition in idealized city models publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2008.10.040 – volume: 122 start-page: 609 year: 2007 end-page: 634 ident: CR60 article-title: CFD simulation of airflow over a regular array of cubes: part I: three-dimensional simulation of the flow and validation with wind-tunnel measurements publication-title: Boundary-Layer Meteorol doi: 10.1007/s10546-006-9123-z – volume: 45 start-page: 2231 issue: 10 year: 2010 end-page: 2239 ident: CR70 article-title: Numerical simulation of dispersion around an isolated cubic building: model evaluation of RANS and LES publication-title: Build Environ doi: 10.1016/j.buildenv.2010.04.004 – volume: 17 start-page: 770 issue: 6 year: 2011 end-page: 780 ident: CR78 article-title: Stable feature flow fields publication-title: IEEE Trans Vis Comput Graph doi: 10.1109/TVCG.2010.93 – volume: 85 start-page: 284 year: 1979 end-page: 295 ident: CR80 article-title: Flow pattern over flat-roofed buildings and application to exhaust stack design publication-title: ASHRAE – volume: 34 start-page: 1553 year: 2000 end-page: 1562 ident: CR74 article-title: Wind tunnel experiments on how thermal stratification affects flow in and above urban street canyons publication-title: Atmos Environ doi: 10.1016/S1352-2310(99)00410-0 – volume: 111 start-page: 61 year: 2012 end-page: 72 ident: CR28 article-title: CFD-RANS model validation of turbulent flow in a semi-idealized urban canopy publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/j.jweia.2012.09.003 – ident: CR10 – ident: CR33 – ident: CR82 – ident: CR79 – ident: CR56 – volume: 3 start-page: 1760 issue: 7 year: 1991 end-page: 1765 ident: CR17 article-title: A dynamic sub-grid scale eddy viscosity model publication-title: Phys Fluids A doi: 10.1063/1.857955 – ident: CR63 – volume: 1 start-page: 1 year: 2015 end-page: 12 ident: CR65 article-title: Recent trends and remaining limitations in urban microclimate models publication-title: Open Urban Studies Demog J doi: 10.2174/2352631901401010001 – volume: 132 start-page: 1 year: 2006 end-page: 25 ident: CR13 article-title: The impact of urban area on weather publication-title: Q J R Meteorol Soc doi: 10.1256/qj.05.199 – ident: CR44 – volume: 104–106 start-page: 397 year: 2012 end-page: 407 ident: CR81 article-title: Designing for pedestrian comfort in response to local climate publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/j.jweia.2012.02.027 – volume: 74–76 start-page: 1 year: 1998 end-page: 24 ident: CR46 article-title: Overview of turbulence models applied in CWE-1997 publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/S0167-6105(98)00004-X – ident: CR48 – volume: 2 start-page: 587 issue: 5–6 year: 2002 end-page: 601 ident: CR57 article-title: Intercomparison of numerical urban dispersion models—part I: street canyon and single building configurations publication-title: Water Air Soil Pollut doi: 10.1023/A:1021349232026 – volume: 99 start-page: 103 issue: 2–3 year: 2011 end-page: 113 ident: CR58 article-title: Numerical simulation of atmospheric pollutant dispersion in an urban street canyon: comparison between RANS and LES publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/j.jweia.2010.12.002 – volume: 30 start-page: 270 year: 2006 end-page: 279 ident: CR66 article-title: Applied climatology: urban climate program publication-title: Phys Geogr doi: 10.1191/0309133306pp484pr – ident: CR3 – volume: 85 start-page: 660 issue: 11–14 year: 2007 end-page: 674 ident: CR22 article-title: An Eulerian