The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP

The Electric and Magnetic Field Instrument and Integrated Science (EMFISIS) investigation on the NASA Radiation Belt Storm Probes (now named the Van Allen Probes) mission provides key wave and very low frequency magnetic field measurements to understand radiation belt acceleration, loss, and transpo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Space science reviews Ročník 179; číslo 1-4; s. 127 - 181
Hlavní autoři: Kletzing, C. A., Kurth, W. S., Acuna, M., MacDowall, R. J., Torbert, R. B., Averkamp, T., Bodet, D., Bounds, S. R., Chutter, M., Connerney, J., Crawford, D., Dolan, J. S., Dvorsky, R., Hospodarsky, G. B., Howard, J., Jordanova, V., Johnson, R. A., Kirchner, D. L., Mokrzycki, B., Needell, G., Odom, J., Mark, D., Pfaff, R., Phillips, J. R., Piker, C. W., Remington, S. L., Rowland, D., Santolik, O., Schnurr, R., Sheppard, D., Smith, C. W., Thorne, R. M., Tyler, J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 01.11.2013
Springer Nature B.V
Témata:
ISSN:0038-6308, 1572-9672
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The Electric and Magnetic Field Instrument and Integrated Science (EMFISIS) investigation on the NASA Radiation Belt Storm Probes (now named the Van Allen Probes) mission provides key wave and very low frequency magnetic field measurements to understand radiation belt acceleration, loss, and transport. The key science objectives and the contribution that EMFISIS makes to providing measurements as well as theory and modeling are described. The key components of the instruments suite, both electronics and sensors, including key functional parameters, calibration, and performance, demonstrate that EMFISIS provides the needed measurements for the science of the RBSP mission. The EMFISIS operational modes and data products, along with online availability and data tools provide the radiation belt science community with one the most complete sets of data ever collected.
AbstractList The Electric and Magnetic Field Instrument and Integrated Science (EMFISIS) investigation on the NASA Radiation Belt Storm Probes (now named the Van Allen Probes) mission provides key wave and very low frequency magnetic field measurements to understand radiation belt acceleration, loss, and transport. The key science objectives and the contribution that EMFISIS makes to providing measurements as well as theory and modeling are described. The key components of the instruments suite, both electronics and sensors, including key functional parameters, calibration, and performance, demonstrate that EMFISIS provides the needed measurements for the science of the RBSP mission. The EMFISIS operational modes and data products, along with online availability and data tools provide the radiation belt science community with one the most complete sets of data ever collected.
Issue Title: The Van Allen Probes Mission The Electric and Magnetic Field Instrument and Integrated Science (EMFISIS) investigation on the NASA Radiation Belt Storm Probes (now named the Van Allen Probes) mission provides key wave and very low frequency magnetic field measurements to understand radiation belt acceleration, loss, and transport. The key science objectives and the contribution that EMFISIS makes to providing measurements as well as theory and modeling are described. The key components of the instruments suite, both electronics and sensors, including key functional parameters, calibration, and performance, demonstrate that EMFISIS provides the needed measurements for the science of the RBSP mission. The EMFISIS operational modes and data products, along with online availability and data tools provide the radiation belt science community with one the most complete sets of data ever collected.[PUBLICATION ABSTRACT]
Author Odom, J.
Piker, C. W.
Kirchner, D. L.
Pfaff, R.
Connerney, J.
Tyler, J.
Acuna, M.
Averkamp, T.
Jordanova, V.
Hospodarsky, G. B.
Santolik, O.
Bounds, S. R.
Howard, J.
Bodet, D.
Sheppard, D.
Thorne, R. M.
Phillips, J. R.
Dolan, J. S.
Rowland, D.
Needell, G.
Kletzing, C. A.
Dvorsky, R.
Remington, S. L.
Smith, C. W.
MacDowall, R. J.
Chutter, M.
Mokrzycki, B.
Schnurr, R.
Kurth, W. S.
Johnson, R. A.
Mark, D.
Crawford, D.
Torbert, R. B.
Author_xml – sequence: 1
  givenname: C. A.
  surname: Kletzing
  fullname: Kletzing, C. A.
  email: craig-kletzing@uiowa.edu
  organization: Department of Physics & Astronomy, University of Iowa
– sequence: 2
  givenname: W. S.
  surname: Kurth
  fullname: Kurth, W. S.
  organization: Department of Physics & Astronomy, University of Iowa
– sequence: 3
  givenname: M.
  surname: Acuna
  fullname: Acuna, M.
  organization: Solar System Exploration Division, Goddard Space Flight Center
– sequence: 4
  givenname: R. J.
  surname: MacDowall
  fullname: MacDowall, R. J.
  organization: Solar System Exploration Division, Goddard Space Flight Center
– sequence: 5
  givenname: R. B.
  surname: Torbert
  fullname: Torbert, R. B.
  organization: Physics Department and Space Science Center, University of New Hampshire
– sequence: 6
  givenname: T.
  surname: Averkamp
  fullname: Averkamp, T.
  organization: Department of Physics & Astronomy, University of Iowa
– sequence: 7
  givenname: D.
  surname: Bodet
  fullname: Bodet, D.
  organization: Physics Department and Space Science Center, University of New Hampshire
– sequence: 8
  givenname: S. R.
  surname: Bounds
  fullname: Bounds, S. R.
  organization: Department of Physics & Astronomy, University of Iowa
– sequence: 9
  givenname: M.
  surname: Chutter
  fullname: Chutter, M.
  organization: Physics Department and Space Science Center, University of New Hampshire
– sequence: 10
  givenname: J.
  surname: Connerney
  fullname: Connerney, J.
  organization: Solar System Exploration Division, Goddard Space Flight Center
– sequence: 11
  givenname: D.
  surname: Crawford
  fullname: Crawford, D.
  organization: Department of Physics & Astronomy, University of Iowa
– sequence: 12
  givenname: J. S.
  surname: Dolan
  fullname: Dolan, J. S.
  organization: Department of Physics & Astronomy, University of Iowa
– sequence: 13
  givenname: R.
  surname: Dvorsky
  fullname: Dvorsky, R.
  organization: Department of Physics & Astronomy, University of Iowa
– sequence: 14
  givenname: G. B.
  surname: Hospodarsky
  fullname: Hospodarsky, G. B.
  organization: Department of Physics & Astronomy, University of Iowa
– sequence: 15
  givenname: J.
  surname: Howard
  fullname: Howard, J.
  organization: Department of Physics & Astronomy, University of Iowa
– sequence: 16
  givenname: V.
  surname: Jordanova
  fullname: Jordanova, V.
  organization: Space Science and Applications, Los Alamos National Laboratory
– sequence: 17
  givenname: R. A.
  surname: Johnson
  fullname: Johnson, R. A.
  organization: Department of Physics & Astronomy, University of Iowa
– sequence: 18
  givenname: D. L.
  surname: Kirchner
  fullname: Kirchner, D. L.
  organization: Department of Physics & Astronomy, University of Iowa
– sequence: 19
  givenname: B.
  surname: Mokrzycki
  fullname: Mokrzycki, B.
  organization: Department of Physics & Astronomy, University of Iowa
– sequence: 20
  givenname: G.
  surname: Needell
  fullname: Needell, G.
  organization: Physics Department and Space Science Center, University of New Hampshire
– sequence: 21
  givenname: J.
  surname: Odom
  fullname: Odom, J.
  organization: Solar System Exploration Division, Goddard Space Flight Center
– sequence: 22
  givenname: D.
  surname: Mark
  fullname: Mark, D.
  organization: Bison Aerospace Inc
– sequence: 23
  givenname: R.
  surname: Pfaff
  fullname: Pfaff, R.
  organization: Heliophysics Science Division, Goddard Space Flight Center
– sequence: 24
  givenname: J. R.
  surname: Phillips
  fullname: Phillips, J. R.
  organization: Department of Physics & Astronomy, University of Iowa
– sequence: 25
  givenname: C. W.
  surname: Piker
  fullname: Piker, C. W.
  organization: Department of Physics & Astronomy, University of Iowa
– sequence: 26
  givenname: S. L.
  surname: Remington
  fullname: Remington, S. L.
  organization: Department of Physics & Astronomy, University of Iowa
– sequence: 27
  givenname: D.
  surname: Rowland
  fullname: Rowland, D.
  organization: Heliophysics Science Division, Goddard Space Flight Center
– sequence: 28
  givenname: O.
  surname: Santolik
  fullname: Santolik, O.
  organization: Department of Space Physics, Institute of Atmospheric Physics, Faculty of Mathematics and Physics, Charles University
– sequence: 29
  givenname: R.
  surname: Schnurr
  fullname: Schnurr, R.
  organization: Solar System Exploration Division, Goddard Space Flight Center
– sequence: 30
  givenname: D.
  surname: Sheppard
  fullname: Sheppard, D.
  organization: Solar System Exploration Division, Goddard Space Flight Center
– sequence: 31
  givenname: C. W.
  surname: Smith
  fullname: Smith, C. W.
  organization: Physics Department and Space Science Center, University of New Hampshire
– sequence: 32
  givenname: R. M.
  surname: Thorne
  fullname: Thorne, R. M.
  organization: Atmospheric and Oceanic Sciences, University of California
– sequence: 33
  givenname: J.
  surname: Tyler
  fullname: Tyler, J.
  organization: Physics Department and Space Science Center, University of New Hampshire
BookMark eNp9kMFu1DAQhi1UJLaFB-BmiUs5pNixYztHqHYhUisQKQdO1tiZLK6yTrGdA29Plu0BVYLTaKTvm_n1n5OzOEck5DVnV5wx_S5zXnNZMS6qtm1FpZ6RDW90XbVK12dkw5gwlRLMvCDnOd8zdrT0hny_-4F0O6EvKXgKcaC3sI9Y1mUXcBpoF3NJywFjof0SCv5hulhwn6DgQHsfMHqkl9vbXdd3_Vs6R_r1Q__lJXk-wpTx1eO8IN9227vrT9XN54_d9fubysvGlEobNwjHFDA1GqnHoaldqwFr1TQDHx2AEwi1g1FL8MpJCSClc5K1RtUI4oJcnu4-pPnngrnYQ8gepwkizku2fH3TiFaadkXfPEHv5yXFNd1KSc2MMFyvlD5RPs05JxytDwVKmGNJECbLmT2WZ0-V27Vye6zcqtXkT8yHFA6Qfv3XqU9OXtm4x_RXpn9KvwFzZ5OA
CitedBy_id crossref_primary_10_1002_2017GL075892
crossref_primary_10_1002_2016JA022775
crossref_primary_10_1002_2017GL075894
crossref_primary_10_1002_2017JA024452
crossref_primary_10_1029_2023JA031399
crossref_primary_10_1002_2017JA024574
crossref_primary_10_1029_2017JA025023
crossref_primary_10_1029_2022JA030438
crossref_primary_10_1002_2017JA024336
crossref_primary_10_1029_2022JA030435
crossref_primary_10_1029_2022JA030566
crossref_primary_10_1029_2022JA030687
crossref_primary_10_1029_2022JA030444
crossref_primary_10_1029_2022JA030320
crossref_primary_10_1002_2017GL073116
crossref_primary_10_1029_2019GL083118
crossref_primary_10_1029_2022JA030680
crossref_primary_10_1029_2019JA026822
crossref_primary_10_1029_2019GL084202
crossref_primary_10_1029_2020GL086963
crossref_primary_10_1029_2020JA029081
crossref_primary_10_11728_cjss2024_06_2024_yg26
crossref_primary_10_1029_2022GL101321
crossref_primary_10_1029_2022SW003234
crossref_primary_10_1007_s11431_016_9008_3
crossref_primary_10_1007_s11431_017_9067_y
crossref_primary_10_3847_1538_4357_aaf970
crossref_primary_10_1002_2017GL076754
crossref_primary_10_1029_2021GL097471
crossref_primary_10_1038_s41597_025_05531_6
crossref_primary_10_1002_2016JA022549
crossref_primary_10_1002_2017GL076513
crossref_primary_10_1029_2022GL099152
crossref_primary_10_1002_2015GL064145
crossref_primary_10_1002_2016JA022546
crossref_primary_10_3389_fspas_2021_776992
crossref_primary_10_1002_2016GL071566
crossref_primary_10_1029_2020GL092178
crossref_primary_10_1002_2016GL070233
crossref_primary_10_1029_2022JA030455
crossref_primary_10_1002_2015JA021803
crossref_primary_10_1029_2018GL079596
crossref_primary_10_1029_2020JA029078
crossref_primary_10_1029_2022JA030695
crossref_primary_10_1002_2017JA024470
crossref_primary_10_1029_2018GL079232
crossref_primary_10_1029_2019GL085528
crossref_primary_10_1029_2021JA029962
crossref_primary_10_1002_2017JA024593
crossref_primary_10_1029_2022GL100485
crossref_primary_10_5194_angeo_34_493_2016
crossref_primary_10_1029_2019JA026715
crossref_primary_10_1029_2020JA027924
crossref_primary_10_1029_2023GL106860
crossref_primary_10_1007_s11214_022_00919_x
crossref_primary_10_1002_2016JA023600
crossref_primary_10_1029_2021GL097143
crossref_primary_10_5194_angeo_38_931_2020
crossref_primary_10_1002_2015GL066674
crossref_primary_10_1029_2023JA031299
crossref_primary_10_1002_2017JA024474
crossref_primary_10_1002_2016JA022513
crossref_primary_10_1029_2022GL098294
crossref_primary_10_3390_universe11050151
crossref_primary_10_1002_2016JA022517
crossref_primary_10_1007_s11141_021_10049_z
crossref_primary_10_1029_2018EA000550
crossref_primary_10_1029_2019GL085637
crossref_primary_10_1038_s41598_023_28093_2
crossref_primary_10_1134_S1062873825711055
crossref_primary_10_1007_s10509_024_04375_7
