Automatic object detection for behavioural research using YOLOv8

Observational studies of human behaviour often require the annotation of objects in video recordings. Automatic object detection has been facilitated strongly by the development of YOLO (‘you only look once’) and particularly by YOLOv8 from Ultralytics, which is easy to use. The present study examin...

Full description

Saved in:
Bibliographic Details
Published in:Behavior research methods Vol. 56; no. 7; pp. 7307 - 7330
Main Author: Hermens, Frouke
Format: Journal Article
Language:English
Published: New York Springer US 01.10.2024
Subjects:
ISSN:1554-3528, 1554-3528
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Observational studies of human behaviour often require the annotation of objects in video recordings. Automatic object detection has been facilitated strongly by the development of YOLO (‘you only look once’) and particularly by YOLOv8 from Ultralytics, which is easy to use. The present study examines the conditions required for accurate object detection with YOLOv8. The results show almost perfect object detection even when the model was trained on a small dataset (100 to 350 images). The detector, however, does not extrapolate well to the same object in other backgrounds. By training the detector on images from a variety of backgrounds, excellent object detection can be restored. YOLOv8 could be a game changer for behavioural research that requires object annotation in video recordings.
AbstractList Observational studies of human behaviour often require the annotation of objects in video recordings. Automatic object detection has been facilitated strongly by the development of YOLO (‘you only look once’) and particularly by YOLOv8 from Ultralytics, which is easy to use. The present study examines the conditions required for accurate object detection with YOLOv8. The results show almost perfect object detection even when the model was trained on a small dataset (100 to 350 images). The detector, however, does not extrapolate well to the same object in other backgrounds. By training the detector on images from a variety of backgrounds, excellent object detection can be restored. YOLOv8 could be a game changer for behavioural research that requires object annotation in video recordings.
Observational studies of human behaviour often require the annotation of objects in video recordings. Automatic object detection has been facilitated strongly by the development of YOLO ('you only look once') and particularly by YOLOv8 from Ultralytics, which is easy to use. The present study examines the conditions required for accurate object detection with YOLOv8. The results show almost perfect object detection even when the model was trained on a small dataset (100 to 350 images). The detector, however, does not extrapolate well to the same object in other backgrounds. By training the detector on images from a variety of backgrounds, excellent object detection can be restored. YOLOv8 could be a game changer for behavioural research that requires object annotation in video recordings.Observational studies of human behaviour often require the annotation of objects in video recordings. Automatic object detection has been facilitated strongly by the development of YOLO ('you only look once') and particularly by YOLOv8 from Ultralytics, which is easy to use. The present study examines the conditions required for accurate object detection with YOLOv8. The results show almost perfect object detection even when the model was trained on a small dataset (100 to 350 images). The detector, however, does not extrapolate well to the same object in other backgrounds. By training the detector on images from a variety of backgrounds, excellent object detection can be restored. YOLOv8 could be a game changer for behavioural research that requires object annotation in video recordings.
Author Hermens, Frouke
Author_xml – sequence: 1
  givenname: Frouke
  surname: Hermens
  fullname: Hermens, Frouke
  email: frouke.hermens@ou.nl
  organization: Open University of the Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38750389$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1Lw0AQhhepWFv9Ax4kRy_R_c7mZil-QaEXPXhaNptNm5Jk6-6m4L93a1oQDz0MMwPvMzDPBIw62xkAbhC8JxkTDx4RikUKMd0Xhik7A5eIMZoShsXozzwGE-83EBKBEb0AYyIyFpf8EjzO-mBbFWqd2GJjdEhKE2KrbZdU1iWFWatdbXunmsQZb5TT66T3dbdKPpeL5U5cgfNKNd5cH_oUfDw_vc9f08Xy5W0-W6SaMhHSQnNMBCl5RSknFUcI45wgg1jJeEYQFkwLjSvM86IUxCAM88yIXFFS8BxiMgV3w92ts1-98UG2tdemaVRnbO8lgYyJnOKMx-jtIdoXrSnl1tWtct_y-HUMiCGgnfXemUrqOqj9z8GpupEIyr1gOQiWUa78FSxZRPE_9Hj9JEQGyMdwtzJObqLRLuo6Rf0ABIiK2g
