From Skin Mechanics to Tactile Neural Coding: Predicting Afferent Neural Dynamics During Active Touch and Perception

First order cutaneous neurons allow object recognition, texture discrimination, and sensorimotor feedback. Their function is well-investigated under passive stimulation while their role during active touch or sensorimotor control is understudied. To understand how human perception and sensorimotor c...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biomedical engineering Vol. 69; no. 12; pp. 3748 - 3759
Main Authors: Wei, Yuyang, McGlone, Francis P, Marshall, Andrew G, Makdani, Adarsh, Zou, Zhenmin, Ren, Lei, Wei, Guowu
Format: Journal Article
Language:English
Published: United States IEEE 01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9294, 1558-2531, 1558-2531
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract First order cutaneous neurons allow object recognition, texture discrimination, and sensorimotor feedback. Their function is well-investigated under passive stimulation while their role during active touch or sensorimotor control is understudied. To understand how human perception and sensorimotor controlling strategy depend on cutaneous neural signals under active tactile exploration, the finite element (FE) hand and Izhikevich neural dynamic model were combined to predict the cutaneous neural dynamics and the resulting perception during a discrimination test. Using in-vivo microneurography generated single afferent recordings, 75% of the data was applied for the model optimization and another 25% was used for validation. By using this integrated numerical model, the predicted tactile neural signals of the single afferent fibers agreed well with the microneurography test results, achieving the out-of-sample values of 0.94 and 0.82 for slowly adapting type I (SAI) and fast adapting type I unit (FAI) respectively. Similar discriminating capability with the human subject was achieved based on this computational model. Comparable performance with the published numerical model on predicting the cutaneous neural response under passive stimuli was also presented, ensuring the potential applicability of this multi-level numerical model in studying the human tactile sensing mechanisms during active touch. The predicted population-level 1st order afferent neural signals under active touch suggest that different coding strategies might be applied to the afferent neural signals elicited from different cutaneous neurons simultaneously.
AbstractList First order cutaneous neurons allow object recognition, texture discrimination, and sensorimotor feedback. Their function is well-investigated under passive stimulation while their role during active touch or sensorimotor control is understudied. To understand how human perception and sensorimotor controlling strategy depend on cutaneous neural signals under active tactile exploration, the finite element (FE) hand and Izhikevich neural dynamic model were combined to predict the cutaneous neural dynamics and the resulting perception during a discrimination test. Using in-vivo microneurography generated single afferent recordings, 75% of the data was applied for the model optimization and another 25% was used for validation. By using this integrated numerical model, the predicted tactile neural signals of the single afferent fibers agreed well with the microneurography test results, achieving the out-of-sample values of 0.94 and 0.82 for slowly adapting type I (SAI) and fast adapting type I unit (FAI) respectively. Similar discriminating capability with the human subject was achieved based on this computational model. Comparable performance with the published numerical model on predicting the cutaneous neural response under passive stimuli was also presented, ensuring the potential applicability of this multi-level numerical model in studying the human tactile sensing mechanisms during active touch. The predicted population-level 1st order afferent neural signals under active touch suggest that different coding strategies might be applied to the afferent neural signals elicited from different cutaneous neurons simultaneously.First order cutaneous neurons allow object recognition, texture discrimination, and sensorimotor feedback. Their function is well-investigated under passive stimulation while their role during active touch or sensorimotor control is understudied. To understand how human perception and sensorimotor controlling strategy depend on cutaneous neural signals under active tactile exploration, the finite element (FE) hand and Izhikevich neural dynamic model were combined to predict the cutaneous neural dynamics and the resulting perception during a discrimination test. Using in-vivo microneurography generated single afferent recordings, 75% of the data was applied for the model optimization and another 25% was used for validation. By using this integrated numerical model, the predicted tactile neural signals of the single afferent fibers agreed well with the microneurography test results, achieving the out-of-sample values of 0.94 and 0.82 for slowly adapting type I (SAI) and fast adapting type I unit (FAI) respectively. Similar discriminating capability with the human subject was achieved based on this computational model. Comparable performance with the published numerical model on predicting the cutaneous neural response under passive stimuli was also presented, ensuring the potential applicability of this multi-level numerical model in studying the human tactile sensing mechanisms during active touch. The predicted population-level 1st order afferent neural signals under active touch suggest that different coding strategies might be applied to the afferent neural signals elicited from different cutaneous neurons simultaneously.