crossref_primary_10_1029_2020JA027918
crossref_primary_10_1029_2021JA029737
crossref_primary_10_3389_fspas_2023_1168636
crossref_primary_10_1038_s41467_021_23740_6
crossref_primary_10_1029_2020JA027913
crossref_primary_10_1134_S1063780X24601202
crossref_primary_10_1002_2016JA022523
crossref_primary_10_1029_2020JA027917
crossref_primary_10_1002_2016JA022400
crossref_primary_10_1002_2016JA022521
crossref_primary_10_1029_2021GL095194
crossref_primary_10_1002_2017JA024485
crossref_primary_10_1002_2017JA024487
crossref_primary_10_1029_2022JA030548
crossref_primary_10_1002_2016GL070333
crossref_primary_10_1029_2022JA030674
crossref_primary_10_1029_2019GL083446
crossref_primary_10_1002_2016GL068260
crossref_primary_10_1029_2022SW003342
crossref_primary_10_1029_2019GL082111
crossref_primary_10_1029_2020JA029091
crossref_primary_10_1029_2021JA029508
crossref_primary_10_1007_s11430_016_9024_3
crossref_primary_10_3389_fspas_2022_986061
crossref_primary_10_1029_2022GL100385
crossref_primary_10_1029_2023GL103590
crossref_primary_10_1134_S1062873823705512
crossref_primary_10_1029_2018JA026292
crossref_primary_10_1002_2016JA022573
crossref_primary_10_1029_2018JA026291
crossref_primary_10_1002_2017JA024770
crossref_primary_10_1029_2018JA026058
crossref_primary_10_5194_angeo_38_1267_2020
crossref_primary_10_1002_2015GL066255
crossref_primary_10_1029_2018JA026299
crossref_primary_10_3389_fspas_2024_1374331
crossref_primary_10_1002_2016JA023547
crossref_primary_10_1029_2022GL099000
crossref_primary_10_1029_2022JA030358
crossref_primary_10_1029_2020JA028074
crossref_primary_10_1029_2020JA028077
crossref_primary_10_1186_s40623_020_01235_w
crossref_primary_10_1029_2021JA029754
crossref_primary_10_1002_2017GL074006
crossref_primary_10_1007_s11214_023_01032_3
crossref_primary_10_3847_1538_4357_aca4c7
crossref_primary_10_1029_2021JA029759
crossref_primary_10_3389_fspas_2024_1332931
crossref_primary_10_1002_2017GL074362
crossref_primary_10_1029_2021SW002722
crossref_primary_10_1002_2016JA023311
crossref_primary_10_1002_2016JA023550
crossref_primary_10_1029_2018JA026183
crossref_primary_10_1029_2019GL082292
crossref_primary_10_1029_2020GL089807
crossref_primary_10_1029_2023JA031360
crossref_primary_10_1002_2017GL075104
crossref_primary_10_1007_s11431_021_2030_7
crossref_primary_10_1002_2017JA024540
crossref_primary_10_1007_s11214_022_00885_4
crossref_primary_10_1088_1674_1056_abf556
crossref_primary_10_1029_2021GL097559
crossref_primary_10_1029_2022JA030369
crossref_primary_10_1038_s41467_024_45967_9
crossref_primary_10_1029_2018GL079038
crossref_primary_10_1029_2022GL102106
crossref_primary_10_1029_2021JA029644
crossref_primary_10_1029_2023JA031479
crossref_primary_10_1029_2021JA029646
crossref_primary_10_3389_fspas_2023_1193600
crossref_primary_10_1029_2021JA029887
crossref_primary_10_3389_fspas_2023_1116396
crossref_primary_10_1029_2021JA029769
crossref_primary_10_1029_2019GL083024
crossref_primary_10_1029_2021JA029768
crossref_primary_10_1038_ncomms10096
crossref_primary_10_1134_S0016793224600553
crossref_primary_10_1002_2014GL062020
crossref_primary_10_1007_s11431_021_1965_2
crossref_primary_10_1029_2020GL087503
crossref_primary_10_1016_j_jastp_2018_01_024
crossref_primary_10_1029_2019JA026913
crossref_primary_10_3389_fspas_2022_910730
crossref_primary_10_1002_2017JA024316
crossref_primary_10_1002_2017JA024558
crossref_primary_10_1029_2022GL098378
crossref_primary_10_1007_s11214_021_00855_2
crossref_primary_10_1134_S0016793219060148
crossref_primary_10_1029_2023JA031497
crossref_primary_10_5194_angeo_41_429_2023
crossref_primary_10_1002_2017JA024554
crossref_primary_10_1002_2017JA024676
crossref_primary_10_1029_2018JA026199
crossref_primary_10_1029_2022JA030337
crossref_primary_10_1029_2018GL081379
crossref_primary_10_1029_2020JA028098
crossref_primary_10_1029_2021JA029895
crossref_primary_10_1029_2021JA029532
crossref_primary_10_1029_2022JA030463
crossref_primary_10_1029_2022JA030462
crossref_primary_10_1029_2020JA028094
crossref_primary_10_1002_2017GL074026
crossref_primary_10_1029_2020JA028090
crossref_primary_10_1029_2019GL085676
crossref_primary_10_3389_fspas_2021_728531
crossref_primary_10_1051_swsc_2024016
crossref_primary_10_5194_angeo_33_955_2015
crossref_primary_10_1002_2017GL073051
crossref_primary_10_3389_fspas_2025_1619877
crossref_primary_10_1002_2017JA024328
crossref_primary_10_1134_S0010952524600227
crossref_primary_10_3389_fspas_2023_1096595
crossref_primary_10_1002_2016JA023770
crossref_primary_10_1002_2017GL075001
crossref_primary_10_1029_2022GL098249
crossref_primary_10_1002_2016JA022565
crossref_primary_10_1029_2021GL093095
crossref_primary_10_1029_2021GL096488
crossref_primary_10_5194_gi_12_201_2023
crossref_primary_10_1029_2023JA032114
crossref_primary_10_1002_2016JA023536
crossref_primary_10_1002_2016JA023657
crossref_primary_10_1029_2020JA029057
crossref_primary_10_1029_2022JA030349
crossref_primary_10_1029_2023RS007907
crossref_primary_10_1029_2021JA029662
crossref_primary_10_3389_fspas_2024_1520141
crossref_primary_10_1186_s40623_021_01453_w
crossref_primary_10_1002_2015GL066581
crossref_primary_10_1029_2020GL086991
crossref_primary_10_1029_2021JA029546
crossref_primary_10_1002_2017JA024571
crossref_primary_10_1186_s40623_025_02170_4
crossref_primary_10_5194_angeo_36_781_2018
crossref_primary_10_1029_2022GL102368
crossref_primary_10_1029_2019GL082395
crossref_primary_10_5194_angeo_34_985_2016
crossref_primary_10_1029_2022GL097941
crossref_primary_10_1029_2018JA025284
crossref_primary_10_1029_2020JA028398
crossref_primary_10_1088_1742_6596_1623_1_012005
crossref_primary_10_1029_2018JA026374
crossref_primary_10_1029_2020JA028158
crossref_primary_10_1029_2020JA028031
crossref_primary_10_1029_2021GL094934
crossref_primary_10_1029_2021JA029793
crossref_primary_10_1029_2021GL094810
crossref_primary_10_3389_fspas_2023_1231578
crossref_primary_10_1002_2016GL071158
crossref_primary_10_1029_2020JA029001
crossref_primary_10_1029_2020JA028390
crossref_primary_10_1029_2021JA029797
crossref_primary_10_1029_2022JA031012
crossref_primary_10_1016_j_jastp_2019_105088
crossref_primary_10_1029_2020SW002622
crossref_primary_10_17721_2227_1481_5_68_74
crossref_primary_10_1029_2019GL086226
crossref_primary_10_1002_2014JA020023
crossref_primary_10_1029_2022GL101041
crossref_primary_10_1029_2023GL106371
crossref_primary_10_1029_2019GL082095
crossref_primary_10_1002_2016JA022384
crossref_primary_10_1002_2016JA023237
crossref_primary_10_1002_2016JA023358
crossref_primary_10_1029_2018GL080291
crossref_primary_10_3389_fphy_2022_786639
crossref_primary_10_1002_2017JA024187
crossref_primary_10_1029_2020JA028027
crossref_primary_10_1029_2018JA026387
crossref_primary_10_1002_2017GL075824
crossref_primary_10_3389_fspas_2022_970308
crossref_primary_10_5194_angeo_39_461_2021
crossref_primary_10_1002_2017GL072558
crossref_primary_10_1029_2021JA029322
crossref_primary_10_1029_2021JA029565
crossref_primary_10_1029_2021JA029569
crossref_primary_10_1029_2022JA031020
crossref_primary_10_1002_2014JA020252
crossref_primary_10_1002_2014JA020373
crossref_primary_10_1029_2020GL088753
crossref_primary_10_1186_s40623_021_01430_3
crossref_primary_10_1029_2022JA031260
crossref_primary_10_1186_s40623_018_0837_1
crossref_primary_10_1002_2015JA021089
crossref_primary_10_1002_2016JA022596
crossref_primary_10_1007_s11431_019_1545_6
crossref_primary_10_1029_2022SW003182
crossref_primary_10_1002_2017GL074985
crossref_primary_10_1029_2018JA026279
crossref_primary_10_1029_2020JA029024
crossref_primary_10_1029_2018JA026031
crossref_primary_10_1029_2020JA029025
crossref_primary_10_1029_2021JA029330
crossref_primary_10_1007_s11214_025_01184_4
crossref_primary_10_1029_2021GL093987
crossref_primary_10_1029_2021JA029337
crossref_primary_10_3389_fphy_2021_722355
crossref_primary_10_1002_2016GL071250
crossref_primary_10_1029_2023GL103083
crossref_primary_10_1002_2016GL071252
crossref_primary_10_1002_2016JA023333
crossref_primary_10_1029_2023GL105244
crossref_primary_10_1002_2014JA020281
crossref_primary_10_1029_2023GL106459
crossref_primary_10_1002_2016JA022366
crossref_primary_10_1029_2018JA026168
crossref_primary_10_1002_2017SW001702
crossref_primary_10_1016_j_asr_2023_11_020
crossref_primary_10_1029_2020JA029019
crossref_primary_10_3847_1538_4365_aba62e
crossref_primary_10_1038_s41598_025_14293_5
crossref_primary_10_5194_angeo_33_1173_2015
crossref_primary_10_1029_2022JA031127
crossref_primary_10_1029_2020JA028042
crossref_primary_10_1029_2022JA030399
crossref_primary_10_1029_2021JA030214
crossref_primary_10_1029_2021JA029107
crossref_primary_10_1029_2019GL084379
crossref_primary_10_1029_2020GL088853
crossref_primary_10_1002_2017GL073420
crossref_primary_10_1029_2020GL088855
crossref_primary_10_1029_2022RS007454
crossref_primary_10_1029_2023GL104282
crossref_primary_10_1007_s11207_017_1113_4
crossref_primary_10_1029_2018SW001948
crossref_primary_10_3847_2041_8213_ad40a7
crossref_primary_10_1002_2015JA022154
crossref_primary_10_1002_2016JA022370
crossref_primary_10_1002_2015GL064911
crossref_primary_10_1088_1361_6501_ab0821
crossref_primary_10_1029_2018JA025480
crossref_primary_10_1002_2015GL063946
crossref_primary_10_1029_2020GL090749
crossref_primary_10_1017_S0022377821000246
crossref_primary_10_1002_2016GL069029
crossref_primary_10_1029_2023GL102922
crossref_primary_10_1029_2018JA025482
crossref_primary_10_1029_2020JA028354
crossref_primary_10_3389_fspas_2022_986814
crossref_primary_10_1029_2021JA029353
crossref_primary_10_1029_2020GL089994
crossref_primary_10_1029_2018JA026328
crossref_primary_10_1002_2015GL067066
crossref_primary_10_1029_2020GL088421
crossref_primary_10_1002_2015JA021179
crossref_primary_10_1002_2016GL070386
crossref_primary_10_1002_2016JA023392
crossref_primary_10_1029_2019JA027055
crossref_primary_10_1029_2021GL096062
crossref_primary_10_1029_2021GL096182
crossref_primary_10_1002_2017GL074895
crossref_primary_10_1029_2022SW003051
crossref_primary_10_1029_2023JA032179
crossref_primary_10_1002_2017GL076957
crossref_primary_10_1186_s40623_021_01467_4
crossref_primary_10_1029_2020GL090632
crossref_primary_10_1029_2023JA032055
crossref_primary_10_1029_2021JA029363
crossref_primary_10_5194_angeo_34_565_2016
crossref_primary_10_1186_s40623_020_01182_6
crossref_primary_10_1002_2017JA024270
crossref_primary_10_1029_2021GL092700
crossref_primary_10_1029_2021JA030115
crossref_primary_10_1002_2016GL068161
crossref_primary_10_1029_2020GL088798
crossref_primary_10_1002_2015JA021048
crossref_primary_10_1029_2022JA031181
crossref_primary_10_1002_2015JA022132
crossref_primary_10_1029_2023GL106162
crossref_primary_10_1029_2020GL089649
crossref_primary_10_1002_2015JA022010
crossref_primary_10_1002_2015JA022252
crossref_primary_10_1002_2016JA023002
crossref_primary_10_1002_2016JA023484
crossref_primary_10_1002_2017GL075877
crossref_primary_10_1029_2020JA028018
crossref_primary_10_1002_2017JA025005
crossref_primary_10_1029_2020JA028492
crossref_primary_10_1029_2022JA031038
crossref_primary_10_1029_2021JA029258
crossref_primary_10_1029_2019GL086368
crossref_primary_10_1002_2016JA023130
crossref_primary_10_1002_2016JA023372
crossref_primary_10_1002_2015JA021395
crossref_primary_10_1007_s10836_019_05778_z
crossref_primary_10_1002_2015JA021030
crossref_primary_10_1029_2019JA027154
crossref_primary_10_1029_2018GL078809
crossref_primary_10_1029_2018JA025390
crossref_primary_10_1029_2018GL078925
crossref_primary_10_1029_2021JA029380
crossref_primary_10_1029_2021JA030008
crossref_primary_10_3389_fspas_2022_949788
crossref_primary_10_1002_2017JA024169
crossref_primary_10_1002_2017GL075649
crossref_primary_10_1029_2020JA028487
crossref_primary_10_1016_j_jastp_2019_105090
crossref_primary_10_1038_srep32362
crossref_primary_10_1002_2014JA020359
crossref_primary_10_1038_s41467_023_36095_x
crossref_primary_10_1029_2018JA026238
crossref_primary_10_1029_2018JA026359
crossref_primary_10_1002_2016GL072316
crossref_primary_10_1016_j_asr_2023_10_022
crossref_primary_10_1002_2015GL063906
crossref_primary_10_1029_2020GL087203
crossref_primary_10_1029_2019GL086599
crossref_primary_10_1002_2016JA023263
crossref_primary_10_1134_S0016793223600509
crossref_primary_10_1002_2015GL064955
crossref_primary_10_1029_2018GL077969
crossref_primary_10_1029_2019GL085091
crossref_primary_10_1029_2019SW002360
crossref_primary_10_3847_1538_4357_abf4d6
crossref_primary_10_1029_2018JA025443
crossref_primary_10_1029_2020JA028315
crossref_primary_10_5194_angeo_36_867_2018
crossref_primary_10_1029_2023JA031703
crossref_primary_10_1029_2019GL082944
crossref_primary_10_3389_fspas_2023_1232702
crossref_primary_10_1002_2017GL072701
crossref_primary_10_1029_2020GL090783
