Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization
We propose a technique for producing ‘visual explanations’ for decisions from a large class of Convolutional Neural Network (CNN)-based models, making them more transparent and explainable. Our approach—Gradient-weighted Class Activation Mapping (Grad-CAM), uses the gradients of any target concept (...
Uloženo v:
| Vydáno v: | International journal of computer vision Ročník 128; číslo 2; s. 336 - 359 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.02.2020
Springer Springer Nature B.V |
| Témata: | |
| ISSN: | 0920-5691, 1573-1405 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We propose a technique for producing ‘visual explanations’ for decisions from a large class of Convolutional Neural Network (CNN)-based models, making them more transparent and explainable. Our approach—Gradient-weighted Class Activation Mapping (Grad-CAM), uses the gradients of any target concept (say ‘dog’ in a classification network or a sequence of words in captioning network) flowing into the final convolutional layer to produce a coarse localization map highlighting the important regions in the image for predicting the concept. Unlike previous approaches, Grad-CAM is applicable to a wide variety of CNN model-families: (1) CNNs with fully-connected layers (
e.g.
VGG), (2) CNNs used for structured outputs (
e.g.
captioning), (3) CNNs used in tasks with multi-modal inputs (
e.g.
visual question answering) or reinforcement learning, all
without architectural changes or re-training
. We combine Grad-CAM with existing fine-grained visualizations to create a high-resolution class-discriminative visualization, Guided Grad-CAM, and apply it to image classification, image captioning, and visual question answering (VQA) models, including ResNet-based architectures. In the context of image classification models, our visualizations (a) lend insights into failure modes of these models (showing that seemingly unreasonable predictions have reasonable explanations), (b) outperform previous methods on the ILSVRC-15 weakly-supervised localization task, (c) are robust to adversarial perturbations, (d) are more faithful to the underlying model, and (e) help achieve model generalization by identifying dataset bias. For image captioning and VQA, our visualizations show that even non-attention based models learn to localize discriminative regions of input image. We devise a way to identify important neurons through Grad-CAM and combine it with neuron names (Bau et al. in Computer vision and pattern recognition, 2017) to provide textual explanations for model decisions. Finally, we design and conduct human studies to measure if Grad-CAM explanations help users establish appropriate trust in predictions from deep networks and show that Grad-CAM helps untrained users successfully discern a ‘stronger’ deep network from a ‘weaker’ one even when both make identical predictions. Our code is available at
https://github.com/ramprs/grad-cam/
, along with a demo on CloudCV (Agrawal et al., in: Mobile cloud visual media computing, pp 265–290. Springer, 2015) (
http://gradcam.cloudcv.org
) and a video at
http://youtu.be/COjUB9Izk6E
. |
|---|---|
| AbstractList | We propose a technique for producing ‘visual explanations’ for decisions from a large class of Convolutional Neural Network (CNN)-based models, making them more transparent and explainable. Our approach—Gradient-weighted Class Activation Mapping (Grad-CAM), uses the gradients of any target concept (say ‘dog’ in a classification network or a sequence of words in captioning network) flowing into the final convolutional layer to produce a coarse localization map highlighting the important regions in the image for predicting the concept. Unlike previous approaches, Grad-CAM is applicable to a wide variety of CNN model-families: (1) CNNs with fully-connected layers (e.g.VGG), (2) CNNs used for structured outputs (e.g.captioning), (3) CNNs used in tasks with multi-modal inputs (e.g.visual question answering) or reinforcement learning, all without architectural changes or re-training. We combine Grad-CAM with existing fine-grained visualizations to create a high-resolution class-discriminative visualization, Guided Grad-CAM, and apply it to image classification, image captioning, and visual question answering (VQA) models, including ResNet-based architectures. In the context of image classification models, our visualizations (a) lend insights into failure modes of these models (showing that seemingly unreasonable predictions have reasonable explanations), (b) outperform previous methods on the ILSVRC-15 weakly-supervised localization task, (c) are robust to adversarial perturbations, (d) are more faithful to the underlying model, and (e) help achieve model generalization by identifying dataset bias. For image captioning and VQA, our visualizations show that even non-attention based models learn to localize discriminative regions of input image. We devise a way to identify important neurons through Grad-CAM and combine it with neuron names (Bau et al. in Computer vision and pattern recognition, 2017) to provide textual explanations for model decisions. Finally, we design and conduct human studies to measure if Grad-CAM explanations help users establish appropriate trust in predictions from deep networks and show that Grad-CAM helps untrained users successfully discern a ‘stronger’ deep network from a ‘weaker’ one even when both make identical predictions. Our code is available at https://github.com/ramprs/grad-cam/, along with a demo on CloudCV (Agrawal et al., in: Mobile cloud visual media computing, pp 265–290. Springer, 2015) (http://gradcam.cloudcv.org) and a video at http://youtu.be/COjUB9Izk6E. We propose a technique for producing 'visual explanations' for decisions from a large class of Convolutional Neural Network (CNN)-based models, making them more transparent and explainable. Our approach-Gradient-weighted Class Activation Mapping (Grad-CAM), uses the gradients of any target concept (say 'dog' in a classification network or a sequence of words in captioning network) flowing into the final convolutional layer to produce a coarse localization map highlighting the important regions in the image for predicting the concept. Unlike previous approaches, Grad-CAM is applicable to a wide variety of CNN model-families: (1) CNNs with fully-connected layers (e.g.VGG), (2) CNNs used for structured outputs (e.g.captioning), (3) CNNs used in tasks with multi-modal inputs (e.g.visual question answering) or reinforcement learning, all without architectural changes or re-training. We combine Grad-CAM with existing fine-grained visualizations to create a high-resolution class-discriminative visualization, Guided Grad-CAM, and apply it to image classification, image captioning, and visual question answering (VQA) models, including ResNet-based architectures. In the context of image classification models, our visualizations (a) lend insights into failure modes of these models (showing that seemingly unreasonable predictions have reasonable explanations), (b) outperform previous methods on the ILSVRC-15 weakly-supervised localization task, (c) are robust to adversarial perturbations, (d) are more faithful to the underlying model, and (e) help achieve model generalization by identifying dataset bias. For image captioning and VQA, our visualizations show that even non-attention based models learn to localize discriminative regions of input image. We devise a way to identify important neurons through Grad-CAM and combine it with neuron names (Bau et al. in Computer vision and pattern recognition, 2017) to provide textual explanations for model decisions. Finally, we design and conduct human studies to measure if Grad-CAM explanations help users establish appropriate trust in predictions from deep networks and show that Grad-CAM helps untrained users successfully discern a 