Approximating Continuous Functions on Persistence Diagrams Using Template Functions
The persistence diagram is an increasingly useful tool from Topological Data Analysis, but its use alongside typical machine learning techniques requires mathematical finesse. The most success to date has come from methods that map persistence diagrams into vector spaces, in a way which maximizes th...
Saved in:
| Published in: | Foundations of computational mathematics Vol. 23; no. 4; pp. 1215 - 1272 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.08.2023
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1615-3375, 1615-3383 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The persistence diagram is an increasingly useful tool from Topological Data Analysis, but its use alongside typical machine learning techniques requires mathematical finesse. The most success to date has come from methods that map persistence diagrams into vector spaces, in a way which maximizes the structure preserved. This process is commonly referred to as featurization. In this paper, we describe a mathematical framework for featurization called
template functions
, and we show that it addresses the problem of approximating continuous functions on compact subsets of the space of persistence diagrams. Specifically, we begin by characterizing relative compactness with respect to the bottleneck distance, and then provide explicit theoretical methods for constructing compact-open dense subsets of continuous functions on persistence diagrams. These dense subsets—obtained via template functions—are leveraged for supervised learning tasks with persistence diagrams. Specifically, we test the method for classification and regression algorithms on several examples including shape data and dynamical systems. |
|---|---|
| AbstractList | The persistence diagram is an increasingly useful tool from Topological Data Analysis, but its use alongside typical machine learning techniques requires mathematical finesse. The most success to date has come from methods that map persistence diagrams into vector spaces, in a way which maximizes the structure preserved. This process is commonly referred to as featurization. In this paper, we describe a mathematical framework for featurization called
template functions
, and we show that it addresses the problem of approximating continuous functions on compact subsets of the space of persistence diagrams. Specifically, we begin by characterizing relative compactness with respect to the bottleneck distance, and then provide explicit theoretical methods for constructing compact-open dense subsets of continuous functions on persistence diagrams. These dense subsets—obtained via template functions—are leveraged for supervised learning tasks with persistence diagrams. Specifically, we test the method for classification and regression algorithms on several examples including shape data and dynamical systems. The persistence diagram is an increasingly useful tool from Topological Data Analysis, but its use alongside typical machine learning techniques requires mathematical finesse. The most success to date has come from methods that map persistence diagrams into vector spaces, in a way which maximizes the structure preserved. This process is commonly referred to as featurization. In this paper, we describe a mathematical framework for featurization called template functions, and we show that it addresses the problem of approximating continuous functions on compact subsets of the space of persistence diagrams. Specifically, we begin by characterizing relative compactness with respect to the bottleneck distance, and then provide explicit theoretical methods for constructing compact-open dense subsets of continuous functions on persistence diagrams. These dense subsets—obtained via template functions—are leveraged for supervised learning tasks with persistence diagrams. Specifically, we test the method for classification and regression algorithms on several examples including shape data and dynamical systems. |
| Author | Perea, Jose A. Khasawneh, Firas A. Munch, Elizabeth |
| Author_xml | – sequence: 1 givenname: Jose A. surname: Perea fullname: Perea, Jose A. email: j.pereabenitez@northeastern.edu organization: Department of Mathematics and Khoury College of Computer Sciences, Northeastern University – sequence: 2 givenname: Elizabeth surname: Munch fullname: Munch, Elizabeth organization: Department of Computational Mathematics, Science and Engineering and Department of Mathematics, Michigan State University – sequence: 3 givenname: Firas A. surname: Khasawneh fullname: Khasawneh, Firas A. organization: Department of Mechanical Engineering, Michigan State University |
| BookMark | eNp9kMtKAzEUhoNUsFVfwNWA69FcJpPMslSrQkHBdh1CcqZMaZOaZEDf3tQRCy66Omfxf-fyTdDIeQcI3RB8RzAW95FgimWJKS1xw2tRijM0JjXhJWOSjf56wS_QJMYNxoQ3pBqj9-l-H_xnt9Opc-ti5l2uve9jMe-dSZ13sfCueIMQu5jAGSgeOr0OeheLVTwgS9jttzrBEbhC563eRrj-rZdoNX9czp7LxevTy2y6KE3FZSob22hqGSXECmlJxYC2RjQtqampWiCWCmCsBmtpA420RnDKjDGWY9DWGnaJboe5-YOPHmJSG98Hl1cqKrms65pQmVNySJngYwzQKtMlfTg0Bd1tFcHqoFANClVWqH4UKpFR-g_dh2wqfJ2G2ADFHHZrCMerTlDfhImHiQ |
| CitedBy_id | crossref_primary_10_1021_acscentsci_2c01177 crossref_primary_10_1016_j_jfranklin_2024_107249 crossref_primary_10_1007_s41468_023_00157_2 crossref_primary_10_1016_j_compbiomed_2025_110513 |
| Cites_doi | 10.1007/s00454-014-9604-7 10.1098/rspa.2003.1183 10.1007/978-3-319-42545-0 10.1007/s41468-020-00048-w 10.1007/s00454-006-1276-5 10.1137/S0036144502417715 10.1007/s10208-015-9255-y 10.1007/BF02128237 10.1063/1.4919075 10.1109/TMI.2011.2147327 10.1016/j.chaos.2007.06.118 10.1016/0167-2789(82)90034-3 10.1214/15-EJS1030 10.1007/s10208-014-9201-4 10.1109/TPAMI.2018.2885516 10.1007/s10208-010-9066-0 10.1111/cgf.12692 10.1142/S0219498815500668 10.1214/15-AOAS886 10.1103/RevModPhys.57.617 10.1088/0951-7715/22/6/006 10.1088/0266-5611/27/12/124007 10.1007/978-3-662-48410-4_7 10.1214/14-AOS1252 10.4310/HHA.2016.v18.n1.a21 10.1007/s10462-020-09897-4 10.1007/BF02419243 10.1007/s41468-020-00061-z 10.1117/12.2179555 10.1109/CVPR.2015.7299106 10.1109/ICMLA.2019.00202 10.1007/978-3-642-02498-6_32 10.1145/2582112.2582128 10.1007/s10208-018-9379-y 10.1214/12-IMSCOLL1006 10.24963/ijcai.2019/624 10.1007/3-540-63930-6_138 10.1111/j.1467-8659.2009.01515.x 10.1109/CVPR.2014.257 10.1109/ICMLA.2019.00200 10.1007/s41468-018-0022-4 10.1007/978-3-319-23231-7_27 10.1109/ICMLA.2019.00186 10.1016/j.jpaa.2016.05.002 |
| ContentType | Journal Article |
| Copyright | SFoCM 2022 SFoCM 2022. |
| Copyright_xml | – notice: SFoCM 2022 – notice: SFoCM 2022. |
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1007/s10208-022-09567-7 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Mathematics Applied Sciences Computer Science |
| EISSN | 1615-3383 |
| EndPage | 1272 |
| ExternalDocumentID | 10_1007_s10208_022_09567_7 |
| GroupedDBID | -5D -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 29H 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BAPOH BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ I-F IAO IEA IHE IJ- IKXTQ IOF ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- MK~ N2Q N9A NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9R PF0 PQQKQ PT4 Q2X QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z81 Z83 Z88 ZMTXR ~8M AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION ICD 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c458t-9d9a2d3211d78d143e2fc79f162c4fe1d27e336edd29e98dc7523cccd50eaddc3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000804505100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1615-3375 |
| IngestDate | Fri Jul 25 19:20:02 EDT 2025 Sat Nov 29 04:08:44 EST 2025 Tue Nov 18 22:23:33 EST 2025 Fri Feb 21 02:43:13 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | 30L05 Persistent homology 68T05 Featurization Bottleneck distance Machine learning 55N31 Topological data analysis |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c458t-9d9a2d3211d78d143e2fc79f162c4fe1d27e336edd29e98dc7523cccd50eaddc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2858666128 |
| PQPubID | 43692 |
| PageCount | 58 |
| ParticipantIDs | proquest_journals_2858666128 crossref_citationtrail_10_1007_s10208_022_09567_7 crossref_primary_10_1007_s10208_022_09567_7 springer_journals_10_1007_s10208_022_09567_7 |
| PublicationCentury | 2000 |
| PublicationDate | 20230800 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 8 year: 2023 text: 20230800 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | The Journal of the Society for the Foundations of Computational Mathematics |
| PublicationTitle | Foundations of computational mathematics |
| PublicationTitleAbbrev | Found Comput Math |
| PublicationYear | 2023 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Gottwald, Melbourne, Skokos, Gottwald, Laskar (CR37) 2016 Carrière, Oudot, Ovsjanikov (CR18) 2015; 34 Berry, Chen, Cisewski-Kehe, Fasy (CR8) 2020; 4 CR39 Adcock, Carlsson, Carlsson (CR2) 2016; 18 Bubenik (CR10) 2015; 16 CR34 CR31 Trefethen (CR61) 2012 Crawley-Boevey (CR27) 2015; 14 Benettin, Galgani, Giorgilli, Strelcyn (CR6) 1980; 15 Cohen-Steiner, Edelsbrunner, Harer (CR24) 2007; 37 CR3 Blumberg, Gal, Mandell, Pancia (CR9) 2014; 14 Gottwald, Melbourne (CR36) 2009; 22 Baire (CR4) 1899; 3 Lesnick (CR45) 2015; 15 CR46 Adams, Emerson, Kirby, Neville, Peterson, Shipman, Chepushtanova, Hanson, Motta, Ziegelmeier (CR1) 2017; 18 CR44 CR43 CR42 Rudin (CR57) 2006 CR41 Zieliński, Lipiński, Juda, Zeppelzauer, Dłotko (CR70) 2021; 54 Munch, Turner, Bendich, Mukherjee, Mattingly, Harer (CR49) 2015; 9 Kusano, Fukumizu, Hiraoka (CR40) 2018; 18 Sandri (CR58) 1986; 6 Mileyko, Mukherjee, Harer (CR48) 2011; 27 Conway (CR25) 2013 Fasy, Lecci, Rinaldo, Wasserman, Balakrishnan, Singh (CR33) 2014; 42 Chazal, de Silva, Glisse, Oudot (CR19) 2016 Palaniyandi (CR52) 2009; 39 Berrut, Trefethen (CR7) 2004; 46 CR17 CR16 CR15 CR59 CR14 Gottwald, Melbourne (CR35) 2004; 460 Henon (CR38) 1982; 5 CR12 CR56 CR11 CR55 CR54 CR53 CR51 McCullough, Small, Stemler, Ho-Ching Iu (CR47) 2015; 25 Divol, Lacombe (CR30) 2021; 5 Turner, Mileyko, Mukherjee, Harer (CR62) 2014; 52 Chevyrev, Nanda, Oberhauser (CR22) 2018; 42 Carlsson, De Silva (CR13) 2010; 10 CR29 CR28 Pachauri, Hinrichs, Chung, Johnson, Singh (CR50) 2011; 30 CR69 CR68 CR23 Eckmann, Ruelle (CR32) 1985; 57 CR67 CR66 CR21 CR65 CR20 CR64 CR63 CR60 Bendich, Marron, Miller, Pieloch, Skwerer (CR5) 2016; 10 Corbet, Fugacci, Kerber, Landi, Wang (CR26) 2019; 2 D Pachauri (9567_CR50) 2011; 30 G Kusano (9567_CR40) 2018; 18 9567_CR31 Y Mileyko (9567_CR48) 2011; 27 9567_CR34 V Divol (9567_CR30) 2021; 5 H Adams (9567_CR1) 2017; 18 JB Conway (9567_CR25) 2013 9567_CR39 P Bendich (9567_CR5) 2016; 10 M Lesnick (9567_CR45) 2015; 15 M Carrière (9567_CR18) 2015; 34 9567_CR60 JP Eckmann (9567_CR32) 1985; 57 BT Fasy (9567_CR33) 2014; 42 M Henon (9567_CR38) 1982; 5 W Rudin (9567_CR57) 2006 9567_CR63 9567_CR20 9567_CR64 9567_CR21 9567_CR65 G Benettin (9567_CR6) 1980; 15 9567_CR66 9567_CR23 9567_CR67 9567_CR68 9567_CR69 9567_CR28 E Munch (9567_CR49) 2015; 9 9567_CR29 A Adcock (9567_CR2) 2016; 18 B Zieliński (9567_CR70) 2021; 54 J Berrut (9567_CR7) 2004; 46 I Chevyrev (9567_CR22) 2018; 42 P Palaniyandi (9567_CR52) 2009; 39 D Cohen-Steiner (9567_CR24) 2007; 37 9567_CR51 9567_CR53 9567_CR54 9567_CR11 9567_CR55 9567_CR12 GA Gottwald (9567_CR36) 2009; 22 9567_CR56 9567_CR14 9567_CR15 9567_CR59 9567_CR16 9567_CR17 W Crawley-Boevey (9567_CR27) 2015; 14 K Turner (9567_CR62) 2014; 52 GA Gottwald (9567_CR35) 2004; 460 M Sandri (9567_CR58) 1986; 6 AJ Blumberg (9567_CR9) 2014; 14 G Carlsson (9567_CR13) 2010; 10 9567_CR3 F Chazal (9567_CR19) 2016 LN Trefethen (9567_CR61) 2012 R Baire (9567_CR4) 1899; 3 P Bubenik (9567_CR10) 2015; 16 9567_CR41 9567_CR42 9567_CR43 GA Gottwald (9567_CR37) 2016 9567_CR44 9567_CR46 M McCullough (9567_CR47) 2015; 25 E Berry (9567_CR8) 2020; 4 R Corbet (9567_CR26) 2019; 2 |
| References_xml | – volume: 52 start-page: 44 issue: 1 year: 2014 end-page: 70 ident: CR62 article-title: Fréchet means for distributions of persistence diagrams publication-title: Discrete & Computational Geometry doi: 10.1007/s00454-014-9604-7 – ident: CR68 – volume: 460 start-page: 603 issue: 2042 year: 2004 end-page: 611 ident: CR35 article-title: A new test for chaos in deterministic systems publication-title: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences doi: 10.1098/rspa.2003.1183 – ident: CR39 – ident: CR16 – ident: CR51 – ident: CR12 – volume: 6 start-page: 78 issue: 3 year: 1986 end-page: 84 ident: CR58 article-title: Numerical calculation of lyapunov exponents publication-title: The Mathematica Journal – ident: CR29 – volume: 18 start-page: 1 issue: 189 year: 2018 end-page: 41 ident: CR40 article-title: Kernel method for persistence diagrams via kernel embedding and weight factor publication-title: Journal of Machine Learning Research – ident: CR54 – year: 2016 ident: CR19 publication-title: The structure and stability of persistence modules doi: 10.1007/978-3-319-42545-0 – volume: 2 start-page: 100005 year: 2019 ident: CR26 article-title: A kernel for multi-parameter persistent homology publication-title: Computers & graphics: X – volume: 4 start-page: 211 issue: 2 year: 2020 end-page: 262 ident: CR8 article-title: Functional summaries of persistence diagrams publication-title: Journal of Applied and Computational Topology doi: 10.1007/s41468-020-00048-w – volume: 37 start-page: 103 issue: 1 year: 2007 end-page: 120 ident: CR24 article-title: Stability of persistence diagrams publication-title: Discrete Comput. Geom. doi: 10.1007/s00454-006-1276-5 – ident: CR42 – ident: CR21 – ident: CR46 – ident: CR67 – volume: 46 start-page: 501 issue: 3 year: 2004 end-page: 517 ident: CR7 article-title: Barycentric Lagrange interpolation publication-title: SIAM Review doi: 10.1137/S0036144502417715 – ident: CR15 – volume: 18 start-page: 1 issue: 8 year: 2017 end-page: 35 ident: CR1 article-title: Persistence images: A stable vector representation of persistent homology publication-title: Journal of Machine Learning Research – volume: 15 start-page: 613 issue: 3 year: 2015 end-page: 650 ident: CR45 article-title: The theory of the interleaving distance on multidimensional persistence modules publication-title: Foundations of Computational Mathematics doi: 10.1007/s10208-015-9255-y – volume: 15 start-page: 21 issue: 1 year: 1980 end-page: 30 ident: CR6 article-title: Lyapunov characteristic exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. part 2: Numerical application publication-title: Meccanica doi: 10.1007/BF02128237 – ident: CR11 – volume: 25 start-page: 053101 issue: 5 year: 2015 ident: CR47 article-title: Time lagged ordinal partition networks for capturing dynamics of continuous dynamical systems