Lagrangian approach for simulating explosions of energetic devices publication-title: Comput Struct doi: 10.1016/j.compstruc.2007.01.031 – volume: 1 start-page: 107 issue: 1 year: 2001 end-page: 164 ident: CR15 article-title: Urban fluid mechanics: air circulation and contaminant dispersion in cities publication-title: Environ Fluid Mech doi: 10.1023/A:1011504001479 – volume: 4 start-page: 633 issue: 3 year: 1992 end-page: 636 ident: CR39 article-title: A proposed modification of the Germano subgrid-scale closure method publication-title: Phys Fluids A doi: 10.1063/1.858280 – volume: 96 start-page: 91 year: 2016 end-page: 106 ident: CR40 article-title: CFD simulation of the wind environment around an isolated high-rise building: an evaluation of SRANS, LES and DES models publication-title: Build Environ doi: 10.1016/j.buildenv.2015.11.007 – ident: CR34 – volume: 26 start-page: 1388 issue: 7 year: 2014 end-page: 1407 ident: CR41 article-title: Scalable large-scale fluid-structure interaction solvers in the uintah framework via hybrid task-based parallelism algorithms publication-title: Concurr Comput doi: 10.1002/cpe.3099 – ident: CR55 – volume: 45 start-page: 4073 issue: 24 year: 2011 end-page: 4081 ident: CR24 article-title: Comparisons of JU2003 observations with four diagnostic urban wind flow and Lagrangian particle dispersion models publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2011.03.058 – ident: CR59 – ident: CR76 – ident: CR62 – volume: 19 start-page: 219 year: 2015 end-page: 245 ident: CR6 article-title: Computational fluid dynamics for urban physics: importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations publication-title: Build Environ doi: 10.1016/j.buildenv.2015.02.015 – volume: 81 start-page: 57 issue: 1–3 year: 1999 end-page: 81 ident: CR47 article-title: CFD analysis of wind climate from human scale to urban scale publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/S0167-6105(99)00009-4 – ident: 245_CR10 – volume: 52 start-page: 263 issue: 3–4 year: 2013 ident: 245_CR11 publication-title: Int J Environ Pollut doi: 10.1504/IJEP.2013.058458 – volume: 12 start-page: 379 year: 2012 ident: 245_CR38 publication-title: Environ Fluid Mech doi: 10.1007/s10652-012-9240-9 – ident: 245_CR33 – volume: 17 start-page: 75 issue: 1 year: 2016 ident: 245_CR84 publication-title: J Turb doi: 10.1080/14685248.2015.1090575 – volume: 34 start-page: 1553 year: 2000 ident: 245_CR74 publication-title: Atmos Environ doi: 10.1016/S1352-2310(99)00410-0 – ident: 245_CR63 doi: 10.7763/JOCET.2013.V1.13 – volume: 67 start-page: 3 year: 1997 ident: 245_CR45 publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/S0167-6105(97)00230-4 – volume: 79 start-page: 120 year: 2013 ident: 245_CR18 publication-title: Comput Fluids doi: 10.1016/j.compfluid.2013.03.006 – volume: 6 start-page: 130 year: 1997 ident: 245_CR21 publication-title: Meteorol Zeitschrift doi: 10.1127/metz/6/1997/130 – volume: 45 start-page: 2231 issue: 10 year: 2010 ident: 245_CR70 publication-title: Build Environ doi: 10.1016/j.buildenv.2010.04.004 – volume: 104–106 start-page: 397 year: 2012 ident: 245_CR81 publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/j.jweia.2012.02.027 – volume: 74–76 start-page: 1 year: 1998 ident: 245_CR46 publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/S0167-6105(98)00004-X – volume: 1 start-page: 107 issue: 1 year: 2001 ident: 245_CR15 publication-title: Environ Fluid Mech doi: 10.1023/A:1011504001479 – volume: 35 start-page: 1817 year: 2003 ident: 245_CR9 