'stronger' deep network from a 'weaker' one even when both make identical predictions. Our code is available at We propose a technique for producing ‘visual explanations’ for decisions from a large class of Convolutional Neural Network (CNN)-based models, making them more transparent and explainable. Our approach—Gradient-weighted Class Activation Mapping (Grad-CAM), uses the gradients of any target concept (say ‘dog’ in a classification network or a sequence of words in captioning network) flowing into the final convolutional layer to produce a coarse localization map highlighting the important regions in the image for predicting the concept. Unlike previous approaches, Grad-CAM is applicable to a wide variety of CNN model-families: (1) CNNs with fully-connected layers ( e.g. VGG), (2) CNNs used for structured outputs ( e.g. captioning), (3) CNNs used in tasks with multi-modal inputs ( e.g. visual question answering) or reinforcement learning, all without architectural changes or re-training . We combine Grad-CAM with existing fine-grained visualizations to create a high-resolution class-discriminative visualization, Guided Grad-CAM, and apply it to image classification, image captioning, and visual question answering (VQA) models, including ResNet-based architectures. In the context of image classification models, our visualizations (a) lend insights into failure modes of these models (showing that seemingly unreasonable predictions have reasonable explanations), (b) outperform previous methods on the ILSVRC-15 weakly-supervised localization task, (c) are robust to adversarial perturbations, (d) are more faithful to the underlying model, and (e) help achieve model generalization by identifying dataset bias. For image captioning and VQA, our visualizations show that even non-attention based models learn to localize discriminative regions of input image. We devise a way to identify important neurons through Grad-CAM and combine it with neuron names (Bau et al. in Computer vision and pattern recognition, 2017) to provide textual explanations for model decisions. Finally, we design and conduct human studies to measure if Grad-CAM explanations help users establish appropriate trust in predictions from deep networks and show that Grad-CAM helps untrained users successfully discern a ‘stronger’ deep network from a ‘weaker’ one even when both make identical predictions. Our code is available at https://github.com/ramprs/grad-cam/ , along with a demo on CloudCV (Agrawal et al., in: Mobile cloud visual media computing, pp 265–290. Springer, 2015) ( http://gradcam.cloudcv.org ) and a video at http://youtu.be/COjUB9Izk6E . |
| Audience | Academic |
| Author | Vedantam, Ramakrishna Cogswell, Michael Parikh, Devi Batra, Dhruv Das, Abhishek Selvaraju, Ramprasaath R. |
| Author_xml | – sequence: 1 givenname: Ramprasaath R. surname: Selvaraju fullname: Selvaraju, Ramprasaath R. email: ramprs@gatech.edu organization: Georgia Institute of Technology – sequence: 2 givenname: Michael surname: Cogswell fullname: Cogswell, Michael organization: Georgia Institute of Technology – sequence: 3 givenname: Abhishek surname: Das fullname: Das, Abhishek organization: Georgia Institute of Technology – sequence: 4 givenname: Ramakrishna surname: Vedantam fullname: Vedantam, Ramakrishna organization: Georgia Institute of Technology – sequence: 5 givenname: Devi surname: Parikh fullname: Parikh, Devi organization: Georgia Institute of Technology, Facebook AI Research – sequence: 6 givenname: Dhruv surname: Batra fullname: Batra, Dhruv organization: Georgia Institute of Technology, Facebook AI Research |
| BookMark | eNp9kUtvEzEURi1UJNLHH2A1EisWLn7OeNiF0JZKKSAKbK1bPyKXyTi1HVr49XUzlVBZVJZl6eocX_t--2hvjKND6DUlx5SQ7l2mlLUcE9rXzZjC3Qs0o7LjmAoi99CM9Ixg2fb0FdrP-ZoQwhTjM_T1LIHFi_nF--ZnyFsYmpO7zQAjlBDH3PgU181H5zbNZ1duY_qVm98BmgcpuLHgD5CdbZbRwBD-7pxD9NLDkN3R43mAfpyefF98wssvZ-eL-RIbIVXB3IIA5XtnpLUdU8b3VtgOODctN6xWqPIt87RTVwKuvLWG2p4YwwRtnQV-gN5M925SvNm6XPR13KaxttSMS8b7TglZqeOJWsHgdBh9LAlMXdatg6kz9KHW5y0VVDIh-yq8fSJUpri7soJtzvr88ttTlk2sSTHn5LzepLCG9EdToh9i0VMsusaid7HorkrqP8mEsptcfVkYnlf5pObaZ1y59O_Lz1j3NfiiUA |
| CitedBy_id | crossref_primary_10_1007_s12021_022_09602_6 crossref_primary_10_1016_j_ijmecsci_2025_110861 crossref_primary_10_1109_TMI_2020_3023463 crossref_primary_10_3390_agriengineering6040263 crossref_primary_10_1109_JBHI_2023_3337511 crossref_primary_10_1109_TIFS_2024_3411921 crossref_primary_10_1109_ACCESS_2025_3562229 crossref_primary_10_3390_biology14080909 crossref_primary_10_1007_s00247_025_06311_5 crossref_primary_10_3390_jimaging9100220 crossref_primary_10_1016_j_jdent_2022_104107 crossref_primary_10_1109_ACCESS_2020_2992907 crossref_primary_10_1111_exsy_13770 crossref_primary_10_1177_08465371241236376 crossref_primary_10_1109_TNSRE_2025_3602548 crossref_primary_10_1016_j_ins_2025_122143 crossref_primary_10_1038_s44172_024_00254_9 crossref_primary_10_1109_TITS_2024_3396915 crossref_primary_10_1145_3706573 crossref_primary_10_1007_s00138_023_01379_1 crossref_primary_10_1007_s10489_022_03882_w crossref_primary_10_1016_j_compbiomed_2022_105942 crossref_primary_10_1016_j_ces_2023_119425 crossref_primary_10_1016_j_arthro_2024_05_027 crossref_primary_10_1016_j_cmpb_2025_108922 crossref_primary_10_1109_ACCESS_2022_3204051 crossref_primary_10_1093_braincomms_fcaf159 crossref_primary_10_1109_ACCESS_2021_3120199 crossref_primary_10_1145_3649458 crossref_primary_10_1109_JBHI_2023_3242262 crossref_primary_10_1111_jph_13374 crossref_primary_10_1093_pcp_pcad144 crossref_primary_10_1109_ACCESS_2023_3348450 crossref_primary_10_1109_ACCESS_2025_3585353 crossref_primary_10_1115_1_4065416 crossref_primary_10_3390_agriengineering6040277 crossref_primary_10_1016_j_aei_2025_103220 crossref_primary_10_1038_s41746_025_01857_y crossref_primary_10_1007_s10044_024_01211_0 crossref_primary_10_1038_s41598_024_66989_9 crossref_primary_10_1038_s41467_025_61279_y crossref_primary_10_1109_TPAMI_2022_3206549 crossref_primary_10_1080_07853890_2025_2551819 crossref_primary_10_1016_j_inffus_2025_103275 crossref_primary_10_3390_jcm11133918 crossref_primary_10_1016_j_asoc_2024_112450 crossref_primary_10_1016_j_procir_2021_11_242 crossref_primary_10_1038_s41598_023_49563_7 crossref_primary_10_1109_TAES_2024_3507786 crossref_primary_10_7717_peerj_cs_479 crossref_primary_10_1186_s13048_024_01544_8 crossref_primary_10_1038_s41374_022_00742_6 crossref_primary_10_1016_j_atech_2023_100295 crossref_primary_10_1016_j_heliyon_2024_e29077 crossref_primary_10_1007_s11042_025_21036_1 crossref_primary_10_1088_1361_6501_ad730b crossref_primary_10_1016_j_oooo_2024_02_010 crossref_primary_10_1109_TPAMI_2024_3446949 crossref_primary_10_1016_j_csi_2024_103889 crossref_primary_10_1109_ACCESS_2020_3016116 crossref_primary_10_3390_app14020496 crossref_primary_10_1186_s44356_025_00032_5 crossref_primary_10_1016_j_eswa_2021_115927 crossref_primary_10_3233_JIFS_219166 crossref_primary_10_1038_s41598_023_42946_w crossref_primary_10_1007_s10278_024_01017_w crossref_primary_10_1007_s11042_023_14358_5 crossref_primary_10_1016_j_xphs_2024_03_003 crossref_primary_10_1186_s13007_025_01436_y crossref_primary_10_3390_info15010058 crossref_primary_10_1088_1361_6560_ad7455 crossref_primary_10_1016_j_compag_2024_109281 crossref_primary_10_1002_aisy_202500069 crossref_primary_10_1007_s42979_022_01545_8 crossref_primary_10_1016_j_eswa_2022_119339 crossref_primary_10_3390_f16071095 crossref_primary_10_1016_j_asoc_2024_111589 crossref_primary_10_1038_s41598_025_87305_z crossref_primary_10_3390_rs16142636 crossref_primary_10_3389_fbioe_2024_1228846 crossref_primary_10_3390_s21165428 crossref_primary_10_32604_cmc_2024_057453 crossref_primary_10_1016_j_knosys_2024_112387 crossref_primary_10_1109_TII_2022_3182385 crossref_primary_10_1007_s13755_024_00290_x crossref_primary_10_1016_j_jobe_2024_111315 crossref_primary_10_1038_s41598_025_16261_5 crossref_primary_10_1007_s10489_021_02527_8 crossref_primary_10_1145_3469841 