crossref_primary_10_1029_2023JA031700
crossref_primary_10_1029_2018JA025557
crossref_primary_10_1002_2015JA021137
crossref_primary_10_3847_1538_4357_ac90cc
crossref_primary_10_1002_2014GL059626
crossref_primary_10_1038_nature13956
crossref_primary_10_1029_2020JA028423
crossref_primary_10_3847_1538_4357_ab71fc
crossref_primary_10_1029_2019JA027370
crossref_primary_10_1029_2020JA028543
crossref_primary_10_1029_2023GL103927
crossref_primary_10_1029_2021GL096825
crossref_primary_10_1002_2015JA022219
crossref_primary_10_1029_2020GL087023
crossref_primary_10_1134_S001679321701008X
crossref_primary_10_1029_2023JA031711
crossref_primary_10_1029_2023JA031832
crossref_primary_10_1029_2023JA031712
crossref_primary_10_1029_2019JA027009
crossref_primary_10_1002_2016JA023046
crossref_primary_10_1007_s10509_019_3555_7
crossref_primary_10_1029_2019GL086040
crossref_primary_10_1029_2018GL079927
crossref_primary_10_1002_2014JA020690
crossref_primary_10_1002_2017JA023949
crossref_primary_10_1029_2020JA028215
crossref_primary_10_1029_2020JA028216
crossref_primary_10_1029_2020JA028458
crossref_primary_10_1029_2021JA029292
crossref_primary_10_1029_2018GL077500
crossref_primary_10_1029_2021JA029294
crossref_primary_10_1029_2021JA029298
crossref_primary_10_1029_2023JA031607
crossref_primary_10_1029_2022JA031078
crossref_primary_10_1029_2018JA025337
crossref_primary_10_1029_2018JA026427
crossref_primary_10_1029_2021JA030048
crossref_primary_10_1002_2015JA021358
crossref_primary_10_1002_2017JA024919
crossref_primary_10_3847_1538_4357_ad2dfe
crossref_primary_10_1002_2015JA021113
crossref_primary_10_1002_2015JA021234
crossref_primary_10_3389_fspas_2022_977801
crossref_primary_10_1007_s11214_023_00973_z
crossref_primary_10_1029_2023JA031608
crossref_primary_10_1002_2016JA023173
crossref_primary_10_1007_s11214_022_00934_y
crossref_primary_10_1029_2019JA027111
crossref_primary_10_1007_s11214_025_01144_y
crossref_primary_10_1029_2022GL098842
crossref_primary_10_1002_2017JA023958
crossref_primary_10_1016_j_jastp_2022_105966
crossref_primary_10_1029_2018GL078849
crossref_primary_10_1029_2019JA027233
crossref_primary_10_1007_s11214_016_0252_5
crossref_primary_10_1029_2018GL078604
crossref_primary_10_1029_2018JA025232
crossref_primary_10_1029_2018JA025354
crossref_primary_10_1002_2016GL067853
crossref_primary_10_1029_2018GL077873
crossref_primary_10_1002_2014JA020437
crossref_primary_10_3389_fspas_2023_1193268
crossref_primary_10_1029_2020JA028560
crossref_primary_10_1029_2021GL095757
crossref_primary_10_1029_2025GL116338
crossref_primary_10_1134_S0016793220010132
crossref_primary_10_1002_2015JA022318
crossref_primary_10_1029_2020GL088452
crossref_primary_10_1002_2015JA021227
crossref_primary_10_1029_2022JA031088
crossref_primary_10_1029_2020GL087365
crossref_primary_10_1029_2019JA027469
crossref_primary_10_1029_2020GL087009
crossref_primary_10_1016_j_jastp_2020_105332
crossref_primary_10_1002_2015JA021460
crossref_primary_10_1029_2019SW002168
crossref_primary_10_1029_2022GL098710
crossref_primary_10_1029_2019JA026477
crossref_primary_10_1029_2022GL098954
crossref_primary_10_1029_2022JA030914
crossref_primary_10_1029_2021JA029193
crossref_primary_10_1209_0295_5075_ade73b
crossref_primary_10_1002_2014GL062832
crossref_primary_10_1029_2017JA024889
crossref_primary_10_1029_2020JA028635
crossref_primary_10_1029_2020JA028998
crossref_primary_10_1029_2018GL078731
crossref_primary_10_1016_j_asr_2024_08_058
crossref_primary_10_1029_2020JA028873
crossref_primary_10_1002_2014JA020865
crossref_primary_10_1029_2018JA025637
crossref_primary_10_1134_S0016793217060135
crossref_primary_10_1029_2018JA025996
crossref_primary_10_3389_fspas_2021_725800
crossref_primary_10_1029_2019GL083833
crossref_primary_10_1002_2015JA021455
crossref_primary_10_1002_2014JA020863
crossref_primary_10_1002_2015JA021690
crossref_primary_10_1186_s40623_017_0707_2
crossref_primary_10_1002_2015JA021691
crossref_primary_10_1029_2019JA027210
crossref_primary_10_1029_2023GL102993
crossref_primary_10_1029_2022JA030806
crossref_primary_10_1029_2020JA027772
crossref_primary_10_1029_2022JA030804
crossref_primary_10_1029_2020JA028503
crossref_primary_10_1029_2022GL100606
crossref_primary_10_1007_s10509_018_3279_0
crossref_primary_10_1029_2020JA027776
crossref_primary_10_1029_2020JA028981
crossref_primary_10_1029_2021GL094842
crossref_primary_10_1002_2014JA020857
crossref_primary_10_1029_2017JA024782
crossref_primary_10_1029_2021GL095933
crossref_primary_10_1029_2020JA027890
crossref_primary_10_1029_2018JA025886
crossref_primary_10_1029_2018JA025766
crossref_primary_10_1029_2019GL083944
crossref_primary_10_1029_2023JA031911
crossref_primary_10_1029_2022GL097978
crossref_primary_10_1029_2021JA030196
crossref_primary_10_3389_fspas_2021_681401
crossref_primary_10_1002_2015GL063528
crossref_primary_10_1016_j_jastp_2020_105471
crossref_primary_10_1029_2019JA027422
crossref_primary_10_1029_2019JA027543
crossref_primary_10_1029_2022GL098810
crossref_primary_10_1002_2014GL062977
crossref_primary_10_1029_2020JA028414
crossref_primary_10_1029_2018JA025664
crossref_primary_10_1002_2013GL059187
crossref_primary_10_1016_j_asr_2022_04_023
crossref_primary_10_1029_2020JA028773
crossref_primary_10_1029_2023GL102748
crossref_primary_10_1029_2019GL083808
crossref_primary_10_1029_2018JA025658
crossref_primary_10_1029_2018JA025417
crossref_primary_10_1029_2018JA025419
crossref_primary_10_1029_2021JA030088
crossref_primary_10_1029_2018JA025776
crossref_primary_10_1002_2015JA021676
crossref_primary_10_1029_2019JA027415
crossref_primary_10_1029_2023SW003477
crossref_primary_10_1002_2016JA023093
crossref_primary_10_1029_2019JA026566
crossref_primary_10_3389_fspas_2023_1197430
crossref_primary_10_1002_2015JA021795
crossref_primary_10_1029_2019JA026569
crossref_primary_10_1029_2019JA026689
crossref_primary_10_1029_2022GL100971
crossref_primary_10_1038_nature12889
crossref_primary_10_1002_2014JA020883
crossref_primary_10_1029_2023JA031808
crossref_primary_10_1029_2023JA031929
crossref_primary_10_1007_s11431_021_1882_x
crossref_primary_10_1029_2019JA027430
crossref_primary_10_1029_2019JA027555
crossref_primary_10_1029_2020JA028527
crossref_primary_10_1029_2018JA026401
crossref_primary_10_1029_2020JA027793
crossref_primary_10_1029_2020JA028403
crossref_primary_10_1029_2020JA027798
crossref_primary_10_1016_j_asr_2015_02_024
crossref_primary_10_1029_2019GL083918
crossref_primary_10_1002_2014JA020877
crossref_primary_10_1029_2021GL092567
crossref_primary_10_1029_2021GL095714
crossref_primary_10_1134_S1063780X2260044X
crossref_primary_10_1029_2020GL089584
crossref_primary_10_1029_2020GL089344
crossref_primary_10_1002_2015JA021786
crossref_primary_10_1029_2021JA030093
crossref_primary_10_1029_2019JA027424
crossref_primary_10_1029_2020GL088019
crossref_primary_10_1002_2014JA020873
crossref_primary_10_1002_2014JA020872
crossref_primary_10_1029_2022GL100860
crossref_primary_10_1002_2014JA020875
crossref_primary_10_1038_s41467_019_12561_3
crossref_primary_10_1029_2019JA026796
crossref_primary_10_1016_j_asr_2024_08_017
crossref_primary_10_1029_2021GL093168
crossref_primary_10_1002_2016GL067687
crossref_primary_10_1029_2020GL090027
crossref_primary_10_1029_2020GL091479
crossref_primary_10_1029_2023GL105958
crossref_primary_10_1002_2017JA024611
crossref_primary_10_1002_2016JA022814
crossref_primary_10_1029_2021GL094015
crossref_primary_10_1002_2016GL069982
crossref_primary_10_1029_2023JA031549
crossref_primary_10_1029_2021GL097529
crossref_primary_10_1029_2021GL095349
crossref_primary_10_1029_2020GL089032
crossref_primary_10_1029_2019GL083513
crossref_primary_10_1029_2023JA031787
crossref_primary_10_1029_2023JA031426
crossref_primary_10_1016_j_jastp_2020_105405
crossref_primary_10_1002_2015JA021772
crossref_primary_10_1134_S0016793222040168
crossref_primary_10_1002_2017JA024867
crossref_primary_10_3390_s16060859
crossref_primary_10_1038_ncomms9590
crossref_primary_10_5194_angeo_38_683_2020
crossref_primary_10_1002_2017JA024869
crossref_primary_10_1029_2021GL093151
crossref_primary_10_3103_S1062873822030273
crossref_primary_10_3390_rs12142300
crossref_primary_10_1029_2022JA030605
crossref_primary_10_1002_2016JA022706
crossref_primary_10_1029_2020GL090275
crossref_primary_10_1029_2018JA025725
crossref_primary_10_1029_2018GL077212
crossref_primary_10_1029_2018JA025726
crossref_primary_10_1029_2023JA031677
crossref_primary_10_1029_2018JA025963
crossref_primary_10_1002_2016GL070878
crossref_primary_10_1002_2015JA021644
crossref_primary_10_1038_nature14515
crossref_primary_10_1002_2017GL076120
crossref_primary_10_1002_2017GL076362
crossref_primary_10_1029_2020JA027889
crossref_primary_10_1038_s41467_020_18545_y
crossref_primary_10_3390_s18041053
crossref_primary_10_1002_2017JA024639
crossref_primary_10_1029_2019JA026772
crossref_primary_10_1029_2022GL098457
crossref_primary_10_1029_2017JA025087
crossref_primary_10_1029_2023JA031454
crossref_primary_10_1029_2018GL079527
crossref_primary_10_1002_2016GL068799
crossref_primary_10_1029_2018JA025862
crossref_primary_10_1029_2020JA028850
crossref_primary_10_1029_2023JA031451
crossref_primary_10_1029_2023JA031572
crossref_primary_10_1029_2020GL092305
crossref_primary_10_1029_2020JA028972
crossref_primary_10_1029_2023GL105938
crossref_primary_10_1029_2023JA031325
crossref_primary_10_3390_universe9080353
crossref_primary_10_1029_2020GL091330
crossref_primary_10_1029_2019JA027733
crossref_primary_10_1002_2015JA021992
crossref_primary_10_1029_2019JA027618
crossref_primary_10_1038_s41467_020_18053_z
crossref_primary_10_1109_JSEN_2014_2365495
crossref_primary_10_1002_2017JA024406
crossref_primary_10_1029_2022GL099655
crossref_primary_10_1029_2018SW002110
crossref_primary_10_1029_2019JA026541
crossref_primary_10_1029_2022JA030708
crossref_primary_10_1029_2022GL098328
crossref_primary_10_1002_2017GL076139
crossref_primary_10_1016_j_asr_2022_08_021
crossref_primary_10_1029_2020JA028842
crossref_primary_10_1029_2021GL095476
crossref_primary_10_3389_fspas_2023_1135509
crossref_primary_10_1029_2023GL103626
crossref_primary_10_1002_2016GL069875
crossref_primary_10_3389_fphy_2024_1334531
crossref_primary_10_3103_S1062873821030199
crossref_primary_10_1029_2020GL088052
crossref_primary_10_1002_2016JA022808
crossref_primary_10_1029_2019JA027509
crossref_primary_10_1002_2016GL068780
crossref_primary_10_1029_2018GL078564
crossref_primary_10_1029_2018GL080635
crossref_primary_10_1029_2018JA025984
crossref_primary_10_1029_2019GL082633
crossref_primary_10_1002_2014JA020717
crossref_primary_10_1029_2022GL100306
crossref_primary_10_1002_2015JA021863
crossref_primary_10_1029_2018JA025629
crossref_primary_10_1016_j_asr_2023_07_011
crossref_primary_10_1029_2022GL098798
crossref_primary_10_1038_s41467_020_15506_3
crossref_primary_10_1002_2014GL059389
crossref_primary_10_1029_2023GL105631
crossref_primary_10_1002_2015GL065565
crossref_primary_10_3847_1538_4365_ab9697
crossref_primary_10_1029_2023JA031995
crossref_primary_10_1029_2022JA030636
crossref_primary_10_1029_2023GL104429
crossref_primary_10_1002_2016JA023706
crossref_primary_10_1029_2019JA026509
crossref_primary_10_1029_2018GL079786
crossref_primary_10_1029_2022GL101402
crossref_primary_10_3389_fspas_2021_705637
crossref_primary_10_1029_2022GL100433
crossref_primary_10_3847_2041_8213_ab9179
crossref_primary_10_1029_2018GL078451
crossref_primary_10_1029_2022GL101889
crossref_primary_10_1029_2019JA026743
crossref_primary_10_1186_s40623_018_0842_4
crossref_primary_10_1002_2017GL076382
crossref_primary_10_1029_2020JA027813
crossref_primary_10_1002_2017JA023979
crossref_primary_10_1029_2025JA034430
crossref_primary_10_1038_s41598_022_26189_9
crossref_primary_10_1002_2017JA024708
crossref_primary_10_1029_2023GL106715
crossref_primary_10_1029_2023JA031883
crossref_primary_10_1029_2021GL094681
crossref_primary_10_5194_gi_8_187_2019
crossref_primary_10_1002_2016JA022502
crossref_primary_10_1002_2016JA022507
crossref_primary_10_1029_2022JA030523
crossref_primary_10_1007_s11431_020_1750_6
crossref_primary_10_1029_2018GL081500
crossref_primary_10_1029_2018GL081863
crossref_primary_10_1007_s11214_025_01200_7
crossref_primary_10_1029_2018JA025802
crossref_primary_10_1029_2018JA025803
crossref_primary_10_1029_2022JA030531
crossref_primary_10_1002_2015GL063250
crossref_primary_10_1002_2015JA021844
crossref_primary_10_1007_s11141_019_09964_z
crossref_primary_10_1029_2020JA028814
crossref_primary_10_1029_2021GL096532
crossref_primary_10_1038_s41567_018_0391_6
crossref_primary_10_5194_angeo_39_613_2021
crossref_primary_10_1002_2016JA023801
crossref_primary_10_1029_2022JA030615
crossref_primary_10_1029_2023GL104647
crossref_primary_10_1029_2023JA031775
crossref_primary_10_1029_2022JA030855
crossref_primary_10_1029_2020GL089060
crossref_primary_10_1029_2022JA030853
crossref_primary_10_5194_angeo_36_1319_2018
crossref_primary_10_5194_angeo_40_673_2022
crossref_primary_10_1029_2020GL090165
crossref_primary_10_1029_2023JA031407
crossref_primary_10_1016_j_jastp_2020_105509
crossref_primary_10_1029_2019GL082688
crossref_primary_10_1007_s10712_018_9496_9
crossref_primary_10_1029_2023JA031768
crossref_primary_10_1029_2019GL082686
crossref_primary_10_1029_2019JA026965
crossref_primary_10_1029_2019JA026860
crossref_primary_10_1002_2016GL068869
crossref_primary_10_3389_fspas_2022_1004634
crossref_primary_10_3847_1538_4357_aabee2
crossref_primary_10_3390_rs15010147
crossref_primary_10_1002_2015JA021829
crossref_primary_10_1029_2022JA030502
crossref_primary_10_1002_2017JA024843
crossref_primary_10_1029_2022JA030753
crossref_primary_10_1029_2021GL096526
crossref_primary_10_1029_2018JA025940
crossref_primary_10_1029_2020GL092351
crossref_primary_10_1029_2023JA031776
crossref_primary_10_1029_2023JA031777
crossref_primary_10_1029_2021JA029701
crossref_primary_10_1029_2021JA029700
crossref_primary_10_1029_2023SW003524
crossref_primary_10_1016_j_asr_2018_01_041
crossref_primary_10_1029_2022GL099618
crossref_primary_10_1029_2019JA026735
Cites_doi 10.1029/2007JA012558
10.1038/nature09467
10.1029/2005JA011351
10.1029/2004JA010882
10.1029/2010JA015283
10.1029/2008JA013554
10.1029/97JA02919
10.1029/2006JA011619
10.1029/2006JA011703
10.1029/2000JA000326
10.1029/2001JA000052
10.1029/98JA01740
10.1029/2010JA015915
10.1029/2009JA014223
10.1029/2008GL034458
10.1029/1999GL003659
10.1029/2008JA013826
10.1029/2002JA009736
10.1029/2009JA014918
10.1029/2009GL040451
10.1016/j.jastp.2006.05.030
10.1029/2001GL013941
10.1029/JZ071i019p04505
10.1029/2003GL016973
10.1029/2011JA017321
10.1029/98GL01002
10.1029/JA076i019p04446
10.1029/2008JA013239
10.1029/2009JA014717
10.1029/2009JA014586
10.1029/2009GL037595
10.1029/2009GL039045
10.1029/2006JA012218
10.1029/GM125p0289
10.1029/JA082i032p05112
10.1029/JA075i025p04699
10.1029/2005JA011355
10.1029/2008JA013784
10.1029/2009JA014570
10.1029/2008GL035500
10.1029/2006JA011708
10.1029/2001JA000051
10.1029/2008GL034032
10.1126/science.1171273
10.1016/0032-0633(93)90015-T
10.1029/2001JA000047
10.1029/2011GL048793
10.1029/97JA02920
10.1029/93JA02771
10.1029/2000JA000275
10.1029/2005GL024380
10.1029/2009JA014409
10.1029/2005JA011041
10.1029/2009GL039985
10.1109/TMAG.1974.1058457
10.1029/JA083iA10p04798
10.1029/2004JA010760
10.1029/2002JA009489
10.1063/1.1510570
10.1029/92GL00624
10.1029/2008JA013353
10.1029/93GL02701
10.5194/angeo-21-437-2003
10.1029/2007GL030267
10.1029/2009JA014204
10.1029/2005JA011017
10.1029/2007GL032009
10.1029/2010GL044990
10.1029/2001JA009202
10.1029/2000JA000604
10.1029/97JA03995
10.1029/2003GL017698
10.1029/1999JA900447
10.1029/2009JA015075
10.1029/2009JA014516
10.1126/science.1193186
10.1029/2007JA012975
10.1038/nature06741
10.1029/2010GL042772
10.1029/2008JA013129
10.1029/2003JA009993
10.1029/2008SW000452
10.1007/978-3-642-49300-3
10.1029/2000GL003822
10.1029/2009JA014950
10.1029/2011JA017433
10.1029/96JA03699
10.1029/2002JA009808
10.1029/2006JA012215
10.1029/2007JA012862
10.1029/2009JA014162
10.1029/2000RS002523
10.1029/2006JA011644
10.1029/1999JA900014
10.1029/2004JA010816
10.1029/98GL02801
10.1029/2003GL018757
10.1029/JA078i013p02142
10.1029/2007GL032226
10.1007/978-3-642-65675-0
10.1029/2006JA012237
10.1029/2002JA009793
10.1029/2008JA013549
10.1029/2002JA009792
10.1029/2000JA000018
10.5194/angeo-27-2173-2009
10.1029/2009JA014230
10.1029/2006JA011620
10.1029/97JA01814
10.1029/2010JA015671
10.1029/2010JA015607
10.1029/2010JA015707
10.1029/2006JA011657
10.1029/2006JA012061
10.1029/2009JA014243
10.1029/JZ072i003p00871
10.1029/2005JA011211
10.1029/2009JA014336
10.1029/2004GL019591
10.1029/JA077i019p03455
10.1029/2009JA014810
10.1029/2007JA012985
10.1038/nphys655
10.1016/j.jastp.2009.03.023
10.1029/2004JA010811
10.1029/2000JA002008
10.1029/2010GL042648
10.1029/96JA04019
10.1007/BF00183028
10.1029/2002JA009409
10.1029/JA085iA02p00523
10.1029/2004JA010612
10.1029/92GL00121
10.1006/jcph.1999.6299
10.1029/2003JA010153
10.1029/2002JA009700
10.1029/2007JA012890
10.1029/94GL00375
10.1029/2001JA000054
10.1029/JA079i001p00118
10.1029/96JA02735
10.1029/JA074i016p04184
10.1029/2008JA013480
10.1029/2005GL023020
10.1029/2000JA900062
10.1029/2010JA015755
10.1029/2007JA012478
10.1016/j.jastp.2006.06.019
ContentType Journal Article
Copyright The Author(s) 2013
Springer Science+Business Media Dordrecht 2013
Copyright_xml – notice: The Author(s) 2013
– notice: Springer Science+Business Media Dordrecht 2013
DBID C6C
AAYXX
CITATION
3V.
7TG
7XB
88I
8FD
8FE
8FG
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
H8D
HCIFZ
KL.
L7M
M2P
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11214-013-9993-6
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Meteorological & Geoastrophysical Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
Aerospace Database
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
ProQuest Central Student
Meteorological & Geoastrophysical Abstracts - Academic
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Astronomy & Astrophysics
Physics
EISSN 1572-9672
EndPage 181
ExternalDocumentID 3113244261
10_1007_s11214_013_9993_6
Genre Feature
GroupedDBID -54
-5F
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
6TJ
78A
88I
8FE
8FG
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFSI
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBEA
ACBXY
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIDUJ
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
D1K
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GPTSA
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6-
KDC
KOV
KOW
LAK
LK5
LLZTM
M2P
M4Y
M7R
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OHT
OK1
OVD
P19
P2P
P62
P9T
PF0
PKN
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNP
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SC5
SCLPG
SDH
SDM
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VOH
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z86
Z88
Z8M
Z8N
Z8S
Z8T
Z92
ZCG
ZMTXR
ZY4
~02
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ABUFD
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7TG
7XB
8FD
8FK
H8D
KL.
L7M
PKEHL
PQEST
PQUKI
Q9U
PUEGO
ID FETCH-LOGICAL-c458t-78bd3b06a06f847fd52b97ae2655d1fbaab3ea2baf74ac6b44aa44bb409862ea3
IEDL.DBID M2P
ISICitedReferencesCount 1096
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000326381300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0038-6308
IngestDate Wed Oct 01 17:28:53 EDT 2025
Tue Nov 04 21:07:33 EST 2025
Sat Nov 29 05:31:36 EST 2025
Tue Nov 18 21:04:18 EST 2025
Fri Feb 21 02:36:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1-4
Keywords Wave measurements
Magnetometer measurements
Van Allen probes
Radiation belt storm probes
Whistler waves
Space flight instruments
Radiation belt physics
Space weather
Geomagnetic storms
RBSP
Language English
License http://creativecommons.org/licenses/by/2.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c458t-78bd3b06a06f847fd52b97ae2655d1fbaab3ea2baf74ac6b44aa44bb409862ea3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://link.springer.com/10.1007/s11214-013-9993-6
PQID 1447083817
PQPubID 105668
PageCount 55
ParticipantIDs proquest_miscellaneous_1458539489
proquest_journals_1447083817
crossref_citationtrail_10_1007_s11214_013_9993_6
crossref_primary_10_1007_s11214_013_9993_6
springer_journals_10_1007_s11214_013_9993_6
PublicationCentury 2000
PublicationDate 2013-11-01
PublicationDateYYYYMMDD 2013-11-01
PublicationDate_xml – month: 11
  year: 2013
  text: 2013-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Space science reviews
PublicationTitleAbbrev Space Sci Rev
PublicationYear 2013
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References A.Y. Ukhorskiy, B.J. Anderson, K. Takahashi, N.A. Tsyganenko, Impact of ULF oscillations in solar wind dynamic pressure on the outer radiation belt electrons. Geophys. Res. Lett. 33 (2006)
SchulzM.LanzerottiL.Particle Diffusion in the Radiation Belts1974New YorkSpringer10.1007/978-3-642-65675-0
L. Chen, R.M. Thorne, V.K. Jordanova, C.-P. Wang, M. Gkioulidou, L. Lyons, R.B. Horne, Global simulation of emic wave excitation during the 2001 April 21st storm from coupled RCM-RAM-hotray modeling. J. Geophys. Res. 115 (2010a)
J. Bortnik, W. Li, R.M. Thorne, V. Angelopoulos, C. Cully, J. Bonnell, O.L. Contel, A. Roux, An observation linking the origin of plasmaspheric hiss to discrete chorus emissions. Science 324 (2009b)
Y. Hu, R.E. Denton, Two-dimensional hybrid code simulation of electromagnetic ion cyclotron waves in a dipole magnetic field. J. Geophys. Res. 114 (2009)
L.R. Lyons, R.M. Thorne, C.F. Kennel, Pitch angle diffusion of radiation belt electrons within the plasmasphere. J. Geophys. Res. 77 (1972)
M. Hayosh, O. Santolik, M. Parrot, Location and size of the global source region of whistler mode chorus. J. Geophys. Res. 115 (2010)
B.J. Fraser, R.S. Grew, S.K. Morley, J.C. Green, H.J. Singer, T.M. Loto’aniu, M.F. Thomsen, Stormtime observations of electromagnetic ion cyclotron waves at geosynchronous orbit: GOES results. J. Geophys. Res. 115 (2010)
N.P. Meredith, R.B. Horne, R.M. Thorne, R.R. Anderson, Survey of upper band chorus and ech waves: implications for the diffuse aurora. J. Geophys. Res. 114 (2009)
Y. Chen, R.H.W. Friedel, G.D. Reeves, Phase space density distribution of energetic electrons in the outer radiation belt during two geospace environment modeling inner magnetosphere/storms selected storms. J. Geophys. Res. 111 (2006b)
B.T. Tsurutani, O.P. Verkhoglyadova, G.S. Lakhina, S. Yagitani, Properties of dayside outer zone chorus during HILDCAA events: loss of energetic electrons. J. Geophys. Res. 114 (2009)
V.K. Jordanova, S. Zaharia, D.T. Welling, Comparative study of ring current development using empirical, dipolar, and self-consistent magnetic field simulations. J. Geophys. Res. 115 (2010b)
WolfR.A.FreemanJ.W.Jr.HausmanB.A.SpiroR.W.HilmerR.V.LambourR.L.Modeling Convection Effects in Magnetic Storms1997WashingtonAGU
V.K. Jordanova, Y. Miyoshi, Relativistic model of ring current and radiation belt ions and electrons: initial results. Geophys. Res. Lett. 32 (2005)
J.S. Pickett, B. Grison, Y. Omura, M.J. Engebretson, I. Dandouras, A. Masson, M.L. Adrian, O. Santolik, P.M.E. Decreau, N. Cornilleau-Wehrlin, D. Constantinescu, Cluster observations of EMIC triggered emissions in association with Pc1 waves near Earth’s plasmapause. Geophys. Res. Lett. 37 (2010)
V.K. Jordanova, J. Albert, Y. Miyoshi, Relativistic electron precipitation by emic waves from self-consistent global simulations. J. Geophys. Res. 113 (2008)
Y. Shprits, R.M. Thorne, Time dependent radial diffusion modeling of relativistic electrons with realistic loss rates. Geophys. Res. Lett. 31 (2004)
T.M. Loto’aniu, B.J. Fraser, C.L. Waters, Propagation of electromagnetic ion cyclotron waves in the magnetosphere. J. Geophys. Res. 110 (2005)
R.M. Thorne, X.T. B. Ni, R.B. Horne, N.P. Meredith, Scattering by chorus waves as the dominant cause of diffuse auroral precipitation. Nature 467 (2010)
C.F. Kennel, R.M. Thorne, Unstable growth of unducted whistlers propagating at an angle to the geomagnetic field. J. Geophys. Res. 72 (1967)
E.V. Mishin, W.J. Burke, C.Y. Huang, F.J. Rich, Electromagnetic wave structures within subauroral polarization streams. J. Geophys. Res. 108(A8) (2003)
S.G. Claudepierre, S.R. Elkington, M. Wiltberger, Solar wind driving of magnetospheric ULF waves: pulsations driven by velocity shear at the magnetopause. J. Geophys. Res. 113 (2008)
L. Cahill Jr., Inflation of the inner magnetosphere during a magnetic storm. J. Geophys. Res. 71(19) (1966)
J.B. Blake, W.A. Kolasinski, R.W. Fillius, E.G. Mullen, Injection of electrons and protons with energies of tens of MeV into L<3 on 24 March 1991. Geophys. Res. Lett. 19 (1992)
R.M. Thorne, T.P. O’Brien, Y.Y. Shprits, D. Summers, R.B. Horne, Timescale for MeV electron microburst loss during geomagnetic storms. J. Geophys. Res. 110 (2005)
M.H. Acuna, Space-based magnetometers. Rev. Sci. Instrum. 73 (2002)
T.G. Onsager, J.C. Green, G.D. Reeves, H.J. Singer, Solar wind and magnetospheric conditions leading to the abrupt loss of outer radiation belt electrons. Geophys. Res. Lett. 112 (2007)
Y. Yu, V. Jordanova, S. Zaharia, J. Koller, J. Zhang, L.M. Kistler, Validation study of the magnetically self-consistent inner magnetosphere model RAM-SCB. J. Geophys. Res. 117 (2012)
