Convex mixed integer nonlinear programming problems and an outer approximation algorithm

In this paper, we mainly study one class of convex mixed-integer nonlinear programming problems (MINLPs) with non-differentiable data. By dropping the differentiability assumption, we substitute gradients with subgradients obtained from KKT conditions, and use the outer approximation method to refor...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of global optimization Ročník 63; číslo 2; s. 213 - 227
Hlavní autoři: Wei, Zhou, Ali, M. Montaz
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.10.2015
Springer
Springer Nature B.V
Témata:
ISSN:0925-5001, 1573-2916
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we mainly study one class of convex mixed-integer nonlinear programming problems (MINLPs) with non-differentiable data. By dropping the differentiability assumption, we substitute gradients with subgradients obtained from KKT conditions, and use the outer approximation method to reformulate convex MINLP as one equivalent MILP master program. By solving a finite sequence of subproblems and relaxed MILP problems, we establish an outer approximation algorithm to find the optimal solution of this convex MINLP. The convergence of this algorithm is also presented. The work of this paper generalizes and extends the outer approximation method in the sense of dealing with convex MINLPs from differentiable case to non-differentiable one.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0925-5001
1573-2916
DOI:10.1007/s10898-015-0284-5