publication-title: Annu Rev Fluid Mech doi: 10.1146/annurev.fluid.35.101101.161147 – volume: 96 start-page: 91 year: 2016 ident: 245_CR40 publication-title: Build Environ doi: 10.1016/j.buildenv.2015.11.007 – ident: 245_CR44 doi: 10.1063/1.4913572 – volume: 2 start-page: 587 issue: 5–6 year: 2002 ident: 245_CR57 publication-title: Water Air Soil Pollut doi: 10.1023/A:1021349232026 – ident: 245_CR62 doi: 10.1063/1.2795211 – volume: 19 start-page: 219 year: 2015 ident: 245_CR6 publication-title: Build Environ doi: 10.1016/j.buildenv.2015.02.015 – volume: 122 start-page: 609 year: 2007 ident: 245_CR60 publication-title: Boundary-Layer Meteorol doi: 10.1007/s10546-006-9123-z – ident: 245_CR79 – ident: 245_CR56 – volume: 121 start-page: 138 year: 2013 ident: 245_CR8 publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/j.jweia.2013.08.008 – volume: 59 start-page: 547 year: 2013 ident: 245_CR31 publication-title: Build Environ doi: 10.1016/j.buildenv.2012.10.012 – volume: 23 start-page: 1 year: 2003 ident: 245_CR5 publication-title: Int J Clim doi: 10.1002/joc.859 – ident: 245_CR34 – volume: 99 start-page: 357 issue: 4 year: 2011 ident: 245_CR51 publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/j.jweia.2011.01.010 – volume: 30 start-page: 270 year: 2006 ident: 245_CR66 publication-title: Phys Geogr doi: 10.1191/0309133306pp484pr – ident: 245_CR49 – volume: 26 start-page: 1388 issue: 7 year: 2014 ident: 245_CR41 publication-title: Concurr Comput doi: 10.1002/cpe.3099 – volume: 132 start-page: 1 year: 2006 ident: 245_CR13 publication-title: Q J R Meteorol Soc doi: 10.1256/qj.05.199 – volume: 8 start-page: 281 issue: 4 year: 2008 ident: 245_CR64 publication-title: Environ Fluid Mech doi: 10.1007/s10652-008-9084-5 – ident: 245_CR82 – ident: 245_CR12 doi: 10.52842/conf.caadria.2010.357 – volume: 4 start-page: 633 issue: 3 year: 1992 ident: 245_CR39 publication-title: Phys Fluids A doi: 10.1063/1.858280 – volume: 17 start-page: 770 issue: 6 year: 2011 ident: 245_CR78 publication-title: IEEE Trans Vis Comput Graph doi: 10.1109/TVCG.2010.93 – ident: 245_CR76 – volume: 99 start-page: 103 issue: 2–3 year: 2011 ident: 245_CR58 publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/j.jweia.2010.12.002 – volume: 45 start-page: 4073 issue: 24 year: 2011 ident: 245_CR24 publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2011.03.058 – ident: 245_CR55 – volume: 687 start-page: 300 year: 2011 ident: 245_CR75 publication-title: J Fluid Mech doi: 10.1017/jfm.2011.353 – volume: 43 start-page: 869 year: 2009 ident: 245_CR23 publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2008.10.040 – volume: 50 start-page: 378 issue: 3 year: 2000 ident: 245_CR61 publication-title: J Air Waste Manag Assoc doi: 10.1080/10473289.2000.10464017 – volume: 67–68 start-page: 375 year: 1997 ident: 245_CR4 publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/S0167-6105(97)00087-1 – volume: 11 start-page: 36 issue: 3 year: 1991 ident: 245_CR27 publication-title: IEEE Comput Graphics Appl doi: 10.1109/38.79452 – volume: 111 start-page: 61 year: 2012 ident: 245_CR28 publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/j.jweia.2012.09.003 – volume: 99 start-page: 340 issue: 4 year: 2011 ident: 245_CR71 publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/j.jweia.2010.12.005 – ident: 245_CR25 – ident: 245_CR68 – volume: 45 start-page: 1414 issue: 10 year: 2006 ident: 245_CR77 publication-title: J Appl Meteorol Clim doi: 10.1175/JAM2410.1 – volume: 6 start-page: 207 issue: 3–4 year: 1980 