CitedBy_id crossref_primary_10_1053_j_jvca_2025_07_040
crossref_primary_10_1007_s10489_025_06753_2
crossref_primary_10_7759_s44389_025_03317_w
crossref_primary_10_19113_sdufenbed_1646543
crossref_primary_10_3390_ijgi13110383
crossref_primary_10_3390_agronomy14123062
crossref_primary_10_3390_s25103052
crossref_primary_10_3390_s24165279
crossref_primary_10_3390_app15020899
crossref_primary_10_3390_s24227254
Cites_doi 10.1007/978-3-319-10602-1_48
10.14569/IJACSA.2021.0121013
10.1002/alr.21053
10.3390/s21217422
10.1109/ACCESS.2021.3094201
10.1016/j.jss.2022.05.024
10.1371/journal.pone.0121792
10.1007/978-1-4842-4470-8_7
10.1016/j.cmpb.2021.106251
10.3389/fpsyg.2012.00445
10.1109/IAEAC.2018.8577214
10.31219/osf.io/m6jb2
10.1109/RIVF48685.2020.9140740
10.1109/CVPR.2015.7299023
10.1109/TIV.2022.3165353
10.1016/j.cognition.2015.08.005
10.1068/p2935
10.1016/j.jss.2014.04.032
10.1016/j.vlsi.2019.07.005
10.1007/978-3-642-15711-0_37
10.1007/s00221-004-1862-9
10.1109/ICARM52023.2021.9536075
10.1109/EMBC.2017.8037183
10.1109/CVPR.2009.5206848
10.3390/s20041074
10.1016/j.cviu.2022.103508
10.16910/jemr.6.4.4
10.1109/ACCESS.2020.3046515
10.3390/rs12152501
10.1016/j.procs.2022.01.135
10.1016/j.actpsy.2014.01.009
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.3758/s13428-024-02420-5
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Psychology
EISSN 1554-3528
EndPage 7330
ExternalDocumentID 38750389
10_3758_s13428_024_02420_5
Genre Journal Article
GroupedDBID ---
-55
-5G
-BR
-DZ
-EM
-ET
-~C
-~X
0-V
06D
0R~
0VY
199
1N0
203
23N
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
30V
3V.
4.4
406
408
40E
53G
5GY
7X7
875
88E
8AO
8FI
8FJ
8G5
8TC
8UJ
95.
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AAKPC
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABIVO
ABJNI
ABJOX
ABJUD
ABKCH
ABMQK
ABNWP
ABPLI
ABPPZ
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHQT
ACHSB
ACHXU
ACIWK
ACKIV
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFFNX
AFKRA
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARALO
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BAWUL
BENPR
BGNMA
BPHCQ
BVXVI
C1A
C6C
CAG
CCPQU
COF
CSCUP
DDRTE
DIK
DNIVK
DPUIP
DWQXO
E3Z
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ3
GQ6
GQ7
GUQSH
H13
HF~
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
H~9
IAO
IHR
IKXTQ
INH
IPY
IRVIT
ITC
ITM
IWAJR
J-C
JBSCW
JZLTJ
KOV
LLZTM
M1P
M2M
M2O
M2R
M4Y
MVM
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
OHT
OK1
P2P
P9L
PADUT
PF-
PQQKQ
PROAC
PSQYO
PSYQQ
PT4
R9I
RIG
ROL
RPV
RSV
S16
S1Z
S27
S3B
SBS
SBU
SCLPG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
TN5
TR2
TSG
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UPT
UTJUX
UZXMN
VFIZW
VXZ
W48
WH7
WK8
XJT
XOL
XSW
Z7R
Z7S
Z7W
Z81
Z83
Z88
Z8N
Z92
ZMTXR
ZOVNA
ZUP
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PRQQA
ADHKG
AGQPQ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c458t-bc62383d6f4463f61122931e15d56731285c8c2f269bd83e12097e89a43b69023
IEDL.DBID RSV
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001223479600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1554-3528
IngestDate Fri Sep 05 08:04:29 EDT 2025
Mon Jul 21 05:58:56 EDT 2025
Sat Nov 29 02:18:15 EST 2025
Tue Nov 18 20:40:33 EST 2025
Fri Feb 21 02:39:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Surgical tool tracking
Automatic object detection
YOLO
Behavioural analysis
Language English
License 2024. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c458t-bc62383d6f4463f61122931e15d56731285c8c2f269bd83e12097e89a43b69023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://link.springer.com/10.3758/s13428-024-02420-5
PMID 38750389
PQID 3055894276
PQPubID 23479
PageCount 24
ParticipantIDs proquest_miscellaneous_3055894276
pubmed_primary_38750389
crossref_citationtrail_10_3758_s13428_024_02420_5
crossref_primary_10_3758_s13428_024_02420_5
springer_journals_10_3758_s13428_024_02420_5
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Behavior research methods
PublicationTitleAbbrev Behav Res
PublicationTitleAlternate Behav Res Methods
PublicationYear 2024
Publisher Springer US
Publisher_xml – name: Springer US
References HeXChengRZhengZWangZSmall object detection in traffic scenes based on YOLO-MXANetSensors20212121742210.3390/s21217422347707268588269
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., . . . Zitnick, C. L. (2014). Microsoft COCO: Common objects in context. In: Computer vision–ECCV 2014: 13th European conference, Zurich, Switzerland, September 6-12, 2014, proceedings, part v 13 (pp. 740–755).