crossref_primary_10_3389_fmars_2024_1378159 crossref_primary_10_1007_s00062_024_01490_4 crossref_primary_10_1109_JIOT_2023_3330996 crossref_primary_10_1016_j_eswa_2022_117144 crossref_primary_10_1016_j_labinv_2025_104211 crossref_primary_10_1016_j_atech_2025_100867 crossref_primary_10_1038_s41467_022_35233_1 crossref_primary_10_3390_diagnostics15131728 crossref_primary_10_1016_j_isprsjprs_2023_11_021 crossref_primary_10_1038_s41598_025_09938_4 crossref_primary_10_1016_j_comcom_2023_03_007 crossref_primary_10_1016_j_gexplo_2023_107274 crossref_primary_10_1038_s41698_024_00616_8 crossref_primary_10_1016_j_compbiomed_2020_104026 crossref_primary_10_1177_01617346221099435 crossref_primary_10_3389_fneur_2025_1455613 crossref_primary_10_3390_bioengineering12010082 crossref_primary_10_3390_diagnostics15162040 crossref_primary_10_1016_j_microc_2025_114674 crossref_primary_10_1109_ACCESS_2024_3434670 crossref_primary_10_32604_cmc_2023_040710 crossref_primary_10_1007_s11119_022_09932_0 crossref_primary_10_3390_s24020654 crossref_primary_10_1007_s00330_020_07065_4 crossref_primary_10_3390_electronics14030571 crossref_primary_10_1016_j_aiia_2025_01_004 crossref_primary_10_1016_j_hpb_2023_01_015 crossref_primary_10_1371_journal_pcbi_1012361 crossref_primary_10_3389_fimmu_2022_897959 crossref_primary_10_1038_s41598_023_46782_w crossref_primary_10_1016_j_ijepes_2025_110682 crossref_primary_10_1186_s40662_020_00182_7 crossref_primary_10_3390_diagnostics15091177 crossref_primary_10_3390_rs13152908 crossref_primary_10_1145_3699752 crossref_primary_10_1016_j_modpat_2023_100157 crossref_primary_10_1186_s41747_023_00417_x crossref_primary_10_1259_dmfr_20200375 crossref_primary_10_1016_j_engappai_2025_110027 crossref_primary_10_1109_TPAMI_2025_3576755 crossref_primary_10_1016_j_eswa_2024_125397 crossref_primary_10_1109_TPAMI_2024_3363642 crossref_primary_10_1016_j_foohum_2023_07_018 crossref_primary_10_3390_app142311208 crossref_primary_10_1097_TP_0000000000005500 crossref_primary_10_3389_fninf_2024_1414925 crossref_primary_10_18699_vjgb_25_49 crossref_primary_10_3390_a15120455 crossref_primary_10_3390_jmse12050726 crossref_primary_10_1109_JSEN_2025_3541769 crossref_primary_10_1016_j_bspc_2024_106943 crossref_primary_10_1016_j_procs_2024_09_410 crossref_primary_10_1007_s00500_025_10660_6 crossref_primary_10_1016_j_jag_2024_103696 crossref_primary_10_1051_e3sconf_202125302080 crossref_primary_10_1016_j_optlastec_2024_111087 crossref_primary_10_3390_medicina58081090 crossref_primary_10_3390_s22082850 crossref_primary_10_1007_s13246_022_01202_7 crossref_primary_10_1109_ACCESS_2023_3235739 crossref_primary_10_3390_bioengineering12010020 crossref_primary_10_3847_1538_4357_ac3760 crossref_primary_10_1016_j_joca_2023_11_022 crossref_primary_10_1016_j_media_2021_102313 crossref_primary_10_1109_ACCESS_2025_3585764 crossref_primary_10_1038_s41746_021_00546_w crossref_primary_10_1371_journal_pone_0269323 crossref_primary_10_1016_j_eswa_2025_128725 crossref_primary_10_1109_JBHI_2021_3110593 crossref_primary_10_1212_WNL_0000000000213691 crossref_primary_10_1109_ACCESS_2024_3487114 crossref_primary_10_1109_TGRS_2025_3585878 crossref_primary_10_3389_fpls_2023_1204791 crossref_primary_10_3390_jimaging9100203 crossref_primary_10_1016_j_artint_2021_103571 crossref_primary_10_1002_aisy_202300885 crossref_primary_10_1080_19475705_2025_2485329 crossref_primary_10_3390_ai5020023 crossref_primary_10_1007_s00103_025_04101_w crossref_primary_10_1016_j_image_2024_117151 crossref_primary_10_1016_j_sysarc_2023_103063 crossref_primary_10_1016_j_jvoice_2020_08_003 crossref_primary_10_1186_s12891_025_08602_2 crossref_primary_10_1016_j_medntd_2025_100385 crossref_primary_10_1016_j_neunet_2025_108019 crossref_primary_10_1016_j_ymssp_2024_112285 crossref_primary_10_1002_mp_15390 crossref_primary_10_1016_j_heliyon_2023_e16761 crossref_primary_10_1007_s10618_022_00821_8 crossref_primary_10_1016_j_matdes_2022_111029 crossref_primary_10_1002_mp_15392 crossref_primary_10_1016_j_autcon_2024_105495 crossref_primary_10_1007_s00261_025_04929_5 crossref_primary_10_3389_fdgth_2025_1403047 crossref_primary_10_1016_j_measurement_2021_109088 crossref_primary_10_1016_j_procir_2021_05_075 crossref_primary_10_1038_s41598_025_14060_6 crossref_primary_10_3389_fneur_2025_1581338 crossref_primary_10_1093_icb_icae127 crossref_primary_10_1109_JBHI_2024_3515995 crossref_primary_10_1016_j_ijleo_2020_165373 crossref_primary_10_1016_j_patcog_2022_109019 crossref_primary_10_1007_s11282_025_00838_x crossref_primary_10_3390_cardiogenetics14010001 crossref_primary_10_1186_s13049_021_00953_8 crossref_primary_10_1063_5_0281935 crossref_primary_10_3390_rs17122026 crossref_primary_10_1016_j_microc_2025_114231 crossref_primary_10_1016_j_cscm_2025_e04613 crossref_primary_10_1016_j_gpb_2022_11_014 crossref_primary_10_1049_ipr2_12331 crossref_primary_10_1109_JSTARS_2025_3532829 crossref_primary_10_1007_s10489_024_05374_5 crossref_primary_10_1016_j_nucengdes_2025_113918 crossref_primary_10_3389_fmed_2020_619787 crossref_primary_10_3389_fmed_2022_959068 crossref_primary_10_3390_electronics14153019 crossref_primary_10_1007_s11042_023_15285_1 crossref_primary_10_1371_journal_pone_0322028 crossref_primary_10_1109_JSTARS_2020_3018307 crossref_primary_10_3390_s25072104 crossref_primary_10_21015_vtse_v13i2_2082 crossref_primary_10_1016_j_postharvbio_2023_112615 crossref_primary_10_1117_1_JATIS_9_4_049005 crossref_primary_10_1109_JBHI_2024_3414389 crossref_primary_10_1016_j_crad_2023_08_017 crossref_primary_10_1186_s13619_025_00239_9 crossref_primary_10_3390_plants13172444 crossref_primary_10_3390_app122412604 crossref_primary_10_3390_bioengineering10060654 crossref_primary_10_3389_fpls_2025_1643096 crossref_primary_10_3390_make7010006 crossref_primary_10_1038_s41598_021_92160_9 crossref_primary_10_1109_TPAMI_2023_3283780 crossref_primary_10_3390_s22208066 crossref_primary_10_3390_jimaging9020053 crossref_primary_10_1109_TIM_2023_3276529 crossref_primary_10_1007_s11760_024_03763_4 crossref_primary_10_1016_j_jclepro_2024_143781 crossref_primary_10_1038_s41598_023_28742_6 crossref_primary_10_1007_s44163_024_00110_x crossref_primary_10_1111_bjop_12714 crossref_primary_10_1007_s11282_024_00739_5 crossref_primary_10_1364_PRJ_428425 crossref_primary_10_3390_rs15194818 crossref_primary_10_1016_j_bspc_2023_104810 crossref_primary_10_3389_fmed_2021_626369 crossref_primary_10_1007_s40766_025_00073_4 crossref_primary_10_1007_s10278_022_00674_z crossref_primary_10_1007_s10278_024_01226_3 crossref_primary_10_3390_ijerph19031133 crossref_primary_10_1088_1361_6560_ad2637 crossref_primary_10_1109_TSIPN_2025_3573591 crossref_primary_10_1016_j_fusengdes_2025_115401 crossref_primary_10_1016_j_jvcir_2025_104453 crossref_primary_10_1080_02713683_2024_2303713 crossref_primary_10_1177_01455613231212051 crossref_primary_10_1016_j_est_2025_117233 crossref_primary_10_1007_s11263_024_02208_2 crossref_primary_10_1016_j_csbj_2021_08_033 crossref_primary_10_1186_s13007_023_01020_2 crossref_primary_10_1038_s41598_021_83102_6 crossref_primary_10_2186_jpr_JPR_D_22_00053 crossref_primary_10_3389_fnins_2022_807085 crossref_primary_10_1109_JBHI_2021_3061457 crossref_primary_10_1016_j_imavis_2024_105214 crossref_primary_10_1109_ACCESS_2025_3596051 crossref_primary_10_1016_j_ijmedinf_2021_104583 crossref_primary_10_1038_s41598_023_36148_7 crossref_primary_10_1109_TETCI_2025_3543361 crossref_primary_10_1016_j_compbiomed_2021_104399 crossref_primary_10_1016_j_ebiom_2024_105047 crossref_primary_10_1002_cepa_2141 crossref_primary_10_1016_j_inffus_2020_10_004 crossref_primary_10_3390_jimaging9020037 crossref_primary_10_1186_s13244_023_01542_2 crossref_primary_10_1371_journal_pone_0322052 crossref_primary_10_3390_diagnostics15080953 crossref_primary_10_1109_JSTARS_2024_3419035 crossref_primary_10_1097_JS9_0000000000002667 crossref_primary_10_3390_rs16132427 crossref_primary_10_1016_j_knosys_2022_109474 crossref_primary_10_1186_s12911_023_02386_y crossref_primary_10_1038_s41598_021_84593_z