The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP
The Electric and Magnetic Field Instrument and Integrated Science (EMFISIS) investigation on the NASA Radiation Belt Storm Probes (now named the Van Allen Probes) mission provides key wave and very low frequency magnetic field measurements to understand radiation belt acceleration, loss, and transpo...
Saved in:
| Published in: | Space science reviews Vol. 179; no. 1-4; pp. 127 - 181 |
|---|---|
| Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Dordrecht
Springer Netherlands
01.11.2013
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0038-6308, 1572-9672 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The Electric and Magnetic Field Instrument and Integrated Science (EMFISIS) investigation on the NASA Radiation Belt Storm Probes (now named the Van Allen Probes) mission provides key wave and very low frequency magnetic field measurements to understand radiation belt acceleration, loss, and transport. The key science objectives and the contribution that EMFISIS makes to providing measurements as well as theory and modeling are described. The key components of the instruments suite, both electronics and sensors, including key functional parameters, calibration, and performance, demonstrate that EMFISIS provides the needed measurements for the science of the RBSP mission. The EMFISIS operational modes and data products, along with online availability and data tools provide the radiation belt science community with one the most complete sets of data ever collected. |
|---|---|
| AbstractList | The Electric and Magnetic Field Instrument and Integrated Science (EMFISIS) investigation on the NASA Radiation Belt Storm Probes (now named the Van Allen Probes) mission provides key wave and very low frequency magnetic field measurements to understand radiation belt acceleration, loss, and transport. The key science objectives and the contribution that EMFISIS makes to providing measurements as well as theory and modeling are described. The key components of the instruments suite, both electronics and sensors, including key functional parameters, calibration, and performance, demonstrate that EMFISIS provides the needed measurements for the science of the RBSP mission. The EMFISIS operational modes and data products, along with online availability and data tools provide the radiation belt science community with one the most complete sets of data ever collected. Issue Title: The Van Allen Probes Mission The Electric and Magnetic Field Instrument and Integrated Science (EMFISIS) investigation on the NASA Radiation Belt Storm Probes (now named the Van Allen Probes) mission provides key wave and very low frequency magnetic field measurements to understand radiation belt acceleration, loss, and transport. The key science objectives and the contribution that EMFISIS makes to providing measurements as well as theory and modeling are described. The key components of the instruments suite, both electronics and sensors, including key functional parameters, calibration, and performance, demonstrate that EMFISIS provides the needed measurements for the science of the RBSP mission. The EMFISIS operational modes and data products, along with online availability and data tools provide the radiation belt science community with one the most complete sets of data ever collected.[PUBLICATION ABSTRACT] |
| Author | Odom, J. Piker, C. W. Kirchner, D. L. Pfaff, R. Connerney, J. Tyler, J. Acuna, M. Averkamp, T. Jordanova, V. Hospodarsky, G. B. Santolik, O. Bounds, S. R. Howard, J. Bodet, D. Sheppard, D. Thorne, R. M. Phillips, J. R. Dolan, J. S. Rowland, D. Needell, G. Kletzing, C. A. Dvorsky, R. Remington, S. L. Smith, C. W. MacDowall, R. J. Chutter, M. Mokrzycki, B. Schnurr, R. Kurth, W. S. Johnson, R. A. Mark, D. Crawford, D. Torbert, R. B. |
| Author_xml | – sequence: 1 givenname: C. A. surname: Kletzing fullname: Kletzing, C. A. email: craig-kletzing@uiowa.edu organization: Department of Physics & Astronomy, University of Iowa – sequence: 2 givenname: W. S. surname: Kurth fullname: Kurth, W. S. organization: Department of Physics & Astronomy, University of Iowa – sequence: 3 givenname: M. surname: Acuna fullname: Acuna, M. organization: Solar System Exploration Division, Goddard Space Flight Center – sequence: 4 givenname: R. J. surname: MacDowall fullname: MacDowall, R. J. organization: Solar System Exploration Division, Goddard Space Flight Center – sequence: 5 givenname: R. B. surname: Torbert fullname: Torbert, R. B. organization: Physics Department and Space Science Center, University of New Hampshire – sequence: 6 givenname: T. surname: Averkamp fullname: Averkamp, T. organization: Department of Physics & Astronomy, University of Iowa – sequence: 7 givenname: D. surname: Bodet fullname: Bodet, D. organization: Physics Department and Space Science Center, University of New Hampshire – sequence: 8 givenname: S. R. surname: Bounds fullname: Bounds, S. R. organization: Department of Physics & Astronomy, University of Iowa – sequence: 9 givenname: M. surname: Chutter fullname: Chutter, M. organization: Physics Department and Space Science Center, University of New Hampshire – sequence: 10 givenname: J. surname: Connerney fullname: Connerney, J. organization: Solar System Exploration Division, Goddard Space Flight Center – sequence: 11 givenname: D. surname: Crawford fullname: Crawford, D. organization: Department of Physics & Astronomy, University of Iowa – sequence: 12 givenname: J. S. surname: Dolan fullname: Dolan, J. S. organization: Department of Physics & Astronomy, University of Iowa – sequence: 13 givenname: R. surname: Dvorsky fullname: Dvorsky, R. organization: Department of Physics & Astronomy, University of Iowa – sequence: 14 givenname: G. B. surname: Hospodarsky fullname: Hospodarsky, G. B. organization: Department of Physics & Astronomy, University of Iowa – sequence: 15 givenname: J. surname: Howard fullname: Howard, J. organization: Department of Physics & Astronomy, University of Iowa – sequence: 16 givenname: V. surname: Jordanova fullname: Jordanova, V. organization: Space Science and Applications, Los Alamos National Laboratory – sequence: 17 givenname: R. A. surname: Johnson fullname: Johnson, R. A. organization: Department of Physics & Astronomy, University of Iowa – sequence: 18 givenname: D. L. surname: Kirchner fullname: Kirchner, D. L. organization: Department of Physics & Astronomy, University of Iowa – sequence: 19 givenname: B. surname: Mokrzycki fullname: Mokrzycki, B. organization: Department of Physics & Astronomy, University of Iowa – sequence: 20 givenname: G. surname: Needell fullname: Needell, G. organization: Physics Department and Space Science Center, University of New Hampshire – sequence: 21 givenname: J. surname: Odom fullname: Odom, J. organization: Solar System Exploration Division, Goddard Space Flight Center – sequence: 22 givenname: D. surname: Mark fullname: Mark, D. organization: Bison Aerospace Inc – sequence: 23 givenname: R. surname: Pfaff fullname: Pfaff, R. organization: Heliophysics Science Division, Goddard Space Flight Center – sequence: 24 givenname: J. R. surname: Phillips fullname: Phillips, J. R. organization: Department of Physics & Astronomy, University of Iowa – sequence: 25 givenname: C. W. surname: Piker fullname: Piker, C. W. organization: Department of Physics & Astronomy, University of Iowa – sequence: 26 givenname: S. L. surname: Remington fullname: Remington, S. L. organization: Department of Physics & Astronomy, University of Iowa – sequence: 27 givenname: D. surname: Rowland fullname: Rowland, D. organization: Heliophysics Science Division, Goddard Space Flight Center – sequence: 28 givenname: O. surname: Santolik fullname: Santolik, O. organization: Department of Space Physics, Institute of Atmospheric Physics, Faculty of Mathematics and Physics, Charles University – sequence: 29 givenname: R. surname: Schnurr fullname: Schnurr, R. organization: Solar System Exploration Division, Goddard Space Flight Center – sequence: 30 givenname: D. surname: Sheppard fullname: Sheppard, D. organization: Solar System Exploration Division, Goddard Space Flight Center – sequence: 31 givenname: C. W. surname: Smith fullname: Smith, C. W. organization: Physics Department and Space Science Center, University of New Hampshire – sequence: 32 givenname: R. M. surname: Thorne fullname: Thorne, R. M. organization: Atmospheric and Oceanic Sciences, University of California – sequence: 33 givenname: J. surname: Tyler fullname: Tyler, J. organization: Physics Department and Space Science Center, University of New Hampshire |
| BookMark | eNp9kMFu1DAQhi1UJLaFB-BmiUs5pNixYztHqHYhUisQKQdO1tiZLK6yTrGdA29Plu0BVYLTaKTvm_n1n5OzOEck5DVnV5wx_S5zXnNZMS6qtm1FpZ6RDW90XbVK12dkw5gwlRLMvCDnOd8zdrT0hny_-4F0O6EvKXgKcaC3sI9Y1mUXcBpoF3NJywFjof0SCv5hulhwn6DgQHsfMHqkl9vbXdd3_Vs6R_r1Q__lJXk-wpTx1eO8IN9227vrT9XN54_d9fubysvGlEobNwjHFDA1GqnHoaldqwFr1TQDHx2AEwi1g1FL8MpJCSClc5K1RtUI4oJcnu4-pPnngrnYQ8gepwkizku2fH3TiFaadkXfPEHv5yXFNd1KSc2MMFyvlD5RPs05JxytDwVKmGNJECbLmT2WZ0-V27Vye6zcqtXkT8yHFA6Qfv3XqU9OXtm4x_RXpn9KvwFzZ5OA |
| CitedBy_id | crossref_primary_10_1002_2017GL075892 crossref_primary_10_1002_2016JA022775 crossref_primary_10_1002_2017GL075894 crossref_primary_10_1002_2017JA024452 crossref_primary_10_1029_2023JA031399 crossref_primary_10_1002_2017JA024574 crossref_primary_10_1029_2017JA025023 crossref_primary_10_1029_2022JA030438 crossref_primary_10_1002_2017JA024336 crossref_primary_10_1029_2022JA030435 crossref_primary_10_1029_2022JA030566 crossref_primary_10_1029_2022JA030687 crossref_primary_10_1029_2022JA030444 crossref_primary_10_1029_2022JA030320 crossref_primary_10_1002_2017GL073116 crossref_primary_10_1029_2019GL083118 crossref_primary_10_1029_2022JA030680 crossref_primary_10_1029_2019JA026822 crossref_primary_10_1029_2019GL084202 crossref_primary_10_1029_2020GL086963 crossref_primary_10_1029_2020JA029081 crossref_primary_10_11728_cjss2024_06_2024_yg26 crossref_primary_10_1029_2022GL101321 crossref_primary_10_1029_2022SW003234 crossref_primary_10_1007_s11431_016_9008_3 crossref_primary_10_1007_s11431_017_9067_y crossref_primary_10_3847_1538_4357_aaf970 crossref_primary_10_1002_2017GL076754 crossref_primary_10_1029_2021GL097471 crossref_primary_10_1038_s41597_025_05531_6 crossref_primary_10_1002_2016JA022549 crossref_primary_10_1002_2017GL076513 crossref_primary_10_1029_2022GL099152 crossref_primary_10_1002_2015GL064145 crossref_primary_10_1002_2016JA022546 crossref_primary_10_3389_fspas_2021_776992 crossref_primary_10_1002_2016GL071566 crossref_primary_10_1029_2020GL092178 crossref_primary_10_1002_2016GL070233 crossref_primary_10_1029_2022JA030455 crossref_primary_10_1002_2015JA021803 crossref_primary_10_1029_2018GL079596 crossref_primary_10_1029_2020JA029078 crossref_primary_10_1029_2022JA030695 crossref_primary_10_1002_2017JA024470 crossref_primary_10_1029_2018GL079232 crossref_primary_10_1029_2019GL085528 crossref_primary_10_1029_2021JA029962 crossref_primary_10_1002_2017JA024593 crossref_primary_10_1029_2022GL100485 crossref_primary_10_5194_angeo_34_493_2016 crossref_primary_10_1029_2019JA026715 crossref_primary_10_1029_2020JA027924 crossref_primary_10_1029_2023GL106860 crossref_primary_10_1007_s11214_022_00919_x crossref_primary_10_1002_2016JA023600 crossref_primary_10_1029_2021GL097143 crossref_primary_10_5194_angeo_38_931_2020 crossref_primary_10_1002_2015GL066674 crossref_primary_10_1029_2023JA031299 crossref_primary_10_1002_2017JA024474 crossref_primary_10_1002_2016JA022513 crossref_primary_10_1029_2022GL098294 crossref_primary_10_3390_universe11050151 crossref_primary_10_1002_2016JA022517 crossref_primary_10_1007_s11141_021_10049_z crossref_primary_10_1029_2018EA000550 crossref_primary_10_1029_2019GL085637 crossref_primary_10_1038_s41598_023_28093_2 crossref_primary_10_1134_S1062873825711055 crossref_primary_10_1007_s10509_024_04375_7 crossref_primary_10_1029_2020JA027918 crossref_primary_10_1029_2021JA029737 crossref_primary_10_3389_fspas_2023_1168636 crossref_primary_10_1038_s41467_021_23740_6 crossref_primary_10_1029_2020JA027913 crossref_primary_10_1134_S1063780X24601202 crossref_primary_10_1002_2016JA022523 