Hermens, F., Flin, R., & Ahmed, I. (2013). Eye movements in surgery: A literature review. Journal of Eye Movement Research, 6(4).
HermensFKralDRosenbaumDALimits of end-state planningActa Psychologica201414814816210.1016/j.actpsy.2014.01.00924531145
Jocher, G., Chaurasia, A., & Qiu, J. (2023). Ultralytics YOLOv8. Retrieved from https://github.com/ultralytics/ultralytics
LiGJiZQuXZhouRCaoDCross-domain object detection for autonomous driving: A stepwise domain adaptative YOLO approachIEEE Transactions on Intelligent Vehicles20227360361510.1109/TIV.2022.3165353
Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features from tiny images.
Yu, Z., Huang, H., Chen, W., Su, Y., Liu, Y., & Wang, X. (2022). YOLO-facev2: A scale and occlusion aware face detector. arXiv:2208.02019
FengXJiangYYangXDuMLiXComputer vision algorithms and hardware implementations: A surveyIntegration20196930932010.1016/j.vlsi.2019.07.005
PhamM-TCourtraiLFriguetCLefèvreSBaussardAYOLO-fine: One-stage detector of small objects under various backgrounds in remote sensing imagesRemote Sensing20201215250110.3390/rs12152501
KuhnGTeszkaRTenawNKingstoneADon’t be fooled! attentional responses to social cues in a face-to-face and video magic trick reveals greater top-down control for overt than covert attentionCognition201614613614210.1016/j.cognition.2015.08.00526407341
Gil, A. M., Birdi, S., Kishibe, T., & Grantcharov, T. P. (2022). Eye tracking use in surgical research: A systematic review. Journal of Surgical Research,279, 774–787.
CohenRGRosenbaumDAWhere grasps are made reveals how grasps are planned: generation and recall of motor plansExperimental Brain Research200415748649510.1007/s00221-004-1862-915071711
MinaeeSBoykovYPorikliFPlazaAKehtarnavazNTerzopoulosDImage segmentation using deep learning: A surveyIEEE Transactions on Pattern Analysis and Machine Intelligence202144735233542
ChoiJChoSChungJWKimNVideo recognition of simple mastoidectomy using convolutional neural networks: Detection and segmentation of surgical tools and anatomical regionsComputer Methods and Programs in Biomedicine202120810.1016/j.cmpb.2021.10625134271262
Hermens, F. (2017). The influence of social stigmas on observers’ eye movements. Journal of Articles in Support of the Null Hypothesis, 14 (1).
KnudsenBHenningAWunschKWeigeltMAscherslebenGThe end-state comfort effect in 3-to 8-year-old children in two object manipulation tasksFrontiers in Psychology2012344510.3389/fpsyg.2012.00445231127863482869
Tien, T., Pucher, P. H., Sodergren, M. H., Sriskandarajah, K., Yang, G.-Z., & Darzi, A. (2014). Eye tracking for skills assessment and training: A systematic review. Journal of Surgical Research,191(1), 169–178.
Ahmidi, N., Hager, G. D., Ishii, L., Fichtinger, G., Gallia, G. L., & Ishii, M. (2010). Surgical task and skill classification from eye tracking and tool motion in minimally invasive surgery. In: Medical image computing and computer-assisted intervention–MICCAI 2010: 13th international conference, Beijing, China, September 20–24, 2010, Proceedings, part III 13 (pp. 295–302).