crossref_primary_10_3389_fnins_2023_1268860 crossref_primary_10_1109_TCSVT_2022_3171972 crossref_primary_10_1109_TITS_2025_3558469 crossref_primary_10_3389_fpls_2025_1561018 crossref_primary_10_3389_fmed_2022_923096 crossref_primary_10_3390_agriculture15020205 crossref_primary_10_1016_j_eswa_2023_122878 crossref_primary_10_1109_ACCESS_2023_3315589 crossref_primary_10_1186_s13007_022_00839_5 crossref_primary_10_1016_j_eswa_2025_128774 crossref_primary_10_1109_ACCESS_2022_3169159 crossref_primary_10_1109_TIE_2021_3086714 crossref_primary_10_3389_fnagi_2023_1102869 crossref_primary_10_1126_sciadv_ads5185 crossref_primary_10_1007_s40200_025_01596_7 crossref_primary_10_1080_01431161_2023_2288945 crossref_primary_10_1109_TGRS_2023_3348931 crossref_primary_10_1016_j_isci_2025_113045 crossref_primary_10_1109_JSTARS_2024_3357171 crossref_primary_10_1016_j_cageo_2024_105532 crossref_primary_10_1016_j_cmpb_2023_107466 crossref_primary_10_3390_sym17050724 crossref_primary_10_1002_nem_70007 crossref_primary_10_1109_TAFFC_2024_3378698 crossref_primary_10_1245_s10434_023_14083_1 crossref_primary_10_3390_electronics11172706 crossref_primary_10_1287_isre_2023_0029 crossref_primary_10_1111_ene_15181 crossref_primary_10_1155_2021_5531186 crossref_primary_10_1016_j_knosys_2025_113173 crossref_primary_10_3390_app131810179 crossref_primary_10_1073_pnas_2021171118 crossref_primary_10_1007_s10549_022_06521_7 crossref_primary_10_1007_s12559_023_10192_x crossref_primary_10_1016_j_birob_2025_100249 crossref_primary_10_1088_2058_9565_aca55d crossref_primary_10_3390_math12152354 crossref_primary_10_1002_mp_16623 crossref_primary_10_3390_brainsci13121706 crossref_primary_10_1016_j_aei_2024_102964 crossref_primary_10_1016_j_preteyeres_2025_101352 crossref_primary_10_1016_j_geoen_2024_212938 crossref_primary_10_1109_ACCESS_2024_3422235 crossref_primary_10_1111_jgh_15904 crossref_primary_10_3233_XST_221151 crossref_primary_10_1016_j_ijpharm_2024_125127 crossref_primary_10_1016_j_tws_2025_113865 crossref_primary_10_1109_TMM_2023_3313507 crossref_primary_10_1007_s00521_023_08966_3 crossref_primary_10_1016_j_jhydrol_2024_132551 crossref_primary_10_3389_fonc_2022_969707 crossref_primary_10_1007_s11548_025_03382_5 crossref_primary_10_3390_foods14111987 crossref_primary_10_1038_s41598_022_23078_z crossref_primary_10_1186_s10086_023_02096_z crossref_primary_10_1109_JBHI_2024_3355020 crossref_primary_10_1016_j_eswa_2025_128329 crossref_primary_10_1016_j_neunet_2024_106393 crossref_primary_10_3389_fmed_2024_1447951 crossref_primary_10_1038_s41598_025_02194_6 crossref_primary_10_1186_s12984_025_01570_7 crossref_primary_10_1016_j_talanta_2023_124946 crossref_primary_10_1109_TCSVT_2025_3525796 crossref_primary_10_1109_TIP_2022_3142511 crossref_primary_10_1007_s13246_020_00957_1 crossref_primary_10_1016_j_cmpb_2023_107441 crossref_primary_10_1016_j_optlastec_2025_113077 crossref_primary_10_1080_07853890_2023_2279239 crossref_primary_10_1097_CORR_0000000000002771 crossref_primary_10_3390_rs17132213 crossref_primary_10_1016_j_artmed_2025_103191 crossref_primary_10_1016_j_cmpb_2022_107161 crossref_primary_10_3390_jimaging11030076 crossref_primary_10_1088_1748_0221_20_09_P09032 crossref_primary_10_1109_TUFFC_2023_3248968 crossref_primary_10_1016_j_engappai_2024_109183 crossref_primary_10_1109_TITS_2022_3147669 crossref_primary_10_1016_j_asoc_2020_106744 crossref_primary_10_1016_j_bspc_2025_108562 crossref_primary_10_1109_ACCESS_2022_3197645 crossref_primary_10_1016_j_labinv_2023_100127 crossref_primary_10_3390_rs17132219 crossref_primary_10_1007_s00521_022_07019_5 crossref_primary_10_1109_JSTARS_2024_3394571 crossref_primary_10_1002_mp_15307 crossref_primary_10_1002_mp_17968 crossref_primary_10_3390_app12073341 crossref_primary_10_1016_j_humpath_2025_105762 crossref_primary_10_1088_2057_1976_ada6bd crossref_primary_10_1007_s00027_025_01177_z crossref_primary_10_1109_ACCESS_2021_3059806 crossref_primary_10_1007_s10462_025_11165_2 crossref_primary_10_3390_make7010012 crossref_primary_10_1371_journal_pone_0280987 crossref_primary_10_1016_j_fct_2025_115401 crossref_primary_10_1038_s41598_023_33021_5 crossref_primary_10_3390_agriculture15010037 crossref_primary_10_1186_s40644_021_00425_3 crossref_primary_10_1038_s41598_025_15160_z crossref_primary_10_1038_s41598_023_34303_8 crossref_primary_10_1109_ACCESS_2023_3276642 crossref_primary_10_1007_s10388_025_01106_x crossref_primary_10_1162_imag_a_00084 crossref_primary_10_1016_j_jos_2023_05_004 crossref_primary_10_1049_gtd2_12428 crossref_primary_10_3390_info15090557 crossref_primary_10_1186_s12911_022_01788_8 crossref_primary_10_1080_00051144_2024_2374179 crossref_primary_10_3390_math10214153 crossref_primary_10_1038_s41598_022_17602_4 crossref_primary_10_1080_23311916_2021_2010510 crossref_primary_10_3390_app122311880 crossref_primary_10_1038_s41746_021_00496_3 crossref_primary_10_1364_BOE_559663 crossref_primary_10_3389_fnins_2025_1635588 crossref_primary_10_1109_TNNLS_2024_3370294 crossref_primary_10_1002_ima_23173 crossref_primary_10_1016_j_ndteint_2023_102978 crossref_primary_10_1155_2021_6939094 crossref_primary_10_1002_int_22686 crossref_primary_10_1038_s41698_024_00678_8 crossref_primary_10_1088_1361_6560_ad9db3 crossref_primary_10_1007_s11571_023_10028_2 crossref_primary_10_3390_app11062732 crossref_primary_10_1016_j_bspc_2024_106585 crossref_primary_10_1109_TITS_2023_3270879 crossref_primary_10_1109_TITS_2024_3513400 crossref_primary_10_3390_fluids7070239 crossref_primary_10_1038_s41598_024_75915_y crossref_primary_10_1109_TIP_2021_3056887 crossref_primary_10_1007_s00521_024_10273_4 crossref_primary_10_1038_s41598_021_95653_9 crossref_primary_10_1097_CM9_0000000000003575 crossref_primary_10_1007_s00138_023_01383_5 crossref_primary_10_1007_s00371_024_03701_y crossref_primary_10_1007_s10845_021_01870_4 crossref_primary_10_1016_j_procir_2022_09_058 crossref_primary_10_1177_15353702231171898 crossref_primary_10_1016_j_engappai_2025_110518 crossref_primary_10_1038_s41598_022_24356_6 crossref_primary_10_1016_j_measurement_2025_117473 crossref_primary_10_1177_14759217251316329 crossref_primary_10_1088_1742_6596_2029_1_012145 crossref_primary_10_1080_17480930_2024_2372508 crossref_primary_10_3389_frai_2025_1645877 crossref_primary_10_1109_ACCESS_2021_3119664 crossref_primary_10_1088_1361_6579_ada86a crossref_primary_10_1016_j_neunet_2023_01_018 crossref_primary_10_1007_s11042_024_18401_x crossref_primary_10_26508_lsa_202403067 crossref_primary_10_1016_j_coldregions_2024_104179 crossref_primary_10_3390_info15090531 crossref_primary_10_4018_IJNCR_310006 crossref_primary_10_1016_j_imavis_2025_105456 crossref_primary_10_1016_j_nicl_2022_103266 crossref_primary_10_1038_s41598_025_97645_5 crossref_primary_10_1088_2631_8695_ad6af6 crossref_primary_10_1631_FITEE_1900637 crossref_primary_10_1016_j_eswa_2023_121497 crossref_primary_10_1016_j_renene_2021_10_025 crossref_primary_10_3389_fnhum_2023_1134599 crossref_primary_10_7717_peerj_cs_1253 crossref_primary_10_1016_j_jksuci_2023_01_017 crossref_primary_10_3389_fpsyg_2021_808414 crossref_primary_10_1007_s00330_020_07213_w crossref_primary_10_1016_j_addma_2024_104575 crossref_primary_10_1007_s10916_022_01806_2 crossref_primary_10_1007_s10489_023_05231_x crossref_primary_10_3390_agriculture12020232 crossref_primary_10_3390_agronomy15051234 crossref_primary_10_1007_s11042_024_19716_5 crossref_primary_10_1080_17499518_2024_2316265 crossref_primary_10_1007_s10207_023_00689_9 crossref_primary_10_1038_s41467_025_56908_5 crossref_primary_10_3390_app15094950 crossref_primary_10_1016_j_bspc_2022_103770 crossref_primary_10_1038_s41598_021_95533_2 crossref_primary_10_1002_jmri_28856 crossref_primary_10_1088_1361_6501_adb2b5 crossref_primary_10_1039_D5AY00475F crossref_primary_10_3390_jmse11071392 crossref_primary_10_1016_j_asoc_2025_113265 crossref_primary_10_1016_j_atech_2025_101286 crossref_primary_10_1145_3588320 crossref_primary_10_1007_s00464_024_11115_z crossref_primary_10_1016_j_compbiomed_2023_106788 crossref_primary_10_1109_ACCESS_2025_3546683 crossref_primary_10_3390_agriculture15050503 crossref_primary_10_1038_s41598_022_21408_9 crossref_primary_10_1016_j_eswa_2022_117946 crossref_primary_10_1007_s11554_024_01551_4 crossref_primary_10_1016_j_clinimag_2024_110254 crossref_primary_10_1155_2023_4301745 crossref_primary_10_3390_w17101465 crossref_primary_10_3390_cancers17091575 crossref_primary_10_3389_fpls_2024_1381367 crossref_primary_10_3390_app10062050 crossref_primary_10_1016_j_eswa_2024_124866 crossref_primary_10_1109_TIP_2023_3346295 crossref_primary_10_1007_s00330_024_11312_3 crossref_primary_10_1016_j_cmpb_2023_107986 crossref_primary_10_1016_j_cmpb_2025_109016 crossref_primary_10_1016_j_jfca_2025_107947 crossref_primary_10_1213_ANE_0000000000007691 crossref_primary_10_1109_TCSVT_2024_3358850 crossref_primary_10_1245_s10434_022_12055_5 crossref_primary_10_1161_CIRCOUTCOMES_123_010602 crossref_primary_10_1109_TIFS_2024_3378427 crossref_primary_10_1038_s41598_024_62329_z crossref_primary_10_1109_TCSS_2024_3378065 crossref_primary_10_3390_app132111657 crossref_primary_10_1158_0008_5472_CAN_24_4190 crossref_primary_10_1177_23969873241260154 crossref_primary_10_3390_math10214114 crossref_primary_10_1016_j_cjca_2021_09_004 crossref_primary_10_1038_s41598_024_68866_x crossref_primary_10_1145_3703839 crossref_primary_10_1016_j_measurement_2023_113341 crossref_primary_10_1016_j_iswa_2022_200094 crossref_primary_10_1002_lom3_10723 crossref_primary_10_1109_LCOMM_2025_3566862 crossref_primary_10_1002_hbm_26399 crossref_primary_10_1245_s10434_025_17717_8 crossref_primary_10_1093_sysbio_syad044 crossref_primary_10_1016_j_trac_2022_116804 crossref_primary_10_1080_1206212X_2023_2285533 crossref_primary_10_1016_j_cropro_2024_106823 crossref_primary_10_1016_j_spasta_2023_100740 crossref_primary_10_1007_s00530_025_01893_4 crossref_primary_10_1109_JBHI_2020_3045743 crossref_primary_10_1038_s41374_021_00579_5 crossref_primary_10_1016_j_optlastec_2025_113486 crossref_primary_10_1016_j_microc_2025_113840 crossref_primary_10_1016_j_eswa_2025_128278 crossref_primary_10_1109_TMM_2021_3126153 crossref_primary_10_1016_j_compbiomed_2023_107650 crossref_primary_10_1007_s11760_025_04259_5 crossref_primary_10_1148_radiol_2021204731 crossref_primary_10_3389_fphys_2025_1592593 crossref_primary_10_3390_rs14236096 crossref_primary_10_1016_j_jmr_2021_106936 crossref_primary_10_1038_s41746_024_01260_z crossref_primary_10_1016_j_artmed_2024_102897 crossref_primary_10_3390_rs16234347 crossref_primary_10_1016_j_scienta_2023_112821 crossref_primary_10_1038_s41598_022_13275_1 crossref_primary_10_1109_JBHI_2021_3103389 crossref_primary_10_3389_fspas_2022_1016453 crossref_primary_10_1016_j_eswa_2021_115045 crossref_primary_10_3390_rs17050745 crossref_primary_10_1002_aisy_202400293 crossref_primary_10_3390_agronomy14102208 crossref_primary_10_1016_j_acra_2024_03_044 crossref_primary_10_1016_j_bspc_2025_108609 crossref_primary_10_1016_j_imavis_2025_105491 crossref_primary_10_1007_s10845_024_02397_0 crossref_primary_10_1016_j_engappai_2025_110966 crossref_primary_10_3847_1538_4357_ac5019 crossref_primary_10_1007_s11263_022_01706_5 crossref_primary_10_3390_rs13142697 crossref_primary_10_1016_j_eswa_2025_129135 crossref_primary_10_3390_electronics13020452 crossref_primary_10_1002_lary_28539 crossref_primary_10_1016_j_ejca_2024_115199 crossref_primary_10_1007_s10462_025_11135_8 crossref_primary_10_3390_app10082908 crossref_primary_10_1186_s43074_022_00079_9 crossref_primary_10_1007_s42452_025_06565_6 crossref_primary_10_1016_j_biosystemseng_2022_08_018 crossref_primary_10_1021_acsami_5c09372 crossref_primary_10_3390_diagnostics11010041 crossref_primary_10_1109_JBHI_2024_3405993 crossref_primary_10_3389_fninf_2021_802938 crossref_primary_10_3390_info14120660 crossref_primary_10_3390_rs16030486 crossref_primary_10_1016_j_chaos_2025_117047 crossref_primary_10_1038_s41598_025_08080_5 crossref_primary_10_1109_TIP_2022_3157149 crossref_primary_10_1007_s00500_023_09530_w crossref_primary_10_2147_CCID_S360450 crossref_primary_10_1038_s41591_020_0942_0 crossref_primary_10_1007_s40789_023_00579_4 crossref_primary_10_1002_jbio_202200227 crossref_primary_10_1016_j_isatra_2021_11_019 crossref_primary_10_1002_nau_25490 crossref_primary_10_1038_s41591_023_02643_7 crossref_primary_10_1016_j_isci_2024_110013 crossref_primary_10_1016_j_acra_2024_05_023 crossref_primary_10_1080_17452759_2024_2427243 crossref_primary_10_3390_heritage8030102 crossref_primary_10_1109_TCSVT_2024_3520734 crossref_primary_10_1109_TITS_2021_3135006 crossref_primary_10_1016_j_rcim_2024_102806 crossref_primary_10_1016_j_jelectrocard_2023_07_002 crossref_primary_10_1080_08839514_2025_2502568 crossref_primary_10_1109_ACCESS_2024_3398061 crossref_primary_10_1109_TAI_2022_3222618 crossref_primary_10_1109_TIFS_2025_3592561 crossref_primary_10_3724_SP_J_1089_2022_18927 crossref_primary_10_1016_j_artint_2022_103823 crossref_primary_10_3389_fonc_2021_665929 crossref_primary_10_1007_s10462_022_10354_7 crossref_primary_10_1109_TCE_2024_3407713 crossref_primary_10_1371_journal_pone_0311811 crossref_primary_10_1186_s13195_025_01827_2 crossref_primary_10_1007_s12194_024_00875_x crossref_primary_10_1091_mbc_E23_08_0298 crossref_primary_10_1007_s42979_023_02308_9 crossref_primary_10_1080_19475705_2023_2213807 crossref_primary_10_1016_j_measurement_2023_113708 crossref_primary_10_3390_electronics12010048 crossref_primary_10_1186_s13195_024_01425_8 crossref_primary_10_1016_j_engappai_2024_108782 crossref_primary_10_3390_life14101248 crossref_primary_10_3390_agriculture12101736 crossref_primary_10_1016_j_compbiomed_2022_106060 crossref_primary_10_1016_j_knosys_2023_111186 crossref_primary_10_3390_rs17162825 crossref_primary_10_1007_s11042_024_18863_z crossref_primary_10_1016_j_patcog_2023_109760 crossref_primary_10_1109_TITS_2024_3520103 crossref_primary_10_1016_j_aichem_2023_100010 crossref_primary_10_1111_acel_14196 crossref_primary_10_1088_1361_6587_acb465 crossref_primary_10_1186_s13244_025_01950_6 crossref_primary_10_1109_TCSVT_2022_3210010 crossref_primary_10_1145_3564702 crossref_primary_10_1016_j_bspc_2024_106955 crossref_primary_10_1038_s41598_023_32899_5 crossref_primary_10_1016_j_scienta_2024_113155 crossref_primary_10_1016_j_patrec_2025_05_019 crossref_primary_10_1007_s00330_022_09319_9 crossref_primary_10_1109_ACCESS_2023_3325404 crossref_primary_10_2463_mrms_mp_2025_0064 crossref_primary_10_3390_rs13142658 crossref_primary_10_1016_j_imavis_2022_104566 crossref_primary_10_1109_TVCG_2021_3122388 crossref_primary_10_1007_s12559_023_10196_7 crossref_primary_10_1016_j_compbiomed_2022_106095 crossref_primary_10_3390_s24227345 crossref_primary_10_1016_j_jcp_2024_113224 crossref_primary_10_1016_j_jmb_2023_168121 crossref_primary_10_1038_s41379_021_00859_x crossref_primary_10_1016_j_compbiomed_2020_103699 crossref_primary_10_1093_icb_icab107 crossref_primary_10_3390_app15169061 crossref_primary_10_1109_TIM_2022_3206810 crossref_primary_10_1016_j_isprsjprs_2024_10_003 crossref_primary_10_1109_TNNLS_2022_3201586 crossref_primary_10_1016_j_cageo_2020_104479 crossref_primary_10_1136_heartjnl_2024_324612 crossref_primary_10_1016_j_bspc_2023_105329 crossref_primary_10_1134_S1054661824700974 crossref_primary_10_1016_j_matt_2025_102138 crossref_primary_10_3390_bios13120993 crossref_primary_10_1038_s41551_022_00923_0 crossref_primary_10_1038_s41598_023_43125_7 crossref_primary_10_3390_bioengineering11101005 crossref_primary_10_1016_j_ssci_2024_106590 crossref_primary_10_1016_j_msard_2024_105743 crossref_primary_10_3390_life12070958 crossref_primary_10_1088_2632_2153_ade6c4 crossref_primary_10_3390_electronics11244114 crossref_primary_10_1016_j_compbiomed_2025_109838 crossref_primary_10_1007_s13369_025_10223_9 crossref_primary_10_1063_5_0193621 crossref_primary_10_1109_JBHI_2021_3106837 crossref_primary_10_1016_j_bspc_2020_102210 crossref_primary_10_1007_s11548_020_02305_w crossref_primary_10_1016_j_joen_2024_05_014 