ident: 245_CR30 publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/0167-6105(80)90002-1 – ident: 245_CR48 – volume: 22 start-page: 204 year: 2006 ident: 245_CR52 publication-title: Future Gen Comput Sys doi: 10.1016/j.future.2005.04.001 – ident: 245_CR29 – volume: 1 start-page: 197 year: 2012 ident: 245_CR42 publication-title: Front Arch Res doi: 10.1016/j.foar.2012.05.002 – volume: 39 start-page: 553 year: 2010 ident: 245_CR67 publication-title: Comput Fluids doi: 10.1016/j.compfluid.2009.10.007 – ident: 245_CR16 – volume: 159 start-page: 305 issue: 2 year: 2016 ident: 245_CR43 publication-title: Boundary-Layer Meteorol doi: 10.1007/s10546-016-0127-z – volume: 96 start-page: 389 issue: 4 year: 2008 ident: 245_CR72 publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/j.jweia.2008.01.004 – volume: 97 start-page: 255 issue: 5–6 year: 2009 ident: 245_CR7 publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/j.jweia.2009.06.007 – volume: 22 start-page: 277 year: 2006 ident: 245_CR53 publication-title: Eng Comput doi: 10.1007/s00366-006-0047-5 – volume: 81 start-page: 57 issue: 1–3 year: 1999 ident: 245_CR47 publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/S0167-6105(99)00009-4 – volume: 27 start-page: 513 issue: 3 year: 2010 ident: 245_CR35 publication-title: Adv Atmos Sci doi: 10.1007/s00376-009-9095-2 – ident: 245_CR54 – volume: 72 start-page: 63 year: 2014 ident: 245_CR2 publication-title: Build Environ doi: 10.1016/j.buildenv.2013.10.021 – volume: 10 start-page: 311 year: 2010 ident: 245_CR20 publication-title: Environ Fluid Mech doi: 10.1007/s10652-009-9152-5 – volume: 38 start-page: 3039 issue: 19 year: 2004 ident: 245_CR36 publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2004.02.047 – ident: 245_CR26 – volume: 85 start-page: 284 year: 1979 ident: 245_CR80 publication-title: ASHRAE – volume: 3 start-page: 1760 issue: 7 year: 1991 ident: 245_CR17 publication-title: Phys Fluids A doi: 10.1063/1.857955 – volume: 54 start-page: 2119 issue: 10 year: 2015 ident: 245_CR37 publication-title: J Appl Meteorol Clim doi: 10.1175/JAMC-D-15-0020.1 – volume: 39 start-page: 4519 year: 2005 ident: 245_CR83 publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2005.03.043 – volume: 85 start-page: 660 issue: 11–14 year: 2007 ident: 245_CR22 publication-title: Comput Struct doi: 10.1016/j.compstruc.2007.01.031 – volume: 43 start-page: 3200 issue: 20 year: 2009 ident: 245_CR69 publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2009.03.038 – volume: 83 start-page: 79 year: 2015 ident: 245_CR73 publication-title: Build Environ doi: 10.1016/j.buildenv.2014.08.004 – volume: 13 start-page: 439 issue: 3 year: 2008 ident: 245_CR50 publication-title: Environ Model Assess doi: 10.1007/s10666-007-9110-x – volume: 1 start-page: 1 year: 2015 ident: 245_CR65 publication-title: Open Urban Studies Demog J doi: 10.2174/2352631901401010001 – volume: 15 start-page: 439 year: 2015 ident: 245_CR1 publication-title: Environ Fluid Mech doi: 10.1007/s10652-014-9366-z – volume: 25 start-page: 657 issue: 4 year: 1966 ident: 245_CR14 publication-title: J Fluid Mech doi: 10.1017/S0022112066000338 – ident: 245_CR19 – ident: 245_CR32 – ident: 245_CR3 – ident: 245_CR59 doi: 10.1007/978-94-007-4786-9_21 |
| SSID | ssj0007150 |
| Score | 2.3264802 |
| Snippet | Three computational fluid dynamics (CFD) methods with different levels of flow-physics modelling are comprehensively evaluated against high-spatial-resolution... (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) Three computational fluid dynamics (CFD) methods with different levels of... |