publication-title: Chaos: An Interdisciplinary Journal of Nonlinear Science doi: 10.1063/1.4919075 – ident: CR60 – volume: 30 start-page: 1760 issue: 10 year: 2011 end-page: 1770 ident: CR50 article-title: Topology-based kernels with application to inference problems in alzheimer’s disease publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2011.2147327 – ident: CR64 – volume: 16 start-page: 77 year: 2015 end-page: 102 ident: CR10 article-title: Statistical topological data analysis using persistence landscapes publication-title: Journal of Machine Learning Research – year: 2013 ident: CR25 publication-title: A course in functional analysis – ident: CR43 – ident: CR66 – year: 2006 ident: CR57 publication-title: Real and complex analysis – ident: CR14 – ident: CR53 – volume: 39 start-page: 1877 issue: 4 year: 2009 end-page: 1882 ident: CR52 article-title: On computing Poincaré map by Hénon method publication-title: Chaos, Solitons & Fractals doi: 10.1016/j.chaos.2007.06.118 – volume: 5 start-page: 412 issue: 2 year: 1982 end-page: 414 ident: CR38 article-title: On the numerical computation of Poincaré maps publication-title: Physica D: Nonlinear Phenomena doi: 10.1016/0167-2789(82)90034-3 – volume: 9 start-page: 1173 year: 2015 end-page: 1204 ident: CR49 article-title: Probabilistic fréchet means for time varying persistence diagrams publication-title: Electron. J. Statist. doi: 10.1214/15-EJS1030 – volume: 14 start-page: 745 issue: 4 year: 2014 end-page: 789 ident: CR9 article-title: Robust statistics, hypothesis testing, and confidence intervals for persistent homology on metric measure spaces publication-title: Foundations of Computational Mathematics doi: 10.1007/s10208-014-9201-4 – volume: 42 start-page: 192 issue: 1 year: 2018 end-page: 202 ident: CR22 article-title: Persistence paths and signature features in topological data analysis publication-title: IEEE transactions on pattern analysis and machine intelligence doi: 10.1109/TPAMI.2018.2885516 – ident: CR56 – ident: CR63 – volume: 10 start-page: 367 issue: 4 year: 2010 end-page: 405 ident: CR13 article-title: Zigzag persistence publication-title: Foundations of computational mathematics doi: 10.1007/s10208-010-9066-0 – volume: 34 start-page: 1 issue: 5 year: 2015 end-page: 12 ident: CR18 article-title: Stable topological signatures for points on 3d shapes publication-title: Computer Graphics Forum doi: 10.1111/cgf.12692 – ident: CR23 – volume: 14 start-page: 1550066 issue: 05 year: 2015 ident: CR27 article-title: Decomposition of pointwise finite-dimensional persistence modules publication-title: Journal of Algebra and its Applications doi: 10.1142/S0219498815500668 – year: 2012 ident: CR61 publication-title: Approximation theory and approximation practice (applied mathematics) – ident: CR69 – volume: 10 start-page: 198 issue: 1 year: 2016 end-page: 218 ident: CR5 article-title: Persistent homology analysis of brain artery trees publication-title: The Annals of Applied Statistics doi: 10.1214/15-AOAS886 – ident: CR44 – volume: 57 start-page: 617 year: 1985 end-page: 656 ident: CR32 article-title: Ergodic theory of chaos and strange attractors publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.57.617 – volume: 22 start-page: 1367 issue: 6 year: 2009 ident: CR36 article-title: On the validity of the 0–1 test for chaos publication-title: Nonlinearity doi: 10.1088/0951-7715/22/6/006 – ident: CR65 – ident: CR3 – volume: 27 start-page: 124007 issue: 12 year: 2011 ident: CR48 article-title: Probability measures on the space of persistence diagrams publication-title: Inverse Problems doi: 10.1088/0266-5611/27/12/124007 – start-page: 221 year: 2016 end-page: 247 ident: CR37 article-title: The 0-1 test for chaos: A review publication-title: Chaos Detection and Predictability doi: 10.1007/978-3-662-48410-4_7 – ident: CR17 – ident: CR31 – volume: 42 start-page: 2301 issue: 6 year: 2014 end-page: 2339 ident: CR33 article-title: Confidence sets for persistence diagrams publication-title: Annals of Statistics doi: 10.1214/14-AOS1252 – volume: 18 start-page: 381 issue: 1 year: 2016 end-page: 402 ident: CR2 article-title: The ring of algebraic functions on persistence bar codes publication-title: Homology, Homotopy and Applications doi: 10.4310/HHA.2016.v18.n1.a21 – ident: CR34 – ident: CR55 – volume: 54 start-page: 1969 issue: 3 year: 2021 end-page: 2009 ident: CR70 article-title: Persistence codebooks for topological data analysis publication-title: Artificial Intelligence Review doi: 10.1007/s10462-020-09897-4 – ident: CR59 – volume: 3 start-page: 1 issue: 1 year: 1899 end-page: 123 ident: CR4 article-title: Sur les fonctions de variables réelles publication-title: Annali di Matematica Pura ed Applicata (1898-1922) doi: 10.1007/BF02419243 – ident: CR28 – ident: CR41 – ident: CR20 – volume: 5 start-page: 1 issue: 1 year: 2021 end-page: 53 ident: CR30 article-title: Understanding the topology and the geometry of the space of persistence diagrams via optimal partial transport publication-title: Journal of Applied and Computational Topology doi: 10.1007/s41468-020-00061-z – volume: 18 start-page: 381 issue: 1 year: 2016 ident: 9567_CR2 publication-title: Homology, Homotopy and Applications doi: 10.4310/HHA.2016.v18.n1.a21 – start-page: 221 volume-title: Chaos Detection and Predictability year: 2016 ident: 9567_CR37 doi: 10.1007/978-3-662-48410-4_7 – ident: 9567_CR59 – volume: 16 start-page: 77 year: 2015 ident: 9567_CR10 publication-title: Journal of Machine Learning Research – volume: 15 start-page: 613 issue: 3 year: 2015 ident: 9567_CR45 publication-title: Foundations of Computational Mathematics doi: 10.1007/s10208-015-9255-y – volume: 54 start-page: 1969 issue: 3 year: 2021 ident: 9567_CR70 publication-title: Artificial Intelligence Review doi: 10.1007/s10462-020-09897-4 – ident: 9567_CR65 – volume: 52 start-page: 44 issue: 1 year: 2014 ident: 9567_CR62 publication-title: Discrete & Computational Geometry doi: 10.1007/s00454-014-9604-7 – volume-title: The structure and stability of persistence modules year: 2016 ident: 9567_CR19 doi: 10.1007/978-3-319-42545-0 – volume: 5 start-page: 412 issue: 2 year: 1982 ident: 9567_CR38 publication-title: Physica D: Nonlinear Phenomena doi: 10.1016/0167-2789(82)90034-3 – volume: 25 start-page: 053101 issue: 5 year: 2015 ident: 9567_CR47 publication-title: Chaos: An Interdisciplinary Journal of Nonlinear Science doi: 10.1063/1.4919075 – volume: 4 start-page: 211 issue: 2 year: 2020 ident: 9567_CR8 publication-title: Journal of Applied and Computational Topology doi: 10.1007/s41468-020-00048-w – volume-title: Approximation theory and approximation practice (applied mathematics) year: 2012 ident: 9567_CR61 – ident: 9567_CR56 doi: 10.1117/12.2179555 – ident: 9567_CR55 doi: 10.1109/CVPR.2015.7299106 – volume-title: A course in functional analysis year: 2013 ident: 9567_CR25 – ident: 9567_CR42 – ident: 9567_CR16 – volume: 10 start-page: 198 issue: 1 year: 2016 ident: 9567_CR5 publication-title: The Annals of Applied Statistics doi: 10.1214/15-AOAS886 – ident: 9567_CR63 doi: 10.1109/ICMLA.2019.00202 – ident: 9567_CR23 doi: 10.1007/978-3-642-02498-6_32 – volume: 6 start-page: 78 issue: 3 year: 1986 ident: 9567_CR58 publication-title: The Mathematica Journal – volume: 30 start-page: 1760 issue: 10 year: 2011 ident: 9567_CR50 publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2011.2147327 – ident: 9567_CR20 doi: 10.1145/2582112.2582128 – volume: 22 start-page: 1367 issue: 6 year: 2009 ident: 9567_CR36 publication-title: Nonlinearity doi: 10.1088/0951-7715/22/6/006 – ident: 9567_CR31 – ident: 9567_CR41 – volume: 46 start-page: 501 issue: 3 year: 2004 ident: 9567_CR7 publication-title: SIAM Review doi: 10.1137/S0036144502417715 – volume: 14 start-page: 745 issue: 4 year: 2014 ident: 9567_CR9 publication-title: Foundations of Computational Mathematics doi: 10.1007/s10208-014-9201-4 – ident: 9567_CR3 – volume: 2 start-page: 100005 year: 2019 ident: 9567_CR26 publication-title: Computers & graphics: X – ident: 9567_CR51 – ident: 9567_CR17 – ident: 9567_CR39 doi: 10.1007/s10208-018-9379-y – ident: 9567_CR11 – volume: 18 start-page: 1 issue: 8 year: 2017 ident: 9567_CR1 publication-title: Journal of Machine Learning Research – ident: 9567_CR15 – ident: 9567_CR29 doi: 10.1214/12-IMSCOLL1006 – ident: 9567_CR67 – volume: 27 start-page: 124007 issue: 12 year: 2011 ident: 9567_CR48 publication-title: Inverse Problems doi: 10.1088/0266-5611/27/12/124007 – ident: 9567_CR69 doi: 10.24963/ijcai.2019/624 – volume: 14 start-page: 1550066 issue: 05 year: 2015 ident: 9567_CR27 publication-title: Journal of Algebra and its Applications doi: 10.1142/S0219498815500668 – ident: 9567_CR44 – ident: 9567_CR21 – ident: 9567_CR34 doi: 10.1007/3-540-63930-6_138 – volume: 3 start-page: 1 issue: 1 year: 1899 ident: 9567_CR4 publication-title: Annali di Matematica Pura ed Applicata (1898-1922) doi: 10.1007/BF02419243 – volume: 9 start-page: 1173 year: 2015 ident: 9567_CR49 publication-title: Electron. J. Statist. doi: 10.1214/15-EJS1030 – volume: 460 start-page: 603 issue: 2042 year: 2004 ident: 9567_CR35 publication-title: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences doi: 10.1098/rspa.2003.1183 – ident: 9567_CR60 doi: 10.1111/j.1467-8659.2009.01515.x – ident: 9567_CR46 doi: 10.1109/CVPR.2014.257 – volume: 10 start-page: 367 issue: 4 year: 2010 ident: 9567_CR13 publication-title: Foundations of computational mathematics doi: 10.1007/s10208-010-9066-0 – volume-title: Real and complex analysis year: 2006 ident: 9567_CR57 – volume: 15 start-page: 21 issue: 1 year: 1980 ident: 9567_CR6 publication-title: Meccanica doi: 10.1007/BF02128237 – volume: 42 start-page: 192 issue: 1 year: 2018 ident: 9567_CR22 publication-title: IEEE transactions on pattern analysis and machine intelligence doi: 10.1109/TPAMI.2018.2885516 – volume: 39 start-page: 1877 issue: 4 year: 2009 ident: 9567_CR52 publication-title: Chaos, Solitons & Fractals doi: 10.1016/j.chaos.2007.06.118 – ident: 9567_CR64 – volume: 34 start-page: 1 issue: 5 year: 2015 ident: 9567_CR18 publication-title: Computer Graphics Forum doi: 10.1111/cgf.12692 – ident: 9567_CR68 – volume: 57 start-page: 617 year: 1985 ident: 9567_CR32 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.57.617 – ident: 9567_CR66 doi: 10.1109/ICMLA.2019.00200 – ident: 9567_CR12 doi: 10.1007/s41468-018-0022-4 – volume: 37 start-page: 103 issue: 1 year: 2007 ident: 9567_CR24 publication-title: Discrete Comput. Geom. doi: 10.1007/s00454-006-1276-5 – volume: 42 start-page: 2301 issue: 6 year: 2014 ident: 9567_CR33 publication-title: Annals of Statistics doi: 10.1214/14-AOS1252 – volume: 18 start-page: 1 issue: 189 year: 2018 ident: 9567_CR40 publication-title: Journal of Machine Learning Research – ident: 9567_CR43 – ident: 9567_CR28 doi: 10.1007/978-3-319-23231-7_27 – ident: 9567_CR53 – volume: 5 start-page: 1 issue: 1 year: 2021 ident: 9567_CR30 publication-title: Journal of Applied and Computational Topology doi: 10.1007/s41468-020-00061-z – ident: 9567_CR54 doi: 10.1109/ICMLA.2019.00186 – ident: 9567_CR14 doi: 10.1016/j.jpaa.2016.05.002 |