Wang, Y., Sun, Q., Sun, G., Gu, L., & Liu, Z. (2021). Object detection of surgical instruments based on yolov4. In: 2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM) (pp. 578–581).
LandMMennieNRustedJThe roles of vision and eye movements in the control of activities of daily livingPerception199928111311132810.1068/p293510755142
Ahmidi, N., Ishii, M., Fichtinger, G., Gallia, G. L., & Hager, G. D. (2012). An objective and automated method for assessing surgical skill in endoscopic sinus surgery using eye-tracking and tool-motion data. In: International forum of allergy & rhinology (vol. 2, pp. 507–515).
ChenFWangXZhaoYLvSNiuXVisual object tracking: A surveyComputer Vision and Image Understanding202222210.1016/j.cviu.2022.103508
DewiCChenR-CLiuY-TJiangXHartomoKDYOLO V4 for advanced traffic sign recognition with synthetic training data generated by various GANIEEE Access20219972289724210.1109/ACCESS.2021.3094201
Choi, B., Jo, K., Choi, S., & Choi, J. (2017). Surgical-tools detection based on convolutional neural network in laparoscopic robot-assisted surgery. In: 2017 39th annual international conference of the IEEE engineering in medicine and biology society (EMBC) (pp. 1756–1759).
Li, G., Song, Z., & Fu, Q. (2018). A new method of image detection for small datasets under the framework of YOLO network. In: 2018 IEEE 3rd advanced information technology, electronic and automation control conference (IAEAC) (pp. 1031–1035).
Wada, K. (2018). labelme: Image polygonal annotation with python. https://github.com/wkentaro/labelme. GitHub.
ChenWYuCTuCLyuZTangJOuSXueZA survey on hand pose estimation with wearable sensors and computer-vision-based methodsSensors2020204107410.3390/s20041074320791247071082
LiYLiSDuHChenLZhangDLiYYOLO-ACN: Focusing on small target and occluded object detectionIEEE Access2020822728822730310.1109/ACCESS.2020.3046515
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). Imagenet: A large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition (pp. 248–255).
Himabindu, D. D., & Kumar, S. P. (2021). A survey on computer vision architectures for large scale image classification using deep learning. International Journal of Advanced Computer Science and Applications, 12(10).
Bisong, E., & Bisong, E. (2019). Google colaboratory. Building machine learning and deep learning models on google cloud platform: a comprehensive guide for beginners, 59–64.
Chung, Q. M., Le, T. D., Dang, T. V., Vo, N. D., Nguyen, T. V., & Nguyen, K. (2020). Data augmentation analysis in vehicle detection from aerial videos. In: 2020 RIVF international conference on computing and communication technologies (RIVF) (pp. 1–3).
JiangPErguDLiuFCaiYMaBA review of yolo algorithm developmentsProcedia Computer Science20221991066107310.1016/j.procs.2022.01.135
Yang, L., Luo, P., Change Loy, C., & Tang, X. (2015). A large-scale car dataset for fine-grained categorization and verification. In: Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3973–3981).
Gregory, N. J., López, B., Graham, G., Marshman, P., Bate, S., & Kargas, N. (2015). Reduced gaze following and attention to heads when viewing a “live"’social scene. PLoS One,10(4)
2420_CR29
2420_CR1
2420_CR3
F Hermens (2420_CR18) 2014; 148
2420_CR2
X He (2420_CR15) 2021; 21
2420_CR27
2420_CR6
2420_CR8
W Chen (2420_CR5) 2020; 20
RG Cohen (2420_CR9) 2004; 157
2420_CR21
2420_CR23
F Chen (2420_CR4) 2022; 222
S Minaee (2420_CR30) 2021; 44
2420_CR17
G Li (2420_CR26) 2022; 7
2420_CR19
C Dewi (2420_CR11) 2021; 9
2420_CR14
2420_CR36
2420_CR13
2420_CR35
2420_CR16
J Choi (2420_CR7) 2021; 208
Y Li (2420_CR28) 2020; 8
B Knudsen (2420_CR22) 2012; 3
X Feng (2420_CR12) 2019; 69
M-T Pham (2420_CR31) 2020; 12
2420_CR10
2420_CR32
2420_CR34
2420_CR33
G Kuhn (2420_CR24) 2016; 146
M Land (2420_CR25) 1999; 28
P Jiang (2420_CR20) 2022; 199
References_xml – reference: HeXChengRZhengZWangZSmall object detection in traffic scenes based on YOLO-MXANetSensors20212121742210.3390/s21217422347707268588269
– reference: Himabindu, D. D., & Kumar, S. P. (2021). A survey on computer vision architectures for large scale image classification using deep learning. International Journal of Advanced Computer Science and Applications, 12(10).