| SourceID | osti proquest gale crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 217 |
| SubjectTerms | Aspect ratio Atmospheric Protection/Air Quality Control/Air Pollution Atmospheric Sciences Computational fluid dynamics Computer applications Computer based modeling data collection Earth and Environmental Science Earth Sciences equations Experimental data Flow topology Flow velocity Fluid dynamics Fluid flow Fluid mechanics Fluid-structure interaction geometry GEOSCIENCES High rise buildings Hydrodynamics Inflow Large eddy simulation Mathematical models Meteorology Methods Modelling Navier-Stokes equations Oceanic eddies Research Article Resolution Reynolds averaged Navier-Stokes method Reynolds-averaged Navier–Stokes Saddle points Secondary flow Separation Simulation simulation models Spatial discrimination Stokes law (fluid mechanics) Street canyons Street-canyon flow Tall buildings Topology Tunnels Turbulence (Fluid dynamics) Updraft Velocity Vertical velocities Width wind Wind tunnels |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELbQAhKXAgVEaEFGQiBBLeXPiXNcbXfFga5Qt0BvluOfErEk1SYL2hvvwOvwNDwJM_lZWgRIcIsVxxnJM5-_0YxnCHniIuMCzS2LrE1YHMeOKV87FrrIGuFboaK8bTaRzufi9DR73d_jrods9yEk2SL1hctuPEbvN2UYLmSAu1c5FptBF33xdgu_acC7eyfgKosoiIdQ5u-WuHQY9ZA8qsC2LvHNX0Kk7ckzu_lfMt8iOz3RpONOM26TK7bcJde71pObXeIdAVuuVu2IPqWTZQHUtR3dId8QJFb2fZfbTqfbguC0cnSm6oYdd5m19oAe201ZLU3NxmATgE2GzhUetd-_fF001QdbH1BVGvoKE87Z1JgNXRQf-5Zh9KhtX13T8ZkqgKZSTDph2CQZjAL_0ZsFfVeUhp2sMSWHHqpG0aKkmJ7GDqvP-ISBdToBWAOZ7pI3s-nJ5CXruzwwHXPRMJ0AJYsy8PADFanMB-3IDA9zkwmdRHmWCxOnOrYJd9wFMCvHCvtZ7ofKWUCX6B4ZlVVp7xOa21zYWOgs4xrUzleh47FyKkyz1HGdeMQftlvqvgQ6duJYyp_Fm3HDJGyYxA2ToUeebz857-p__G3yM9QhidgA62rVX3EA6bDKlhxjO78gESnM3EM1k0BzsFavxqQm3Uig46EQIOf-oH2yh5RagmMNVDcFuu6Rx9vXAAYY4VGlrdY19hTFej9cBB55MWjkhSX-JPiDf5q9R26ErUpjGuQ-GTWrtX1IrulPTVGvHrXW-AOLKTGH priority: 102 providerName: Springer Nature |
| Title | Comprehensive Evaluation of Fast-Response, Reynolds-Averaged Navier–Stokes, and Large-Eddy Simulation Methods Against High-Spatial-Resolution Wind-Tunnel Data in Step-Down Street Canyons |
| URI | https://link.springer.com/article/10.1007/s10546-017-0245-2 https://www.proquest.com/docview/1916107774 https://www.proquest.com/docview/2000494581 https://www.osti.gov/servlets/purl/1392886 |
| Volume | 164 |
| WOSCitedRecordID | wos000404989800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1573-1472 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0007150 issn: 0006-8314 databaseCode: PCBAR dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1573-1472 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0007150 issn: 0006-8314 databaseCode: PATMY dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Military Database customDbUrl: eissn: 1573-1472 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0007150 issn: 0006-8314 databaseCode: M1Q dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/military providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 1573-1472 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0007150 issn: 0006-8314 databaseCode: P5Z dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-1472 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0007150 issn: 0006-8314 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (ProQuest) customDbUrl: eissn: 1573-1472 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0007150 issn: 0006-8314 databaseCode: M2P dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-1472 