J.P. McCollough, S.R. Elkington, D.N. Baker, Modelling emic wave growth during the compression event of 29 June 2007. Geophys. Res. Lett. 36 (2009)
Y. Miyoshi, V.K. Jordanova, A. Morioka, M.F. Thomsen, G.D. Reeves, D.S. Evans, J.C. Green, Observations and modeling of energetic electron dynamics during the October 2001 storm. J. Geophys. Res. 111 (2001)
S. Zaharia, V.K. Jordanova, M.F. Thomsen, G.D. Reeves, Self-consistent modeling of magnetic fields and plasmas in the inner magnetosphere: application to a geomagnetic storm. J. Geophys. Res. 111 (2006)
R.B. Horne, R.M. Thorne, S.A. Glauert, N.P. Meredith, D. Pokhotelov, O. Santolik, Electron acceleration in the Van Allen belts by fast magnetosonic waves. Geophys. Res. Lett. 34 (2007)
V.K. Jordanova, C.J. Farrugia, R.M. Thorne, G.V. Khazanov, G.D. Reeves, M.F. Thomsen, Modeling ring current proton precipitation by electromagnetic ion cyclotron waves during the May 14–16, 1997 storm. J. Geophys. Res. 106 (2001b)
C.L. Huang, H.E. Spence, M.K. Hudson, S.R. Elkington, Modeling radiation belt radial diffusion in ULF wave fields: 2. Estimating rates of radial diffusion using combined MHD and particle codes. J. Geophys. Res. 115 (2010)
X. Tao, A.A. Chan, J.M. Albert, J.A. Miller, Stochastic modeling of multidimensional diffusion in the radiation belts. J. Geophys. Res. 113 (2008)
S. Zaharia, V.K. Jordanova, D.T. Welling, G. Toth, Self-consistent inner magnetosphere simulation driven by a global MHD model. J. Geophys. Res. 115 (2010)
W. Li, R.M. Thorne, V. Angelopoulos, J.W. Bonnell, J.P. McFadden, C.W. Carlson, O. LeContel, A. Roux, K.H. Glassmeier, H.U. Auster, Evaluation of whistler-mode chorus intensification on the nightside during an injection event observed on the THEMIS spacecraft. J. Geophys. Res. 114 (2009a)
N.P. Meredith, R.M. Thorne, R.B. Horne, D. Summers, B.J. Fraser, R.R. Anderson, Statistical analysis of relativistic electron energies for cyclotron resonance with EMIC waves observed on CRRES. J. Geophys. Res. 108(A6) (2003b)
R.L. Arnoldy, M.J. Engebretson, R.E. Denton, J.L. Posch, M.R. Lessard, N.C. Maynard, D.M. Ober, C.J. Farrugia, C.T. Russell, J.D. Scudder, R.B. Torbert, S.-H. Chen, T.E. Moore, Pc1 waves and associated unstable distributions of magnetospheric protons observed during a solar wind pressure pulse. J. Geophys. Res. 110 (2005)
T.M. Loto’aniu, H.J. Singer, C.L. Waters, V. Angelopoulos, I.R. Mann, S.R. Elkington, J.W. Bonnell, Relativistic electron loss due to ultralow frequency waves and enhanced outward radial diffusion. J. Geophys. Res. 115 (2010)
R.A. Mathie, I.R. Mann, A correlation between extended intervals of ULF wave power and storm-time geosynchronous relativistic electron flux enhancements. Geophys. Res. Lett. 27 (2000)
T.P. O’Brien, R.L. McPherron, D. Sornette, G.D. Reeves, R. Friedel, H.J. Singer, Which magnetic storms produce relativistic electrons at geosynchronous orbit? J. Geophys. Res. 106 (2001)
Y.Y. Shprits, R.M. Thorne, R. Friedel, G.D. Reeves, J. Fennell, D.N. Baker, S.G. Kanekal, Outward radial diffusion driven by losses at magnetopause. J. Geophys. Res. 111 (2006)
M.H. Acuna, Fluxgate magnetometers for outer planets exploration. IEEE Trans. Magn. 10 (1974)
V.K. Jordanova, J.U. Kozyra, A.F. Nagy, G.V. Khazanov, Kinetic model of the ring current-atmosphere interactions. J. Geophys. Res. 102 (1997)
K.G. Powell, P.L. Roe, T.J. Linde, T.I. Gombosi, D.L. de Zeeuw, A solution-adaptive upwind scheme for ideal magnetohydrodynamics. J. Comput. Phys. 153 (1999)
J. Bortnik, R.M. Thorne, U.S. Inan, Nonlinear interaction of energetic electrons with large amplitude chorus. Geophys. Res. Lett. 35 (2008a)
J.M. Albert, N.P. Meredith, R.B. Horne, Three-dimensional diffusion simulation of outer radiation belt electrons during the 9 October 1990 magnetic storm. J. Geophys. Res. 114 (2009)
S.K. Morley, R.H.W. Friedel, T.E. Cayton, E. Noveroske, A rapid, global and prolonged electron radiation belt dropout observed with the global positioning system constellation. Geophys. Res. Lett. 37 (2010)
M.W. Chen, S. Liu, M. Schulz, J.L. Roeder, L.R. Lyons, Magnetically self-consistent ring current simulations during the 19 October 1998 storm. J. Geophys. Res. 111 (2006a)
J. Bortnik, R.M. Thorne, The dual role of ELF/VLF chorus waves in the acceleration and precipitation of radiation belt electrons. J. Atmos. Sol. Terr. Phys. 69 (2007)
O. Santolik, D.A. Gurnett, J.S. Pickett, J. Chum, N. Cornilleau-Wehrlin, Oblique propagation of whistler mode waves in the chorus source region. J. Geophys. Res. 114 (2009)
R.M. Thorne, Radiation belt dynamics: the importance of wave-particle interactions. Geophys. Res. Lett. 37 (2010)
M.E. Usanova et al., Multipoint observations of magnetospheric compression-related emic Pc1 waves by THEMIS and Carisma. Geophys. Res. Lett. 35 (2008)
J.C. Green, M.G. Kivelson, A tale of two theories: How the adiabatic response and ULF waves affect relativistic electrons. J. Geophys. Res. 106(A11) (2001)
C. Cattell, J.R. Wygant, K. Goetz, K. Kersten, P.J. Kellogg, T. von Rosenvinge, S.D. Bale, I. Roth, M. Temerin, M.K. Hudson, R.A. Mewaldt, M. Wiedenbeck, M. Maksimovic, R. Ergun, M. Acuna, C.T. Russell, Discovery of very large amplitude whistler-mode waves in Earth’s radiation belts. Geophys. Res. Lett. 35 (2008)
D.R. Weimer, An improved model of ionospheric electric potentials including substorm
9993_CR44
9993_CR45
9993_CR46
9993_CR47
9993_CR40
9993_CR41
9993_CR42
9993_CR43
9993_CR48
9993_CR49
9993_CR50
9993_CR55
9993_CR56
9993_CR57
9993_CR58
9993_CR51
9993_CR52
9993_CR53
9993_CR54
9993_CR59
V.K. Jordanova (9993_CR61) 2012
9993_CR66
9993_CR67
M. Schulz (9993_CR118) 1974
9993_CR68
9993_CR69
9993_CR62
9993_CR101
9993_CR63
9993_CR102
9993_CR64
9993_CR65
9993_CR100
O. Santolik (9993_CR114) 2001; 106
9993_CR105
9993_CR70
9993_CR106
9993_CR71
9993_CR103
9993_CR72
9993_CR104
9993_CR109
9993_CR107
9993_CR108
9993_CR77
9993_CR78
9993_CR79
9993_CR73
9993_CR74
9993_CR113
9993_CR75
9993_CR110
9993_CR76
9993_CR111
9993_CR9
9993_CR8
9993_CR5
9993_CR4
9993_CR7
9993_CR6
9993_CR80
9993_CR116
9993_CR81
9993_CR117
9993_CR82
9993_CR83
9993_CR115
9993_CR119
9993_CR88
9993_CR89
9993_CR120
9993_CR84
9993_CR123
9993_CR85
9993_CR124
9993_CR86
9993_CR121
9993_CR87
9993_CR122
9993_CR91
9993_CR127
9993_CR92
9993_CR128
9993_CR93
9993_CR125
9993_CR94
9993_CR126
9993_CR129
9993_CR90
9993_CR11
9993_CR99
9993_CR130
9993_CR12
9993_CR131
9993_CR13
9993_CR14
9993_CR95
9993_CR134
9993_CR96
9993_CR135
9993_CR97
9993_CR132
9993_CR10
9993_CR98
9993_CR133
9993_CR1
9993_CR19
9993_CR3
R.A. Wolf (9993_CR147) 1997
9993_CR2
9993_CR15
9993_CR16
9993_CR17
9993_CR18
9993_CR138
9993_CR139
9993_CR136
9993_CR137
9993_CR22
9993_CR141
9993_CR23
9993_CR142
9993_CR24
9993_CR25
9993_CR140
9993_CR145
9993_CR146
9993_CR20
9993_CR143
9993_CR21
9993_CR144
9993_CR26
9993_CR27
9993_CR28
9993_CR29
M.K. Hudson (9993_CR60) 2001
N. Cornilleau-Wehrlin (9993_CR33) 2003; 21
J.G. Roederer (9993_CR112) 1970
9993_CR149
9993_CR148
9993_CR34
9993_CR35
9993_CR150
9993_CR36
9993_CR151
9993_CR30
9993_CR31
9993_CR32
9993_CR37
9993_CR38
9993_CR39
References_xml – reference: A.Y. Ukhorskiy, K. Takahashi, B.J. Anderson, H. Korth, Impact of toroidal ULF waves on outer radiation belt electrons. J. Geophys. Res. 110 (2005)
– reference: M.W. Chen, S. Liu, M. Schulz, J.L. Roeder, L.R. Lyons, Magnetically self-consistent ring current simulations during the 19 October 1998 storm. J. Geophys. Res. 111 (2006a)
– reference: R.B. Horne, R.M. Thorne, N.P. Meredith, R.R. Anderson, Diffuse auroral electron scattering by electron cyclotron harmonic and whistler mode waves during an isolated substorm. J. Geophys. Res. 108(A7) (2003)
– reference: B.T. Tsurutani, E.J. Smith, Two types of magnetospheric elf chorus and their substorm dependences. J. Geophys. Res. 82 (1977)
– reference: C.F. Kennel, R.M. Thorne, Unstable growth of unducted whistlers propagating at an angle to the geomagnetic field. J. Geophys. Res. 72 (1967)
– reference: J. Bortnik, R.M. Thorne, N.P. Meredith, The unexpected origin of plasmaspheric hiss from discrete chorus emissions. Nature 452 (2008b)
– reference: C. Cattell, J.R. Wygant, K. Goetz, K. Kersten, P.J. Kellogg, T. von Rosenvinge, S.D. Bale, I. Roth, M. Temerin, M.K. Hudson, R.A. Mewaldt, M. Wiedenbeck, M. Maksimovic, R. Ergun, M. Acuna, C.T. Russell, Discovery of very large amplitude whistler-mode waves in Earth’s radiation belts. Geophys. Res. Lett. 35 (2008)
– reference: O. Santolik, M. Parrot, F. Lefeuvre, Singular value decomposition methods for wave propagation analysis. Radio Sci. 38(1) (2003)
– reference: N.F. Ness, Magnetometers for space research. Space Sci. Rev. 11 (1970)
– reference: C.E. Rasmussen, S.M. Guiter, S.G. Thomas, Two-dimensional model of the plasmasphere: refilling time constants. Planet. Space Sci. 41 (1993)
– reference: N. Omidi, R.M. Thorne, J. Bortnik, Non-linear evolution of emic waves in a uniform magnetic field: 1. Hybrid simulations. J. Geophys. Res. 115 (2010)
– reference: F. Chu, M.K. Hudson, P. Haines, Y. Shprits, Dynamic modeling of radiation belt electrons by radial diffusion simulation for a 2 month interval following the 24 March 1991 storm injection. J. Geophys. Res. 115 (2010)
– reference: J.C. Green, M.G. Kivelson, Relativistic electrons in the outer radiation belt: differentiating between acceleration mechanisms. J. Geophys. Res. 109 (2004)
– reference: W. Li, R.M. Thorne, V. Angelopoulos, J.W. Bonnell, J.P. McFadden, C.W. Carlson, O. LeContel, A. Roux, K.H. Glassmeier, H.U. Auster, Evaluation of whistler-mode chorus intensification on the nightside during an injection event observed on the THEMIS spacecraft. J. Geophys. Res. 114 (2009a)
– reference: V.K. Jordanova, J. Albert, Y. Miyoshi, Relativistic electron precipitation by emic waves from self-consistent global simulations. J. Geophys. Res. 113 (2008)
– reference: J. Bortnik, R.M. Thorne, U.S. Inan, Nonlinear interaction of energetic electrons with large amplitude chorus. Geophys. Res. Lett. 35 (2008a)
– reference: S.G. Claudepierre, M. Wiltberger, S.R. Elkington, W. Lotko, M.K. Hudson, Magnetospheric cavity modes driven by solar wind dynamic pressure fluctuations. Geophys. Res. Lett. 36 (2009)
– reference: R.L. Arnoldy, M.J. Engebretson, R.E. Denton, J.L. Posch, M.R. Lessard, N.C. Maynard, D.M. Ober, C.J. Farrugia, C.T. Russell, J.D. Scudder, R.B. Torbert, S.-H. Chen, T.E. Moore, Pc1 waves and associated unstable distributions of magnetospheric protons observed during a solar wind pressure pulse. J. Geophys. Res. 110 (2005)
– reference: J. Wygant, F. Mozer, M. Temerin, J. Blake, N. Maynard, H. Singer, M. Smiddy, Large amplitude electric and magnetic field signatures in the inner magnetosphere during injection of 15 MeV electron drift echoes. Geophys. Res. Lett. 21 (1994)
– reference: V.K. Jordanova, Y. Miyoshi, Relativistic model of ring current and radiation belt ions and electrons: initial results. Geophys. Res. Lett. 32 (2005)
– reference: Y. Shprits, R.M. Thorne, Time dependent radial diffusion modeling of relativistic electrons with realistic loss rates. Geophys. Res. Lett. 31 (2004)
– reference: N.Y. Ganushkina, T.I. Pulkkinen, V.A. Sergeev, M.V. Kubyshkina, D.N. Baker, N.E. Turner, M. Grande, B. Kellett, J. Fennell, J. Roeder, J.-A. Sauvaud, T.A. Fritz, Entry of plasma sheet particles into the inner magnetosphere as observed by Polar/Cammice. J. Geophys. Res. 105(A11) (2000)
– reference: M. Ejiri, Trajectory traces of charged particles in the magnetosphere. J. Geophys. Res. 83 (1978)
– reference: S. Zaharia, V.K. Jordanova, M.F. Thomsen, G.D. Reeves, Self-consistent modeling of magnetic fields and plasmas in the inner magnetosphere: application to a geomagnetic storm. J. Geophys. Res. 111 (2006)
– reference: S. Zaharia, V.K. Jordanova, D.T. Welling, G. Toth, Self-consistent inner magnetosphere simulation driven by a global MHD model. J. Geophys. Res. 115 (2010)
– reference: W. Li, R.M. Thorne, N.P. Meredith, R.B. Horne, J. Bortnik, Y.Y. Shprits, B. Ni, Evaluation of whistler mode chorus amplification during an injection event observed on CRRES. J. Geophys. Res. 113 (2008)
– reference: G. Rostoker, S. Skone, D.N. Baker, On the origin of relativistic electrons in the magnetosphere associated with some geomagnetic storms. Geophys. Res. Lett. 25 (1998)
– reference: C.L. Huang, H.E. Spence, M.K. Hudson, S.R. Elkington, Modeling radiation belt radial diffusion in ULF wave fields: 2. Estimating rates of radial diffusion using combined MHD and particle codes. J. Geophys. Res. 115 (2010)