– reference: Tien, T., Pucher, P. H., Sodergren, M. H., Sriskandarajah, K., Yang, G.-Z., & Darzi, A. (2014). Eye tracking for skills assessment and training: A systematic review. Journal of Surgical Research,191(1), 169–178.
– reference: Yang, L., Luo, P., Change Loy, C., & Tang, X. (2015). A large-scale car dataset for fine-grained categorization and verification. In: Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3973–3981).
– reference: Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., . . . Zitnick, C. L. (2014). Microsoft COCO: Common objects in context. In: Computer vision–ECCV 2014: 13th European conference, Zurich, Switzerland, September 6-12, 2014, proceedings, part v 13 (pp. 740–755).
– reference: HermensFKralDRosenbaumDALimits of end-state planningActa Psychologica201414814816210.1016/j.actpsy.2014.01.00924531145
– reference: LiYLiSDuHChenLZhangDLiYYOLO-ACN: Focusing on small target and occluded object detectionIEEE Access2020822728822730310.1109/ACCESS.2020.3046515
– reference: MinaeeSBoykovYPorikliFPlazaAKehtarnavazNTerzopoulosDImage segmentation using deep learning: A surveyIEEE Transactions on Pattern Analysis and Machine Intelligence202144735233542
– reference: Gil, A. M., Birdi, S., Kishibe, T., & Grantcharov, T. P. (2022). Eye tracking use in surgical research: A systematic review. Journal of Surgical Research,279, 774–787.
– reference: Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features from tiny images.
– reference: Ahmidi, N., Ishii, M., Fichtinger, G., Gallia, G. L., & Hager, G. D. (2012). An objective and automated method for assessing surgical skill in endoscopic sinus surgery using eye-tracking and tool-motion data. In: International forum of allergy & rhinology (vol. 2, pp. 507–515).
– reference: JiangPErguDLiuFCaiYMaBA review of yolo algorithm developmentsProcedia Computer Science20221991066107310.1016/j.procs.2022.01.135
– reference: PhamM-TCourtraiLFriguetCLefèvreSBaussardAYOLO-fine: One-stage detector of small objects under various backgrounds in remote sensing imagesRemote Sensing20201215250110.3390/rs12152501
– reference: Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). Imagenet: A large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition (pp. 248–255).
– reference: FengXJiangYYangXDuMLiXComputer vision algorithms and hardware implementations: A surveyIntegration20196930932010.1016/j.vlsi.2019.07.005
– reference: Hermens, F., Flin, R., & Ahmed, I. (2013). Eye movements in surgery: A literature review. Journal of Eye Movement Research, 6(4).
– reference: Li, G., Song, Z., & Fu, Q. (2018). A new method of image detection for small datasets under the framework of YOLO network. In: 2018 IEEE 3rd advanced information technology, electronic and automation control conference (IAEAC) (pp. 1031–1035).
– reference: Choi, B., Jo, K., Choi, S., & Choi, J. (2017). Surgical-tools detection based on convolutional neural network in laparoscopic robot-assisted surgery. In: 2017 39th annual international conference of the IEEE engineering in medicine and biology society (EMBC) (pp. 1756–1759).
– reference: Gregory, N. J., López, B., Graham, G., Marshman, P., Bate, S., & Kargas, N. (2015). Reduced gaze following and attention to heads when viewing a “live"’social scene. PLoS One,10(4)
– reference: Jocher, G., Chaurasia, A., & Qiu, J. (2023). Ultralytics YOLOv8. Retrieved from https://github.com/ultralytics/ultralytics
– reference: Ahmidi, N., Hager, G. D., Ishii, L., Fichtinger, G., Gallia, G. L., & Ishii, M. (2010). Surgical task and skill classification from eye tracking and tool motion in minimally invasive surgery. In: Medical image computing and computer-assisted intervention–MICCAI 2010: 13th international conference, Beijing, China, September 20–24, 2010, Proceedings, part III 13 (pp. 295–302).