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007150 issn: 0006-8314 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BChIXHgWEaYkWCYEEXeHX2usTCmkiDiQKSYGKi7XeB1gEu8QOKH-NX8eM7aQUiV64WLaytkfKN9_OembnI-SJDbT1FDcsMCZiYRhaJl1lmW8Do4VrhAyyRmwink7F6Wky6z64VV1Z5ZYTG6LWpcJv5C9hXQEzfQzRyquz7wxVozC72kloXCV7ENl4WNI18Wc7Jo493m5BgVWzCLxwm9Vst87xENfSMcPkI_MvzEsdO_dKcLMLoedf2dJmEhrf-l_zb5ObXfhJBy1e7pArptgn11tBys0-cSYQQ5er5oo-pcNlDgFtc3WX_ELqWJkvbcU7He3ahNPS0rGsajZv623NEZ2bTVEudcUG4CnAWJpOJU7AbFGXX011RGWh6VssQmcjrTd0kX_rZMTopJG0rujgs8whdKVYiMJQOBkcBd_QuQr9mBeanayxTIcey1rSvKBYssaOy594hsl2OgSqA4vukffj0cnwDeuUH5gKuaiZiiBMCxJY9XsykIkLiEk09zOdCBUFWZIJHcYqNBG33HowKsOu-0nm-tIaYJzgPukVZWEeEJqZTJhQqCThCqDoSt_yUFrpx0lsuYoc4m7_91R1bdFRnWOZnjd0RqikAJUUoZL6Dnm-u-Ws7Qly2eBnCKYU-QKeq2S37QGsw85b6QAl_rxIxDDyAPGWQuiD_XsVFjqpOoUQ3RcC7DzcAivtaKZKz1HlkMe7n4EgMOsjC1OuK9QZxR5AXHgOebGF7x-P-JfhDy9_4QG54Tfeg7WQh6RXr9bmEbmmftR5teqTvdej6WzeB3_03vUbr4TjjH-C43zx4TdEyT8M |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKFgQXHgXE0gJGgiJBLfJy4hw4rPahVu2uqnYR5WQcx4GIJSmbLNX-KX4Av46ZPLYUid564JYoXtvKznyeiT_PR8iLxI0TW3PDXGN85nlewpSlE-YkromFZYRyo0psIphMxMlJeLhGfrZnYZBW2WJiBdRxrvEb-VvIK2ClDyBaaRiU-2Z5BvlZ8W5vAH_mS8cZDaf9XdZICDDtcVEy7cN674aQPtrKVaEFQ4cxd6I4FNp3ozASsRdoz_g84YkNrSIs3x5GlqMSA6brQr_bp98ZqlThbm4j2XGNrAs_5E6HrB_2puOPK-wPbF4feoE8Xbi21-6j1of1uIfZe8Bwu5M5F1bCZj3o5ODYF4Ldv_Znq2VvdOd_e2F3ye0mwKa92iPukTWTbZAbteTmcoN0x5Al5PPqjm7T_iyFkL26u09-ITjOzZea00-Hq0LoNE_oSBUlO6oZxWaHHpllls_igvUACwCTYzpRGGKw4zL_aoodqrKYHiDNng3jeEmP02-NUBodV6LdBe19VikE5xSpNgyloQEKcIQGDOiHNIvZdIFEJDpQpaJpRpGUxwb5GV4hnYD2AcxhRg_I-yt5zw9JJ8sz84jQyETCeEKHIdfgbJZyEu6pRDlBGCRc-11itXYmdVP4HfVHZvK8ZDWapgTTlGia0umS16ufnNZVTy5r_AqNVyIiQr9aNQc7YHZYW0z2UMTQ9kUALTfRviUEd1ihWCOVS5cSkhBHCJjnVmvIsgHSQp5bcZc8Xz0GCMR9LZWZfFGgkipWOeLC7pI3rbv80cW_Jv748gGfkZu70_GBPNib7G-SW07lucj83CKdcr4wT8h1_aNMi_nTBgUo-XTVrvUbvCaYCw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Zb9NAEF6VFBAvHAVEaIFF4pCgq_r2-gGhkENUbaMoLaJvZr0HWAS7xA5V_lp_HTM-UopE3_rAW6xs1iNn5tsZ77fzEfLCuMrY0tfM1TpgnucZJixpmGNcrbiluXCTSmwiHI_58XE0WSNn7VkYpFW2mFgBtcolviPfgboCVvoQspUd09AiJoPR-5OfDBWkcKe1ldOoXWRPL0-hfCve7Q7gv37pOKPhUf8jaxQGmPR8XjIZQDrgRlBd2sIVkQWWRcp3EhVxGbhJlHDlhdLTgW98Y8OoBLu7R4nlCKPBs12Y9xpZD10oejpk_cNwPJmu1oHQ9usDMFCzc9f22j3V-uCe72ElHzLc-mTOhVWxWRs6OQT5hcT3r73aagkc3fmfH95dcrtJvGmvjpR7ZE1nG-RGLcW53CDdA6ge8nl1RV_R_iyFVL66uk_OEDTn-lvN9afDVYN0mhs6EkXJpjXTWG_TqV5m-UwVrAcYAVit6Fhg6sEOy_y7LrapyBTdR_o9Gyq1pIfpj0ZAjR5UYt4F7X0VKSTtFCk4DCWjASLwDg1I0M9pptjRAglKdCBKQdOMIlmPDfJT_IQ0A9oHkAeLHpBPV_JQH5JOlmf6EaGJTrj2uIwiX0IQWsIxvieMcMIoNL4MusRqfS6WTUN41CWZxeetrNFNY3DTGN00drrkzeonJ3U3lMsGv0ZHjhEpYV4pmgMfYB32HIt7KG5oBzyEkZvo6zEkfdi5WCLFS5YxFCcO52DnVuvUcQOwRXzu0V3yfPU1QCPud4lM54sCFVax-5HP7S5524bOH1P8y_DHl9_wGbkJwRPv7473NsktpwpiJIRukU45X-gn5Lr8VabF_GkDCJR8ueow-g1vg6Ce |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comprehensive+Evaluation+of+Fast-Response%2C+Reynolds-Averaged+Navier-Stokes%2C+and+Large-Eddy+Simulation+Methods+Against+High-Spatial-Resolution+Wind-Tunnel+Data+in+Step-Down+Street+Canyons&rft.jtitle=Boundary-layer+meteorology&rft.au=Hayati%2C+Arash+Nemati&rft.au=Stoll%2C+Rob&rft.au=Kim%2C+J+J&rft.au=Harman%2C+Todd&rft.date=2017-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0006-8314&rft.eissn=1573-1472&rft.volume=164&rft.issue=2&rft.spage=217&rft_id=info:doi/10.1007%2Fs10546-017-0245-2&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-8314&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-8314&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-8314&client=summon |