– reference: Y. Miyoshi, V.K. Jordanova, A. Morioka, M.F. Thomsen, G.D. Reeves, D.S. Evans, J.C. Green, Observations and modeling of energetic electron dynamics during the October 2001 storm. J. Geophys. Res. 111 (2001)
– reference: T.M. Loto’aniu, H.J. Singer, C.L. Waters, V. Angelopoulos, I.R. Mann, S.R. Elkington, J.W. Bonnell, Relativistic electron loss due to ultralow frequency waves and enhanced outward radial diffusion. J. Geophys. Res. 115 (2010)
– reference: N.P. Meredith, R.B. Horne, R.M. Thorne, R.R. Anderson, Favored regions for chorus-driven electron acceleration to relativistic energies in the Earth’s outer radiation belt. Geophys. Res. Lett. 30(16) (2003a)
– reference: M.H. Acuna, Space-based magnetometers. Rev. Sci. Instrum. 73 (2002)
– reference: W. Liu, T.E. Sarris, X. Li, S.R. Elkington, R. Ergun, V. Angelopoulos, J. Bonnell, K.H. Glassmeier, Electric and magnetic field observations of Pc4 and Pc5 pulsations in the inner magnetosphere: a statistical study. J. Geophys. Res. 114 (2009)
– reference: A. Varotsou, D. Boscher, S. Bourdarie, R.B. Horne, N.P. Meredith, S.A. Glauert, R.H. Friedel, Three dimensional test simulations of the outer radiation belt electron dynamics including electron-chorus resonant interactions. J. Geophys. Res. 113 (2008)
– reference: L. Chen, R.M. Thorne, R.H. Horne, Simulation of emic excitation in a model magnetosphere including structured high-density plumes. J. Geophys. Res. 114 (2009a)
– reference: T.M. Loto’aniu, B.J. Fraser, C.L. Waters, Propagation of electromagnetic ion cyclotron waves in the magnetosphere. J. Geophys. Res. 110 (2005)
– reference: J. Bortnik, R.M. Thorne, N.P. Meredith, Modeling the propagation characteristics of chorus using CRRES suprathermal electron fluxes. J. Geophys. Res. 112 (2007)
– reference: M.W. Chen, L.R. Lyons, M. Schulz, Simulations of phase space distributions of storm time proton ring current. J. Geophys. Res. 99(A4) (1994)
– reference: Y. Yu, V. Jordanova, S. Zaharia, J. Koller, J. Zhang, L.M. Kistler, Validation study of the magnetically self-consistent inner magnetosphere model RAM-SCB. J. Geophys. Res. 117 (2012)
– reference: H.-J. Kim, A.A. Chan, Fully adiabatic changes in storm time relativistic electron fluxes. J. Geophys. Res. 102 (1997)
– reference: J.M. Albert, Evaluation of quasi-linear diffusion coefficients for emic waves in a multispecies plasma. J. Geophys. Res. 108(A6) (2003)
– reference: W. Li, R.M. Thorne, V. Angelopoulos, J. Bortnik, C.M. Cully, B. Ni, O. LeContel, A. Roux, U. Auster, W. Magnes, Global distribution of whistler-mode chorus observed on the THEMIS spacecraft. Geophys. Res. Lett. 36 (2009b)
– reference: L.R. Lyons, D.J. Williams, A source for the geomagnetic storm main phase ring current. J. Geophys. Res. 85(A2) (1980)
– reference: R.M. Thorne, R.B. Horne, Modulation of electromagnetic ion cyclotron instability due to interaction with ring current o+ during geomagnetic storms. J. Geophys. Res. 102(A7) (1997)
– reference: B.T. Tsurutani, O.P. Verkhoglyadova, G.S. Lakhina, S. Yagitani, Properties of dayside outer zone chorus during HILDCAA events: loss of energetic electrons. J. Geophys. Res. 114 (2009)
– reference: A.L. Vampola, A. Korth, Electron drift echoes in the inner magnetosphere. Geophys. Res. Lett. 19 (1992)
– reference: Y. Chen, G.D. Reeves, R.H.W. Friedel, The energization of relativistic electrons in the outer Van Allen radiation belt. Nat. Phys. 3 (2007)
– reference: L. Chen, R.M. Thorne, V.K. Jordanova, C.-P. Wang, M. Gkioulidou, L. Lyons, R.B. Horne, Global simulation of emic wave excitation during the 2001 April 21st storm from coupled RCM-RAM-hotray modeling. J. Geophys. Res. 115 (2010a)
– reference: V.K. Jordanova, D.T. Welling, S.G. Zaharia, L. Chen, R.M. Thorne, Modeling ring current ion and electron dynamics and plasma instabilities during a high-speed stream driven storm. J. Geophys. Res. 117 (2012)
– reference: B.J. Fraser, R.S. Grew, S.K. Morley, J.C. Green, H.J. Singer, T.M. Loto’aniu, M.F. Thomsen, Stormtime observations of electromagnetic ion cyclotron waves at geosynchronous orbit: GOES results. J. Geophys. Res. 115 (2010)
– reference: S.K. Morley, R.H.W. Friedel, T.E. Cayton, E. Noveroske, A rapid, global and prolonged electron radiation belt dropout observed with the global positioning system constellation. Geophys. Res. Lett. 37 (2010)
– reference: R.B. Horne, R.M. Thorne, Potential waves for relativistic electron scattering and stochastic acceleration during magnetic storms. Geophys. Res. Lett. 25 (1998)
– reference: J. Bortnik, R.M. Thorne, N.P. Meredith, Plasmaspheric hiss overview and relation to chorus. J. Atmos. Sol. Terr. Phys. 71 (2009a)
– reference: B. Ni, R.M. Thorne, Y.Y. Shprits, J. Bortnik, Resonant scattering of plasma sheet electrons by whistler-mode chorus: contributions to diffuse auroral precipitation. Geophys. Res. Lett. 35 (2008)
– reference: V.K. Jordanova, Y.S. Miyoshi, S. Zaharia, M.F. Thomsen, G.D. Reeves, D.S. Evans, C.G. Mouikis, J.F. Fennell, Kinetic simulations of ring current evolution during the geospace environment modeling challenge events. J. Geophys. Res. 111 (2006)
– reference: M. Hayosh, O. Santolik, M. Parrot, Location and size of the global source region of whistler mode chorus. J. Geophys. Res. 115 (2010)
– reference: J.P. McCollough, S.R. Elkington, D.N. Baker, Modelling emic wave growth during the compression event of 29 June 2007. Geophys. Res. Lett. 36 (2009)
– reference: J.M. Albert, N.P. Meredith, R.B. Horne, Three-dimensional diffusion simulation of outer radiation belt electrons during the 9 October 1990 magnetic storm. J. Geophys. Res. 114 (2009)
– reference: V.K. Jordanova, A. Boonsiriseth, R.M. Thorne, Y. Dotan, Ring current asymmetry from global simulations using a high-resolution electric field model. J. Geophys. Res. 108(A12) (2003)
– reference: D. Summers, R.M. Thorne, Relativistic electron pitch-angle scattering by electromagnetic ion cyclotron waves during geomagnetic storms. J. Geophys. Res. 108(A4) (2003)
– reference: A.W. Breneman, C.A. Kletzing, J. Pickett, J. Chum, O. Santolik, Statistics of multispacecraft observations of chorus dispersion and source location. J. Geophys. Res. 114 (2009)
– reference: V.K. Jordanova, L.M. Kistler, C.J. Farrugia, R.B. Torbert, Effects of inner magnetospheric convection on ring current dynamics: March 10–12, 1998. J. Geophys. Res. 106 (2001a)
– reference: L.R. Lyons, R.M. Thorne, C.F. Kennel, Pitch angle diffusion of radiation belt electrons within the plasmasphere. J. Geophys. Res. 77 (1972)
– reference: L.R. Lyons, R.M. Thorne, Equilibrium structure of radiation belt electrons. J. Geophys. Res. 78 (1973)
– reference: O. Santolik, D.S. Gurnett, J.S. Pickett, M. Parrot, N. Cornilleau-Wehrlin, A microscopic and nanoscopic view of storm-time chorus on 31 March 2001. Geophys. Res. Lett. 31 (2004)
– reference: D.R. Weimer, An improved model of ionospheric electric potentials including substorm perturbations and application to the Geospace Environment Modeling November 24, 1996, event. J. Geophys. Res. 106 (2001)
– reference: D. Summers, R.M. Thorne, F. Xiao, Relativistic theory of wave-particle resonant diffusion with application to electron acceleration in the magnetosphere. J. Geophys. Res. 103 (1998)
– reference: R.B. Horne, R.M. Thorne, S.A. Glauert, J.M. Albert, N.P. Meredith, R.R. Anderson, Timescales for radiation belt electron acceleration by whistler mode chorus waves. J. Geophys. Res. 110 (2005)
– reference: B. Abel, R.M. Thorne, Electron scattering loss in Earth’s inner magnetosphere. 1. Dominant physical processes. J. Geophys. Res. 103(A2) (1998a)
– reference: W. Tu et al., Storm-dependent radiation belt electron dynamics. J. Geophys. Res. 114 (2009)
– reference: B. Abel, R.M. Thorne, Electron scattering loss in Earth’s inner magnetosphere. 2. Sensitivity to model parameters. J. Geophys. Res. 103(A2) (1998b)
– reference: D.H. Brautigam, G.P. Ginet, J.M. Albert, J.R. Wygant, D.E. Rowland, A. Ling, J. Bass, CRRES electric field power spectra and radial diffusion coefficients. J. Geophys. Res. 110 (2005)
– reference: J. Bortnik, R.M. Thorne, Transit time scattering of energetic electrons due to equatorially confined magnetosonic waves. J. Geophys. Res. 115 (2010)
– reference: Y.Y. Shprits, D. Subbotin, B. Ni, Evolution of electron fluxes in the outer radiation belt computed with the verb code. J. Geophys. Res. 114 (2009)
– reference: K.L. Perry, M.K. Hudson, S.R. Elkington, Incorporating spectral characteristics of Pc5 waves into three-dimensional modeling and the diffusion of relativistic electrons. J. Geophys. Res. 110 (2005)
– reference: SchulzM.LanzerottiL.Particle Diffusion in the Radiation Belts1974New YorkSpringer10.1007/978-3-642-65675-0
– reference: C.-G. Fälthammar, M. Walt, Radial motion resulting from pitch angle scattering of trapped electrons in the distorted geomagnetic field. J. Geophys. Res. 74 (1969)
– reference: V.K. Jordanova, S. Zaharia, D.T. Welling, Comparative study of ring current development using empirical, dipolar, and self-consistent magnetic field simulations. J. Geophys. Res. 115 (2010b)
– reference: T.G. Onsager, J.C. Green, G.D. Reeves, H.J. Singer, Solar wind and magnetospheric conditions leading to the abrupt loss of outer radiation belt electrons. Geophys. Res. Lett. 112 (2007)
– reference: J. Chum, O. Santolik, A.W. Breneman, C.A. Kletzing, D.A. Gurnett, J.S. Pickett, Chorus source properties that produce time shifts and frequency range differences observed on different Cluster spacecraft. J. Geophys. Res. 112 (2007)
– reference: Cornilleau-WehrlinN.ChanteurG.PerrautS.RezeauL.RobertP.RouxA.de VilledaryC.CanulP.MaksimovicM.de ConchyY.HubertD.LacombeC.LefeuvreF.ParrotM.PinconJ.DecreauP.HarveyC.LouarnP.SantolikO.AlleyneH.RothM.ChustT.Le ContelO.TeamS.First results obtained by the Cluster STAFF experimentAnn. Geophys.20032124374562003AnGeo..21..437C10.5194/angeo-21-437-2003
– reference: J.B. Blake, W.A. Kolasinski, R.W. Fillius, E.G. Mullen, Injection of electrons and protons with energies of tens of MeV into L<3 on 24 March 1991. Geophys. Res. Lett. 19 (1992)
– reference: N.A. Tsyganenko, D.P. Stern, Modeling the global magnetic field of the large-scale Birkeland current systems. J. Geophys. Res. 101 (1996)
– reference: B.T. Tsurutani, E.J. Smith, Postmidnight chorus: a substorm phenomenon. J. Geophys. Res. 79 (1974)
– reference: L. Chen, R.M. Thorne, V.K. Jordanova, R.B. Horne, Global simulation of magnetosonic wave instability in the storm time magnetosphere. J. Geophys. Res. 115 (2010b)
– reference: J. Bortnik, W. Li, R.M. Thorne, V. Angelopoulos, C. Cully, J. Bonnell, O.L. Contel, A. Roux, An observation linking the origin of plasmaspheric hiss to discrete chorus emissions. Science 324 (2009b)
– reference: M.E. Usanova et al., Multipoint observations of magnetospheric compression-related emic Pc1 waves by THEMIS and Carisma. Geophys. Res. Lett. 35 (2008)
– reference: N. Furuya, Y. Omura, D. Summers, Relativistic turning acceleration of radiation belt electrons by whistler mode chorus. J. Geophys. Res. 113 (2008)
– reference: V.K. Jordanova, J.U. Kozyra, A.F. Nagy, G.V. Khazanov, Kinetic model of the ring current-atmosphere interactions. J. Geophys. Res. 102 (1997)
– reference: Y. Fei, A.A. Chan, S.R. Elkington, M.J. Wiltberger, Radial diffusion and MHD particle simulations of relativistic electron transport by ULF waves in the September 1998 storm. J. Geophys. Res. 111 (2006)
– reference: L. Cahill Jr., Inflation of the inner magnetosphere during a magnetic storm. J. Geophys. Res. 71(19) (1966)
– reference: M.K. Hudson, S.R. Elkington, J.G. Lyon, V.A. Marchenko, I. Roth, M. Temerin, J.B. Blake, M.S. Gussenhoven, J.R. Wygant, Simulations of radiation belt formation during storm sudden commencements. J. Geophys. Res. 102(A7) (1997)
– reference: J.C. Foster, H.B. Vo, Average characteristics and activity dependence of the subauroral polarization stream. J. Geophys. Res. 107(A12) (2002)
– reference: E.V. Mishin, W.J. Burke, C.Y. Huang, F.J. Rich, Electromagnetic wave structures within subauroral polarization streams. J. Geophys. Res. 108(A8) (2003)
– reference: SantolikO.LefeuvreF.ParrotM.RauchJ.Complete wave-vector directions of electromagnetic emissions: application to INTERBALL-2 measurements in the nightside auroral zoneJ. Geophys. Res.2001106A713191132012001JGR...10613191S10.1029/2000JA000275
– reference: J.M. Albert, Nonlinear interaction of outer zone electrons with VLF waves. Geophys. Res. Lett. 29(8) (2002)
– reference: R.M. Thorne, Radiation belt dynamics: the importance of wave-particle interactions. Geophys. Res. Lett. 37 (2010)