| SSID | ssj0015914 ssib031263371 |
| Score | 2.3983457 |
| Snippet | The persistence diagram is an increasingly useful tool from Topological Data Analysis, but its use alongside typical machine learning techniques requires... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1215 |
| SubjectTerms | Algorithms Applications of Mathematics Approximation Cognitive tasks Computer Science Continuity (mathematics) Data analysis Economics Linear and Multilinear Algebras Machine learning Math Applications in Computer Science Mathematical analysis Mathematics Mathematics and Statistics Matrix Theory Numerical Analysis Supervised learning Vector spaces |
| Title | Approximating Continuous Functions on Persistence Diagrams Using Template Functions |
| URI | https://link.springer.com/article/10.1007/s10208-022-09567-7 https://www.proquest.com/docview/2858666128 |
| Volume | 23 |
| WOSCitedRecordID | wos000804505100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1615-3383 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015914 issn: 1615-3375 databaseCode: RSV dateStart: 20010101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA86BfXB6VScX-TBNw2sadMkj0MdvjjETdlbaZNUBrMb6yb--V66dFVRQV8KzcdRLpfeHXf3O4TOA8NUwhNKaCh8EiitiJTcEKZkwMOEg8uQFM0meLcrBgN574rC8jLbvQxJFn_qD8Vu1IbqwXmy4Hmc8FW0BupO2IYND72nZeyAyQLR25oyxPc5c6Uy39P4rI4qG_NLWLTQNp36_75zB2076xK3F-Kwi1ZM1kB1Z2lid49zGCqbOZRjDbRRlijD9NbdEsw130O9tsUdfxva9-wZWzyrYTYfz3PcAaVYyC0eZ9jm0luZAWr4ehjbrK8cFxkJuG9eJiMwaqsN--ixc9O_uiWuFwNRARMzIrWMqfbBXdRcaDCyDE0Vl6kXUhWkxtOUG98PjdZUGim04uDhKqU0a4GsauUfoFo2zswhwmnsiViKkMlEBLJlpMdieADVJJRG8CbyyiOJlAMqt_0yRlEFsWxZHAGLo4LFEey5WO6ZLGA6fl19Up505K5sHlHBBPhyoK-b6LI82Wr6Z2pHf1t-jDZty_pFEuEJqs2mc3OK1tXrbJhPzwpRfgdvu-0e |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90CuqD06k4P_PgmwZs2jTJo6hDUYe4KXsrbZLJYHZiN_HP99K1m4oK-lJoPo5yufTuuLvfARwElutEJIyyUPo00EZTpYSlXKtAhIlAlyHJm02IZlN2Ouq2KArLymz3MiSZ_6k_FLsxF6pH58mB5wkqZmEuQI3lEPPvWg-T2AFXOaK3M2Wo7wtelMp8T-OzOpramF_Corm2aVT_950rsFxYl-RkLA6rMGPTGlQLS5MU9zjDobKZQzlWg4WyRBmnl24mYK7ZGrROHO74W8-9p4_E4Vn10tFglJEGKsVcbskgJS6X3skMUiNnvdhlfWUkz0ggbfv03EejdrphHe4b5-3TC1r0YqA64HJIlVExMz66i0ZIg0aWZV0tVNcLmQ661jNMWN8PrTFMWSWNFujhaq0NP0ZZNdrfgEo6SO0mkG7syVjJkKtEBurYKo_H-ECqSaisFHXwyiOJdAFU7vpl9KMpxLJjcYQsjnIWR7jncLLneQzT8evqnfKko-LKZhGTXKIvh_q6DkflyU6nf6a29bfl-7Bw0b65jq4vm1fbsOja148TCnegMnwZ2V2Y16_DXvayl4v1O5S78AI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_8wo8H5yd-mwffNGjTpkkehzoUdQym4ltpk1QG2g27iX--l67dVFQQXwrNxxEuF-6Ou_sdwEFguU5EwigLpU8DbTRVSljKtQpEmAh0GZKi2YRoNuXDg2p9qOIvst2rkOSwpsGhNGX9455Jjz8UvjEXtkdHygHpCSomYTpwifTOX2_fj-IIXBXo3s6sob4veFk28z2Nz6ppbG9-CZEWmqdR-_-Zl2CxtDpJfSgmyzBhsxWolRYoKd93jkNVk4dqbAXmqtJlnF64GYG85qvQrjs88reO-88eicO56mSD7iAnDVSWhTyTbkZcjr2TJaRGzjqxywbLSZGpQG7tc-8Jjd3xhjW4a5zfnl7QskcD1QGXfaqMipnx0Y00Qho0vixLtVCpFzIdpNYzTFjfD60xTFkljRbo-WqtDT9BGTbaX4eprJvZDSBp7MlYyZCrRAbqxCqPx_hBqkmorBSb4FXXE-kSwNz10XiKxtDLjsURsjgqWBzhnsPRnt4QvuPX1TvVrUflU84jJrlEHw_1-CYcVbc8nv6Z2tbflu_DbOusEV1fNq-2Yd51tR_mGe7AVP9lYHdhRr_2O_nLXiHh76j2-OY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximating+Continuous+Functions+on+Persistence+Diagrams+Using+Template+Functions&rft.jtitle=Foundations+of+computational+mathematics&rft.au=Perea%2C+Jose+A.&rft.au=Munch%2C+Elizabeth&rft.au=Khasawneh%2C+Firas+A.&rft.date=2023-08-01&rft.issn=1615-3375&rft.eissn=1615-3383&rft.volume=23&rft.issue=4&rft.spage=1215&rft.epage=1272&rft_id=info:doi/10.1007%2Fs10208-022-09567-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10208_022_09567_7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-3375&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-3375&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-3375&client=summon |