First order cutaneous neurons allow object recognition, texture discrimination, and sensorimotor feedback. Their function is well-investigated under passive stimulation while their role during active touch or sensorimotor control is understudied. To understand how human perception and sensorimotor controlling strategy depend on cutaneous neural signals under active tactile exploration, the finite element (FE) hand and Izhikevich neural dynamic model were combined to predict the cutaneous neural dynamics and the resulting perception during a discrimination test. Using in-vivo microneurography generated single afferent recordings, 75% of the data was applied for the model optimization and another 25% was used for validation. By using this integrated numerical model, the predicted tactile neural signals of the single afferent fibers agreed well with the microneurography test results, achieving the out-of-sample values of 0.94 and 0.82 for slowly adapting type I (SAI) and fast adapting type I unit (FAI) respectively. Similar discriminating capability with the human subject was achieved based on this computational model. Comparable performance with the published numerical model on predicting the cutaneous neural response under passive stimuli was also presented, ensuring the potential applicability of this multi-level numerical model in studying the human tactile sensing mechanisms during active touch. The predicted population-level 1st order afferent neural signals under active touch suggest that different coding strategies might be applied to the afferent neural signals elicited from different cutaneous neurons simultaneously.
Author Makdani, Adarsh
Marshall, Andrew G
Zou, Zhenmin
McGlone, Francis P
Ren, Lei
Wei, Yuyang
Wei, Guowu
Author_xml – sequence: 1
  givenname: Yuyang
  orcidid: 0000-0002-3200-8598
  surname: Wei
  fullname: Wei, Yuyang
  organization: Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, U.K
– sequence: 2
  givenname: Francis P
  orcidid: 0000-0002-0881-635X
  surname: McGlone
  fullname: McGlone, Francis P
  organization: School of Natural Sciences and Psychology, Liverpool John Moores University, U.K
– sequence: 3
  givenname: Andrew G
  orcidid: 0000-0001-8273-7089
  surname: Marshall
  fullname: Marshall, Andrew G
  organization: Institute of Aging and Chronic Disease, University of Liverpool, U.K
– sequence: 4
  givenname: Adarsh
  surname: Makdani
  fullname: Makdani, Adarsh
  organization: School of Natural Sciences and Psychology, Liverpool John Moores University, U.K
– sequence: 5
  givenname: Zhenmin
  surname: Zou
  fullname: Zou, Zhenmin
  organization: Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, U.K
– sequence: 6
  givenname: Lei
  orcidid: 0000-0003-3222-2102
  surname: Ren
  fullname: Ren, Lei
  email: lei.ren@manchester.ac.uk
  organization: Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester, U.K
– sequence: 7
  givenname: Guowu
  orcidid: 0000-0003-2613-902X
  surname: Wei
  fullname: Wei, Guowu
  email: g.wei@salford.ac.uk
  organization: School of Science, Engineering and Environment, University of Salford, Manchester, U.K