crossref_primary_10_1109_TIP_2024_3349868 crossref_primary_10_1038_s41598_025_12825_7 crossref_primary_10_3390_s23115201 crossref_primary_10_1016_j_compeleceng_2023_108861 crossref_primary_10_1007_s11053_025_10462_5 crossref_primary_10_1016_j_compag_2024_108762 crossref_primary_10_1007_s42044_024_00190_z crossref_primary_10_3389_fcvm_2022_989091 crossref_primary_10_1016_j_kint_2024_12_007 crossref_primary_10_1109_TPAMI_2024_3361862 crossref_primary_10_1016_j_jmapro_2020_10_019 crossref_primary_10_1016_j_mtcomm_2024_110294 crossref_primary_10_1016_j_ins_2024_121418 crossref_primary_10_1177_14759217241246953 crossref_primary_10_3389_fnins_2021_657540 crossref_primary_10_3390_e25091350 crossref_primary_10_1016_j_ese_2025_100538 crossref_primary_10_1016_j_cmpb_2023_107911 crossref_primary_10_1038_s41467_023_36736_1 crossref_primary_10_1016_j_patcog_2021_108243 crossref_primary_10_3390_app121910180 crossref_primary_10_1016_j_engappai_2024_107886 crossref_primary_10_1038_s41746_025_01831_8 crossref_primary_10_1007_s12599_025_00932_8 crossref_primary_10_1109_ACCESS_2025_3561848 crossref_primary_10_1155_2021_6633755 crossref_primary_10_3390_e26110974 crossref_primary_10_1007_s12539_025_00766_8 crossref_primary_10_1007_s11263_024_02136_1 crossref_primary_10_1007_s10694_025_01778_y crossref_primary_10_1007_s10462_025_11335_2 crossref_primary_10_1109_ACCESS_2025_3593428 crossref_primary_10_3390_electronics14173523 crossref_primary_10_1007_s41095_020_0191_7 crossref_primary_10_3390_plants10061257 crossref_primary_10_1007_s00330_023_09436_z crossref_primary_10_1016_j_asoc_2022_109947 crossref_primary_10_1145_3734191 crossref_primary_10_1016_j_cose_2024_104252 crossref_primary_10_1097_IAE_0000000000003287 crossref_primary_10_1016_j_compeleceng_2022_108127 crossref_primary_10_1016_j_engappai_2024_108768 crossref_primary_10_1371_journal_pntd_0013234 crossref_primary_10_1109_TCSVT_2021_3088446 crossref_primary_10_1109_ACCESS_2020_2979549 crossref_primary_10_1186_s12859_022_04773_0 crossref_primary_10_1109_ACCESS_2025_3570792 crossref_primary_10_1109_TNSE_2025_3541138 crossref_primary_10_3389_fmars_2023_1147690 crossref_primary_10_3389_fninf_2023_1123376 crossref_primary_10_1007_s00330_021_08247_4 crossref_primary_10_1007_s10489_021_03152_1 crossref_primary_10_1016_j_cjca_2021_07_016 crossref_primary_10_1016_j_patrec_2020_04_004 crossref_primary_10_1016_j_knosys_2024_112343 crossref_primary_10_1186_s13007_024_01243_x crossref_primary_10_2147_CMAR_S312608 crossref_primary_10_1002_jum_15868 crossref_primary_10_1177_20552076231225853 crossref_primary_10_1097_APO_0000000000000576 crossref_primary_10_1109_TIE_2021_3099254 crossref_primary_10_1007_s10278_024_01022_z crossref_primary_10_1007_s11042_024_18645_7 crossref_primary_10_1109_ACCESS_2024_3474690 crossref_primary_10_1371_journal_pone_0317181 crossref_primary_10_1007_s10845_024_02379_2 crossref_primary_10_1093_bib_bbae699 crossref_primary_10_1007_s11042_023_14764_9 crossref_primary_10_1007_s11548_022_02696_y crossref_primary_10_1016_j_compbiomed_2021_104887 crossref_primary_10_1016_j_engappai_2024_109601 crossref_primary_10_1109_TIV_2024_3412198 crossref_primary_10_3390_ijms24065323 crossref_primary_10_1088_2057_1976_ad6f17 crossref_primary_10_1109_JBHI_2023_3348130 crossref_primary_10_3390_cancers13236048 crossref_primary_10_1007_s00292_024_01324_7 crossref_primary_10_1016_j_neucom_2022_01_082 crossref_primary_10_1002_cem_3643 crossref_primary_10_1002_hbm_70008 crossref_primary_10_3390_ijerph191811193 crossref_primary_10_1016_j_compag_2023_108473 crossref_primary_10_1038_s41598_025_16422_6 crossref_primary_10_1016_j_engappai_2023_107133 crossref_primary_10_1016_j_jas_2021_105375 crossref_primary_10_1145_3675392 crossref_primary_10_1108_EC_08_2023_0446 crossref_primary_10_1016_j_patcog_2024_111092 crossref_primary_10_1109_ACCESS_2025_3581450 crossref_primary_10_3389_fonc_2022_846775 crossref_primary_10_1007_s10489_024_05729_y crossref_primary_10_1109_ACCESS_2021_3054484 crossref_primary_10_1016_j_bspc_2025_108230 crossref_primary_10_1177_14759217231202543 crossref_primary_10_1007_s10845_023_02156_7 crossref_primary_10_1016_j_compag_2025_110645 crossref_primary_10_1371_journal_pone_0313277 crossref_primary_10_1016_j_matlet_2021_130363 crossref_primary_10_3389_fnins_2022_883385 crossref_primary_10_3390_rs13173533 crossref_primary_10_1016_j_foodchem_2024_139283 crossref_primary_10_1016_j_chemosphere_2022_136119 crossref_primary_10_1016_j_saa_2023_122743 crossref_primary_10_2478_acss_2025_0002 crossref_primary_10_1007_s11263_023_01919_2 crossref_primary_10_1038_s41597_022_01238_0 crossref_primary_10_1016_j_neunet_2025_107228 crossref_primary_10_1002_joa3_13037 crossref_primary_10_1002_advs_202417682 crossref_primary_10_1002_jmri_28160 crossref_primary_10_1016_j_patcog_2023_109828 crossref_primary_10_1109_JIOT_2023_3339476 crossref_primary_10_1109_TCBB_2022_3190265 crossref_primary_10_1007_s00403_022_02492_3 crossref_primary_10_1016_j_jhazmat_2021_126746 crossref_primary_10_1016_j_csbj_2023_11_040 crossref_primary_10_1016_j_media_2022_102526 crossref_primary_10_1186_s12920_024_01796_9 crossref_primary_10_3390_cancers17152476 crossref_primary_10_1016_j_imu_2021_100557 crossref_primary_10_1007_s13534_025_00493_5 crossref_primary_10_1063_5_0135015 crossref_primary_10_1016_j_displa_2022_102241 crossref_primary_10_1016_j_jdent_2022_104239 crossref_primary_10_1007_s41348_024_01050_5 crossref_primary_10_3389_fams_2021_716044 crossref_primary_10_3390_agriculture15030331 crossref_primary_10_1136_bjophthalmol_2020_316984 crossref_primary_10_1021_acs_jproteome_4c00759 crossref_primary_10_1038_s41598_024_82378_8 crossref_primary_10_2196_24762 crossref_primary_10_1007_s10118_025_3293_y crossref_primary_10_1109_JBHI_2022_3232811 crossref_primary_10_1007_s00066_021_01874_2 crossref_primary_10_1007_s11665_023_07949_8 crossref_primary_10_3390_app13095281 crossref_primary_10_1167_tvst_14_6_25 crossref_primary_10_1007_s44174_025_00455_6 crossref_primary_10_1007_s11063_024_11547_7 crossref_primary_10_3390_agriculture12111929 crossref_primary_10_1007_s10311_023_01604_3 crossref_primary_10_1177_00045632231154782 crossref_primary_10_1109_TIFS_2025_3539946 crossref_primary_10_1109_TMM_2021_3050082 crossref_primary_10_1186_s12880_024_01352_y crossref_primary_10_3389_fpls_2024_1382715 crossref_primary_10_1109_ACCESS_2023_3347038 crossref_primary_10_1016_j_inffus_2023_101883 crossref_primary_10_3390_app12115310 crossref_primary_10_1016_j_eja_2024_127489 crossref_primary_10_1016_j_wneu_2022_01_068 crossref_primary_10_1016_j_bspc_2025_108259 crossref_primary_10_1007_s10994_025_06857_3 crossref_primary_10_1109_JSEN_2023_3235252 crossref_primary_10_1016_j_displa_2022_102233 crossref_primary_10_1016_j_tree_2023_11_002 crossref_primary_10_1016_j_displa_2022_102239 crossref_primary_10_1038_s41598_023_45314_w crossref_primary_10_1038_s41598_023_43386_2 crossref_primary_10_15184_aqy_2023_175 crossref_primary_10_1007_s12553_024_00823_0 crossref_primary_10_1016_j_ijrobp_2023_11_059 crossref_primary_10_1155_2022_2067990 crossref_primary_10_1111_aab_12804 crossref_primary_10_1016_j_jrmge_2024_10_027 crossref_primary_10_1016_j_eswa_2025_127721 crossref_primary_10_1109_TIM_2024_3481551 crossref_primary_10_1016_j_cropro_2024_107058 crossref_primary_10_1016_j_patrec_2023_02_018 crossref_primary_10_1038_s41598_021_04603_y crossref_primary_10_1016_j_aei_2025_103320 crossref_primary_10_1021_acsnano_5c00670 crossref_primary_10_1109_ACCESS_2020_3040349 crossref_primary_10_1186_s12876_022_02312_y crossref_primary_10_1007_s40123_024_01009_7 crossref_primary_10_1038_s41598_023_46606_x crossref_primary_10_1038_s41598_023_45532_2 crossref_primary_10_3390_horticulturae11060671 crossref_primary_10_1109_TDSC_2022_3184594 crossref_primary_10_1016_j_jelectrocard_2025_154083 crossref_primary_10_1016_j_patcog_2024_111171 crossref_primary_10_1016_j_cmpb_2022_106815 crossref_primary_10_1016_j_cropro_2024_107006 crossref_primary_10_1016_j_jbi_2021_103981 