crossref_primary_10_1029_2020JA027917 crossref_primary_10_1002_2016JA022400 crossref_primary_10_1002_2016JA022521 crossref_primary_10_1029_2021GL095194 crossref_primary_10_1002_2017JA024485 crossref_primary_10_1002_2017JA024487 crossref_primary_10_1029_2022JA030548 crossref_primary_10_1002_2016GL070333 crossref_primary_10_1029_2022JA030674 crossref_primary_10_1029_2019GL083446 crossref_primary_10_1002_2016GL068260 crossref_primary_10_1029_2022SW003342 crossref_primary_10_1029_2019GL082111 crossref_primary_10_1029_2020JA029091 crossref_primary_10_1029_2021JA029508 crossref_primary_10_1007_s11430_016_9024_3 crossref_primary_10_3389_fspas_2022_986061 crossref_primary_10_1029_2022GL100385 crossref_primary_10_1029_2023GL103590 crossref_primary_10_1134_S1062873823705512 crossref_primary_10_1029_2018JA026292 crossref_primary_10_1002_2016JA022573 crossref_primary_10_1029_2018JA026291 crossref_primary_10_1002_2017JA024770 crossref_primary_10_1029_2018JA026058 crossref_primary_10_5194_angeo_38_1267_2020 crossref_primary_10_1002_2015GL066255 crossref_primary_10_1029_2018JA026299 crossref_primary_10_3389_fspas_2024_1374331 crossref_primary_10_1002_2016JA023547 crossref_primary_10_1029_2022GL099000 crossref_primary_10_1029_2022JA030358 crossref_primary_10_1029_2020JA028074 crossref_primary_10_1029_2020JA028077 crossref_primary_10_1186_s40623_020_01235_w crossref_primary_10_1029_2021JA029754 crossref_primary_10_1002_2017GL074006 crossref_primary_10_1007_s11214_023_01032_3 crossref_primary_10_3847_1538_4357_aca4c7 crossref_primary_10_1029_2021JA029759 crossref_primary_10_3389_fspas_2024_1332931 crossref_primary_10_1002_2017GL074362 crossref_primary_10_1029_2021SW002722 crossref_primary_10_1002_2016JA023311 crossref_primary_10_1002_2016JA023550 crossref_primary_10_1029_2018JA026183 crossref_primary_10_1029_2019GL082292 crossref_primary_10_1029_2020GL089807 crossref_primary_10_1029_2023JA031360 crossref_primary_10_1002_2017GL075104 crossref_primary_10_1007_s11431_021_2030_7 crossref_primary_10_1002_2017JA024540 crossref_primary_10_1007_s11214_022_00885_4 crossref_primary_10_1088_1674_1056_abf556 crossref_primary_10_1029_2021GL097559 crossref_primary_10_1029_2022JA030369 crossref_primary_10_1038_s41467_024_45967_9 crossref_primary_10_1029_2018GL079038 crossref_primary_10_1029_2022GL102106 crossref_primary_10_1029_2021JA029644 crossref_primary_10_1029_2023JA031479 crossref_primary_10_1029_2021JA029646 crossref_primary_10_3389_fspas_2023_1193600 crossref_primary_10_1029_2021JA029887 crossref_primary_10_3389_fspas_2023_1116396 crossref_primary_10_1029_2021JA029769 crossref_primary_10_1029_2019GL083024 crossref_primary_10_1029_2021JA029768 crossref_primary_10_1038_ncomms10096 crossref_primary_10_1134_S0016793224600553 crossref_primary_10_1002_2014GL062020 crossref_primary_10_1007_s11431_021_1965_2 crossref_primary_10_1029_2020GL087503 crossref_primary_10_1016_j_jastp_2018_01_024 crossref_primary_10_1029_2019JA026913 crossref_primary_10_3389_fspas_2022_910730 crossref_primary_10_1002_2017JA024316 crossref_primary_10_1002_2017JA024558 crossref_primary_10_1029_2022GL098378 crossref_primary_10_1007_s11214_021_00855_2 crossref_primary_10_1134_S0016793219060148 crossref_primary_10_1029_2023JA031497 crossref_primary_10_5194_angeo_41_429_2023 crossref_primary_10_1002_2017JA024554 crossref_primary_10_1002_2017JA024676 crossref_primary_10_1029_2018JA026199 crossref_primary_10_1029_2022JA030337 crossref_primary_10_1029_2018GL081379 crossref_primary_10_1029_2020JA028098 crossref_primary_10_1029_2021JA029895 crossref_primary_10_1029_2021JA029532 crossref_primary_10_1029_2022JA030463 crossref_primary_10_1029_2022JA030462 crossref_primary_10_1029_2020JA028094 crossref_primary_10_1002_2017GL074026 crossref_primary_10_1029_2020JA028090 crossref_primary_10_1029_2019GL085676 crossref_primary_10_3389_fspas_2021_728531 crossref_primary_10_1051_swsc_2024016 crossref_primary_10_5194_angeo_33_955_2015 crossref_primary_10_1002_2017GL073051 crossref_primary_10_3389_fspas_2025_1619877 crossref_primary_10_1002_2017JA024328 crossref_primary_10_1134_S0010952524600227 crossref_primary_10_3389_fspas_2023_1096595 crossref_primary_10_1002_2016JA023770 crossref_primary_10_1002_2017GL075001 crossref_primary_10_1029_2022GL098249 crossref_primary_10_1002_2016JA022565 crossref_primary_10_1029_2021GL093095 crossref_primary_10_1029_2021GL096488 crossref_primary_10_5194_gi_12_201_2023 crossref_primary_10_1029_2023JA032114 crossref_primary_10_1002_2016JA023536 crossref_primary_10_1002_2016JA023657 crossref_primary_10_1029_2020JA029057 crossref_primary_10_1029_2022JA030349 crossref_primary_10_1029_2023RS007907 crossref_primary_10_1029_2021JA029662 crossref_primary_10_3389_fspas_2024_1520141 crossref_primary_10_1186_s40623_021_01453_w crossref_primary_10_1002_2015GL066581 crossref_primary_10_1029_2020GL086991 crossref_primary_10_1029_2021JA029546 crossref_primary_10_1002_2017JA024571 crossref_primary_10_1186_s40623_025_02170_4 crossref_primary_10_5194_angeo_36_781_2018 crossref_primary_10_1029_2022GL102368 crossref_primary_10_1029_2019GL082395 crossref_primary_10_5194_angeo_34_985_2016 crossref_primary_10_1029_2022GL097941 crossref_primary_10_1029_2018JA025284 crossref_primary_10_1029_2020JA028398 crossref_primary_10_1088_1742_6596_1623_1_012005 crossref_primary_10_1029_2018JA026374 crossref_primary_10_1029_2020JA028158 crossref_primary_10_1029_2020JA028031 crossref_primary_10_1029_2021GL094934 crossref_primary_10_1029_2021JA029793 crossref_primary_10_1029_2021GL094810 crossref_primary_10_3389_fspas_2023_1231578 crossref_primary_10_1002_2016GL071158 crossref_primary_10_1029_2020JA029001 crossref_primary_10_1029_2020JA028390 crossref_primary_10_1029_2021JA029797 crossref_primary_10_1029_2022JA031012 crossref_primary_10_1016_j_jastp_2019_105088 crossref_primary_10_1029_2020SW002622 crossref_primary_10_17721_2227_1481_5_68_74 crossref_primary_10_1029_2019GL086226 crossref_primary_10_1002_2014JA020023 crossref_primary_10_1029_2022GL101041 crossref_primary_10_1029_2023GL106371 crossref_primary_10_1029_2019GL082095 crossref_primary_10_1002_2016JA022384 crossref_primary_10_1002_2016JA023237 crossref_primary_10_1002_2016JA023358 crossref_primary_10_1029_2018GL080291 crossref_primary_10_3389_fphy_2022_786639 crossref_primary_10_1002_2017JA024187 crossref_primary_10_1029_2020JA028027 crossref_primary_10_1029_2018JA026387 crossref_primary_10_1002_2017GL075824 crossref_primary_10_3389_fspas_2022_970308 crossref_primary_10_5194_angeo_39_461_2021 crossref_primary_10_1002_2017GL072558 crossref_primary_10_1029_2021JA029322 crossref_primary_10_1029_2021JA029565 crossref_primary_10_1029_2021JA029569 crossref_primary_10_1029_2022JA031020 crossref_primary_10_1002_2014JA020252 crossref_primary_10_1002_2014JA020373 crossref_primary_10_1029_2020GL088753 crossref_primary_10_1186_s40623_021_01430_3 crossref_primary_10_1029_2022JA031260 crossref_primary_10_1186_s40623_018_0837_1 crossref_primary_10_1002_2015JA021089 crossref_primary_10_1002_2016JA022596 crossref_primary_10_1007_s11431_019_1545_6 crossref_primary_10_1029_2022SW003182 crossref_primary_10_1002_2017GL074985 crossref_primary_10_1029_2018JA026279 crossref_primary_10_1029_2020JA029024 crossref_primary_10_1029_2018JA026031 crossref_primary_10_1029_2020JA029025 crossref_primary_10_1029_2021JA029330 crossref_primary_10_1007_s11214_025_01184_4 crossref_primary_10_1029_2021GL093987 crossref_primary_10_1029_2021JA029337 crossref_primary_10_3389_fphy_2021_722355 crossref_primary_10_1002_2016GL071250 crossref_primary_10_1029_2023GL103083 crossref_primary_10_1002_2016GL071252 crossref_primary_10_1002_2016JA023333 crossref_primary_10_1029_2023GL105244 crossref_primary_10_1002_2014JA020281 crossref_primary_10_1029_2023GL106459 crossref_primary_10_1002_2016JA022366 crossref_primary_10_1029_2018JA026168 crossref_primary_10_1002_2017SW001702 crossref_primary_10_1016_j_asr_2023_11_020 crossref_primary_10_1029_2020JA029019 crossref_primary_10_3847_1538_4365_aba62e crossref_primary_10_1038_s41598_025_14293_5 crossref_primary_10_5194_angeo_33_1173_2015 crossref_primary_10_1029_2022JA031127 crossref_primary_10_1029_2020JA028042 crossref_primary_10_1029_2022JA030399 crossref_primary_10_1029_2021JA030214 crossref_primary_10_1029_2021JA029107 crossref_primary_10_1029_2019GL084379 crossref_primary_10_1029_2020GL088853 crossref_primary_10_1002_2017GL073420 crossref_primary_10_1029_2020GL088855 crossref_primary_10_1029_2022RS007454 crossref_primary_10_1029_2023GL104282 crossref_primary_10_1007_s11207_017_1113_4 crossref_primary_10_1029_2018SW001948 crossref_primary_10_3847_2041_8213_ad40a7 crossref_primary_10_1002_2015JA022154 crossref_primary_10_1002_2016JA022370 crossref_primary_10_1002_2015GL064911 crossref_primary_10_1088_1361_6501_ab0821 crossref_primary_10_1029_2018JA025480 crossref_primary_10_1002_2015GL063946 crossref_primary_10_1029_2020GL090749 crossref_primary_10_1017_S0022377821000246 crossref_primary_10_1002_2016GL069029 crossref_primary_10_1029_2023GL102922 crossref_primary_10_1029_2018JA025482 crossref_primary_10_1029_2020JA028354 crossref_primary_10_3389_fspas_2022_986814 crossref_primary_10_1029_2021JA029353 crossref_primary_10_1029_2020GL089994 crossref_primary_10_1029_2018JA026328 crossref_primary_10_1002_2015GL067066 crossref_primary_10_1029_2020GL088421 crossref_primary_10_1002_2015JA021179 crossref_primary_10_1002_2016GL070386 crossref_primary_10_1002_2016JA023392 crossref_primary_10_1029_2019JA027055 crossref_primary_10_1029_2021GL096062 crossref_primary_10_1029_2021GL096182 crossref_primary_10_1002_2017GL074895 crossref_primary_10_1029_2022SW003051 crossref_primary_10_1029_2023JA032179 crossref_primary_10_1002_2017GL076957 crossref_primary_10_1186_s40623_021_01467_4 crossref_primary_10_1029_2020GL090632 crossref_primary_10_1029_2023JA032055 crossref_primary_10_1029_2021JA029363 crossref_primary_10_5194_angeo_34_565_2016 crossref_primary_10_1186_s40623_020_01182_6 crossref_primary_10_1002_2017JA024270 crossref_primary_10_1029_2021GL092700 crossref_primary_10_1029_2021JA030115 crossref_primary_10_1002_2016GL068161 crossref_primary_10_1029_2020GL088798 crossref_primary_10_1002_2015JA021048 crossref_primary_10_1029_2022JA031181 crossref_primary_10_1002_2015JA022132 crossref_primary_10_1029_2023GL106162 crossref_primary_10_1029_2020GL089649 crossref_primary_10_1002_2015JA022010 crossref_primary_10_1002_2015JA022252 crossref_primary_10_1002_2016JA023002 crossref_primary_10_1002_2016JA023484 crossref_primary_10_1002_2017GL075877 crossref_primary_10_1029_2020JA028018 crossref_primary_10_1002_2017JA025005 crossref_primary_10_1029_2020JA028492 crossref_primary_10_1029_2022JA031038 crossref_primary_10_1029_2021JA029258 crossref_primary_10_1029_2019GL086368 crossref_primary_10_1002_2016JA023130 crossref_primary_10_1002_2016JA023372 crossref_primary_10_1002_2015JA021395 crossref_primary_10_1007_s10836_019_05778_z crossref_primary_10_1002_2015JA021030 crossref_primary_10_1029_2019JA027154 crossref_primary_10_1029_2018GL078809 crossref_primary_10_1029_2018JA025390 crossref_primary_10_1029_2018GL078925 crossref_primary_10_1029_2021JA029380 crossref_primary_10_1029_2021JA030008 crossref_primary_10_3389_fspas_2022_949788 crossref_primary_10_1002_2017JA024169 crossref_primary_10_1002_2017GL075649 crossref_primary_10_1029_2020JA028487 crossref_primary_10_1016_j_jastp_2019_105090 crossref_primary_10_1038_srep32362 crossref_primary_10_1002_2014JA020359 crossref_primary_10_1038_s41467_023_36095_x crossref_primary_10_1029_2018JA026238 crossref_primary_10_1029_2018JA026359 crossref_primary_10_1002_2016GL072316 crossref_primary_10_1016_j_asr_2023_10_022 crossref_primary_10_1002_2015GL063906 crossref_primary_10_1029_2020GL087203 crossref_primary_10_1029_2019GL086599 crossref_primary_10_1002_2016JA023263 crossref_primary_10_1134_S0016793223600509 crossref_primary_10_1002_2015GL064955 crossref_primary_10_1029_2018GL077969 crossref_primary_10_1029_2019GL085091 crossref_primary_10_1029_2019SW002360 crossref_primary_10_3847_1538_4357_abf4d6 crossref_primary_10_1029_2018JA025443 crossref_primary_10_1029_2020JA028315 crossref_primary_10_5194_angeo_36_867_2018 crossref_primary_10_1029_2023JA031703 crossref_primary_10_1029_2019GL082944 crossref_primary_10_3389_fspas_2023_1232702 crossref_primary_10_1002_2017GL072701 crossref_primary_10_1029_2020GL090783 crossref_primary_10_1029_2023JA031700 crossref_primary_10_1029_2018JA025557 crossref_primary_10_1002_2015JA021137 crossref_primary_10_3847_1538_4357_ac90cc crossref_primary_10_1002_2014GL059626 crossref_primary_10_1038_nature13956 crossref_primary_10_1029_2020JA028423 crossref_primary_10_3847_1538_4357_ab71fc crossref_primary_10_1029_2019JA027370 crossref_primary_10_1029_2020JA028543 crossref_primary_10_1029_2023GL103927 crossref_primary_10_1029_2021GL096825 crossref_primary_10_1002_2015JA022219 crossref_primary_10_1029_2020GL087023 crossref_primary_10_1134_S001679321701008X crossref_primary_10_1029_2023JA031711 crossref_primary_10_1029_2023JA031832 crossref_primary_10_1029_2023JA031712 crossref_primary_10_1029_2019JA027009 crossref_primary_10_1002_2016JA023046 crossref_primary_10_1007_s10509_019_3555_7 crossref_primary_10_1029_2019GL086040 crossref_primary_10_1029_2018GL079927 crossref_primary_10_1002_2014JA020690 crossref_primary_10_1002_2017JA023949 crossref_primary_10_1029_2020JA028215 crossref_primary_10_1029_2020JA028216 crossref_primary_10_1029_2020JA028458 crossref_primary_10_1029_2021JA029292 crossref_primary_10_1029_2018GL077500 crossref_primary_10_1029_2021JA029294 crossref_primary_10_1029_2021JA029298 crossref_primary_10_1029_2023JA031607 crossref_primary_10_1029_2022JA031078 crossref_primary_10_1029_2018JA025337 crossref_primary_10_1029_2018JA026427 crossref_primary_10_1029_2021JA030048 crossref_primary_10_1002_2015JA021358 crossref_primary_10_1002_2017JA024919 crossref_primary_10_3847_1538_4357_ad2dfe crossref_primary_10_1002_2015JA021113 crossref_primary_10_1002_2015JA021234 crossref_primary_10_3389_fspas_2022_977801 crossref_primary_10_1007_s11214_023_00973_z crossref_primary_10_1029_2023JA031608 crossref_primary_10_1002_2016JA023173 crossref_primary_10_1007_s11214_022_00934_y crossref_primary_10_1029_2019JA027111 crossref_primary_10_1007_s11214_025_01144_y crossref_primary_10_1029_2022GL098842 crossref_primary_10_1002_2017JA023958 crossref_primary_10_1016_j_jastp_2022_105966 crossref_primary_10_1029_2018GL078849 crossref_primary_10_1029_2019JA027233 crossref_primary_10_1007_s11214_016_0252_5 crossref_primary_10_1029_2018GL078604 crossref_primary_10_1029_2018JA025232 crossref_primary_10_1029_2018JA025354 crossref_primary_10_1002_2016GL067853 crossref_primary_10_1029_2018GL077873 crossref_primary_10_1002_2014JA020437 crossref_primary_10_3389_fspas_2023_1193268 crossref_primary_10_1029_2020JA028560 crossref_primary_10_1029_2021GL095757 crossref_primary_10_1029_2025GL116338 crossref_primary_10_1134_S0016793220010132 crossref_primary_10_1002_2015JA022318 crossref_primary_10_1029_2020GL088452 crossref_primary_10_1002_2015JA021227 crossref_primary_10_1029_2022JA031088 crossref_primary_10_1029_2020GL087365 crossref_primary_10_1029_2019JA027469 crossref_primary_10_1029_2020GL087009 crossref_primary_10_1016_j_jastp_2020_105332 crossref_primary_10_1002_2015JA021460 crossref_primary_10_1029_2019SW002168 crossref_primary_10_1029_2022GL098710 crossref_primary_10_1029_2019JA026477 crossref_primary_10_1029_2022GL098954 crossref_primary_10_1029_2022JA030914 crossref_primary_10_1029_2021JA029193 crossref_primary_10_1209_0295_5075_ade73b crossref_primary_10_1002_2014GL062832 crossref_primary_10_1029_2017JA024889 crossref_primary_10_1029_2020JA028635 crossref_primary_10_1029_2020JA028998 crossref_primary_10_1029_2018GL078731 crossref_primary_10_1016_j_asr_2024_08_058 crossref_primary_10_1029_2020JA028873 crossref_primary_10_1002_2014JA020865 crossref_primary_10_1029_2018JA025637 crossref_primary_10_1134_S0016793217060135 crossref_primary_10_1029_2018JA025996 crossref_primary_10_3389_fspas_2021_725800 crossref_primary_10_1029_2019GL083833 crossref_primary_10_1002_2015JA021455 crossref_primary_10_1002_2014JA020863 crossref_primary_10_1002_2015JA021690 crossref_primary_10_1186_s40623_017_0707_2 crossref_primary_10_1002_2015JA021691 crossref_primary_10_1029_2019JA027210 crossref_primary_10_1029_2023GL102993 crossref_primary_10_1029_2022JA030806 crossref_primary_10_1029_2020JA027772 crossref_primary_10_1029_2022JA030804 crossref_primary_10_1029_2020JA028503 crossref_primary_10_1029_2022GL100606 crossref_primary_10_1007_s10509_018_3279_0 crossref_primary_10_1029_2020JA027776 crossref_primary_10_1029_2020JA028981 crossref_primary_10_1029_2021GL094842 crossref_primary_10_1002_2014JA020857 crossref_primary_10_1029_2017JA024782 crossref_primary_10_1029_2021GL095933 crossref_primary_10_1029_2020JA027890 crossref_primary_10_1029_2018JA025886 crossref_primary_10_1029_2018JA025766 crossref_primary_10_1029_2019GL083944 crossref_primary_10_1029_2023JA031911 crossref_primary_10_1029_2022GL097978 crossref_primary_10_1029_2021JA030196 crossref_primary_10_3389_fspas_2021_681401 crossref_primary_10_1002_2015GL063528 crossref_primary_10_1016_j_jastp_2020_105471 crossref_primary_10_1029_2019JA027422 crossref_primary_10_1029_2019JA027543 crossref_primary_10_1029_2022GL098810 crossref_primary_10_1002_2014GL062977 crossref_primary_10_1029_2020JA028414 crossref_primary_10_1029_2018JA025664 crossref_primary_10_1002_2013GL059187 crossref_primary_10_1016_j_asr_2022_04_023 crossref_primary_10_1029_2020JA028773 crossref_primary_10_1029_2023GL102748 crossref_primary_10_1029_2019GL083808 crossref_primary_10_1029_2018JA025658 crossref_primary_10_1029_2018JA025417 crossref_primary_10_1029_2018JA025419 crossref_primary_10_1029_2021JA030088 crossref_primary_10_1029_2018JA025776 crossref_primary_10_1002_2015JA021676 crossref_primary_10_1029_2019JA027415 crossref_primary_10_1029_2023SW003477 crossref_primary_10_1002_2016JA023093 crossref_primary_10_1029_2019JA026566 crossref_primary_10_3389_fspas_2023_1197430 crossref_primary_10_1002_2015JA021795 crossref_primary_10_1029_2019JA026569 crossref_primary_10_1029_2019JA026689 crossref_primary_10_1029_2022GL100971 crossref_primary_10_1038_nature12889 crossref_primary_10_1002_2014JA020883 crossref_primary_10_1029_2023JA031808 crossref_primary_10_1029_2023JA031929 crossref_primary_10_1007_s11431_021_1882_x crossref_primary_10_1029_2019JA027430 crossref_primary_10_1029_2019JA027555 crossref_primary_10_1029_2020JA028527 crossref_primary_10_1029_2018JA026401 crossref_primary_10_1029_2020JA027793 crossref_primary_10_1029_2020JA028403 crossref_primary_10_1029_2020JA027798 crossref_primary_10_1016_j_asr_2015_02_024 crossref_primary_10_1029_2019GL083918 crossref_primary_10_1002_2014JA020877 crossref_primary_10_1029_2021GL092567 crossref_primary_10_1029_2021GL095714 crossref_primary_10_1134_S1063780X2260044X crossref_primary_10_1029_2020GL089584 crossref_primary_10_1029_2020GL089344 crossref_primary_10_1002_2015JA021786 crossref_primary_10_1029_2021JA030093 crossref_primary_10_1029_2019JA027424 crossref_primary_10_1029_2020GL088019 crossref_primary_10_1002_2014JA020873 crossref_primary_10_1002_2014JA020872 crossref_primary_10_1029_2022GL100860 crossref_primary_10_1002_2014JA020875 crossref_primary_10_1038_s41467_019_12561_3 crossref_primary_10_1029_2019JA026796 crossref_primary_10_1016_j_asr_2024_08_017 crossref_primary_10_1029_2021GL093168 crossref_primary_10_1002_2016GL067687 crossref_primary_10_1029_2020GL090027 crossref_primary_10_1029_2020GL091479 crossref_primary_10_1029_2023GL105958 crossref_primary_10_1002_2017JA024611 crossref_primary_10_1002_2016JA022814 crossref_primary_10_1029_2021GL094015 crossref_primary_10_1002_2016GL069982 crossref_primary_10_1029_2023JA031549 crossref_primary_10_1029_2021GL097529 crossref_primary_10_1029_2021GL095349 crossref_primary_10_1029_2020GL089032 crossref_primary_10_1029_2019GL083513 crossref_primary_10_1029_2023JA031787 crossref_primary_10_1029_2023JA031426 crossref_primary_10_1016_j_jastp_2020_105405 crossref_primary_10_1002_2015JA021772 crossref_primary_10_1134_S0016793222040168 crossref_primary_10_1002_2017JA024867 crossref_primary_10_3390_s16060859 crossref_primary_10_1038_ncomms9590 crossref_primary_10_5194_angeo_38_683_2020 crossref_primary_10_1002_2017JA024869 crossref_primary_10_1029_2021GL093151 crossref_primary_10_3103_S1062873822030273 crossref_primary_10_3390_rs12142300 crossref_primary_10_1029_2022JA030605 crossref_primary_10_1002_2016JA022706 crossref_primary_10_1029_2020GL090275 crossref_primary_10_1029_2018JA025725 crossref_primary_10_1029_2018GL077212 crossref_primary_10_1029_2018JA025726 crossref_primary_10_1029_2023JA031677 crossref_primary_10_1029_2018JA025963 crossref_primary_10_1002_2016GL070878 crossref_primary_10_1002_2015JA021644 crossref_primary_10_1038_nature14515 crossref_primary_10_1002_2017GL076120 crossref_primary_10_1002_2017GL076362 crossref_primary_10_1029_2020JA027889 crossref_primary_10_1038_s41467_020_18545_y crossref_primary_10_3390_s18041053 crossref_primary_10_1002_2017JA024639 crossref_primary_10_1029_2019JA026772 crossref_primary_10_1029_2022GL098457 crossref_primary_10_1029_2017JA025087 crossref_primary_10_1029_2023JA031454 crossref_primary_10_1029_2018GL079527 crossref_primary_10_1002_2016GL068799 crossref_primary_10_1029_2018JA025862 crossref_primary_10_1029_2020JA028850 crossref_primary_10_1029_2023JA031451 crossref_primary_10_1029_2023JA031572 crossref_primary_10_1029_2020GL092305 crossref_primary_10_1029_2020JA028972 crossref_primary_10_1029_2023GL105938 crossref_primary_10_1029_2023JA031325 crossref_primary_10_3390_universe9080353 crossref_primary_10_1029_2020GL091330 crossref_primary_10_1029_2019JA027733 crossref_primary_10_1002_2015JA021992 crossref_primary_10_1029_2019JA027618 crossref_primary_10_1038_s41467_020_18053_z crossref_primary_10_1109_JSEN_2014_2365495 crossref_primary_10_1002_2017JA024406 crossref_primary_10_1029_2022GL099655 crossref_primary_10_1029_2018SW002110 crossref_primary_10_1029_2019JA026541 crossref_primary_10_1029_2022JA030708 crossref_primary_10_1029_2022GL098328 crossref_primary_10_1002_2017GL076139 crossref_primary_10_1016_j_asr_2022_08_021 crossref_primary_10_1029_2020JA028842 crossref_primary_10_1029_2021GL095476 crossref_primary_10_3389_fspas_2023_1135509 crossref_primary_10_1029_2023GL103626 crossref_primary_10_1002_2016GL069875 crossref_primary_10_3389_fphy_2024_1334531 crossref_primary_10_3103_S1062873821030199 crossref_primary_10_1029_2020GL088052 crossref_primary_10_1002_2016JA022808 crossref_primary_10_1029_2019JA027509 crossref_primary_10_1002_2016GL068780 crossref_primary_10_1029_2018GL078564 crossref_primary_10_1029_2018GL080635 crossref_primary_10_1029_2018JA025984 crossref_primary_10_1029_2019GL082633 crossref_primary_10_1002_2014JA020717 crossref_primary_10_1029_2022GL100306 crossref_primary_10_1002_2015JA021863 crossref_primary_10_1029_2018JA025629 crossref_primary_10_1016_j_asr_2023_07_011 crossref_primary_10_1029_2022GL098798 crossref_primary_10_1038_s41467_020_15506_3 crossref_primary_10_1002_2014GL059389 crossref_primary_10_1029_2023GL105631 crossref_primary_10_1002_2015GL065565 crossref_primary_10_3847_1538_4365_ab9697 crossref_primary_10_1029_2023JA031995 crossref_primary_10_1029_2022JA030636 crossref_primary_10_1029_2023GL104429 crossref_primary_10_1002_2016JA023706 crossref_primary_10_1029_2019JA026509 crossref_primary_10_1029_2018GL079786 crossref_primary_10_1029_2022GL101402 crossref_primary_10_3389_fspas_2021_705637 crossref_primary_10_1029_2022GL100433 crossref_primary_10_3847_2041_8213_ab9179 crossref_primary_10_1029_2018GL078451 crossref_primary_10_1029_2022GL101889 crossref_primary_10_1029_2019JA026743 crossref_primary_10_1186_s40623_018_0842_4 crossref_primary_10_1002_2017GL076382 crossref_primary_10_1029_2020JA027813 crossref_primary_10_1002_2017JA023979 crossref_primary_10_1029_2025JA034430 crossref_primary_10_1038_s41598_022_26189_9 crossref_primary_10_1002_2017JA024708 crossref_primary_10_1029_2023GL106715 crossref_primary_10_1029_2023JA031883 crossref_primary_10_1029_2021GL094681 crossref_primary_10_5194_gi_8_187_2019 crossref_primary_10_1002_2016JA022502 crossref_primary_10_1002_2016JA022507 crossref_primary_10_1029_2022JA030523 crossref_primary_10_1007_s11431_020_1750_6 crossref_primary_10_1029_2018GL081500 crossref_primary_10_1029_2018GL081863 crossref_primary_10_1007_s11214_025_01200_7 crossref_primary_10_1029_2018JA025802 crossref_primary_10_1029_2018JA025803 crossref_primary_10_1029_2022JA030531 crossref_primary_10_1002_2015GL063250 crossref_primary_10_1002_2015JA021844 crossref_primary_10_1007_s11141_019_09964_z crossref_primary_10_1029_2020JA028814 crossref_primary_10_1029_2021GL096532 crossref_primary_10_1038_s41567_018_0391_6 crossref_primary_10_5194_angeo_39_613_2021 crossref_primary_10_1002_2016JA023801 crossref_primary_10_1029_2022JA030615 crossref_primary_10_1029_2023GL104647 crossref_primary_10_1029_2023JA031775 crossref_primary_10_1029_2022JA030855 crossref_primary_10_1029_2020GL089060 crossref_primary_10_1029_2022JA030853 crossref_primary_10_5194_angeo_36_1319_2018 crossref_primary_10_5194_angeo_40_673_2022 crossref_primary_10_1029_2020GL090165 crossref_primary_10_1029_2023JA031407 crossref_primary_10_1016_j_jastp_2020_105509 crossref_primary_10_1029_2019GL082688 crossref_primary_10_1007_s10712_018_9496_9 crossref_primary_10_1029_2023JA031768 crossref_primary_10_1029_2019GL082686 crossref_primary_10_1029_2019JA026965 crossref_primary_10_1029_2019JA026860 crossref_primary_10_1002_2016GL068869 crossref_primary_10_3389_fspas_2022_1004634 crossref_primary_10_3847_1538_4357_aabee2 crossref_primary_10_3390_rs15010147 crossref_primary_10_1002_2015JA021829 crossref_primary_10_1029_2022JA030502 crossref_primary_10_1002_2017JA024843 crossref_primary_10_1029_2022JA030753 crossref_primary_10_1029_2021GL096526 crossref_primary_10_1029_2018JA025940 crossref_primary_10_1029_2020GL092351 crossref_primary_10_1029_2023JA031776 crossref_primary_10_1029_2023JA031777 crossref_primary_10_1029_2021JA029701 crossref_primary_10_1029_2021JA029700 crossref_primary_10_1029_2023SW003524 crossref_primary_10_1016_j_asr_2018_01_041 crossref_primary_10_1029_2022GL099618 crossref_primary_10_1029_2019JA026735 |
| Cites_doi | 10.1029/2007JA012558 10.1038/nature09467 10.1029/2005JA011351 10.1029/2004JA010882 10.1029/2010JA015283 10.1029/2008JA013554 10.1029/97JA02919 10.1029/2006JA011619 10.1029/2006JA011703 10.1029/2000JA000326 10.1029/2001JA000052 10.1029/98JA01740 10.1029/2010JA015915 10.1029/2009JA014223 10.1029/2008GL034458 10.1029/1999GL003659 10.1029/2008JA013826 10.1029/2002JA009736 10.1029/2009JA014918 10.1029/2009GL040451 10.1016/j.jastp.2006.05.030 10.1029/2001GL013941 10.1029/JZ071i019p04505 10.1029/2003GL016973 10.1029/2011JA017321 10.1029/98GL01002 10.1029/JA076i019p04446 10.1029/2008JA013239 10.1029/2009JA014717 10.1029/2009JA014586 10.1029/2009GL037595 10.1029/2009GL039045 10.1029/2006JA012218 10.1029/GM125p0289 10.1029/JA082i032p05112 10.1029/JA075i025p04699 10.1029/2005JA011355 10.1029/2008JA013784 10.1029/2009JA014570 10.1029/2008GL035500 10.1029/2006JA011708 10.1029/2001JA000051 10.1029/2008GL034032 10.1126/science.1171273 10.1016/0032-0633(93)90015-T 10.1029/2001JA000047 10.1029/2011GL048793 10.1029/97JA02920 10.1029/93JA02771 10.1029/2000JA000275 10.1029/2005GL024380 10.1029/2009JA014409 10.1029/2005JA011041 10.1029/2009GL039985 10.1109/TMAG.1974.1058457 10.1029/JA083iA10p04798 10.1029/2004JA010760 10.1029/2002JA009489 10.1063/1.1510570 10.1029/92GL00624 10.1029/2008JA013353 10.1029/93GL02701 10.5194/angeo-21-437-2003 10.1029/2007GL030267 10.1029/2009JA014204 10.1029/2005JA011017 10.1029/2007GL032009 10.1029/2010GL044990 10.1029/2001JA009202 10.1029/2000JA000604 10.1029/97JA03995 10.1029/2003GL017698 10.1029/1999JA900447 10.1029/2009JA015075 10.1029/2009JA014516 10.1126/science.1193186 10.1029/2007JA012975 10.1038/nature06741 10.1029/2010GL042772 10.1029/2008JA013129 10.1029/2003JA009993 10.1029/2008SW000452 10.1007/978-3-642-49300-3 10.1029/2000GL003822 10.1029/2009JA014950 10.1029/2011JA017433 10.1029/96JA03699 10.1029/2002JA009808 10.1029/2006JA012215 10.1029/2007JA012862 10.1029/2009JA014162 10.1029/2000RS002523 10.1029/2006JA011644 10.1029/1999JA900014 10.1029/2004JA010816 10.1029/98GL02801 10.1029/2003GL018757 10.1029/JA078i013p02142 10.1029/2007GL032226 10.1007/978-3-642-65675-0 10.1029/2006JA012237 10.1029/2002JA009793 10.1029/2008JA013549 10.1029/2002JA009792 10.1029/2000JA000018 10.5194/angeo-27-2173-2009 10.1029/2009JA014230 10.1029/2006JA011620 10.1029/97JA01814 10.1029/2010JA015671 10.1029/2010JA015607 10.1029/2010JA015707 10.1029/2006JA011657 10.1029/2006JA012061 10.1029/2009JA014243 10.1029/JZ072i003p00871 10.1029/2005JA011211 10.1029/2009JA014336 10.1029/2004GL019591 10.1029/JA077i019p03455 10.1029/2009JA014810 10.1029/2007JA012985 10.1038/nphys655 10.1016/j.jastp.2009.03.023 10.1029/2004JA010811 10.1029/2000JA002008 10.1029/2010GL042648 10.1029/96JA04019 10.1007/BF00183028 10.1029/2002JA009409 10.1029/JA085iA02p00523 10.1029/2004JA010612 10.1029/92GL00121 10.1006/jcph.1999.6299 10.1029/2003JA010153 10.1029/2002JA009700 10.1029/2007JA012890 10.1029/94GL00375 10.1029/2001JA000054 10.1029/JA079i001p00118 10.1029/96JA02735 10.1029/JA074i016p04184 10.1029/2008JA013480 10.1029/2005GL023020 10.1029/2000JA900062 10.1029/2010JA015755 10.1029/2007JA012478 10.1016/j.jastp.2006.06.019 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2013 Springer Science+Business Media Dordrecht 2013 |
| Copyright_xml | – notice: The Author(s) 2013 – notice: Springer Science+Business Media Dordrecht 2013 |
| DBID | C6C AAYXX CITATION 3V. 7TG 7XB 88I 8FD 8FE 8FG 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ H8D HCIFZ KL. L7M M2P P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI Q9U |
| DOI | 10.1007/s11214-013-9993-6 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Meteorological & Geoastrophysical Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database ProQuest Central Essentials ProQuest Central Technology collection ProQuest One ProQuest Central Korea ProQuest Central Student Aerospace Database SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace Science Database (subscription) AAdvanced Technologies & Aerospace Database (subscription) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | ProQuest Central Student Meteorological & Geoastrophysical Abstracts - Academic |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Astronomy & Astrophysics Physics |
| EISSN | 1572-9672 |
| EndPage | 181 |
| ExternalDocumentID | 3113244261 10_1007_s11214_013_9993_6 |
| Genre | Feature |
| GroupedDBID | -54 -5F -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 6TJ 78A 88I 8FE 8FG 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFSI ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBEA ACBXY ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIDUJ AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP D1K DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GPTSA GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6- KDC KOV KOW LAK LK5 LLZTM M2P M4Y M7R MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OHT OK1 OVD P19 P2P P62 P9T PF0 PKN PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RIG RNI RNP ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SC5 SCLPG SDH SDM SGB SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VOH W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z86 Z88 Z8M Z8N Z8S Z8T Z92 ZCG ZMTXR ZY4 ~02 ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ABUFD ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7TG 7XB 8FD 8FK H8D KL. L7M PKEHL PQEST PQUKI Q9U PUEGO |
| ID | FETCH-LOGICAL-c458t-78bd3b06a06f847fd52b97ae2655d1fbaab3ea2baf74ac6b44aa44bb409862ea3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 1096 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000326381300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0038-6308 |
| IngestDate | Wed Oct 01 17:28:53 EDT 2025 Tue Nov 04 21:07:33 EST 2025 Sat Nov 29 05:31:36 EST 2025 Tue Nov 18 21:04:18 EST 2025 Fri Feb 21 02:36:29 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1-4 |
| Keywords | Wave measurements Magnetometer measurements Van Allen probes Radiation belt storm probes Whistler waves Space flight instruments Radiation belt physics Space weather Geomagnetic storms RBSP |
| Language | English |
| License | http://creativecommons.org/licenses/by/2.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c458t-78bd3b06a06f847fd52b97ae2655d1fbaab3ea2baf74ac6b44aa44bb409862ea3 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://link.springer.com/10.1007/s11214-013-9993-6 |
| PQID | 1447083817 |
| PQPubID | 105668 |
| PageCount | 55 |
| ParticipantIDs | proquest_miscellaneous_1458539489 proquest_journals_1447083817 crossref_citationtrail_10_1007_s11214_013_9993_6 crossref_primary_10_1007_s11214_013_9993_6 springer_journals_10_1007_s11214_013_9993_6 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-11-01 |
| PublicationDateYYYYMMDD | 2013-11-01 |
| PublicationDate_xml | – month: 11 year: 2013 text: 2013-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationTitle | Space science reviews |
| PublicationTitleAbbrev | Space Sci Rev |
| PublicationYear | 2013 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | A.Y. Ukhorskiy, B.J. Anderson, K. Takahashi, N.A. Tsyganenko, Impact of ULF oscillations in solar wind dynamic pressure on the outer radiation belt electrons. Geophys. Res. Lett. 33 (2006) SchulzM.LanzerottiL.Particle Diffusion in the Radiation Belts1974New YorkSpringer10.1007/978-3-642-65675-0 L. Chen, R.M. Thorne, V.K. Jordanova, C.-P. Wang, M. Gkioulidou, L. Lyons, R.B. Horne, Global simulation of emic wave excitation during the 2001 April 21st storm from coupled RCM-RAM-hotray modeling. J. Geophys. Res. 115 (2010a) J. Bortnik, W. Li, R.M. Thorne, V. Angelopoulos, C. Cully, J. Bonnell, O.L. Contel, A. Roux, An observation linking the origin of plasmaspheric hiss to discrete chorus emissions. Science 324 (2009b) Y. Hu, R.E. Denton, Two-dimensional hybrid code simulation of electromagnetic ion cyclotron waves in a dipole magnetic field. J. Geophys. Res. 114 (2009) L.R. Lyons, R.M. Thorne, C.F. Kennel, Pitch angle diffusion of radiation belt electrons within the plasmasphere. J. Geophys. Res. 77 (1972) M. Hayosh, O. Santolik, M. Parrot, Location and size of the global source region of whistler mode chorus. J. Geophys. Res. 115 (2010) B.J. Fraser, R.S. Grew, S.K. Morley, J.C. Green, H.J. Singer, T.M. Loto’aniu, M.F. Thomsen, Stormtime observations of electromagnetic ion cyclotron waves at geosynchronous orbit: GOES results. J. Geophys. Res. 115 (2010) N.P. Meredith, R.B. Horne, R.M. Thorne, R.R. Anderson, Survey of upper band chorus and ech waves: implications for the diffuse aurora. J. Geophys. Res. 114 (2009) Y. Chen, R.H.W. Friedel, G.D. Reeves, Phase space density distribution of energetic electrons in the outer radiation belt during two geospace environment modeling inner magnetosphere/storms selected storms. J. Geophys. Res. 111 (2006b) B.T. Tsurutani, O.P. Verkhoglyadova, G.S. Lakhina, S. Yagitani, Properties of dayside outer zone chorus during HILDCAA events: loss of energetic electrons. J. Geophys. Res. 114 (2009) V.K. Jordanova, S. Zaharia, D.T. Welling, Comparative study of ring current development using empirical, dipolar, and self-consistent magnetic field simulations. J. Geophys. Res. 115 (2010b) WolfR.A.FreemanJ.W.Jr.HausmanB.A.SpiroR.W.HilmerR.V.LambourR.L.Modeling Convection Effects in Magnetic Storms1997WashingtonAGU V.K. Jordanova, Y. Miyoshi, Relativistic model of ring current and radiation belt ions and electrons: initial results. Geophys. Res. Lett. 32 (2005) J.S. Pickett, B. Grison, Y. Omura, M.J. Engebretson, I. Dandouras, A. Masson, M.L. Adrian, O. Santolik, P.M.E. Decreau, N. Cornilleau-Wehrlin, D. Constantinescu, Cluster observations of EMIC triggered emissions in association with Pc1 waves near Earth’s plasmapause. Geophys. Res. Lett. 37 (2010) V.K. Jordanova, J. Albert, Y. Miyoshi, Relativistic electron precipitation by emic waves from self-consistent global simulations. J. Geophys. Res. 113 (2008) Y. Shprits, R.M. Thorne, Time dependent radial diffusion modeling of relativistic electrons with realistic loss rates. Geophys. Res. Lett. 31 (2004) T.M. Loto’aniu, B.J. Fraser, C.L. Waters, Propagation of electromagnetic ion cyclotron waves in the magnetosphere. J. Geophys. Res. 110 (2005) R.M. Thorne, X.T. B. Ni, R.B. Horne, N.P. Meredith, Scattering by chorus waves as the dominant cause of diffuse auroral precipitation. Nature 467 (2010) C.F. Kennel, R.M. Thorne, Unstable growth of unducted whistlers propagating at an angle to the geomagnetic field. J. Geophys. Res. 72 (1967) E.V. Mishin, W.J. Burke, C.Y. Huang, F.J. Rich, Electromagnetic wave structures within subauroral polarization streams. J. Geophys. Res. 108(A8) (2003) S.G. Claudepierre, S.R. Elkington, M. Wiltberger, Solar wind driving of magnetospheric ULF waves: pulsations driven by velocity shear at the magnetopause. J. Geophys. Res. 113 (2008) L. Cahill Jr., Inflation of the inner magnetosphere during a magnetic storm. J. Geophys. Res. 71(19) (1966) J.B. Blake, W.A. Kolasinski, R.W. Fillius, E.G. Mullen, Injection of electrons and protons with energies of tens of MeV into L<3 on 24 March 1991. Geophys. Res. Lett. 19 (1992) R.M. Thorne, T.P. O’Brien, Y.Y. Shprits, D. Summers, R.B. Horne, Timescale for MeV electron microburst loss during geomagnetic storms. J. Geophys. Res. 110 (2005) M.H. Acuna, Space-based magnetometers. Rev. Sci. Instrum. 