– reference: X. Li, I. Roth, M. Temerin, J.R. Wygant, M.K. Hudson, J.B. Blake, Simulation of the prompt energization and transport of radiation belt particles during the March 24, 1991 SSC. Geophys. Res. Lett. 20(22) (1993)
– reference: V.K. Jordanova, M. Spasojevic, M. Thomsen, Modeling the electromagnetic ion cyclotron wave-induced formation of detached subauroral arcs. J. Geophys. Res. 112 (2007)
– reference: M.W. Liemohn, J.U. Kozyra, M.F. Thomsen, J.L. Roeder, G. Lu, J.E. Borovsky, T.E. Cayton, Dominant role of the asymmetric ring current in producing the stormtime Dst*. J. Geophys. Res. 106(A6) (2001)
– reference: D. Summers, Y. Omura, Ultra-relativistic acceleration of electrons in planetary magnetospheres. Geophys. Res. Lett. 34 (2007)
– reference: T.P. O’Brien, R.L. McPherron, D. Sornette, G.D. Reeves, R. Friedel, H.J. Singer, Which magnetic storms produce relativistic electrons at geosynchronous orbit? J. Geophys. Res. 106 (2001)
– reference: R.A. Mathie, I.R. Mann, A correlation between extended intervals of ULF wave power and storm-time geosynchronous relativistic electron flux enhancements. Geophys. Res. Lett. 27 (2000)
– reference: R.B. Horne, R.M. Thorne, Relativistic electron acceleration and precipitation during resonant interactions with whistler-mode chorus. Geophys. Res. Lett. 30(10) (2003)
– reference: RoedererJ.G.Dynamics of Geomagnetically Trapped Radiation1970New YorkSpringer10.1007/978-3-642-49300-3
– reference: R.B. Horne, R.M. Thorne, Electron pitch angle diffusion by electrostatic electron cyclotron waves: the origin of pancake distributions. J. Geophys. Res. 105(A3) (2000)
– reference: N.A. Tsyganenko, H.J. Singer, J.C. Kasper, Storm-time distortion of the inner magnetosphere: how severe can it get? J. Geophys. Res. 108 (2003)
– reference: O. Santolik, D.A. Gurnett, J.S. Pickett, J. Chum, N. Cornilleau-Wehrlin, Oblique propagation of whistler mode waves in the chorus source region. J. Geophys. Res. 114 (2009)
– reference: N.P. Meredith, R.B. Horne, R.M. Thorne, R.R. Anderson, Survey of upper band chorus and ech waves: implications for the diffuse aurora. J. Geophys. Res. 114 (2009)
– reference: N.M. Haque, M. Spasojevic, O. Santolik, U.S. Inan, Wave normal angles of magnetospheric chorus emissions observed on the Polar spacecraft. J. Geophys. Res. 115 (2010)
– reference: Y. Hu, R.E. Denton, Two-dimensional hybrid code simulation of electromagnetic ion cyclotron waves in a dipole magnetic field. J. Geophys. Res. 114 (2009)
– reference: M.H. Acuna, Fluxgate magnetometers for outer planets exploration. IEEE Trans. Magn. 10 (1974)
– reference: L. Chen, J. Bortnik, R.M. Thorne, R.B. Horne, V.K. Jordanova, Three-dimensional ray tracing of VLF waves in an asymmetric magnetospheric environment containing a plasmaspheric plume. Geophys. Res. Lett. 36 (2009b)
– reference: JordanovaV.K.SummersD.MannI.BakerD.SchulzM.The role of the Earth’s ring current in radiation belt dynamicsDynamics of the Earth’s Radiation Belts and Inner Magnetosphere2012
– reference: A.Y. Ukhorskiy, M.I. Sitnov, K. Takahasi, B.J. Anderson, Radial transport of radiation belt electrons due to stormtime Pc5 waves. Ann. Geophys. 27 (2009)
– reference: R.M. Thorne, X.T. B. Ni, R.B. Horne, N.P. Meredith, Scattering by chorus waves as the dominant cause of diffuse auroral precipitation. Nature 467 (2010)
– reference: A.Y. Ukhorskiy, B.J. Anderson, K. Takahashi, N.A. Tsyganenko, Impact of ULF oscillations in solar wind dynamic pressure on the outer radiation belt electrons. Geophys. Res. Lett. 33 (2006)
– reference: Y. Chen, R.H.W. Friedel, G.D. Reeves, Phase space density distribution of energetic electrons in the outer radiation belt during two geospace environment modeling inner magnetosphere/storms selected storms. J. Geophys. Res. 111 (2006b)
– reference: N.P. Meredith, R.M. Thorne, R.B. Horne, D. Summers, B.J. Fraser, R.R. Anderson, Statistical analysis of relativistic electron energies for cyclotron resonance with EMIC waves observed on CRRES. J. Geophys. Res. 108(A6) (2003b)
– reference: S.G. Claudepierre, S.R. Elkington, M. Wiltberger, Solar wind driving of magnetospheric ULF waves: pulsations driven by velocity shear at the magnetopause. J. Geophys. Res. 113 (2008)
– reference: J.C. Green, M.G. Kivelson, A tale of two theories: How the adiabatic response and ULF waves affect relativistic electrons. J. Geophys. Res. 106(A11) (2001)
– reference: S.K. Morley, S.T. Ables, M.D. Sciffer, B.J. Fraser, Multipoint observations of Pc1–2 waves in the afternoon sector. J. Geophys. Res. 114 (2009)
– reference: B. Ni, R.M. Thorne, J. Liang, V. Angelopoulos, C. Cully, W. Li, X. Zhang, M. Hartinger, O.L. Contel, A. Roux, Global distribution of electrostatic electron cyclotron harmonic waves observed on THEMIS. Geophys. Res. Lett. 38 (2011)
– reference: Y. Miyoshi, V.K. Jordanova, M.F. Thomsen, G.D. Reeves, D.S. Evans, A. Morioka, Y. Kasahara, T. Nagai, J. Green, Simulation of energetic electrons dynamics on the Oct. 2001 magnetic storm. EOS Trans. AGU 84 (2003)
– reference: X. Tao, J.M. Albert, A.A. Chan, Numerical modeling of multidimensional diffusion in the radiation belts using layer methods. J. Geophys. Res. 145 (2009)
– reference: V.K. Jordanova, R.M. Thorne, Y. Miyoshi, Excitation of whistler-mode chorus from global ring current simulations. J. Geophys. Res. 115 (2010a)
– reference: X. Tao, A.A. Chan, J.M. Albert, J.A. Miller, Stochastic modeling of multidimensional diffusion in the radiation belts. J. Geophys. Res. 113 (2008)
– reference: Y. Nishimura, J. Bortnik, W. Li, R.M. Thorne, L.R. Lyons, V. Angelopoulos, S. Mende, J.W. Bonnel, O. LeContel, U. Auster, Identifying the driver of pulsating aurora. Science 330 (2010)
– reference: J.S. Pickett, B. Grison, Y. Omura, M.J. Engebretson, I. Dandouras, A. Masson, M.L. Adrian, O. Santolik, P.M.E. Decreau, N. Cornilleau-Wehrlin, D. Constantinescu, Cluster observations of EMIC triggered emissions in association with Pc1 waves near Earth’s plasmapause. Geophys. Res. Lett. 37 (2010)
– reference: Y.Y. Shprits, R.M. Thorne, R. Friedel, G.D. Reeves, J. Fennell, D.N. Baker, S.G. Kanekal, Outward radial diffusion driven by losses at magnetopause. J. Geophys. Res. 111 (2006)
– reference: R.M. Thorne, C.F. Kennel, Relativistic electron precipitation during magnetic storm main phase. J. Geophys. Res. 76 (1971)
– reference: K.G. Powell, P.L. Roe, T.J. Linde, T.I. Gombosi, D.L. de Zeeuw, A solution-adaptive upwind scheme for ideal magnetohydrodynamics. J. Comput. Phys. 153 (1999)
– reference: S.R. Elkington, M.K. Hudson, A.A. Chan, Resonant acceleration and diffusion of outer zone electrons in an asymmetric geomagnetic field. J. Geophys. Res. 108(A3) (2003)
– reference: R.B. Horne, G.V. Wheeler, H.S.C.K. Alleyne, Proton and electron heating by radially propagating fast magnetosonic waves. J. Geophys. Res. 105 (2000)
– reference: Y.Y. Shprits, B. Ni, Dependence of the quasi-linear scattering rates on the wave normal distribution of chorus waves. J. Geophys. Res. 114 (2009)
– reference: B.T. Kress, M.K. Hudson, M.D. Looper, J. Albert, J.G. Lyon, C.C. Goodrich, Global MHD test particle simulations of >10 MeV radiation belt electrons during storm sudden commencement. J. Geophys. Res. 112 (2007)
– reference: V.K. Jordanova, C.J. Farrugia, R.M. Thorne, G.V. Khazanov, G.D. Reeves, M.F. Thomsen, Modeling ring current proton precipitation by electromagnetic ion cyclotron waves during the May 14–16, 1997 storm. J. Geophys. Res. 106 (2001b)
– reference: N.P. Meredith, R.B. Horne, R.R. Anderson, Survey of magnetosonic waves and proton ring distributions in Earth’s inner magnetosphere. J. Geophys. Res. 113 (2008)
– reference: J.M. Cornwall, F.V. Coroniti, R.M. Thorne, Turbulent loss of ring current protons. J. Geophys. Res. 75 (1970)
– reference: R.B. Horne, R.M. Thorne, S.A. Glauert, N.P. Meredith, D. Pokhotelov, O. Santolik, Electron acceleration in the Van Allen belts by fast magnetosonic waves. Geophys. Res. Lett. 34 (2007)
– reference: HudsonM.K.ElkingtonS.R.LyonJ.G.WiltbergerM.LessardM.SongP.SingerH.SiscoeG.Radiation belt electron acceleration by ULF wave drift resonance: simulation of 1997 and 1998 stormsSpace Weather2001WashingtonAGU10.1029/GM125p0289
– reference: D.A. Subbotin, Y.Y. Shprits, Three dimensional modeling of the radiation belts using the versatile electron radiation belt (verb) code. Space Weather 7 (2009)
– reference: J. Bortnik, R.M. Thorne, The dual role of ELF/VLF chorus waves in the acceleration and precipitation of radiation belt electrons. J. Atmos. Sol. Terr. Phys. 69 (2007)
– reference: S.R. Elkington, M.K. Hudson, A.A. Chan, Acceleration of relativistic electrons via drift-resonant interaction with toroidal-mode PC-5 oscillations. Geophys. Res. Lett. 26 (1999)
– reference: T.M. Loto’aniu, I.R. Mann, L.G. Ozeke, A.A. Chan, Z.C. Dent, D.K. Milling, Radial diffusion of relativistic electrons into the radiation belt slot region during the 2003 Halloween storm. J. Geophys. Res. 111 (2006)
– reference: R.M. Millan, R.M. Thorne, Review of radiation belt relativistic electron loss. J. Atmos. Sol. Terr. Phys. 69 (2007)
– reference: R.M. Thorne, T.P. O’Brien, Y.Y. Shprits, D. Summers, R.B. Horne, Timescale for MeV electron microburst loss during geomagnetic storms. J. Geophys. Res. 110 (2005)
– reference: M.-C. Fok, T.E. Moore, D.C. Delcourt, Modeling of inner plasma sheet and ring current during substorms. J. Geophys. Res. 104(A7) (1999)
– reference: A.J. Ridley, M.W. Liemohn, A model-derived storm time asymmetric ring current driven electric field description. J. Geophys. Res. 107(A8) (2002)
– reference: M. Fok, R.B. Horne, N.P. Meredith, S.A. Glauert, Radiation belt environmental model: application to space weather nowcasting. J. Geophys. Res. 113 (2008)
– reference: WolfR.A.FreemanJ.W.Jr.HausmanB.A.SpiroR.W.HilmerR.V.LambourR.L.Modeling Convection Effects in Magnetic Storms1997WashingtonAGU
– ident: 9993_CR41
  doi: 10.1029/2007JA012558
– ident: 9993_CR133
  doi: 10.1038/nature09467
– ident: 9993_CR96
  doi: 10.1029/2005JA011351
– ident: 9993_CR132
  doi: 10.1029/2004JA010882
– ident: 9993_CR11
  doi: 10.1029/2010JA015283
– ident: 9993_CR78
  doi: 10.1029/2008JA013554
– ident: 9993_CR1
  doi: 10.1029/97JA02919
– ident: 9993_CR150
  doi: 10.1029/2006JA011619
– ident: 9993_CR23
  doi: 10.1029/2006JA011703
– ident: 9993_CR80
  doi: 10.1029/2000JA000326
– ident: 9993_CR104
  doi: 10.1029/2001JA000052
– ident: 9993_CR126
  doi: 10.1029/98JA01740
– ident: 9993_CR151
  doi: 10.1029/2010JA015915
– ident: 9993_CR119
  doi: 10.1029/2009JA014223
– ident: 9993_CR143
  doi: 10.1029/2008GL034458
– ident: 9993_CR36
  doi: 10.1029/1999GL003659
– ident: 9993_CR128
  doi: 10.1029/2008JA013826
– ident: 9993_CR54
  doi: 10.1029/2002JA009736
– ident: 9993_CR58
  doi: 10.1029/2009JA014918
– ident: 9993_CR26
  doi: 10.1029/2009GL040451
– ident: 9993_CR10
  doi: 10.1016/j.jastp.2006.05.030
– ident: 9993_CR5
  doi: 10.1029/2001GL013941
– ident: 9993_CR19
  doi: 10.1029/JZ071i019p04505
– ident: 9993_CR52
  doi: 10.1029/2003GL016973
– ident: 9993_CR149
  doi: 10.1029/2011JA017321
– ident: 9993_CR50
  doi: 10.1029/98GL01002
– volume-title: Dynamics of the Earth’s Radiation Belts and Inner Magnetosphere
  year: 2012
  ident: 9993_CR61
– ident: 9993_CR131
  doi: 10.1029/JA076i019p04446
– ident: 9993_CR69
  doi: 10.1029/2008JA013239
– ident: 9993_CR48
  doi: 10.1029/2009JA014717
– ident: 9993_CR117
  doi: 10.1029/2009JA014586
– volume-title: Modeling Convection Effects in Magnetic Storms
  year: 1997
  ident: 9993_CR147
– ident: 9993_CR79
  doi: 10.1029/2009GL037595
– ident: 9993_CR32
  doi: 10.1029/2009GL039045
– ident: 9993_CR75
  doi: 10.1029/2006JA012218
– volume-title: Space Weather
  year: 2001
  ident: 9993_CR60
  doi: 10.1029/GM125p0289
– ident: 9993_CR135
  doi: 10.1029/JA082i032p05112
– ident: 9993_CR34
  doi: 10.1029/JA075i025p04699
– ident: 9993_CR83
  doi: 10.1029/2005JA011355
– ident: 9993_CR122
  doi: 10.1029/2008JA013784
– ident: 9993_CR57
  doi: 10.1029/2009JA014570
– ident: 9993_CR13
  doi: 10.1029/2008GL035500
– ident: 9993_CR106
  doi: 10.1029/2006JA011708
– ident: 9993_CR111
  doi: 10.1029/2001JA000051
– ident: 9993_CR101
  doi: 10.1029/2008GL034032
– ident: 9993_CR16
  doi: 10.1126/science.1171273
– ident: 9993_CR110
  doi: 10.1016/0032-0633(93)90015-T
– ident: 9993_CR64
  doi: 10.1029/2001JA000047
– ident: 9993_CR102
  doi: 10.1029/2011GL048793
– ident: 9993_CR2
  doi: 10.1029/97JA02920
– ident: 9993_CR21
  doi: 10.1029/93JA02771
– volume: 106
  start-page: 13191
  issue: A7
  year: 2001
  ident: 9993_CR114
  publication-title: J. Geophys. Res.