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35604990$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhi1URLeFH4CQkCUuXLL4I3YcbmXbAlILlVjOltcZty6JvbUTpP57HHaXQw-crNE8z8jj1yfoKMQACL2mZEkpaT-sP11fLBlhbMlp0xAin6EFFUJVTHB6hBaEUFW1rK2P0UnO96WsVS1foGMuJKnblizQeJnigH_88gFfg70zwduMx4jXxo6-B_wNpmR6vIqdD7cf8U2CzpdOuMVnzkGCMB6Q88dghtk-n9LffsF-A17Hyd5hEzp8A8nCdvQxvETPnekzvNqfp-jn5cV69aW6-v756-rsqrK1UGOlrFKd3ah64yzwWgEXnWTCQkM7C45SZ6zgrhRKsroDI8ARaZVxrjOmVvwUvd_N3ab4MEEe9eCzhb43AeKUNZNSMUZ5ywv67gl6H6cUyu00a2aAMyUL9XZPTZsBOr1NfjDpUR_eswDNDrAp5pzAaetHM-88JuN7TYmek9NzcnpOTu-TKyZ9Yh6G_895s3M8APzj26Zp2_ID_gCUPqRZ
CODEN IEBEAX
CitedBy_id crossref_primary_10_1007_s10237_025_01943_w
crossref_primary_10_1038_s41467_024_50616_2
crossref_primary_10_1007_s00500_023_08709_5
crossref_primary_10_1038_s41598_025_86342_y
crossref_primary_10_3390_biomimetics10070415
Cites_doi 10.1016/j.neuron.2018.08.033
10.1152/jn.00043.2009
10.1126/scitranslmed.aaf8083
10.1109/WHC49131.2021.9517269
10.3844/jcssp.2010.934.939
10.1152/jn.00589.2013
10.1002/cne.10196
10.1002/hbm.21091
10.1113/jphysiol.1983.sp014873
10.1523/ENEURO.0037-17.2017
10.1016/j.neuron.2017.05.024
10.3389/fnsys.2018.00024
10.1016/j.mbs.2009.03.007
10.1016/S0896-6273(00)81193-9
10.1186/1475-925X-9-72
10.1073/pnas.1704856114
10.1038/nrn2621
10.1113/jphysiol.1979.sp012619
10.1016/0166-2236(83)90011-5
10.1109/TNN.2003.820440
10.1115/1.1613673
10.1152/japplphysiol.00470.2003
10.1126/science.aao0098
10.1002/ana.10615
10.1113/jphysiol.2005.089201
10.1038/32891
10.4172/2165-7556.1000190
10.1152/jn.00848.2017
10.3389/fnins.2018.00322
10.1088/1741-2560/10/3/036021
10.1016/j.jbiomech.2010.01.027
10.3758/BF03207704
10.1038/nn1177
10.1113/jphysiol.1978.sp012411
10.3389/fnbeh.2014.00050
10.1136/jnnp.53.9.736
10.1523/ENEURO.0311-18.2018
10.1002/mus.880110617
10.1007/BF00230540
10.1002/aja.1000990206
10.1007/s10439-019-02439-2
10.1038/nn.3804
10.1523/JNEUROSCI.1716-20.2021
10.1073/pnas.1901378116
10.1002/cne.901130202
10.1073/pnas.97.22.11730
10.1109/TOH.2013.36
10.1152/jn.00091.2017
10.1152/jn.00195.2016
10.1371/journal.pone.0189293
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TBME.2022.3177006
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 3759
ExternalDocumentID 35604990
10_1109_TBME_2022_3177006
9779925
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2018YFC2001300
– fundername: National Natural Science Foundation of China
  grantid: 91948302; 91848204; 52021003
  funderid: 10.13039/501100001809
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c458t-8c88dcb84bfce348e35d625ce71dcef11fac53f1dc8624dea5ef06c8affdaa483
IEDL.DBID RIE
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000898766600018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9294
1558-2531
IngestDate Sat Sep 27 17:02:07 EDT 2025
Mon Jun 30 08:24:46 EDT 2025
Wed Feb 19 02:26:13 EST 2025
Sat Nov 29 05:34:29 EST 2025
Tue Nov 18 21:37:43 EST 2025
Wed Aug 27 02:29:09 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c458t-8c88dcb84bfce348e35d625ce71dcef11fac53f1dc8624dea5ef06c8affdaa483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2613-902X
0000-0001-8273-7089
0000-0002-0881-635X
0000-0002-3200-8598
0000-0003-3222-2102
OpenAccessLink https://ieeexplore.ieee.org/document/9779925/
PMID 35604990
PQID 2739333286
PQPubID 85474
PageCount 12
ParticipantIDs proquest_journals_2739333286
ieee_primary_9779925