73 (2002) T.G. Onsager, J.C. Green, G.D. Reeves, H.J. Singer, Solar wind and magnetospheric conditions leading to the abrupt loss of outer radiation belt electrons. Geophys. Res. Lett. 112 (2007) Y. Yu, V. Jordanova, S. Zaharia, J. Koller, J. Zhang, L.M. Kistler, Validation study of the magnetically self-consistent inner magnetosphere model RAM-SCB. J. Geophys. Res. 117 (2012) J.P. McCollough, S.R. Elkington, D.N. Baker, Modelling emic wave growth during the compression event of 29 June 2007. Geophys. Res. Lett. 36 (2009) Y. Miyoshi, V.K. Jordanova, A. Morioka, M.F. Thomsen, G.D. Reeves, D.S. Evans, J.C. Green, Observations and modeling of energetic electron dynamics during the October 2001 storm. J. Geophys. Res. 111 (2001) S. Zaharia, V.K. Jordanova, M.F. Thomsen, G.D. Reeves, Self-consistent modeling of magnetic fields and plasmas in the inner magnetosphere: application to a geomagnetic storm. J. Geophys. Res. 111 (2006) R.B. Horne, R.M. Thorne, S.A. Glauert, N.P. Meredith, D. Pokhotelov, O. Santolik, Electron acceleration in the Van Allen belts by fast magnetosonic waves. Geophys. Res. Lett. 34 (2007) V.K. Jordanova, C.J. Farrugia, R.M. Thorne, G.V. Khazanov, G.D. Reeves, M.F. Thomsen, Modeling ring current proton precipitation by electromagnetic ion cyclotron waves during the May 14–16, 1997 storm. J. Geophys. Res. 106 (2001b) C.L. Huang, H.E. Spence, M.K. Hudson, S.R. Elkington, Modeling radiation belt radial diffusion in ULF wave fields: 2. Estimating rates of radial diffusion using combined MHD and particle codes. J. Geophys. Res. 115 (2010) X. Tao, A.A. Chan, J.M. Albert, J.A. Miller, Stochastic modeling of multidimensional diffusion in the radiation belts. J. Geophys. Res. 113 (2008) S. Zaharia, V.K. Jordanova, D.T. Welling, G. Toth, Self-consistent inner magnetosphere simulation driven by a global MHD model. J. Geophys. Res. 115 (2010) W. Li, R.M. Thorne, V. Angelopoulos, J.W. Bonnell, J.P. McFadden, C.W. Carlson, O. LeContel, A. Roux, K.H. Glassmeier, H.U. Auster, Evaluation of whistler-mode chorus intensification on the nightside during an injection event observed on the THEMIS spacecraft. J. Geophys. Res. 114 (2009a) N.P. Meredith, R.M. Thorne, R.B. Horne, D. Summers, B.J. Fraser, R.R. Anderson, Statistical analysis of relativistic electron energies for cyclotron resonance with EMIC waves observed on CRRES. J. Geophys. Res. 108(A6) (2003b) R.L. Arnoldy, M.J. Engebretson, R.E. Denton, J.L. Posch, M.R. Lessard, N.C. Maynard, D.M. Ober, C.J. Farrugia, C.T. Russell, J.D. Scudder, R.B. Torbert, S.-H. Chen, T.E. Moore, Pc1 waves and associated unstable distributions of magnetospheric protons observed during a solar wind pressure pulse. J. Geophys. Res. 110 (2005) T.M. Loto’aniu, H.J. Singer, C.L. Waters, V. Angelopoulos, I.R. Mann, S.R. Elkington, J.W. Bonnell, Relativistic electron loss due to ultralow frequency waves and enhanced outward radial diffusion. J. Geophys. Res. 115 (2010) R.A. Mathie, I.R. Mann, A correlation between extended intervals of ULF wave power and storm-time geosynchronous relativistic electron flux enhancements. Geophys. Res. Lett. 27 (2000) T.P. O’Brien, R.L. McPherron, D. Sornette, G.D. Reeves, R. Friedel, H.J. Singer, Which magnetic storms produce relativistic electrons at geosynchronous orbit? J. Geophys. Res. 106 (2001) Y.Y. Shprits, R.M. Thorne, R. Friedel, G.D. Reeves, J. Fennell, D.N. Baker, S.G. Kanekal, Outward radial diffusion driven by losses at magnetopause. J. Geophys. Res. 111 (2006) M.H. Acuna, Fluxgate magnetometers for outer planets exploration. IEEE Trans. Magn. 10 (1974) V.K. Jordanova, J.U. Kozyra, A.F. Nagy, G.V. Khazanov, Kinetic model of the ring current-atmosphere interactions. J. Geophys. Res. 102 (1997) K.G. Powell, P.L. Roe, T.J. Linde, T.I. Gombosi, D.L. de Zeeuw, A solution-adaptive upwind scheme for ideal magnetohydrodynamics. J. Comput. Phys. 153 (1999) J. Bortnik, R.M. Thorne, U.S. Inan, Nonlinear interaction of energetic electrons with large amplitude chorus. Geophys. Res. Lett. 35 (2008a) J.M. Albert, N.P. Meredith, R.B. Horne, Three-dimensional diffusion simulation of outer radiation belt electrons during the 9 October 1990 magnetic storm. J. Geophys. Res. 114 (2009) S.K. Morley, R.H.W. Friedel, T.E. Cayton, E. Noveroske, A rapid, global and prolonged electron radiation belt dropout observed with the global positioning system constellation. Geophys. Res. Lett. 37 (2010) M.W. Chen, S. Liu, M. Schulz, J.L. Roeder, L.R. Lyons, Magnetically self-consistent ring current simulations during the 19 October 1998 storm. J. Geophys. Res. 111 (2006a) J. Bortnik, R.M. Thorne, The dual role of ELF/VLF chorus waves in the acceleration and precipitation of radiation belt electrons. J. Atmos. Sol. Terr. Phys. 69 (2007) O. Santolik, D.A. Gurnett, J.S. Pickett, J. Chum, N. Cornilleau-Wehrlin, Oblique propagation of whistler mode waves in the chorus source region. J. Geophys. Res. 114 (2009) R.M. Thorne, Radiation belt dynamics: the importance of wave-particle interactions. Geophys. Res. Lett. 37 (2010) M.E. Usanova et al., Multipoint observations of magnetospheric compression-related emic Pc1 waves by THEMIS and Carisma. Geophys. Res. Lett. 35 (2008) J.C. Green, M.G. Kivelson, A tale of two theories: How the adiabatic response and ULF waves affect relativistic electrons. J. Geophys. Res. 106(A11) (2001) C. Cattell, J.R. Wygant, K. Goetz, K. Kersten, P.J. Kellogg, T. von Rosenvinge, S.D. Bale, I. Roth, M. Temerin, M.K. Hudson, R.A. Mewaldt, M. Wiedenbeck, M. Maksimovic, R. Ergun, M. Acuna, C.T. Russell, Discovery of very large amplitude whistler-mode waves in Earth’s radiation belts. Geophys. Res. Lett. 35 (2008) D.R. Weimer, An improved model of ionospheric electric potentials including substorm 9993_CR44 9993_CR45 9993_CR46 9993_CR47 9993_CR40 9993_CR41 9993_CR42 9993_CR43 9993_CR48 9993_CR49 9993_CR50 9993_CR55 9993_CR56 9993_CR57 9993_CR58 9993_CR51 9993_CR52 9993_CR53 9993_CR54 9993_CR59 V.K. Jordanova (9993_CR61) 2012 9993_CR66 9993_CR67 M. Schulz (9993_CR118) 1974 9993_CR68 9993_CR69 9993_CR62 9993_CR101 9993_CR63 9993_CR102 9993_CR64 9993_CR65 9993_CR100 O. Santolik (9993_CR114) 2001; 106 9993_CR105 9993_CR70 9993_CR106 9993_CR71 9993_CR103 9993_CR72 9993_CR104 9993_CR109 9993_CR107 9993_CR108 9993_CR77 9993_CR78 9993_CR79 9993_CR73 9993_CR74 9993_CR113 9993_CR75 9993_CR110 9993_CR76 9993_CR111 9993_CR9 9993_CR8 9993_CR5 9993_CR4 9993_CR7 9993_CR6 9993_CR80 9993_CR116 9993_CR81 9993_CR117 9993_CR82 9993_CR83 9993_CR115 9993_CR119 9993_CR88 9993_CR89 9993_CR120 9993_CR84 9993_CR123 9993_CR85 9993_CR124 9993_CR86 9993_CR121 9993_CR87 9993_CR122 9993_CR91 9993_CR127 9993_CR92 9993_CR128 9993_CR93 9993_CR125 9993_CR94 9993_CR126 9993_CR129 9993_CR90 9993_CR11 9993_CR99 9993_CR130 9993_CR12 9993_CR131 9993_CR13 9993_CR14 9993_CR95 9993_CR134 9993_CR96 9993_CR135 9993_CR97 9993_CR132 9993_CR10 9993_CR98 9993_CR133 9993_CR1 9993_CR19 9993_CR3 R.A. Wolf (9993_CR147) 1997 9993_CR2 9993_CR15 9993_CR16 9993_CR17 9993_CR18 9993_CR138 9993_CR139 9993_CR136 9993_CR137 9993_CR22 9993_CR141 9993_CR23 9993_CR142 9993_CR24 9993_CR25 9993_CR140 9993_CR145 9993_CR146 9993_CR20 9993_CR143 9993_CR21 9993_CR144 9993_CR26 9993_CR27 9993_CR28 9993_CR29 M.K. Hudson (9993_CR60) 2001 N. Cornilleau-Wehrlin (9993_CR33) 2003; 21 J.G. Roederer (9993_CR112) 1970 9993_CR149 9993_CR148 9993_CR34 9993_CR35 9993_CR150 9993_CR36 9993_CR151 9993_CR30 9993_CR31 9993_CR32 9993_CR37 9993_CR38 9993_CR39 |
| References_xml | – reference: A.Y. Ukhorskiy, K. Takahashi, B.J. Anderson, H. Korth, Impact of toroidal ULF waves on outer radiation belt electrons. J. Geophys. Res. 110 (2005) – reference: M.W. Chen, S. Liu, M. Schulz, J.L. Roeder, L.R. Lyons, Magnetically self-consistent ring current simulations during the 19 October 1998 storm. J. Geophys. Res. 111 (2006a) – reference: R.B. Horne, R.M. Thorne, N.P. Meredith, R.R. Anderson, Diffuse auroral electron scattering by electron cyclotron harmonic and whistler mode waves during an isolated substorm. J. Geophys. Res. 108(A7) (2003) – reference: B.T. Tsurutani, E.J. Smith, Two types of magnetospheric elf chorus and their substorm dependences. J. Geophys. Res. 82 (1977) – reference: C.F. Kennel, R.M. Thorne, Unstable growth of unducted whistlers propagating at an angle to the geomagnetic field. J. Geophys. Res. 72 (1967) – reference: J. Bortnik, R.M. Thorne, N.P. Meredith, The unexpected origin of plasmaspheric hiss from discrete chorus emissions. Nature 452 (2008b) – reference: C. Cattell, J.R. Wygant, K. Goetz, K. Kersten, P.J. Kellogg, T. von Rosenvinge, S.D. Bale, I. Roth, M. Temerin, M.K. Hudson, R.A. Mewaldt, M. Wiedenbeck, M. Maksimovic, R. Ergun, M. Acuna, C.T. Russell, Discovery of very large amplitude whistler-mode waves in Earth’s radiation belts. Geophys. Res. Lett. 35 (2008) – reference: O. Santolik, M. Parrot, F. Lefeuvre, Singular value decomposition methods for wave propagation analysis. Radio Sci. 38(1) (2003) – reference: N.F. Ness, Magnetometers for space research. Space Sci. Rev. 11 (1970) – reference: C.E. Rasmussen, S.M. Guiter, S.G. Thomas, Two-dimensional model of the plasmasphere: refilling time constants. Planet. Space Sci. 41 (1993) – reference: N. Omidi, R.M. Thorne, J. Bortnik, Non-linear evolution of emic waves in a uniform magnetic field: 1. Hybrid simulations. J. Geophys. Res. 115 (2010) – reference: F. Chu, M.K. Hudson, P. Haines, Y. Shprits, Dynamic modeling of radiation belt electrons by radial diffusion simulation for a 2 month interval following the 24 March 1991 storm injection. J. Geophys. Res. 115 (2010) – reference: J.C. Green, M.G. Kivelson, Relativistic electrons in the outer radiation belt: differentiating between acceleration mechanisms. J. Geophys. Res. 109 (2004) – reference: W. Li, R.M. Thorne, V. Angelopoulos, J.W. Bonnell, J.P. McFadden, C.W. Carlson, O. LeContel, A. Roux, K.H. Glassmeier, H.U. Auster, Evaluation of whistler-mode chorus intensification on the nightside during an injection event observed on the THEMIS spacecraft. J. Geophys. Res. 114 (2009a) – reference: V.K. Jordanova, J. Albert, Y. Miyoshi, Relativistic electron precipitation by emic waves from self-consistent global simulations. J. Geophys. Res. 113 (2008) – reference: J. Bortnik, R.M. Thorne, U.S. Inan, Nonlinear interaction of energetic electrons with large amplitude chorus. Geophys. Res. Lett. 35 (2008a) – reference: S.G. Claudepierre, M. Wiltberger, S.R. Elkington, W. Lotko, M.K. Hudson, Magnetospheric cavity modes driven by solar wind dynamic pressure fluctuations. Geophys. Res. Lett. 36 (2009) – reference: R.L. Arnoldy, M.J. Engebretson, R.E. Denton, J.L. Posch, M.R. Lessard, N.C. Maynard, D.M. Ober, C.J. Farrugia, C.T. Russell, J.D. Scudder, R.B. Torbert, S.-H. Chen, T.E. Moore, Pc1 waves and associated unstable distributions of magnetospheric protons observed during a solar wind pressure pulse. J. Geophys. Res. 110 (2005) – reference: J. Wygant, F. Mozer, M. Temerin, J. Blake, N. Maynard, H. Singer, M. Smiddy, Large amplitude electric and magnetic field signatures in the inner magnetosphere during injection of 15 MeV electron drift echoes. Geophys. Res. Lett. 21 (1994) – reference: V.K. Jordanova, Y. Miyoshi, Relativistic model of ring current and radiation belt ions and electrons: initial results. Geophys. Res. Lett. 32 (2005) – reference: Y. Shprits, R.M. Thorne, Time dependent radial diffusion modeling of relativistic electrons with realistic loss rates. Geophys. Res. Lett. 31 (2004) – reference: N.Y. Ganushkina, T.I. Pulkkinen, V.A. Sergeev, M.V. Kubyshkina, D.N. Baker, N.E. Turner, M. Grande, B. Kellett, J. Fennell, J. Roeder, J.-A. Sauvaud, T.A. Fritz, Entry of plasma sheet particles into the inner magnetosphere as observed by Polar/Cammice. J. Geophys. Res. 105(A11) (2000) – reference: M. Ejiri, Trajectory traces of charged particles in the magnetosphere. J. Geophys. Res. 83 (1978) – reference: S. Zaharia, V.K. Jordanova, M.F. Thomsen, G.D. Reeves, Self-consistent modeling of magnetic fields and plasmas in the inner magnetosphere: application to a geomagnetic storm. J. Geophys. Res. 111 (2006) – reference: S. Zaharia, V.K. Jordanova, D.T. Welling, G. Toth, Self-consistent inner magnetosphere simulation driven by a global MHD model. J. Geophys. Res. 115 (2010) – reference: W. Li, R.M. Thorne, N.P. Meredith, R.B. Horne, J. Bortnik, Y.Y. Shprits, B. Ni, Evaluation of whistler mode chorus amplification during an injection event observed on CRRES. J. Geophys. Res. 113 (2008) – reference: G. Rostoker, S. Skone, D.N. Baker, On the origin of relativistic electrons in the magnetosphere associated with some geomagnetic storms. Geophys. Res. Lett. 25 (1998) – reference: C.L. Huang, H.E. Spence, M.K. Hudson, S.R. Elkington, Modeling radiation belt radial diffusion in ULF wave fields: 2. Estimating rates of radial diffusion using combined MHD and particle codes. J. Geophys. Res. 115 (2010) – reference: Y. Miyoshi, V.K. Jordanova, A. Morioka, M.F. Thomsen, G.D. Reeves, D.S. Evans, J.C. Green, Observations and modeling of energetic electron dynamics during the October 2001 storm. J. Geophys. Res. 111 (2001) – reference: T.M. Loto’aniu, H.J. Singer, C.L. Waters, V. Angelopoulos, I.R. Mann, S.R. Elkington, J.W. Bonnell, Relativistic electron loss due to ultralow frequency waves and enhanced outward radial diffusion. J. Geophys. Res. 115 (2010) – reference: N.P. Meredith, R.B. Horne, R.M. Thorne, R.R. Anderson, Favored regions for chorus-driven electron acceleration to relativistic energies in the Earth’s outer radiation belt. Geophys. Res. Lett. 30(16) (2003a) – reference: M.H. Acuna, Space-based magnetometers. Rev. Sci. Instrum. 73 (2002) – reference: W. Liu, T.E. Sarris, X. Li, S.R. Elkington, R. Ergun, V. Angelopoulos, J. Bonnell, K.H. Glassmeier, Electric and magnetic field observations of Pc4 and Pc5 pulsations in the inner magnetosphere: a statistical study. J. Geophys. Res. 114 (2009) – reference: A. Varotsou, D. Boscher, S. Bourdarie, R.B. Horne, N.P. Meredith, S.A. Glauert, R.H. Friedel, Three dimensional test simulations of the outer radiation belt electron dynamics including electron-chorus resonant interactions. J. Geophys. Res. 113 (2008) – reference: L. Chen, R.M. Thorne, R.H. Horne, Simulation of emic excitation in a model magnetosphere including structured high-density plumes. J. Geophys. Res. 114 (2009a) – reference: T.M. Loto’aniu, B.J. Fraser, C.L. Waters, Propagation of electromagnetic ion cyclotron waves in the magnetosphere. J. Geophys. Res. 110 (2005) – reference: J. Bortnik, R.M. Thorne, N.P. Meredith, Modeling the propagation characteristics of chorus using CRRES suprathermal electron fluxes. J. Geophys. Res. 112 (2007) – reference: M.W. Chen, L.R. Lyons, M. Schulz, Simulations of phase space distributions of storm time proton ring current. J. Geophys. Res. 99(A4) (1994) – reference: Y. Yu, V. Jordanova, S. Zaharia, J. Koller, J. Zhang, L.M. Kistler, Validation study of the magnetically self-consistent inner magnetosphere model RAM-SCB. J. Geophys. Res. 117 (2012) – reference: H.-J. Kim, A.A. Chan, Fully adiabatic changes in storm time relativistic electron fluxes. J. Geophys. Res. 102 (1997) – reference: J.M. Albert, Evaluation of quasi-linear diffusion coefficients for emic waves in a multispecies plasma. J. Geophys. Res. 108(A6) (2003) – reference: W. Li, R.M. Thorne, V. Angelopoulos, J. Bortnik, C.M. Cully, B. Ni, O. LeContel, A. Roux, U. Auster, W. Magnes, Global distribution of whistler-mode chorus observed on the THEMIS spacecraft. Geophys. Res. Lett. 36 (2009b) – reference: L.R. Lyons, D.J. Williams, A source for the geomagnetic storm main phase ring current. J. Geophys. Res. 85(A2) (1980) – reference: R.M. Thorne, R.B. Horne, Modulation of electromagnetic ion cyclotron instability due to interaction with ring current o+ during geomagnetic storms. J. Geophys. Res. 102(A7) (1997) – reference: B.T. Tsurutani, O.P. Verkhoglyadova, G.S. Lakhina, S. Yagitani, Properties of dayside outer zone chorus during HILDCAA events: loss of energetic electrons. J. Geophys. Res. 114 (2009) – reference: A.L. Vampola, A. Korth, Electron drift echoes in the inner magnetosphere. Geophys. Res. Lett. 19 (1992) – reference: Y. Chen, G.D. Reeves, R.H.W. Friedel, The energization of relativistic electrons in the outer Van Allen radiation belt. Nat. Phys. 3 (2007) – reference: L. Chen, R.M. Thorne, V.K. Jordanova, C.-P. Wang, M. Gkioulidou, L. Lyons, R.B. Horne, Global simulation of emic wave excitation during the 2001 April 21st storm from coupled RCM-RAM-hotray modeling. J. Geophys. Res. 115 (2010a) – reference: V.K. Jordanova, D.T. Welling, S.G. Zaharia, L. Chen, R.M. Thorne, Modeling ring current ion and electron dynamics and plasma instabilities during a high-speed stream driven storm. J. Geophys. Res. 117 (2012) – reference: B.J. Fraser, R.S. Grew, S.K. Morley, J.C. Green, H.J. Singer, T.M. Loto’aniu, M.F. Thomsen, Stormtime observations of electromagnetic ion cyclotron waves at geosynchronous orbit: GOES results. J. Geophys. Res. 115 (2010) – reference: S.K. Morley, R.H.W. Friedel, T.E. Cayton, E. Noveroske, A rapid, global and prolonged electron radiation belt dropout observed with the global positioning system constellation. Geophys. Res. Lett. 37 (2010) – reference: R.B. Horne, R.M. Thorne, Potential waves for relativistic electron scattering and stochastic acceleration during magnetic storms. Geophys. Res. Lett. 25 (1998) – reference: J. Bortnik, R.M. Thorne, N.P. Meredith, Plasmaspheric hiss overview and relation to chorus. J. Atmos. Sol. Terr. Phys. 71 (2009a) – reference: B. Ni, R.M. Thorne, Y.Y. Shprits, J. Bortnik, Resonant scattering of plasma sheet electrons by whistler-mode chorus: contributions to diffuse auroral precipitation. Geophys. Res. Lett. 35 (2008) – reference: V.K. Jordanova, Y.S. Miyoshi, S. Zaharia, M.F. Thomsen, G.D. Reeves, D.S. Evans, C.G. Mouikis, J.F. Fennell, Kinetic simulations of ring current evolution during the geospace environment modeling challenge events. J. Geophys. Res. 111 (2006) – reference: M. Hayosh, O. Santolik, M. Parrot, Location and size of the global source region of whistler mode chorus. J. Geophys. Res. 115 (2010) – reference: J.P. McCollough, S.R. Elkington, D.N. Baker, Modelling emic wave growth during the compression event of 29 June 2007. Geophys. Res. Lett. 36 (2009) – reference: J.M. Albert, N.P. Meredith, R.B. Horne, Three-dimensional diffusion simulation of outer radiation belt electrons during the 9 October 1990 magnetic storm. J. Geophys. Res. 114 (2009) – reference: V.K. Jordanova, A. Boonsiriseth, R.M. Thorne, Y. Dotan, Ring current asymmetry from global simulations using a high-resolution electric field model. J. Geophys. Res. 108(A12) (2003) – reference: D. Summers, R.M. Thorne, Relativistic electron pitch-angle scattering by electromagnetic ion cyclotron waves during geomagnetic storms. J. Geophys. Res. 108(A4) (2003) – reference: A.W. Breneman, C.A. Kletzing, J. Pickett, J. Chum, O. Santolik, Statistics of multispacecraft observations of chorus dispersion and source location. J. Geophys. Res. 114 (2009) – reference: V.K. Jordanova, L.M. Kistler, C.J. Farrugia, R.B. Torbert, Effects of inner magnetospheric convection on ring current dynamics: March 10–12, 1998. J. Geophys. Res. 106 (2001a) – reference: L.R. Lyons, R.M. Thorne, C.F. Kennel, Pitch angle diffusion of radiation belt electrons within the plasmasphere. J. Geophys. Res. 77 (1972) – reference: L.R. Lyons, R.M. Thorne, Equilibrium structure of radiation belt electrons. J. Geophys. Res. 78 (1973) – reference: O. Santolik, D.S. Gurnett, J.S. Pickett, M. Parrot, N. Cornilleau-Wehrlin, A microscopic and nanoscopic view of storm-time chorus on 31 March 2001. Geophys. Res. Lett. 31 (2004) – reference: D.R. Weimer, An improved model of ionospheric electric potentials including substorm perturbations and application to the Geospace Environment Modeling November 24, 1996, event. J. Geophys. Res. 106 (2001) – reference: D. Summers, R.M. Thorne, F. Xiao, Relativistic theory of wave-particle resonant diffusion with application to electron acceleration in the magnetosphere. J. Geophys. Res. 103 (1998) – reference: R.B. Horne, R.M. Thorne, S.A. Glauert, J.M. Albert, N.P. Meredith, R.R. Anderson, Timescales for radiation belt electron acceleration by whistler mode chorus waves. J. Geophys. Res. 110 (2005) – reference: B. Abel, R.M. Thorne, Electron scattering loss in Earth’s inner magnetosphere. 1. Dominant physical processes. J. Geophys. Res. 103(A2) (1998a) – reference: W. Tu et al., Storm-dependent radiation belt electron dynamics. J. Geophys. Res. 114 (2009) – reference: B. Abel, R.M. Thorne, Electron scattering loss in Earth’s inner magnetosphere. 2. Sensitivity to model parameters. J. Geophys. Res. 103(A2) (1998b) – reference: D.H. Brautigam, G.P. Ginet, J.M. Albert, J.R. Wygant, D.E. Rowland, A. Ling, J. Bass, CRRES electric field power spectra and radial diffusion coefficients. J. Geophys. Res. 110 (2005) – reference: J. Bortnik, R.M. Thorne, Transit time scattering of energetic electrons due to equatorially confined magnetosonic waves. J. Geophys. Res. 115 (2010) – reference: Y.Y. Shprits, D. Subbotin, B. Ni, Evolution of electron fluxes in the outer radiation belt computed with the verb code. J. Geophys. Res. 114 (2009) – reference: K.L. Perry, M.K. Hudson, S.R. Elkington, Incorporating spectral characteristics of Pc5 waves into three-dimensional modeling and the diffusion of relativistic electrons. J. Geophys. Res. 110 (2005) – reference: SchulzM.LanzerottiL.Particle Diffusion in the Radiation Belts1974New YorkSpringer10.1007/978-3-642-65675-0 – reference: C.-G. Fälthammar, M. Walt, Radial motion resulting from pitch angle scattering of trapped electrons in the distorted geomagnetic field. J. Geophys. Res. 74 (1969) – reference: V.K. Jordanova, S. Zaharia, D.T. Welling, Comparative study of ring current development using empirical, dipolar, and self-consistent magnetic field simulations. J. Geophys. Res. 115 (2010b) – reference: T.G. Onsager, J.C. Green, G.D. Reeves, H.J. Singer, Solar wind and magnetospheric conditions leading to the abrupt loss of outer radiation belt electrons. Geophys. Res. Lett. 112 (2007) – reference: J. Chum, O. Santolik, A.W. Breneman, C.A. Kletzing, D.A. Gurnett, J.S. Pickett, Chorus source properties that produce time shifts and frequency range differences observed on different Cluster spacecraft. J. Geophys. Res. 112 (2007) – reference: Cornilleau-WehrlinN.ChanteurG.PerrautS.RezeauL.RobertP.RouxA.de VilledaryC.CanulP.MaksimovicM.de ConchyY.HubertD.LacombeC.LefeuvreF.ParrotM.PinconJ.DecreauP.HarveyC.LouarnP.SantolikO.AlleyneH.RothM.ChustT.Le ContelO.TeamS.First results obtained by the Cluster STAFF experimentAnn. Geophys.20032124374562003AnGeo..21..437C10.5194/angeo-21-437-2003 – reference: J.B. Blake, W.A. Kolasinski, R.W. Fillius, E.G. Mullen, Injection of electrons and protons with energies of tens of MeV into L<3 on 24 March 1991. Geophys. Res. Lett. 19 (1992) – reference: N.A. Tsyganenko, D.P. Stern, Modeling the global magnetic field of the large-scale Birkeland current systems. J. Geophys. Res. 101 (1996) – reference: B.T. Tsurutani, E.J. Smith, Postmidnight chorus: a substorm phenomenon. J. Geophys. Res. 79 (1974) – reference: L. Chen, R.M. Thorne, V.K. Jordanova, R.B. Horne, Global simulation of magnetosonic wave instability in the storm time magnetosphere. J. Geophys. Res. 115 (2010b) – reference: J. Bortnik, W. Li, R.M. Thorne, V. Angelopoulos, C. Cully, J. Bonnell, O.L. Contel, A. Roux, An observation linking the origin of plasmaspheric