– reference: ChenWYuCTuCLyuZTangJOuSXueZA survey on hand pose estimation with wearable sensors and computer-vision-based methodsSensors2020204107410.3390/s20041074320791247071082
– reference: CohenRGRosenbaumDAWhere grasps are made reveals how grasps are planned: generation and recall of motor plansExperimental Brain Research200415748649510.1007/s00221-004-1862-915071711
– reference: LiGJiZQuXZhouRCaoDCross-domain object detection for autonomous driving: A stepwise domain adaptative YOLO approachIEEE Transactions on Intelligent Vehicles20227360361510.1109/TIV.2022.3165353
– reference: KuhnGTeszkaRTenawNKingstoneADon’t be fooled! attentional responses to social cues in a face-to-face and video magic trick reveals greater top-down control for overt than covert attentionCognition201614613614210.1016/j.cognition.2015.08.00526407341
– reference: Chung, Q. M., Le, T. D., Dang, T. V., Vo, N. D., Nguyen, T. V., & Nguyen, K. (2020). Data augmentation analysis in vehicle detection from aerial videos. In: 2020 RIVF international conference on computing and communication technologies (RIVF) (pp. 1–3).
– reference: Wada, K. (2018). labelme: Image polygonal annotation with python. https://github.com/wkentaro/labelme. GitHub.
– reference: ChoiJChoSChungJWKimNVideo recognition of simple mastoidectomy using convolutional neural networks: Detection and segmentation of surgical tools and anatomical regionsComputer Methods and Programs in Biomedicine202120810.1016/j.cmpb.2021.10625134271262
– reference: Hermens, F. (2017). The influence of social stigmas on observers’ eye movements. Journal of Articles in Support of the Null Hypothesis, 14 (1).
– reference: Wang, Y., Sun, Q., Sun, G., Gu, L., & Liu, Z. (2021). Object detection of surgical instruments based on yolov4. In: 2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM) (pp. 578–581).
– reference: DewiCChenR-CLiuY-TJiangXHartomoKDYOLO V4 for advanced traffic sign recognition with synthetic training data generated by various GANIEEE Access20219972289724210.1109/ACCESS.2021.3094201
– reference: LandMMennieNRustedJThe roles of vision and eye movements in the control of activities of daily livingPerception199928111311132810.1068/p293510755142
– reference: KnudsenBHenningAWunschKWeigeltMAscherslebenGThe end-state comfort effect in 3-to 8-year-old children in two object manipulation tasksFrontiers in Psychology2012344510.3389/fpsyg.2012.00445231127863482869
– reference: ChenFWangXZhaoYLvSNiuXVisual object tracking: A surveyComputer Vision and Image Understanding202222210.1016/j.cviu.2022.103508
– reference: Bisong, E., & Bisong, E. (2019). Google colaboratory. Building machine learning and deep learning models on google cloud platform: a comprehensive guide for beginners, 59–64.
– reference: Yu, Z., Huang, H., Chen, W., Su, Y., Liu, Y., & Wang, X. (2022). YOLO-facev2: A scale and occlusion aware face detector. arXiv:2208.02019
– ident: 2420_CR29
  doi: 10.1007/978-3-319-10602-1_48
– ident: 2420_CR19
  doi: 10.14569/IJACSA.2021.0121013
– ident: 2420_CR2
  doi: 10.1002/alr.21053
– volume: 21
  start-page: 7422
  issue: 21
  year: 2021
  ident: 2420_CR15
  publication-title: Sensors
  doi: 10.3390/s21217422
– volume: 9
  start-page: 97228
  year: 2021
  ident: 2420_CR11
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3094201
– ident: 2420_CR13
  doi: 10.1016/j.jss.2022.05.024
– ident: 2420_CR14
  doi: 10.1371/journal.pone.0121792
– ident: 2420_CR3