proquest_miscellaneous_2668221393
pubmed_primary_35604990
crossref_citationtrail_10_1109_TBME_2022_3177006
crossref_primary_10_1109_TBME_2022_3177006
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref52
ref11
ref10
ref17
ref16
ref19
ref18
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
kandel (ref1) 2000
ref7
ref9
ref4
ref3
ref6
ref5
quintero (ref31) 1984; 3
ref40
ref35
ref34
ref37
ref36
ref30
ref33
ref32
ref2
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
kim (ref51) 2018; 360
References_xml – ident: ref2
  doi: 10.1016/j.neuron.2018.08.033
– ident: ref12
  doi: 10.1152/jn.00043.2009
– ident: ref17
  doi: 10.1126/scitranslmed.aaf8083
– ident: ref10
  doi: 10.1109/WHC49131.2021.9517269
– ident: ref33
  doi: 10.3844/jcssp.2010.934.939
– year: 2000
  ident: ref1
  publication-title: Principles of Neural Science
– ident: ref34
  doi: 10.1152/jn.00589.2013
– ident: ref29
  doi: 10.1002/cne.10196
– ident: ref11
  doi: 10.1002/hbm.21091
– ident: ref15
  doi: 10.1113/jphysiol.1983.sp014873
– ident: ref48
  doi: 10.1523/ENEURO.0037-17.2017
– ident: ref49
  doi: 10.1016/j.neuron.2017.05.024
– ident: ref18
  doi: 10.3389/fnsys.2018.00024
– ident: ref9
  doi: 10.1016/j.mbs.2009.03.007
– ident: ref3
  doi: 10.1016/S0896-6273(00)81193-9
– volume: 3
  start-page: 3
  year: 1984
  ident: ref31
  article-title: Properties of cutaneous mechanoreceptors in the human hand-related to touch sensation
  publication-title: Human Neurobiol
– ident: ref42
  doi: 10.1186/1475-925X-9-72
– ident: ref8
  doi: 10.1073/pnas.1704856114
– ident: ref14
  doi: 10.1038/nrn2621
– ident: ref30
  doi: 10.1113/jphysiol.1979.sp012619
– ident: ref36
  doi: 10.1016/0166-2236(83)90011-5
– ident: ref32
  doi: 10.1109/TNN.2003.820440
– ident: ref6
  doi: 10.1115/1.1613673
– ident: ref5
  doi: 10.1152/japplphysiol.00470.2003
– volume: 360
  start-page: 998
  year: 2018
  ident: ref51
  article-title: A bioinspired flexible organic artificial afferent nerve
  publication-title: Science
  doi: 10.1126/science.aao0098
– ident: ref28
  doi: 10.1002/ana.10615
– ident: ref44
  doi: 10.1113/jphysiol.2005.089201
– ident: ref16
  doi: 10.1038/32891
– ident: ref20
  doi: 10.4172/2165-7556.1000190
– ident: ref38
  doi: 10.1152/jn.00848.2017
– ident: ref39
  doi: 10.3389/fnins.2018.00322
– ident: ref47
  doi: 10.1088/1741-2560/10/3/036021
– ident: ref43
  doi: 10.1016/j.jbiomech.2010.01.027
– ident: ref40
  doi: 10.3758/BF03207704
– ident: ref46
  doi: 10.1038/nn1177
– ident: ref24
  doi: 10.1113/jphysiol.1978.sp012411
– ident: ref13
  doi: 10.3389/fnbeh.2014.00050
– ident: ref37
  doi: 10.1136/jnnp.53.9.736
– ident: ref52
  doi: 10.1523/ENEURO.0311-18.2018
– ident: ref4
  doi: 10.1002/mus.880110617
– ident: ref41
  doi: 10.1007/BF00230540
– ident: ref26
  doi: 10.1002/aja.1000990206
– ident: ref19
  doi: 10.1007/s10439-019-02439-2
– ident: ref23
  doi: 10.1038/nn.3804
– ident: ref25
  doi: 10.1523/JNEUROSCI.1716-20.2021
– ident: ref50
  doi: 10.1073/pnas.1901378116
– ident: ref27
  doi: 10.1002/cne.901130202
– ident: ref21
  doi: 10.1073/pnas.97.22.11730
– ident: ref7
  doi: 10.1109/TOH.2013.36
– ident: ref45
  doi: 10.1152/jn.00091.2017
– ident: ref35
  doi: 10.1152/jn.00195.2016
– ident: ref22
  doi: 10.1371/journal.pone.0189293