hiss to discrete chorus emissions. Science 324 (2009b) – reference: M.E. Usanova et al., Multipoint observations of magnetospheric compression-related emic Pc1 waves by THEMIS and Carisma. Geophys. Res. Lett. 35 (2008) – reference: N. Furuya, Y. Omura, D. Summers, Relativistic turning acceleration of radiation belt electrons by whistler mode chorus. J. Geophys. Res. 113 (2008) – reference: V.K. Jordanova, J.U. Kozyra, A.F. Nagy, G.V. Khazanov, Kinetic model of the ring current-atmosphere interactions. J. Geophys. Res. 102 (1997) – reference: Y. Fei, A.A. Chan, S.R. Elkington, M.J. Wiltberger, Radial diffusion and MHD particle simulations of relativistic electron transport by ULF waves in the September 1998 storm. J. Geophys. Res. 111 (2006) – reference: L. Cahill Jr., Inflation of the inner magnetosphere during a magnetic storm. J. Geophys. Res. 71(19) (1966) – reference: M.K. Hudson, S.R. Elkington, J.G. Lyon, V.A. Marchenko, I. Roth, M. Temerin, J.B. Blake, M.S. Gussenhoven, J.R. Wygant, Simulations of radiation belt formation during storm sudden commencements. J. Geophys. Res. 102(A7) (1997) – reference: J.C. Foster, H.B. Vo, Average characteristics and activity dependence of the subauroral polarization stream. J. Geophys. Res. 107(A12) (2002) – reference: E.V. Mishin, W.J. Burke, C.Y. Huang, F.J. Rich, Electromagnetic wave structures within subauroral polarization streams. J. Geophys. Res. 108(A8) (2003) – reference: SantolikO.LefeuvreF.ParrotM.RauchJ.Complete wave-vector directions of electromagnetic emissions: application to INTERBALL-2 measurements in the nightside auroral zoneJ. Geophys. Res.2001106A713191132012001JGR...10613191S10.1029/2000JA000275 – reference: J.M. Albert, Nonlinear interaction of outer zone electrons with VLF waves. Geophys. Res. Lett. 29(8) (2002) – reference: R.M. Thorne, Radiation belt dynamics: the importance of wave-particle interactions. Geophys. Res. Lett. 37 (2010) – reference: X. Li, I. Roth, M. Temerin, J.R. Wygant, M.K. Hudson, J.B. Blake, Simulation of the prompt energization and transport of radiation belt particles during the March 24, 1991 SSC. Geophys. Res. Lett. 20(22) (1993) – reference: V.K. Jordanova, M. Spasojevic, M. Thomsen, Modeling the electromagnetic ion cyclotron wave-induced formation of detached subauroral arcs. J. Geophys. Res. 112 (2007) – reference: M.W. Liemohn, J.U. Kozyra, M.F. Thomsen, J.L. Roeder, G. Lu, J.E. Borovsky, T.E. Cayton, Dominant role of the asymmetric ring current in producing the stormtime Dst*. J. Geophys. Res. 106(A6) (2001) – reference: D. Summers, Y. Omura, Ultra-relativistic acceleration of electrons in planetary magnetospheres. Geophys. Res. Lett. 34 (2007) – reference: T.P. O’Brien, R.L. McPherron, D. Sornette, G.D. Reeves, R. Friedel, H.J. Singer, Which magnetic storms produce relativistic electrons at geosynchronous orbit? J. Geophys. Res. 106 (2001) – reference: R.A. Mathie, I.R. Mann, A correlation between extended intervals of ULF wave power and storm-time geosynchronous relativistic electron flux enhancements. Geophys. Res. Lett. 27 (2000) – reference: R.B. Horne, R.M. Thorne, Relativistic electron acceleration and precipitation during resonant interactions with whistler-mode chorus. Geophys. Res. Lett. 30(10) (2003) – reference: RoedererJ.G.Dynamics of Geomagnetically Trapped Radiation1970New YorkSpringer10.1007/978-3-642-49300-3 – reference: R.B. Horne, R.M. Thorne, Electron pitch angle diffusion by electrostatic electron cyclotron waves: the origin of pancake distributions. J. Geophys. Res. 105(A3) (2000) – reference: N.A. Tsyganenko, H.J. Singer, J.C. Kasper, Storm-time distortion of the inner magnetosphere: how severe can it get? J. Geophys. Res. 108 (2003) – reference: O. Santolik, D.A. Gurnett, J.S. Pickett, J. Chum, N. Cornilleau-Wehrlin, Oblique propagation of whistler mode waves in the chorus source region. J. Geophys. Res. 114 (2009) – reference: N.P. Meredith, R.B. Horne, R.M. Thorne, R.R. Anderson, Survey of upper band chorus and ech waves: implications for the diffuse aurora. J. Geophys. Res. 114 (2009) – reference: N.M. Haque, M. Spasojevic, O. Santolik, U.S. Inan, Wave normal angles of magnetospheric chorus emissions observed on the Polar spacecraft. J. Geophys. Res. 115 (2010) – reference: Y. Hu, R.E. Denton, Two-dimensional hybrid code simulation of electromagnetic ion cyclotron waves in a dipole magnetic field. J. Geophys. Res. 114 (2009) – reference: M.H. Acuna, Fluxgate magnetometers for outer planets exploration. IEEE Trans. Magn. 10 (1974) – reference: L. Chen, J. Bortnik, R.M. Thorne, R.B. Horne, V.K. Jordanova, Three-dimensional ray tracing of VLF waves in an asymmetric magnetospheric environment containing a plasmaspheric plume. Geophys. Res. Lett. 36 (2009b) – reference: JordanovaV.K.SummersD.MannI.BakerD.SchulzM.The role of the Earth’s ring current in radiation belt dynamicsDynamics of the Earth’s Radiation Belts and Inner Magnetosphere2012 – reference: A.Y. Ukhorskiy, M.I. Sitnov, K. Takahasi, B.J. Anderson, Radial transport of radiation belt electrons due to stormtime Pc5 waves. Ann. Geophys. 27 (2009) – reference: R.M. Thorne, X.T. B. Ni, R.B. Horne, N.P. Meredith, Scattering by chorus waves as the dominant cause of diffuse auroral precipitation. Nature 467 (2010) – reference: A.Y. Ukhorskiy, B.J. Anderson, K. Takahashi, N.A. Tsyganenko, Impact of ULF oscillations in solar wind dynamic pressure on the outer radiation belt electrons. Geophys. Res. Lett. 33 (2006) – reference: Y. Chen, R.H.W. Friedel, G.D. Reeves, Phase space density distribution of energetic electrons in the outer radiation belt during two geospace environment modeling inner magnetosphere/storms selected storms. J. Geophys. Res. 111 (2006b) – reference: N.P. Meredith, R.M. Thorne, R.B. Horne, D. Summers, B.J. Fraser, R.R. Anderson, Statistical analysis of relativistic electron energies for cyclotron resonance with EMIC waves observed on CRRES. J. Geophys. Res. 108(A6) (2003b) – reference: S.G. Claudepierre, S.R. Elkington, M. Wiltberger, Solar wind driving of magnetospheric ULF waves: pulsations driven by velocity shear at the magnetopause. J. Geophys. Res. 113 (2008) – reference: J.C. Green, M.G. Kivelson, A tale of two theories: How the adiabatic response and ULF waves affect relativistic electrons. J. Geophys. Res. 106(A11) (2001) – reference: S.K. Morley, S.T. Ables, M.D. Sciffer, B.J. Fraser, Multipoint observations of Pc1–2 waves in the afternoon sector. J. Geophys. Res. 114 (2009) – reference: B. Ni, R.M. Thorne, J. Liang, V. Angelopoulos, C. Cully, W. Li, X. Zhang, M. Hartinger, O.L. Contel, A. Roux, Global distribution of electrostatic electron cyclotron harmonic waves observed on THEMIS. Geophys. Res. Lett. 38 (2011) – reference: Y. Miyoshi, V.K. Jordanova, M.F. Thomsen, G.D. Reeves, D.S. Evans, A. Morioka, Y. Kasahara, T. Nagai, J. Green, Simulation of energetic electrons dynamics on the Oct. 2001 magnetic storm. EOS Trans. AGU 84 (2003) – reference: X. Tao, J.M. Albert, A.A. Chan, Numerical modeling of multidimensional diffusion in the radiation belts using layer methods. J. Geophys. Res. 145 (2009) – reference: V.K. Jordanova, R.M. Thorne, Y. Miyoshi, Excitation of whistler-mode chorus from global ring current simulations. J. Geophys. Res. 115 (2010a) – reference: X. Tao, A.A. Chan, J.M. Albert, J.A. Miller, Stochastic modeling of multidimensional diffusion in the radiation belts. J. Geophys. Res. 113 (2008) – reference: Y. Nishimura, J. Bortnik, W. Li, R.M. Thorne, L.R. Lyons, V. Angelopoulos, S. Mende, J.W. Bonnel, O. LeContel, U. Auster, Identifying the driver of pulsating aurora. Science 330 (2010) – reference: J.S. Pickett, B. Grison, Y. Omura, M.J. Engebretson, I. Dandouras, A. Masson, M.L. Adrian, O. Santolik, P.M.E. Decreau, N. Cornilleau-Wehrlin, D. Constantinescu, Cluster observations of EMIC triggered emissions in association with Pc1 waves near Earth’s plasmapause. Geophys. Res. Lett. 37 (2010) – reference: Y.Y. Shprits, R.M. Thorne, R. Friedel, G.D. Reeves, J. Fennell, D.N. Baker, S.G. Kanekal, Outward radial diffusion driven by losses at magnetopause. J. Geophys. Res. 111 (2006) – reference: R.M. Thorne, C.F. Kennel, Relativistic electron precipitation during magnetic storm main phase. J. Geophys. Res. 76 (1971) – reference: K.G. Powell, P.L. Roe, T.J. Linde, T.I. Gombosi, D.L. de Zeeuw, A solution-adaptive upwind scheme for ideal magnetohydrodynamics. J. Comput. Phys. 153 (1999) – reference: S.R. Elkington, M.K. Hudson, A.A. Chan, Resonant acceleration and diffusion of outer zone electrons in an asymmetric geomagnetic field. J. Geophys. Res. 108(A3) (2003) – reference: R.B. Horne, G.V. Wheeler, H.S.C.K. Alleyne, Proton and electron heating by radially propagating fast magnetosonic waves. J. Geophys. Res. 105 (2000) – reference: Y.Y. Shprits, B. Ni, Dependence of the quasi-linear scattering rates on the wave normal distribution of chorus waves. J. Geophys. Res. 114 (2009) – reference: B.T. Kress, M.K. Hudson, M.D. Looper, J. Albert, J.G. Lyon, C.C. Goodrich, Global MHD test particle simulations of >10 MeV radiation belt electrons during storm sudden commencement. J. Geophys. Res. 112 (2007) – reference: V.K. Jordanova, C.J. Farrugia, R.M. Thorne, G.V. Khazanov, G.D. Reeves, M.F. Thomsen, Modeling ring current proton precipitation by electromagnetic ion cyclotron waves during the May 14–16, 1997 storm. J. Geophys. Res. 106 (2001b) – reference: N.P. Meredith, R.B. Horne, R.R. Anderson, Survey of magnetosonic waves and proton ring distributions in Earth’s inner magnetosphere. J. Geophys. Res. 113 (2008) – reference: J.M. Cornwall, F.V. Coroniti, R.M. Thorne, Turbulent loss of ring current protons. J. Geophys. Res. 75 (1970) – reference: R.B. Horne, R.M. Thorne, S.A. Glauert, N.P. Meredith, D. Pokhotelov, O. Santolik, Electron acceleration in the Van Allen belts by fast magnetosonic waves. Geophys. Res. Lett. 34 (2007) – reference: HudsonM.K.ElkingtonS.R.LyonJ.G.WiltbergerM.LessardM.SongP.SingerH.SiscoeG.Radiation belt electron acceleration by ULF wave drift resonance: simulation of 1997 and 1998 stormsSpace Weather2001WashingtonAGU10.1029/GM125p0289 – reference: D.A. Subbotin, Y.Y. Shprits, Three dimensional modeling of the radiation belts using the versatile electron radiation belt (verb) code. Space Weather 7 (2009) – reference: J. Bortnik, R.M. Thorne, The dual role of ELF/VLF chorus waves in the acceleration and precipitation of radiation belt electrons. J. Atmos. Sol. Terr. Phys. 69 (2007) – reference: S.R. Elkington, M.K. Hudson, A.A. Chan, Acceleration of relativistic electrons via drift-resonant interaction with toroidal-mode PC-5 oscillations. Geophys. Res. Lett. 26 (1999) – reference: T.M. Loto’aniu, I.R. Mann, L.G. Ozeke, A.A. Chan, Z.C. Dent, D.K. Milling, Radial diffusion of relativistic electrons into the radiation belt slot region during the 2003 Halloween storm. J. Geophys. Res. 111 (2006) – reference: R.M. Millan, R.M. Thorne, Review of radiation belt relativistic electron loss. J. Atmos. Sol. Terr. Phys. 69 (2007) – reference: R.M. Thorne, T.P. O’Brien, Y.Y. Shprits, D. Summers, R.B. Horne, Timescale for MeV electron microburst loss during geomagnetic storms. J. Geophys. Res. 110 (2005) – reference: M.-C. Fok, T.E. Moore, D.C. Delcourt, Modeling of inner plasma sheet and ring current during substorms. J. Geophys. Res. 104(A7) (1999) – reference: A.J. Ridley, M.W. Liemohn, A model-derived storm time asymmetric ring current driven electric field description. J. Geophys. Res. 107(A8) (2002) – reference: M. Fok, R.B. Horne, N.P. Meredith, S.A. Glauert, Radiation belt environmental model: application to space weather nowcasting. J. Geophys. Res. 113 (2008) – reference: WolfR.A.FreemanJ.W.Jr.HausmanB.A.SpiroR.W.HilmerR.V.LambourR.L.Modeling Convection Effects in Magnetic Storms1997WashingtonAGU – ident: 9993_CR41 doi: 10.1029/2007JA012558 – ident: 9993_CR133 doi: 10.1038/nature09467 – ident: 9993_CR96 doi: 10.1029/2005JA011351 – ident: 9993_CR132 doi: 10.1029/2004JA010882 – ident: 9993_CR11 doi: 10.1029/2010JA015283 – ident: 9993_CR78 doi: 10.1029/2008JA013554 – ident: 9993_CR1 doi: 10.1029/97JA02919 – ident: 9993_CR150 doi: 10.1029/2006JA011619 – ident: 9993_CR23 doi: 10.1029/2006JA011703 – ident: 9993_CR80 doi: 10.1029/2000JA000326 – ident: 9993_CR104 doi: 10.1029/2001JA000052 – ident: 9993_CR126 doi: 10.1029/98JA01740 – ident: 9993_CR151 doi: 10.1029/2010JA015915 – ident: 9993_CR119 doi: 10.1029/2009JA014223 – ident: 9993_CR143 doi: 10.1029/2008GL034458 – ident: 9993_CR36 doi: 10.1029/1999GL003659 – ident: 9993_CR128 doi: 10.1029/2008JA013826 – ident: 9993_CR54 doi: 10.1029/2002JA009736 – ident: 9993_CR58 doi: 10.1029/2009JA014918 – ident: 9993_CR26 doi: 10.1029/2009GL040451 – ident: 9993_CR10 doi: 10.1016/j.jastp.2006.05.030 – ident: 9993_CR5 doi: 10.1029/2001GL013941 – ident: 9993_CR19 doi: 10.1029/JZ071i019p04505 – ident: 9993_CR52 doi: 10.1029/2003GL016973 – ident: 9993_CR149 doi: 10.1029/2011JA017321 – ident: 9993_CR50 doi: 10.1029/98GL01002 – volume-title: Dynamics of the Earth’s Radiation Belts and Inner Magnetosphere year: 2012 ident: 9993_CR61 – ident: 9993_CR131 doi: 10.1029/JA076i019p04446 – ident: 9993_CR69 doi: 10.1029/2008JA013239 – ident: 9993_CR48 doi: 10.1029/2009JA014717 – ident: 9993_CR117 doi: 10.1029/2009JA014586 – volume-title: Modeling Convection Effects in Magnetic Storms year: 1997 ident: 9993_CR147 – ident: 9993_CR79 doi: 10.1029/2009GL037595 – ident: 9993_CR32 doi: 10.1029/2009GL039045 – ident: 9993_CR75 doi: 10.1029/2006JA012218 – volume-title: Space Weather year: 2001 ident: 9993_CR60 doi: 10.1029/GM125p0289 – ident: 9993_CR135 doi: 10.1029/JA082i032p05112 – ident: 9993_CR34 doi: 10.1029/JA075i025p04699 – ident: 9993_CR83 doi: 10.1029/2005JA011355 – ident: 9993_CR122 doi: 10.1029/2008JA013784 – ident: 9993_CR57 doi: 10.1029/2009JA014570 – ident: 9993_CR13 doi: 10.1029/2008GL035500 – ident: 9993_CR106 doi: 10.1029/2006JA011708 – ident: 9993_CR111 doi: 10.1029/2001JA000051 – ident: 9993_CR101 doi: 10.1029/2008GL034032 – ident: 9993_CR16 doi: 10.1126/science.1171273 – ident: 9993_CR110 doi: 10.1016/0032-0633(93)90015-T – ident: 9993_CR64 doi: 10.1029/2001JA000047 – ident: 9993_CR102 doi: 10.1029/2011GL048793 – ident: 9993_CR2 doi: 10.1029/97JA02920 – ident: 9993_CR21 doi: 10.1029/93JA02771 – volume: 106 start-page: 13191 issue: A7 year: 2001 ident: 9993_CR114 publication-title: J. Geophys. Res. doi: 10.1029/2000JA000275 – ident: 9993_CR141 doi: 10.1029/2005GL024380 – ident: 9993_CR29 doi: 10.1029/2009JA014409 – ident: 9993_CR8 doi: 10.1029/2005JA011041 – ident: 9993_CR89 doi: 10.1029/2009GL039985 – ident: 9993_CR3 doi: 10.1109/TMAG.1974.1058457 – ident: 9993_CR35 doi: 10.1029/JA083iA10p04798 – ident: 9993_CR107 doi: 10.1029/2004JA010760 – ident: 9993_CR125 doi: 10.1029/2002JA009489 – ident: 9993_CR4 doi: 10.1063/1.1510570 – ident: 9993_CR9 doi: 10.1029/92GL00624 – ident: 9993_CR136 doi: 10.1029/2008JA013353 – ident: 9993_CR76 doi: 10.1029/93GL02701 – volume: 21 start-page: 437 issue: 2 year: 2003 ident: 9993_CR33 publication-title: Ann. Geophys. doi: 10.5194/angeo-21-437-2003 – ident: 9993_CR56 doi: 10.1029/2007GL030267 – ident: 9993_CR25 doi: 10.1029/2009JA014204 – ident: 9993_CR140 doi: 10.1029/2005JA011017 – ident: 9993_CR20 doi: 10.1029/2007GL032009 – ident: 9993_CR129 doi: 10.1029/2010GL044990 – ident: 9993_CR37 doi: 10.1029/2001JA009202 – ident: 9993_CR146 doi: 10.1029/2000JA000604 – ident: 9993_CR59 doi: 10.1029/97JA03995 – ident: 9993_CR90 doi: 10.1029/2003GL017698 – ident: 9993_CR51 doi: 10.1029/1999JA900447 – ident: 9993_CR27 doi: 10.1029/2009JA015075 – ident: 9993_CR97 – ident: 9993_CR43 doi: 10.1029/2009JA014516 – ident: 9993_CR103 doi: 10.1126/science.1193186 – ident: 9993_CR92 doi: 10.1029/2007JA012975 – ident: 9993_CR14 doi: 10.1038/nature06741 – ident: 9993_CR99 doi: 10.1029/2010GL042772 – ident: 9993_CR77 doi: 10.1029/2008JA013129 – ident: 9993_CR66 doi: 10.1029/2003JA009993 – ident: 9993_CR123 doi: 10.1029/2008SW000452 – volume-title: Dynamics of Geomagnetically Trapped Radiation year: 1970 ident: 9993_CR112 doi: 10.1007/978-3-642-49300-3 – ident: 9993_CR88 doi: 10.1029/2000GL003822 – ident: 9993_CR49 doi: 10.1029/2009JA014950 – ident: 9993_CR72 doi: 10.1029/2011JA017433 – ident: 9993_CR63 doi: 10.1029/96JA03699 – ident: 9993_CR138 doi: 10.1029/2002JA009808 – ident: 9993_CR68 doi: 10.1029/2006JA012215 – ident: 9993_CR145 doi: 10.1029/2007JA012862 – ident: 9993_CR98 doi: 10.1029/2009JA014162 – ident: 9993_CR115 doi: 10.1029/2000RS002523 – ident: 9993_CR67 doi: 10.1029/2006JA011644 – ident: 9993_CR40 doi: 10.1029/1999JA900014 – ident: 9993_CR82 doi: 10.1029/2004JA010816 – ident: 9993_CR113 doi: 10.1029/98GL02801 – ident: 9993_CR116 doi: 10.1029/2003GL018757 – ident: 9993_CR85 doi: 10.1029/JA078i013p02142 – ident: 9993_CR124 doi: 10.1029/2007GL032226 – volume-title: Particle Diffusion in the Radiation Belts year: 1974 ident: 9993_CR118 doi: 10.1007/978-3-642-65675-0 – ident: 9993_CR12 doi: 10.1029/2006JA012237 – ident: 9993_CR95 doi: 10.1029/2002JA009793 – ident: 9993_CR18 doi: 10.1029/2008JA013549 – ident: 9993_CR6 doi: 10.1029/2002JA009792 – ident: 9993_CR53 doi: 10.1029/2000JA000018 – ident: 9993_CR142 doi: 10.5194/angeo-27-2173-2009 – ident: 9993_CR93 doi: 10.1029/2009JA014230 – ident: 9993_CR22 doi: 10.1029/2006JA011620 – ident: 9993_CR74 doi: 10.1029/97JA01814 – ident: 9993_CR71 doi: 10.1029/2010JA015671 – ident: 9993_CR105 doi: 10.1029/2010JA015607 – ident: 9993_CR28 doi: 10.1029/2010JA015707 – ident: 9993_CR121 doi: 10.1029/2006JA011657 – ident: 9993_CR30 doi: 10.1029/2006JA012061 – ident: 9993_CR81 doi: 10.1029/2009JA014243 – ident: 9993_CR73 doi: 10.1029/JZ072i003p00871 – ident: 9993_CR39 doi: 10.1029/2005JA011211 – ident: 9993_CR7 doi: 10.1029/2009JA014336 – ident: 9993_CR120 doi: 10.1029/2004GL019591 – ident: 9993_CR87 doi: 10.1029/JA077i019p03455 – ident: 9993_CR70 doi: 10.1029/2009JA014810 – ident: 9993_CR127 doi: 10.1029/2007JA012985 – ident: 9993_CR24 doi: 10.1038/nphys655 – ident: 9993_CR15 doi: 10.1016/j.jastp.2009.03.023 – ident: 9993_CR55 doi: 10.1029/2004JA010811 – ident: 9993_CR65 doi: 10.1029/2000JA002008 – ident: 9993_CR108 doi: 10.1029/2010GL042648 – ident: 9993_CR130 doi: 10.1029/96JA04019 – ident: 9993_CR100 doi: 10.1007/BF00183028 – ident: 9993_CR42 doi: 10.1029/2002JA009409 – ident: 9993_CR86 doi: 10.1029/JA085iA02p00523 – ident: 9993_CR17 doi: 10.1029/2004JA010612 – ident: 9993_CR144 doi: 10.1029/92GL00121 – ident: 9993_CR109 doi: 10.1006/jcph.1999.6299 – ident: 9993_CR47 doi: 10.1029/2003JA010153 – ident: 9993_CR91 doi: 10.1029/2002JA009700 – ident: 9993_CR31 doi: 10.1029/2007JA012890 – ident: 9993_CR148 doi: 10.1029/94GL00375 – ident: 9993_CR46 doi: 10.1029/2001JA000054 – ident: 9993_CR134 doi: 10.1029/JA079i001p00118 – ident: 9993_CR137 doi: 10.1029/96JA02735 – ident: 9993_CR38 doi: 10.1029/JA074i016p04184 – ident: 9993_CR139 doi: 10.1029/2008JA013480 – ident: 9993_CR62 doi: 10.1029/2005GL023020 – ident: 9993_CR45 doi: 10.1029/2000JA900062 – ident: 9993_CR84 doi: 10.1029/2010JA015755 – ident: 9993_CR44 doi: 10.1029/2007JA012478 – ident: 9993_CR94 doi: 10.1016/j.jastp.2006.06.019 |
| SSID | ssj0010077 |
| Score | 2.6226826 |
| SecondaryResourceType | review_article |
| Snippet | The Electric and Magnetic Field Instrument and Integrated Science (EMFISIS) investigation on the NASA Radiation Belt Storm Probes (now named the Van Allen... Issue Title: The Van Allen Probes Mission The Electric and Magnetic Field Instrument and Integrated Science (EMFISIS) investigation on the NASA Radiation Belt... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 127 |
| SubjectTerms | Aerospace Technology and Astronautics Astrophysics Astrophysics and Astroparticles Magnetic fields Physics Physics and Astronomy Planetology Probes Radiation Scientific apparatus & instruments Space Exploration and Astronautics Space Sciences (including Extraterrestrial Physics |
| SummonAdditionalLinks | – databaseName: Science Database (subscription) dbid: M2P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1baxQxFD704kN9UFuVbq2SgkirhM4lk0mepMou3Ycti9tCfRpylYLO1E4r9N83JzuzWwX70reBSSYD30lyrt8BeO9MmRVOIh-etpQJy6lmQtNccq99wmxqbGw2UZ6ciPNzOe0cbm2XVtmfifGgto1BH_lhUPzLoC6ItPx8-Zti1yiMrnYtNFZhPWg2KaZ0TbLpIoqAXDVzWkZBeZ6IPqoZS-fSLMX8i5xKTGHjf99LS2Xzn_hovHZGzx_7wy_gWadwkqO5hGzCiqu3YPuoRRd48-uWfCDxee7haLfg6T2GwpfwPYgRGcZWOReGqNqSifpRY-EjGWHuGxlHBlp0MZLZTVg5jhn3HBSWdGcH2R9ORuPZeHZAmpp8-zKbvoKz0fD06zHtujFQwwpxTUuhba4TrhLuw5XmbZFpWSqX8aKwqddK6dypTCtfMmW4ZkwpxrQOBmSwmpzKX8Na3dRuGwhPjUqUl1o5w6zk2uTe-MwFU8wEyOwAkh6LynRU5dgx42e1JFlG-KoAX4XwVXwAHxdTLuc8HQ8N3u0hq7ot21ZLvAawt3gdNhtGUFTtmhscE6yrXDIhB_CpF4x7n_jfgjsPL_gGNjKUxFjiuAtrATf3Fp6YP9cX7dW7KNN3G578EQ priority: 102 providerName: ProQuest |
| Title | The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP |
| URI | https://link.springer.com/article/10.1007/s11214-013-9993-6 https://www.proquest.com/docview/1447083817 https://www.proquest.com/docview/1458539489 |
| Volume | 179 |
| WOSCitedRecordID | wos000326381300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1572-9672 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0010077 issn: 0038-6308 databaseCode: P5Z dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1572-9672 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0010077 issn: 0038-6308 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (subscription) customDbUrl: eissn: 1572-9672 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0010077 issn: 0038-6308 databaseCode: M2P dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1572-9672 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010077 issn: 0038-6308 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB-qVmgfWnu2eK09VhCxLYF8bDa7jyp3eA93hIuK-hL2UwSbK40W-t93d5PcqVihfQkhmXywM7szszPzG4BdLbM41czh4QkVYKpIIDAVQcKIESbEKpLKN5vIplN6fs7yto677rLdu5CkX6mXxW5RHLmMiSRgLumMrMCa1XbU9WuYFWeL0IEDqGmwGGlAkpB2ocynXvFQGS0tzEdBUa9rRm__6y834E1rWqKDRhbewQtd9WDroHab3fPvv9Ee8ufNXkbdg9f3sAh7sJ431zfhwooOGvr2ONcS8UqhCb-qXLEjGrl8NzT2qLNuWxEVd9Zk9TTjDndCoXa9QPvDyWhcjIsvaF6h2WGRv4fT0fDk6DhoOzAEEqf0NsioUIkICQ-JsWrMqDQWLOM6JmmqIiM4F4nmseAmw1wSgTHnGAthnUbrKWmefIDVal7pLUAkkjzkhgmuJVaMCJkYaWJt3S9pOab6EHasKGULT-66ZNyUS2BlN7SlHdrSDW1J-vB18ciPBpvjOeLtjr9lO01r6_fgzNqgNMr6sLO4bSeYi5rwSs_vHI31qBKGKevDt47n917xtw9-_CfqT_AqdkLjqxy3YdWyUX-Gl_LX7XX9cwBrh8NpPhvAyiTO7TFPLwde6v8AzO74EQ |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQceBRQtxQwEiAeskgcx0kOCBXYVaN2Vyu2lcop-BVUCZLS9KH-KX4jHifZLUj01gO3SHFsOf48nvHMfAPwzOqExTZDPjxlKE-NoIqnikaZKFUZcBNq44tNJJNJureXTZfgV58Lg2GVvUz0gtrUGu_I3zrFP3HqQhom7w9-Uqwahd7VvoRGC4ste3bqTLbmXf7Jre9zxkbDnY-btKsqQDWP0yOapMpEKhAyEKUTzaWJmcoSaZmIYxOWSkoVWcmULBMutVCcS8m5Us4Qctq_lZHr9wpc5cgshqGCbDr3WiA3TksDmVIRBWnvRfWpeiELMd4johmGzIk_z8GFcvuXP9Yfc6Pb_9sPugO3OoWabLQ74C4s2WoFVjcavOKvf5yRF8Q_tzc4zQrcPMfAeA--uG1Chr4U0L4msjJkLL9VmNhJRhjbR3LPsItXqGR27Gbq2-Q9x4YhnWwkL4fjUT7LZ69IXZHPH2bT-7B7KdN-AMtVXdlVICLUMpBlpqTV3GRC6ajUJbPO1NQOImYAQb_2he6o2LEiyPdiQSKNcCkcXAqESyEG8Hr-yUHLQ3JR4_UeIkUnkppigY8BPJ2_dsIEPUSysvUxtnHWY5TxNBvAmx6I57r414BrFw_4BK5v7oy3i-18svUQbjDcBT6dcx2W3RraR3BNnxztN4eP_X4i8PWy8fkbtn5b6g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ra9RAEB-0PtAPtl4tPa11BRG1hOax2ex-rHrBUHscRqV-CvsshTZXzFXwv3cnj7sqKojfQjLZLDuz2Xn-BuCZ1VmcWoF4eMoElBsWKMpVkAjmlAupibRpm01k0yk_Phazvs9pM2S7DyHJrqYBUZrqxf6FcfurwrcojjB7IgkEJqCx63CDYh49muvl52UYAcFqOlxGHrAk5ENY83dD_HwwrbTNXwKk7bmTr__3jDfgXq9ykoNORu7DNVuPYPugQSf4_Pw7eU7a687H0Yzg7hWMwhHcmnX3N-GLFykyadvmnGoia0OO5EmNRZAkxzw4UrRotOhuJOWlV2VbmmLAozCk_4-QF5OjvCiL8iWZ1-TD63L2AD7lk49v3gV9Z4ZA05Qvgowrk6iQyZA5f7w5k8ZKZNLGLE1N5JSUKrEyVtJlVGqmKJWSUqW8MektKCuTLVir57XdBsIiLUPphJJWUyOY0onTLrbeLNOee2YM4cCWSvew5dg946xaAS7j0lZ-aStc2oqN4dXylYsOs-NvxDsDr6t--zbeHqKZ1015lI3h6fKx33gYTZG1nV8ijbe0EkG5GMPewP8rQ_zpgw__ifoJ3J69zav3xfTwEdyJUX7aQsgdWPMctY_hpv62OG2-7raC_wP1ogBe |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Electric+and+Magnetic+Field+Instrument+Suite+and+Integrated+Science+%28EMFISIS%29+on+RBSP&rft.jtitle=Space+science+reviews&rft.au=Kletzing%2C+C.+A.&rft.au=Kurth%2C+W.+S.&rft.au=Acuna%2C+M.&rft.au=MacDowall%2C+R.+J.&rft.date=2013-11-01&rft.pub=Springer+Netherlands&rft.issn=0038-6308&rft.eissn=1572-9672&rft.volume=179&rft.issue=1-4&rft.spage=127&rft.epage=181&rft_id=info:doi/10.1007%2Fs11214-013-9993-6&rft.externalDocID=10_1007_s11214_013_9993_6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-6308&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-6308&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-6308&client=summon |