  doi: 10.1029/2000JA000275
– ident: 9993_CR141
  doi: 10.1029/2005GL024380
– ident: 9993_CR29
  doi: 10.1029/2009JA014409
– ident: 9993_CR8
  doi: 10.1029/2005JA011041
– ident: 9993_CR89
  doi: 10.1029/2009GL039985
– ident: 9993_CR3
  doi: 10.1109/TMAG.1974.1058457
– ident: 9993_CR35
  doi: 10.1029/JA083iA10p04798
– ident: 9993_CR107
  doi: 10.1029/2004JA010760
– ident: 9993_CR125
  doi: 10.1029/2002JA009489
– ident: 9993_CR4
  doi: 10.1063/1.1510570
– ident: 9993_CR9
  doi: 10.1029/92GL00624
– ident: 9993_CR136
  doi: 10.1029/2008JA013353
– ident: 9993_CR76
  doi: 10.1029/93GL02701
– volume: 21
  start-page: 437
  issue: 2
  year: 2003
  ident: 9993_CR33
  publication-title: Ann. Geophys.
  doi: 10.5194/angeo-21-437-2003
– ident: 9993_CR56
  doi: 10.1029/2007GL030267
– ident: 9993_CR25
  doi: 10.1029/2009JA014204
– ident: 9993_CR140
  doi: 10.1029/2005JA011017
– ident: 9993_CR20
  doi: 10.1029/2007GL032009
– ident: 9993_CR129
  doi: 10.1029/2010GL044990
– ident: 9993_CR37
  doi: 10.1029/2001JA009202
– ident: 9993_CR146
  doi: 10.1029/2000JA000604
– ident: 9993_CR59
  doi: 10.1029/97JA03995
– ident: 9993_CR90
  doi: 10.1029/2003GL017698
– ident: 9993_CR51
  doi: 10.1029/1999JA900447
– ident: 9993_CR27
  doi: 10.1029/2009JA015075
– ident: 9993_CR97
– ident: 9993_CR43
  doi: 10.1029/2009JA014516
– ident: 9993_CR103
  doi: 10.1126/science.1193186
– ident: 9993_CR92
  doi: 10.1029/2007JA012975
– ident: 9993_CR14
  doi: 10.1038/nature06741
– ident: 9993_CR99
  doi: 10.1029/2010GL042772
– ident: 9993_CR77
  doi: 10.1029/2008JA013129
– ident: 9993_CR66
  doi: 10.1029/2003JA009993
– ident: 9993_CR123
  doi: 10.1029/2008SW000452
– volume-title: Dynamics of Geomagnetically Trapped Radiation
  year: 1970
  ident: 9993_CR112
  doi: 10.1007/978-3-642-49300-3
– ident: 9993_CR88
  doi: 10.1029/2000GL003822
– ident: 9993_CR49
  doi: 10.1029/2009JA014950
– ident: 9993_CR72
  doi: 10.1029/2011JA017433
– ident: 9993_CR63
  doi: 10.1029/96JA03699
– ident: 9993_CR138
  doi: 10.1029/2002JA009808
– ident: 9993_CR68
  doi: 10.1029/2006JA012215
– ident: 9993_CR145
  doi: 10.1029/2007JA012862
– ident: 9993_CR98
  doi: 10.1029/2009JA014162
– ident: 9993_CR115
  doi: 10.1029/2000RS002523
– ident: 9993_CR67
  doi: 10.1029/2006JA011644
– ident: 9993_CR40
  doi: 10.1029/1999JA900014
– ident: 9993_CR82
  doi: 10.1029/2004JA010816
– ident: 9993_CR113
  doi: 10.1029/98GL02801
– ident: 9993_CR116
  doi: 10.1029/2003GL018757
– ident: 9993_CR85
  doi: 10.1029/JA078i013p02142
– ident: 9993_CR124
  doi: 10.1029/2007GL032226
– volume-title: Particle Diffusion in the Radiation Belts
  year: 1974
  ident: 9993_CR118
  doi: 10.1007/978-3-642-65675-0
– ident: 9993_CR12
  doi: 10.1029/2006JA012237
– ident: 9993_CR95
  doi: 10.1029/2002JA009793
– ident: 9993_CR18
  doi: 10.1029/2008JA013549
– ident: 9993_CR6
  doi: 10.1029/2002JA009792
– ident: 9993_CR53
  doi: 10.1029/2000JA000018
– ident: 9993_CR142
  doi: 10.5194/angeo-27-2173-2009
– ident: 9993_CR93
  doi: 10.1029/2009JA014230
– ident: 9993_CR22
  doi: 10.1029/2006JA011620
– ident: 9993_CR74
  doi: 10.1029/97JA01814
– ident: 9993_CR71
  doi: 10.1029/2010JA015671
– ident: 9993_CR105
  doi: 10.1029/2010JA015607
– ident: 9993_CR28
  doi: 10.1029/2010JA015707
– ident: 9993_CR121
  doi: 10.1029/2006JA011657
– ident: 9993_CR30
  doi: 10.1029/2006JA012061
– ident: 9993_CR81
  doi: 10.1029/2009JA014243
– ident: 9993_CR73
  doi: 10.1029/JZ072i003p00871
– ident: 9993_CR39
  doi: 10.1029/2005JA011211
– ident: 9993_CR7
  doi: 10.1029/2009JA014336
– ident: 9993_CR120
  doi: 10.1029/2004GL019591
– ident: 9993_CR87
  doi: 10.1029/JA077i019p03455
– ident: 9993_CR70
  doi: 10.1029/2009JA014810
– ident: 9993_CR127
  doi: 10.1029/2007JA012985
– ident: 9993_CR24
  doi: 10.1038/nphys655
– ident: 9993_CR15
  doi: 10.1016/j.jastp.2009.03.023
– ident: 9993_CR55
  doi: 10.1029/2004JA010811
– ident: 9993_CR65
  doi: 10.1029/2000JA002008
– ident: 9993_CR108
  doi: 10.1029/2010GL042648
– ident: 9993_CR130
  doi: 10.1029/96JA04019
– ident: 9993_CR100
  doi: 10.1007/BF00183028
– ident: 9993_CR42
  doi: 10.1029/2002JA009409
– ident: 9993_CR86
  doi: 10.1029/JA085iA02p00523
– ident: 9993_CR17
  doi: 10.1029/2004JA010612
– ident: 9993_CR144
  doi: 10.1029/92GL00121
– ident: 9993_CR109
  doi: 10.1006/jcph.1999.6299
– ident: 9993_CR47
  doi: 10.1029/2003JA010153
– ident: 9993_CR91
  doi: 10.1029/2002JA009700
– ident: 9993_CR31
  doi: 10.1029/2007JA012890
– ident: 9993_CR148
  doi: 10.1029/94GL00375
– ident: 9993_CR46
  doi: 10.1029/2001JA000054
– ident: 9993_CR134
  doi: 10.1029/JA079i001p00118
– ident: 9993_CR137
  doi: 10.1029/96JA02735
– ident: 9993_CR38
  doi: 10.1029/JA074i016p04184
– ident: 9993_CR139
  doi: 10.1029/2008JA013480
– ident: 9993_CR62
  doi: 10.1029/2005GL023020
– ident: 9993_CR45
  doi: 10.1029/2000JA900062
– ident: 9993_CR84
  doi: 10.1029/2010JA015755
– ident: 9993_CR44
  doi: 10.1029/2007JA012478
– ident: 9993_CR94
  doi: 10.1016/j.jastp.2006.06.019
SSID ssj0010077
Score 2.6227353
SecondaryResourceType review_article
Snippet The Electric and Magnetic Field Instrument and Integrated Science (EMFISIS) investigation on the NASA Radiation Belt Storm Probes (now named the Van Allen...
Issue Title: The Van Allen Probes Mission The Electric and Magnetic Field Instrument and Integrated Science (EMFISIS) investigation on the NASA Radiation Belt...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 127
SubjectTerms Aerospace Technology and Astronautics
Astrophysics
Astrophysics and Astroparticles
Magnetic fields
Physics
Physics and Astronomy
Planetology
Probes
Radiation
Scientific apparatus & instruments
Space Exploration and Astronautics
Space Sciences (including Extraterrestrial Physics
SummonAdditionalLinks – databaseName: SpringerLink Standard
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS-wwEB68wvHBy-rB9UYEES8UmjZN00eVXdwHZbEq-lRyqyxo93Cqgv_eJG13VVTQt9JO05KZZGYyM98A7ARRqBIcKo_lWHqE0sjjQsXG55E0oQLnJFGu2UR8fs5ubpJ-XcddNtnuTUjS7dTjYjccYJsxEXqJTTqjkzBttB2z_Rou0utR6MAC1FRYjMyjoc-aUOZnQ7xXRmML80NQ1Oma7sKv_nIR5mvTEh1VsrAEE7powepRaQ-7hw8vaBe56-oso2zB3BsswhbM9qv7y3BrRAd1XHucgUS8UOiM3xW22BF1bb4b6jnUWXusiNInY7I6ml6DO6FQvV-gvc5Zt5f20n00LNDFcdpfgatu5_Lk1Ks7MHiSROzRi5lQofAp92lu1FiuokAkMdcBjSKFc8G5CDUPBM9jwiUVhHBOiBDGaTSekubhX5gqhoVeBUSEr6RFG8NSWBR3oc14wudB7sea47wNfsOKTNbw5LZLxn02Bla2U5uZqc3s1Ga0DQejV_5V2BzfEW80_M3qZVoav4fExgZlOG7D9uixWWA2asILPXyyNMajChPCkjYcNjx_M8RXH1z7EfU6_Ams0Lgqxw2YMmzUmzAjnx8H5f8tJ-Gv9aHzUQ
  priority: 102
  providerName: Springer Nature
Title The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP
URI https://link.springer.com/article/10.1007/s11214-013-9993-6
https://www.proquest.com/docview/1447083817
https://www.proquest.com/docview/1458539489
Volume 179
WOSCitedRecordID wos000326381300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1572-9672
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0010077
  issn: 0038-6308
  databaseCode: P5Z
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1572-9672
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0010077
  issn: 0038-6308
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1572-9672
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0010077
  issn: 0038-6308
  databaseCode: M2P
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-9672
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010077
  issn: 0038-6308
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS9xAFH-06qE9VGtbXLUyBZF-MJhJJpPkVFR26R52CRtbbC9hvlKEmqjRgv-982aTXVuol16GQCYzgd-bmfc1vwewH8aRyVhkaFoxTbkQMZXKJM7m0SITilU8M77YRDKdpmdnWd453NourbLfE_1GbRqNPvJDp_gnTl1IWfL58opi1SiMrnYlNJ7CqtNsGKZ0TcJ8EUVArpo5LWNKRRSkfVTTX51jIcP8i4hmmMIm_jyXlsrmX_FRf-yM1v_3hzfgRadwkqO5hLyEJ7behK2jFl3gzcUdOSD-ee7haDfh-QOGwlfw3YkRGfpSOeeayNqQifxZ48VHMsLcNzL2DLToYiTFrZvZ9xn3HBSGdHsHeT-cjMbFuPhAmprMjov8NXwdDU9PvtCuGgPVPE5vaJIqE6lAyEBU7kirTByqLJE2FHFsWKWkVJGVoZJVwqUWinMpOVfKGZDOarIyegMrdVPbLSBcBUYj8xjTChndlXXjqUCGVZBYyaoBBD0Wpe6oyrFixq9ySbKM8JUOvhLhK8UAPi4-uZzzdDzWebeHrOyWbFsu8RrAu8Vrt9gwgiJr29xiH2ddRRlPswF86gXjwRD_mnD78Ql34FmIkuivOO7CisPNvoU1_fvmvL3eg9Xj4TSf7XnZdm0e_3DtrPh2D02x_pE
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQceBRQtxQwEiAeskgcx0kOCBXYVaN2Vyu2lcop-BVUCZLS9KH-KX4jHifZLUj01gO3SHFsOZ4Zz_MbgGcsjkwWRoamZagpFyKmUpnE2TxaZEKFJc-MbzaRTCbp3l42XYJffS0MplX2MtELalNr9JG_dYp_4tSFNEzeH_yk2DUKo6t9C42WLLbs2akz2Zp3-Sd3vs8ZGw13Pm7SrqsA1TxOj2iSKhOpQMhAlE40lyZmKkukZSKOTVgqKVVkJVOyTLjUQnEuJedKOUPIaf9WRm7eK3CVI7IYpgqy6Txqgdg4LQxkSkUUpH0U1ZfqhSzEfI-IZpgyJ_68BxfK7V_xWH_NjW7_bz_oDtzqFGqy0XLAXViy1QqsbjTo4q9_nJEXxD-3HpxmBW6eQ2C8B18cm5ChbwW0r4msDBnLbxUWdpIR5vaR3CPsoguVzI7dTv2YvMfYMKSTjeTlcDzKZ_nsFakr8vnDbHofdi9l2w9guaoruwqEq8BoRFYLtULEemXdfCqQrAwSK8NyAEF_9oXuoNixI8j3YgEijeRSOHIpkFwKMYDX808OWhySiwav9yRSdCKpKRb0MYCn89dOmGCESFa2PsYxznqMMp5mA3jTE-K5Kf614NrFCz6B65s74-1iO59sPYQbDLnAl3Ouw7I7Q_sIrumTo_3m8LHnJwJfL5s-fwMpXVq0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9RAEJ8gKNEHwAPCIeKaGKOShm673baPoNfYIJeLVYNPzX4SEugRe5j437PTjzs0amJ8a9rpdrMz253P3wC8CKJQpzTUXmKp8hjnkSekjp3No3jKJbUs1U2ziXg8Ts7O0knX57Tus937kGRb04AoTdXs8Frbw0XhGw0oZk-EXooJaPwerDDMo0dzvfgyDyMgWE2Ly5h4PPSTPqz5uyF-PpgW2uYvAdLm3MnW_3vGG7DWqZzkqJWRx7BkqgHsHNXoBJ9e_SAvSXPd-jjqATy6g1E4gAeT9v4mfHUiRUZN25wLRUSlyak4r7AIkmSYB0fyBo0W3Y2kuHGqbEOT93gUmnT_EfJqdJrlRV68JtOKfDwuJlvwORt9evve6zozeIpFycyLE6lD6XPhc-uON6ujQKaxMAGPIk2tFEKGRgRS2JgJxSVjQjAmpTMmnQVlRLgNy9W0MjtAmPS1QhQyqiSiu0vjxpO-CKwfG0HtEPyeLaXqYMuxe8ZluQBcxqUt3dKWuLQlH8Kb-SvXLWbH34j3el6X3fatnT3EYqebJjQewvP5Y7fxMJoiKjO9QRpnaYUpS9IhHPT8vzPEnz64-0_Uz2B18i4rP-TjkyfwMED5aQoh92DZcdQ8hfvq--yi_rbfCP4tQcb_GQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Electric+and+Magnetic+Field+Instrument+Suite+and+Integrated+Science+%28EMFISIS%29+on+RBSP&rft.jtitle=Space+science+reviews&rft.au=Kletzing%2C+C.+A.&rft.au=Kurth%2C+W.+S.&rft.au=Acuna%2C+M.&rft.au=MacDowall%2C+R.+J.&rft.date=2013-11-01&rft.issn=0038-6308&rft.eissn=1572-9672&rft.volume=179&rft.issue=1-4&rft.spage=127&rft.epage=181&rft_id=info:doi/10.1007%2Fs11214-013-9993-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11214_013_9993_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-6308&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-6308&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-6308&client=summon