  doi: 10.1007/978-1-4842-4470-8_7
– volume: 208
  year: 2021
  ident: 2420_CR7
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2021.106251
– volume: 3
  start-page: 445
  year: 2012
  ident: 2420_CR22
  publication-title: Frontiers in Psychology
  doi: 10.3389/fpsyg.2012.00445
– ident: 2420_CR27
  doi: 10.1109/IAEAC.2018.8577214
– ident: 2420_CR16
  doi: 10.31219/osf.io/m6jb2
– ident: 2420_CR8
  doi: 10.1109/RIVF48685.2020.9140740
– ident: 2420_CR35
  doi: 10.1109/CVPR.2015.7299023
– volume: 7
  start-page: 603
  issue: 3
  year: 2022
  ident: 2420_CR26
  publication-title: IEEE Transactions on Intelligent Vehicles
  doi: 10.1109/TIV.2022.3165353
– volume: 146
  start-page: 136
  year: 2016
  ident: 2420_CR24
  publication-title: Cognition
  doi: 10.1016/j.cognition.2015.08.005
– volume: 28
  start-page: 1311
  issue: 11
  year: 1999
  ident: 2420_CR25
  publication-title: Perception
  doi: 10.1068/p2935
– ident: 2420_CR32
  doi: 10.1016/j.jss.2014.04.032
– volume: 69
  start-page: 309
  year: 2019
  ident: 2420_CR12
  publication-title: Integration
  doi: 10.1016/j.vlsi.2019.07.005
– ident: 2420_CR36
– ident: 2420_CR1
  doi: 10.1007/978-3-642-15711-0_37
– volume: 44
  start-page: 3523
  issue: 7
  year: 2021
  ident: 2420_CR30
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 157
  start-page: 486
  year: 2004
  ident: 2420_CR9
  publication-title: Experimental Brain Research
  doi: 10.1007/s00221-004-1862-9
– ident: 2420_CR34
  doi: 10.1109/ICARM52023.2021.9536075
– ident: 2420_CR6
  doi: 10.1109/EMBC.2017.8037183
– ident: 2420_CR10
  doi: 10.1109/CVPR.2009.5206848
– ident: 2420_CR21
– volume: 20
  start-page: 1074
  issue: 4
  year: 2020
  ident: 2420_CR5
  publication-title: Sensors
  doi: 10.3390/s20041074
– ident: 2420_CR23
– volume: 222
  year: 2022
  ident: 2420_CR4
  publication-title: Computer Vision and Image Understanding
  doi: 10.1016/j.cviu.2022.103508
– ident: 2420_CR17
  doi: 10.16910/jemr.6.4.4
– volume: 8
  start-page: 227288
  year: 2020
  ident: 2420_CR28
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3046515
– volume: 12
  start-page: 2501
  issue: 15
  year: 2020
  ident: 2420_CR31
  publication-title: Remote Sensing
  doi: 10.3390/rs12152501
– volume: 199
  start-page: 1066
  year: 2022
  ident: 2420_CR20
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2022.01.135
– volume: 148
  start-page: 148
  year: 2014
  ident: 2420_CR18
  publication-title: Acta Psychologica
  doi: 10.1016/j.actpsy.2014.01.009
– ident: 2420_CR33
SSID ssj0038214
Score 2.5397294
Snippet Observational studies of human behaviour often require the annotation of objects in video recordings. Automatic object detection has been facilitated strongly...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7307
SubjectTerms Behavioral Research - methods
Behavioral Science and Psychology
Cognitive Psychology
Humans
Original Manuscript
Psychology
Video Recording - methods
Title Automatic object detection for behavioural research using YOLOv8
URI https://link.springer.com/article/10.3758/s13428-024-02420-5
https://www.ncbi.nlm.nih.gov/pubmed/38750389
https://www.proquest.com/docview/3055894276
Volume 56
WOSCitedRecordID wos001223479600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1554-3528
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0038214
  issn: 1554-3528
  databaseCode: 7X7
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1554-3528
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0038214
  issn: 1554-3528
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Psychology Database
  customDbUrl:
  eissn: 1554-3528
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0038214
  issn: 1554-3528
  databaseCode: M2M
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/psychology
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1554-3528
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0038214
  issn: 1554-3528
  databaseCode: M2O
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Social Science Database
  customDbUrl:
  eissn: 1554-3528
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0038214
  issn: 1554-3528
  databaseCode: M2R
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/socscijournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature Link
  customDbUrl:
  eissn: 1554-3528
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038214
  issn: 1554-3528
  databaseCode: RSV
  dateStart: 20050201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xOnDhVVoWKDJSbyXq-hU7Nx4CcYBdRAtaTlYeNkVCWbTJIvHvGTvJShUCqVwsJbKdaMb2fGPPfAb4QRPH04yJyLk0RQfF2SjhQka56FuKE91SFxKFL9RgoEej5KpNCqu6aPfuSDKs1N6vRFD7q6JceDZl7NfblX4k52ERzZ32FzZc_77t1l-uGRVNesw77f41QW9w5Zsz0WBqzlY_95NrsNJCS3LUjIV1mLPlBizPVriXL3B4NK3HgaOVjDO_AUMKW4dYrJIgeCVtzr5n4iAtC9Bf4iPj78nd8GL4rDfh5uz0z8l51F6hgMKWuo6yHOGN5kXs0O3jLkZ0hfadWioLGSuOxknmOmeOxUlWaG59Jq2yOkkFz9BvZvwrLJTj0m4BKSS3rLBxbLUTlNFMFbrPVSKtYBZRUA9oJ1WTt_zi_pqLR4N-hheOaYRjUDAmCMfIHvyctXlq2DU-rL3fKcvgJPAnG2lpx9PKeNoynQim4h58a7Q4649rFVgEe3DQqcy087T64GPb_1d9B5aZ13oI89uFhXoytd9hKX-uH6rJHsyrkQql3oPF49PB1TU-XbLLUA5D6d_gMH4Fi_fkTw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS-RAEC68wHnZ9XZ2V23BNw1OX0nnbWVRFMdRvNCnJke3CpIRkxH891vdSQZEFPS9j1BV3fVVquprgC0aW56kTATWJgkGKNYEMRcyyETPUDzohlrfKNyPBgN1cxOfNU1hZVvt3qYk_U3t4koEtbsl5cKxKeO6zq_0AjkJ0wI9lmPMP7-4bu9frhgVdXvMB_PeuqB3uPJdTtS7moOf3_vIOfjRQEuyV9vCPEyYYgE64xvudRH-7o2qoedoJcPU_YAhual8LVZBELySpmffMXGQhgXonrjK-Dtye9o_fVFLcHWwf_nvMGieUEBhS1UFaYbwRvE8tBj2cRsiukL_Tg2VuQwjjs5JZipjloVxmituXCdtZFScCJ5i3Mz4MkwVw8KsAsklNyw3YWiUFZTRNMpVj0exNIIZREFdoK1Uddbwi7tnLh41xhlOOLoWjkbBaC8cLbuwPZ7zVLNrfDp6s1WWxkPgMhtJYYajUjvaMhULFoVdWKm1OF6Pq8izCHZhp1WZbs5p-clmv742fANmDy9P-rp_NDj-DR3mLMCX_P2Bqep5ZNZgJnupHsrndW-s_wGWWeD8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZSwMxEB68kL54H_WM4Jsuba7d7JuiFsVSBQ_qU9gjUUG20m4L_nuT7G5RxIL4nmzCHJlvNjNfAA5xqGkUE-ZpHUUmQdHKCynjXsKaChtHV1i7RuF20OmIbje8_dLF76rdqyvJoqfBsjRleeM91dbFqQG4jQGmzDIrmzVsjGl6fBpmmS2kt_n63WN1FlNBMCtaZX6Z9z0c_cCYP-5HXdhpLf5_w0uwUEJOdFrYyDJMqWwFauOT72MVTk6Hec9xt6JebH_MoFTlrkYrQwbUorKX3zJ0oJId6AXZivln9HTTvhmJNXhoXdyfXXrl0wpGCVzkXpwY2CNo6muTDlLtG9Rl4j5WmKfcD6gJWjwRCdHED-NUUGU7bAMlwojR2OTThK7DTNbL1CaglFNFUuX7SmiGCY6DVDRpEHLFiDLoqA64krBMSt5x-_zFmzT5hxWOLIQjjWCkE47kdTgaz3kvWDcmjj6oFCeNc9gbjyhTveFAWjozETIS-HXYKDQ6_h4VgWMXrMNxpT5Z-u9gwmJbfxu-D_O35y3Zvupcb0ONWANwlYA7MJP3h2oX5pJR_jro7zm7_QRjXung
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+object+detection+for+behavioural+research+using+YOLOv8&rft.jtitle=Behavior+research+methods&rft.au=Hermens%2C+Frouke&rft.date=2024-10-01&rft.pub=Springer+US&rft.eissn=1554-3528&rft.volume=56&rft.issue=7&rft.spage=7307&rft.epage=7330&rft_id=info:doi/10.3758%2Fs13428-024-02420-5&rft.externalDocID=10_3758_s13428_024_02420_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1554-3528&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1554-3528&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1554-3528&client=summon