SSID ssj0014846
Score 2.4506516
Snippet First order cutaneous neurons allow object recognition, texture discrimination, and sensorimotor feedback. Their function is well-investigated under passive...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3748
SubjectTerms Active control
active touch
Coding
Computational modeling
Computational neuroscience
Dynamic models
FE Human hand
Fibers
Humans
Mathematical models
Mechanoreceptors - physiology
Microneurography
Neural coding
Neurons
Neurons, Afferent - physiology
Neurophysiological
Neurophysiology
Numerical models
Numerical prediction
Object recognition
Optimization
Pattern recognition
Perception
Sensorimotor system
Sensory neurons
Skin
skin mechanics
Tactile discrimination
Tactile stimuli
Texture recognition
Touch
Touch - physiology
Touch Perception
Title From Skin Mechanics to Tactile Neural Coding: Predicting Afferent Neural Dynamics During Active Touch and Perception
URI https://ieeexplore.ieee.org/document/9779925
https://www.ncbi.nlm.nih.gov/pubmed/35604990
https://www.proquest.com/docview/2739333286
https://www.proquest.com/docview/2668221393
Volume 69
WOSCitedRecordID wos000898766600018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1558-2531
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014846
  issn: 0018-9294
  databaseCode: RIE
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0BqhA9UAqFLgXkSpyqpiSxkzjclo9VL4v2sEh7i7L2WCBBgnaz_f2dcbIRB1qJW6KME0vv2TOT8cwAnJNKdaicDaLMyEClJg7mSrvAEFkcmQ_OpdY3m8ju7vRslk824GefC4OI_vAZ_uJLH8u3tVnxr7ILslXyPE42YTPLsjZXq48YKN0m5YQRLeA4V10EMwrzi-nV-JY8wTgmBzXLiGY7sC1J0yu_E79SR76_yr9NTa9yRp_eN9k92O1MSzFsufAZNrDah4-vCg7uw_a4C6UfQDNa1M-Ce2-JMXL676NZiqYWU850eELBVTvobdc1K7dLMVnwSD4jLYZtS5VmLXLTNrVfihuf8iiGfgsV03plHkRZWTHpD898gfvR7fT6d9C1YCCwEt0E2mhtzVyruTMolUaZWPKYDGaRNeiiyJUmkY5uONHEYpmgC1OjS-dsWSotD2Grqiv8CsKR88P-U8nJrEYmeu5CZYkdMs5DY-0AwjUShenqk3ObjKfC-ylhXjCOBeNYdDgO4Ec_5KUtzvE_4QMGqRfs8BnAyRruolu-yyLmOoFSxppGfe8f08LjaEpZYb0imTQl44oMaDmAo5Ym_bvX7Dp--5vfYIdn1p6KOYGtZrHCU_hg_jSPy8UZsXumzzy7_wK-1PRp
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RqCg90Bb6WKDgSj1VpCS2kzjclscKBLvaQypxi7J-qEg0qXaz_f2dcbIRB1qJW6KME0vf2DOT8TcD8BVNqrPSmSBKtQhkonkwk8oFGpXFofvgXGJ8s4l0MlF3d9l0DY57Loy11h8-s9_p0ufyTa2X9KvsBH2VLOPxC9iIpeRRy9bqcwZStbScMMIlzDPZ5TCjMDvJz8aXGAtyjiFqmqKibcGmQFsv_V78yCD5Div_dja90Rm9ed5038J251yyYasN72DNVjvw-lHJwR3YHHfJ9F1oRvP6F6PuW2xsiQB8rxesqVlOXIcHy6huB77tvCbzdsqmcxpJp6TZsG2q0qxELtq29gt24UmPbOg3UZbXS_2TlZVh0_74zHv4MbrMz6-CrgkDwhWrJlBaKaNnSs6ctkIqK2KDMZO2aWS0dVHkSh0LhzdENTG2jK0LE61K50xZSiU-wHpVV_YTMIfhD0VQJdFZtYjVzIXSoH4InoXamAGEKyQK3VUop0YZD4WPVMKsIBwLwrHocBzAt37I77Y8x_-EdwmkXrDDZwAHK7iLbgEvCk6VAoXgCkd96R_j0qN8SlnZeokySYLuFbrQYgAfWzXp373Srr2nv3kEr67y8W1xez252YctmmV7RuYA1pv50n6Gl_pPc7-YH3od_wvWHPbI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+Skin+Mechanics+to+Tactile+Neural+Coding%3A+Predicting+Afferent+Neural+Dynamics+During+Active+Touch+and+Perception&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Yuyang+Wei&rft.au=McGlone%2C+Francis+P&rft.au=Marshall%2C+Andrew+G&rft.au=Makdani%2C+Adarsh&rft.date=2022-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=69&rft.issue=12&rft.spage=3748&rft_id=info:doi/10.1109%2FTBME.2022.3177006&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon