Purely elastic turbulence in pressure-driven channel flows

Solutions of long, flexible polymer molecules are complex fluids that simultaneously exhibit fluid-like and solid-like behavior. When subjected to an external flow, dilute polymer solutions exhibit elastic turbulence-a unique, chaotic flow state absent in Newtonian fluids, like water. Unlike its New...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS Jg. 121; H. 9; S. e2318851121
Hauptverfasser: Lellep, Martin, Linkmann, Moritz, Morozov, Alexander
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 27.02.2024
Schlagworte:
ISSN:1091-6490, 1091-6490
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Solutions of long, flexible polymer molecules are complex fluids that simultaneously exhibit fluid-like and solid-like behavior. When subjected to an external flow, dilute polymer solutions exhibit elastic turbulence-a unique, chaotic flow state absent in Newtonian fluids, like water. Unlike its Newtonian counterpart, elastic turbulence is caused by polymer molecules stretching and aligning in the flow, and can occur at vanishing inertia. While experimental realizations of elastic turbulence are well-documented, there is currently no understanding of its mechanism. Here, we present large-scale direct numerical simulations of elastic turbulence in pressure-driven flows through straight channels. We demonstrate that the transition to elastic turbulence is sub-critical, giving rise to spot-like flow structures that, further away from the transition, eventually spread throughout the domain. We provide evidence that elastic turbulence is organized around unstable coherent states that are localized close to the channel midplane.
AbstractList Solutions of long, flexible polymer molecules are complex fluids that simultaneously exhibit fluid-like and solid-like behavior. When subjected to an external flow, dilute polymer solutions exhibit elastic turbulence-a unique, chaotic flow state absent in Newtonian fluids, like water. Unlike its Newtonian counterpart, elastic turbulence is caused by polymer molecules stretching and aligning in the flow, and can occur at vanishing inertia. While experimental realizations of elastic turbulence are well-documented, there is currently no understanding of its mechanism. Here, we present large-scale direct numerical simulations of elastic turbulence in pressure-driven flows through straight channels. We demonstrate that the transition to elastic turbulence is sub-critical, giving rise to spot-like flow structures that, further away from the transition, eventually spread throughout the domain. We provide evidence that elastic turbulence is organized around unstable coherent states that are localized close to the channel midplane.
Solutions of long, flexible polymer molecules are complex fluids that simultaneously exhibit fluid-like and solid-like behavior. When subjected to an external flow, dilute polymer solutions exhibit elastic turbulence-a unique, chaotic flow state absent in Newtonian fluids, like water. Unlike its Newtonian counterpart, elastic turbulence is caused by polymer molecules stretching and aligning in the flow, and can occur at vanishing inertia. While experimental realizations of elastic turbulence are well-documented, there is currently no understanding of its mechanism. Here, we present large-scale direct numerical simulations of elastic turbulence in pressure-driven flows through straight channels. We demonstrate that the transition to elastic turbulence is sub-critical, giving rise to spot-like flow structures that, further away from the transition, eventually spread throughout the domain. We provide evidence that elastic turbulence is organized around unstable coherent states that are localized close to the channel midplane.Solutions of long, flexible polymer molecules are complex fluids that simultaneously exhibit fluid-like and solid-like behavior. When subjected to an external flow, dilute polymer solutions exhibit elastic turbulence-a unique, chaotic flow state absent in Newtonian fluids, like water. Unlike its Newtonian counterpart, elastic turbulence is caused by polymer molecules stretching and aligning in the flow, and can occur at vanishing inertia. While experimental realizations of elastic turbulence are well-documented, there is currently no understanding of its mechanism. Here, we present large-scale direct numerical simulations of elastic turbulence in pressure-driven flows through straight channels. We demonstrate that the transition to elastic turbulence is sub-critical, giving rise to spot-like flow structures that, further away from the transition, eventually spread throughout the domain. We provide evidence that elastic turbulence is organized around unstable coherent states that are localized close to the channel midplane.
Author Linkmann, Moritz
Morozov, Alexander
Lellep, Martin
Author_xml – sequence: 1
  givenname: Martin
  surname: Lellep
  fullname: Lellep, Martin
  organization: School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
– sequence: 2
  givenname: Moritz
  surname: Linkmann
  fullname: Linkmann, Moritz
  organization: School of Mathematics and Maxwell Institute for Mathematical Sciences, The University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
– sequence: 3
  givenname: Alexander
  orcidid: 0000-0003-4498-3910
  surname: Morozov
  fullname: Morozov, Alexander
  organization: School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38377197$$D View this record in MEDLINE/PubMed
BookMark eNpNj0tLxDAUhYOMOA9du5Mu3XS8N48mcSeDLxjQha5Lm95iJZPWpFXm3zuggqtzFh_f4SzZLPSBGDtHWCNocTWEKq25QGMUIscjtkCwmBfSwuxfn7NlSu8AYJWBEzYXRmiNVi_Y9fMUye8z8lUaO5eNU6wnT8FR1oVsiJTSAcib2H1SyNxbFQL5rPX9Vzplx23lE5395oq93t2-bB7y7dP94-ZmmzupzJhLjdQg0GFTaiPJFYIcWmEAQRRk2obAkpTIK614IUyrCo21tbWygteOr9jlj3eI_cdEaSx3XXLkfRWon1LJLbdKgpZwQC9-0aneUVMOsdtVcV_-_eXfnydYWA
CitedBy_id crossref_primary_10_1016_j_jnnfm_2025_105437
crossref_primary_10_1093_pnasnexus_pgae571
crossref_primary_10_1103_pbtf_rn7d
crossref_primary_10_1017_jfm_2025_119
crossref_primary_10_1063_5_0261021
crossref_primary_10_1073_pnas_2318851121
crossref_primary_10_1103_yv5x_261v
crossref_primary_10_1017_jfm_2024_500
crossref_primary_10_1017_jfm_2025_10538
crossref_primary_10_1017_jfm_2025_10458
crossref_primary_10_1073_pnas_2505007122
crossref_primary_10_1103_PhysRevFluids_10_L041301
ContentType Journal Article
DBID NPM
7X8
DOI 10.1073/pnas.2318851121
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 38377197
Genre Journal Article
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft (DFG)
  grantid: Li3694/1
– fundername: UKRI | Engineering and Physical Sciences Research Council (EPSRC)
  grantid: EP/X035484/1
– fundername: UKRI | Engineering and Physical Sciences Research Council (EPSRC)
  grantid: EP/R029326/1
– fundername: Studienstiftung des Deutschen Volkes (Studienstiftung)
  grantid: N/A
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABOCM
ABPLY
ABPPZ
ABTLG
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
AENEX
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CS3
D0L
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
JLS
JSG
KQ8
L7B
LU7
N9A
NPM
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
7X8
ID FETCH-LOGICAL-c458t-471ed10e3834784ec63ec193801036e8fde09e4412a752638f5671b99b5932bc2
IEDL.DBID 7X8
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001206030700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1091-6490
IngestDate Thu Sep 04 17:34:57 EDT 2025
Mon Jul 21 05:56:23 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords direct numerical simulations
elastic turbulence
viscoelastic flows
polymer solutions
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c458t-471ed10e3834784ec63ec193801036e8fde09e4412a752638f5671b99b5932bc2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4498-3910
OpenAccessLink https://www.pnas.org/doi/pdf/10.1073/pnas.2318851121
PMID 38377197
PQID 2929540740
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2929540740
pubmed_primary_38377197
PublicationCentury 2000
PublicationDate 2024-02-27
PublicationDateYYYYMMDD 2024-02-27
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-27
  day: 27
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2024
SSID ssj0009580
Score 2.5619674
Snippet Solutions of long, flexible polymer molecules are complex fluids that simultaneously exhibit fluid-like and solid-like behavior. When subjected to an external...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage e2318851121
Title Purely elastic turbulence in pressure-driven channel flows
URI https://www.ncbi.nlm.nih.gov/pubmed/38377197
https://www.proquest.com/docview/2929540740
Volume 121
WOSCitedRecordID wos001206030700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAMrAA5VleMhIDDKZ26sQ2C0KIigGqDiB1i2LnIlWqktK0IP495yQVLEhILJkcK7rc4zuf7ztCLrQWvpiTMQVhiAmKBWYi4Rhw68ByJ139p5_UYKBHIzNsDtzK5lrl0idWjjotnD8j7wbGV6Qw4PHb6RvzU6N8dbUZobFKWj2EMl6r1Uj_IN3VNRuBESyShi-pfVSvO82T8hqxja4Qh_gdX1Zxpr_13y_cJpsNwqR3tUq0yQrkO6Td2HBJLxui6atdcjP0bMqfFBBB42KK0ccuqiYkOs5pdUMWF7B05j0i9S3COUxoNik-yj3y2n94uX9kzSwF5mSo5wxjEKSCAyakUmkJLuqBQ_Cm_ZyHCHSWAjeA2ChIVBigUWZhpIQ1xoaI8KwL9slaXuRwSGiKGYrmoRNhkkmepjqVuK8IrOaBs1Z2yPlSPjHqqi9AJDkUizL-llCHHNRCjqc1qUbsM2UljDr6w9vHZCNAbFF1lqsT0srQUuGUrLv3-bicnVVKgM_B8PkLMAe6oQ
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Purely+elastic+turbulence+in+pressure-driven+channel+flows&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Lellep%2C+Martin&rft.au=Linkmann%2C+Moritz&rft.au=Morozov%2C+Alexander&rft.date=2024-02-27&rft.eissn=1091-6490&rft.volume=121&rft.issue=9&rft.spage=e2318851121&rft_id=info:doi/10.1073%2Fpnas.2318851121&rft_id=info%3Apmid%2F38377197&rft_id=info%3Apmid%2F38377197&rft.externalDocID=38377197
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon