Approximating Continuous Functions on Persistence Diagrams Using Template Functions

The persistence diagram is an increasingly useful tool from Topological Data Analysis, but its use alongside typical machine learning techniques requires mathematical finesse. The most success to date has come from methods that map persistence diagrams into vector spaces, in a way which maximizes th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Foundations of computational mathematics Ročník 23; číslo 4; s. 1215 - 1272
Hlavní autoři: Perea, Jose A., Munch, Elizabeth, Khasawneh, Firas A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.08.2023
Springer Nature B.V
Témata:
ISSN:1615-3375, 1615-3383
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The persistence diagram is an increasingly useful tool from Topological Data Analysis, but its use alongside typical machine learning techniques requires mathematical finesse. The most success to date has come from methods that map persistence diagrams into vector spaces, in a way which maximizes the structure preserved. This process is commonly referred to as featurization. In this paper, we describe a mathematical framework for featurization called template functions , and we show that it addresses the problem of approximating continuous functions on compact subsets of the space of persistence diagrams. Specifically, we begin by characterizing relative compactness with respect to the bottleneck distance, and then provide explicit theoretical methods for constructing compact-open dense subsets of continuous functions on persistence diagrams. These dense subsets—obtained via template functions—are leveraged for supervised learning tasks with persistence diagrams. Specifically, we test the method for classification and regression algorithms on several examples including shape data and dynamical systems.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1615-3375
1615-3383
DOI:10.1007/s10208-022-09567-7