crossref_primary_10_1016_j_jelectrocard_2021_06_006 crossref_primary_10_1109_ACCESS_2021_3104627 crossref_primary_10_1109_ACCESS_2023_3339827 crossref_primary_10_32604_cmc_2024_047541 crossref_primary_10_1002_mp_17689 crossref_primary_10_1016_j_enganabound_2023_12_024 crossref_primary_10_1080_17434440_2025_2514764 crossref_primary_10_1088_1674_4527_adccf5 crossref_primary_10_1109_TPWRD_2023_3248102 crossref_primary_10_3390_electronics12234805 crossref_primary_10_1371_journal_pone_0319859 crossref_primary_10_1109_JSTARS_2025_3591795 crossref_primary_10_3390_su14063275 crossref_primary_10_1007_s11042_021_11638_w crossref_primary_10_1088_1742_6596_1601_5_052021 crossref_primary_10_1109_JSTARS_2024_3447649 crossref_primary_10_1007_s12204_025_2818_4 crossref_primary_10_1007_s12149_023_01866_5 crossref_primary_10_1109_TPAMI_2025_3560033 crossref_primary_10_1093_ehjdh_ztaf101 crossref_primary_10_1145_3418355 crossref_primary_10_1016_j_compbiomed_2022_105617 crossref_primary_10_1016_j_mtcomm_2022_104228 crossref_primary_10_1016_j_knosys_2022_109571 crossref_primary_10_1016_j_rechem_2025_102446 crossref_primary_10_1109_TMI_2022_3147690 crossref_primary_10_1109_TII_2022_3228197 crossref_primary_10_1016_j_engfailanal_2025_109292 crossref_primary_10_1186_s13640_024_00620_9 crossref_primary_10_1002_cyto_a_24349 crossref_primary_10_3389_fnins_2020_629630 crossref_primary_10_1016_j_bone_2024_117330 crossref_primary_10_3390_jcm10153198 crossref_primary_10_1071_WF22220 crossref_primary_10_1016_j_mri_2024_05_008 crossref_primary_10_1111_cas_70089 crossref_primary_10_1016_j_jpi_2024_100390 crossref_primary_10_1002_int_23022 crossref_primary_10_1038_s41598_025_88958_6 crossref_primary_10_1016_j_compbiomed_2024_108001 crossref_primary_10_1109_JBHI_2022_3179014 crossref_primary_10_3233_JIFS_223584 crossref_primary_10_3389_fpsyg_2021_723325 crossref_primary_10_1016_j_compbiomed_2021_104479 crossref_primary_10_1002_pro_4555 crossref_primary_10_1016_j_atech_2025_101408 crossref_primary_10_3788_LOP242337 crossref_primary_10_3390_bioengineering9070288 crossref_primary_10_1016_j_displa_2024_102874 crossref_primary_10_1145_3507918 crossref_primary_10_1016_j_ijadhadh_2024_103784 crossref_primary_10_1016_j_bone_2021_115943 crossref_primary_10_1007_s11263_022_01746_x crossref_primary_10_1371_journal_pone_0329205 crossref_primary_10_1016_j_media_2022_102507 crossref_primary_10_1002_cjp2_355 crossref_primary_10_1016_j_bspc_2023_105897 crossref_primary_10_3390_electronics12102339 crossref_primary_10_1007_s42979_021_00795_2 crossref_primary_10_1109_TIFS_2024_3424291 crossref_primary_10_1088_1741_2552_ac40a0 crossref_primary_10_1016_j_ces_2022_118161 crossref_primary_10_1016_j_saa_2025_126482 crossref_primary_10_1007_s10278_024_01134_6 crossref_primary_10_1049_ipr2_70194 crossref_primary_10_1007_s00603_025_04905_x crossref_primary_10_1016_j_aca_2025_344113 crossref_primary_10_1016_j_rser_2025_115809 crossref_primary_10_3390_app112411587 crossref_primary_10_1088_1742_6596_2184_1_012054 crossref_primary_10_1161_CIRCHEARTFAILURE_123_011368 crossref_primary_10_1016_j_jdent_2023_104582 crossref_primary_10_1109_TIM_2023_3324362 crossref_primary_10_1007_s10115_022_01756_8 crossref_primary_10_1016_j_jdent_2023_104581 crossref_primary_10_1088_2057_1976_ae0482 crossref_primary_10_3389_frai_2022_1025148 crossref_primary_10_1007_s10489_024_05582_z crossref_primary_10_1016_j_bspc_2024_107029 crossref_primary_10_1016_j_compbiomed_2024_108029 crossref_primary_10_1088_1361_6501_adee32 crossref_primary_10_1155_2021_5513679 crossref_primary_10_1016_j_jksuci_2022_09_013 crossref_primary_10_1186_s40658_022_00510_x crossref_primary_10_1007_s11623_025_2081_8 crossref_primary_10_3390_s22166229 crossref_primary_10_3390_s21155113 crossref_primary_10_1063_5_0188862 crossref_primary_10_1016_j_eswa_2025_127787 crossref_primary_10_1016_j_bspc_2024_107031 crossref_primary_10_1016_j_clinimag_2025_110492 crossref_primary_10_1016_j_mlwa_2025_100653 crossref_primary_10_1016_j_procs_2023_01_165 crossref_primary_10_3390_app12199435 crossref_primary_10_3390_jimaging9100199 crossref_primary_10_1016_j_jhazmat_2024_136558 crossref_primary_10_1117_1_JRS_18_042610 crossref_primary_10_3389_fonc_2022_842759 crossref_primary_10_3390_ani15182669 crossref_primary_10_1016_j_microc_2024_110551 crossref_primary_10_1121_10_0034360 crossref_primary_10_3748_wjg_v31_i21_107601 crossref_primary_10_1007_s00330_023_09704_y crossref_primary_10_1016_j_engappai_2025_111209 crossref_primary_10_1016_j_inffus_2025_103306 crossref_primary_10_3390_electronics13132456 crossref_primary_10_1007_s10278_023_00846_5 crossref_primary_10_1109_ACCESS_2025_3587227 crossref_primary_10_1016_j_eng_2025_08_005 crossref_primary_10_3390_s24196168 crossref_primary_10_1002_mp_15002 crossref_primary_10_1109_TIP_2020_2975712 crossref_primary_10_3390_s23177431 crossref_primary_10_1007_s41870_023_01248_0 crossref_primary_10_1109_TIM_2025_3576957 crossref_primary_10_7554_eLife_95273_4 crossref_primary_10_1002_srin_202300421 crossref_primary_10_1016_j_bspc_2021_103087 crossref_primary_10_3389_fpls_2023_1224884 crossref_primary_10_1016_j_atech_2023_100316 crossref_primary_10_1186_s12915_025_02273_0 crossref_primary_10_1093_comjnl_bxaf024 crossref_primary_10_3390_s25154610 crossref_primary_10_1016_j_jmbbm_2021_104761 crossref_primary_10_1017_S1759078721000830 crossref_primary_10_3389_fbioe_2024_1327207 crossref_primary_10_1038_s41524_020_00376_6 crossref_primary_10_1109_JSTARS_2025_3593557 crossref_primary_10_1016_j_jnlest_2025_100322 crossref_primary_10_1016_j_compbiomed_2022_105680 crossref_primary_10_1038_s41524_023_00984_y crossref_primary_10_1016_j_ins_2025_122209 crossref_primary_10_1016_j_ins_2022_10_013 crossref_primary_10_1109_TSTE_2025_3534589 crossref_primary_10_1007_s11548_021_02381_6 crossref_primary_10_1007_s00277_025_06254_9 crossref_primary_10_1109_JSEN_2023_3335449 crossref_primary_10_3390_agronomy13092339 crossref_primary_10_3390_app13095659 crossref_primary_10_1145_3656048 crossref_primary_10_3390_s21165381 crossref_primary_10_1016_j_bspc_2024_107014 crossref_primary_10_3390_bioengineering12040421 crossref_primary_10_1007_s40747_024_01678_8 crossref_primary_10_1007_s11263_022_01657_x crossref_primary_10_1016_j_patcog_2021_107935 crossref_primary_10_1016_j_engappai_2025_110372 crossref_primary_10_1109_ACCESS_2025_3581931 crossref_primary_10_3389_fmed_2022_846024 crossref_primary_10_1007_s00521_021_05983_y crossref_primary_10_3390_diagnostics13030441 crossref_primary_10_1177_20552076251319667 crossref_primary_10_1002_acm2_14380 crossref_primary_10_1007_s10489_021_02951_w crossref_primary_10_1109_TPAMI_2023_3234291 crossref_primary_10_1109_ACCESS_2022_3145911 crossref_primary_10_3390_diagnostics12020548 crossref_primary_10_1007_s13246_021_01083_2 crossref_primary_10_1016_j_engappai_2023_106963 crossref_primary_10_1016_j_eswa_2025_129514 crossref_primary_10_1109_JSTARS_2024_3524382 crossref_primary_10_1016_j_labinv_2025_104182 crossref_primary_10_1109_TIM_2025_3593555 crossref_primary_10_3390_bioengineering10121421 crossref_primary_10_1109_ACCESS_2025_3539122 crossref_primary_10_1109_TIP_2022_3184255 crossref_primary_10_1002_mrm_29593 crossref_primary_10_3390_s25010170 crossref_primary_10_3390_rs15030614 crossref_primary_10_3390_s24165404 crossref_primary_10_1002_aisy_202300105 crossref_primary_10_1080_23789689_2023_2233759 crossref_primary_10_1109_ACCESS_2023_3236315 crossref_primary_10_1145_3711846 crossref_primary_10_1186_s12859_022_04824_6 crossref_primary_10_3390_info14100541 crossref_primary_10_1016_j_ejrad_2024_111392 crossref_primary_10_1016_j_neunet_2021_05_012 crossref_primary_10_1109_TIFS_2023_3289000 crossref_primary_10_1016_j_engappai_2025_110787 crossref_primary_10_1016_j_eswa_2025_128661 crossref_primary_10_1016_j_neunet_2025_107666 crossref_primary_10_1111_jog_15788 crossref_primary_10_3390_s23094543 crossref_primary_10_1109_ACCESS_2020_3032756 crossref_primary_10_1016_j_neuroimage_2023_120164 crossref_primary_10_1109_TIP_2023_3246793 crossref_primary_10_32604_cmes_2021_015807 crossref_primary_10_3390_math11184011 crossref_primary_10_1016_j_compag_2021_106230 crossref_primary_10_1109_JIOT_2025_3541844 crossref_primary_10_3389_fnins_2025_1576931 crossref_primary_10_1109_TIM_2025_3600723 crossref_primary_10_1186_s13244_024_01817_2 crossref_primary_10_1007_s10278_023_00957_z crossref_primary_10_1007_s11604_025_01780_y crossref_primary_10_3389_fnins_2024_1245791 crossref_primary_10_1109_TCDS_2022_3141591 crossref_primary_10_1016_j_engappai_2023_107824 crossref_primary_10_1016_j_ejrad_2024_111389 crossref_primary_10_1007_s10278_023_00802_3 crossref_primary_10_1088_1361_6560_ad3889 crossref_primary_10_1016_j_aca_2021_338822 crossref_primary_10_3390_jimaging8100285 crossref_primary_10_1038_s41467_024_55262_2 crossref_primary_10_1109_JSEN_2024_3482291 crossref_primary_10_1007_s12094_023_03366_4 crossref_primary_10_1097_JS9_0000000000001241 crossref_primary_10_1016_j_inffus_2025_103387 crossref_primary_10_1016_j_ajem_2025_01_041 crossref_primary_10_1109_TGRS_2023_3276853 crossref_primary_10_1016_j_jid_2021_09_029 crossref_primary_10_3390_bioengineering10050555 crossref_primary_10_1007_s10994_023_06312_1 crossref_primary_10_1016_j_rineng_2024_103414 crossref_primary_10_3390_diagnostics13020217 crossref_primary_10_3390_a18010008 crossref_primary_10_1007_s42979_024_02671_1 crossref_primary_10_1016_j_engappai_2025_111651 crossref_primary_10_1007_s11042_025_20797_z crossref_primary_10_3390_bioengineering10121435 crossref_primary_10_3390_s25154656 crossref_primary_10_1007_s10278_021_00478_7 crossref_primary_10_1148_radiol_2020200334 crossref_primary_10_3390_bioengineering10091070 crossref_primary_10_1016_j_eswa_2025_128687 crossref_primary_10_1016_j_ijepes_2025_110700 crossref_primary_10_1126_sciadv_adq7342 crossref_primary_10_3390_app14083346 crossref_primary_10_1016_j_neucom_2022_04_018 crossref_primary_10_1016_j_bspc_2025_108201 crossref_primary_10_1111_mice_13078 crossref_primary_10_1016_j_eswa_2025_128216 crossref_primary_10_1016_j_compag_2023_107709 crossref_primary_10_1109_TMI_2020_2993291 crossref_primary_10_1016_j_jag_2022_102988 crossref_primary_10_1038_s41592_022_01606_z crossref_primary_10_1016_j_jns_2025_123563 crossref_primary_10_1016_j_bspc_2023_104963 crossref_primary_10_1016_j_mineng_2023_108433 crossref_primary_10_3390_electronics13030635 crossref_primary_10_3390_plants11233327 crossref_primary_10_3390_s21206826 crossref_primary_10_1038_s41597_024_02960_7 crossref_primary_10_1021_acs_analchem_5c00584 crossref_primary_10_1007_s40747_022_00764_z crossref_primary_10_1016_j_cjca_2024_07_003 crossref_primary_10_1109_ACCESS_2022_3184693 crossref_primary_10_1109_ACCESS_2024_3525067 crossref_primary_10_3390_s25061751 crossref_primary_10_1007_s11042_020_08943_1 crossref_primary_10_3390_rs15205075 crossref_primary_10_1016_j_eswa_2024_124701 crossref_primary_10_3390_agriculture14030353 crossref_primary_10_1109_LGRS_2023_3335473 crossref_primary_10_1111_mice_12632 crossref_primary_10_1016_j_foodchem_2023_136169 crossref_primary_10_1016_j_talanta_2025_128652 crossref_primary_10_1016_j_neunet_2024_106418 crossref_primary_10_1007_s00330_024_11028_4 crossref_primary_10_1016_j_microc_2024_112323 crossref_primary_10_1055_a_2562_2163 crossref_primary_10_1016_j_measurement_2022_112273 crossref_primary_10_3390_agriculture12122141 crossref_primary_10_1109_TIFS_2020_3036800 crossref_primary_10_1007_s00107_022_01815_5 crossref_primary_10_1016_j_csbj_2024_08_005 crossref_primary_10_1016_j_foodchem_2025_143150 crossref_primary_10_1016_j_comtox_2024_100311 crossref_primary_10_3390_s24010150 crossref_primary_10_1016_j_engstruct_2024_118515 crossref_primary_10_1109_TGRS_2024_3424680 crossref_primary_10_3390_app13095717 crossref_primary_10_3390_en18051282 crossref_primary_10_1109_TCSVT_2025_3543622 crossref_primary_10_3390_app15137526 crossref_primary_10_3390_app15094804 crossref_primary_10_3390_biomedicines12081878 crossref_primary_10_1109_ACCESS_2021_3095368 crossref_primary_10_1111_his_15018 crossref_primary_10_1109_TIM_2025_3546389 crossref_primary_10_1097_SLA_0000000000006826 crossref_primary_10_3389_fnut_2022_1026730 crossref_primary_10_1007_s10462_024_10952_7 crossref_primary_10_1016_j_compbiomed_2025_110321 crossref_primary_10_1111_tpj_16188 crossref_primary_10_3390_agriculture13071349 crossref_primary_10_1016_j_knosys_2023_110358 crossref_primary_10_1177_08465371221145023 crossref_primary_10_1186_s40708_024_00230_1 crossref_primary_10_3390_app14073011 crossref_primary_10_1038_s42003_021_01697_y crossref_primary_10_3390_brainsci14010010 crossref_primary_10_1007_s10044_024_01391_9 crossref_primary_10_1016_j_mineng_2023_108523 crossref_primary_10_1016_j_patrec_2021_03_012 crossref_primary_10_1016_j_engstruct_2024_118529 crossref_primary_10_1177_14759217241241976 crossref_primary_10_3390_ani14182640 crossref_primary_10_1145_3766071 crossref_primary_10_3390_jmse12091641 crossref_primary_10_1007_s10994_023_06369_y crossref_primary_10_3390_pharmaceutics17091119 crossref_primary_10_1007_s11661_024_07633_z crossref_primary_10_3390_app15137544 crossref_primary_10_3390_app10238660 crossref_primary_10_3390_e24111597 crossref_primary_10_1016_j_neucom_2024_128969 crossref_primary_10_3389_fninf_2024_1496143 crossref_primary_10_3389_frai_2025_1561281 crossref_primary_10_1177_16878132241289258 crossref_primary_10_1088_2632_2153_acd2a5 crossref_primary_10_3390_cancers15123189 crossref_primary_10_3390_jimaging10080176 crossref_primary_10_1016_j_engappai_2024_108288 crossref_primary_10_3390_jcm11237103 crossref_primary_10_3390_jimaging8020038 crossref_primary_10_1007_s10845_025_02623_3 crossref_primary_10_3390_a18060358 crossref_primary_10_1016_j_compag_2023_108552 crossref_primary_10_1038_s41598_021_90285_5 crossref_primary_10_1016_j_ijepes_2023_109576 crossref_primary_10_1109_ACCESS_2023_3263489 crossref_primary_10_1007_s11042_024_20233_8 crossref_primary_10_1016_j_rse_2024_114107 crossref_primary_10_1007_s11128_023_03898_2 crossref_primary_10_1016_j_microc_2024_112352 crossref_primary_10_1016_j_neucom_2023_03_050 crossref_primary_10_1016_j_ultras_2024_107251 crossref_primary_10_3390_agriculture12091339 crossref_primary_10_3390_electronics13152940 crossref_primary_10_1371_journal_pone_0295073 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125428 crossref_primary_10_3390_cancers15184497 crossref_primary_10_1007_s00330_025_11373_y crossref_primary_10_1002_anie_202506744 crossref_primary_10_1007_s41870_023_01635_7 crossref_primary_10_1038_s41746_022_00648_z crossref_primary_10_1146_annurev_phyto_121823_081033 crossref_primary_10_3390_diagnostics12112765 crossref_primary_10_1007_s10994_022_06237_1 crossref_primary_10_1109_ACCESS_2025_3601151 crossref_primary_10_1016_j_oret_2022_08_018 crossref_primary_10_1088_2632_2153_ad9079 crossref_primary_10_3390_app12031695 crossref_primary_10_1109_TPAMI_2023_3303397 crossref_primary_10_1007_s00330_022_08752_0 crossref_primary_10_1016_j_media_2020_101873 crossref_primary_10_1016_j_compbiomed_2025_109785 crossref_primary_10_1088_1361_6501_ada4c8 crossref_primary_10_1115_1_4069381 crossref_primary_10_3390_diagnostics15070865 crossref_primary_10_1016_j_compag_2025_110177 crossref_primary_10_1088_1742_6596_2425_1_012010 crossref_primary_10_32604_cmes_2022_020623 crossref_primary_10_1109_JSTARS_2023_3322344 crossref_primary_10_1002_cem_3388 crossref_primary_10_1080_13658816_2023_2191256 crossref_primary_10_3389_fonc_2021_585942 crossref_primary_10_1016_j_bspc_2022_103828 crossref_primary_10_1016_j_array_2025_100386 crossref_primary_10_1016_j_ijhydene_2025_02_240 crossref_primary_10_1038_s41467_024_51465_9 crossref_primary_10_1038_s41598_024_62513_1 crossref_primary_10_1016_j_jvoice_2022_07_007 crossref_primary_10_1186_s13321_024_00909_x crossref_primary_10_1186_s12903_024_03928_0 crossref_primary_10_3390_app12157592 crossref_primary_10_3390_app13126894 crossref_primary_10_1016_j_bspc_2020_102388 crossref_primary_10_1016_j_eswa_2022_116540 crossref_primary_10_1007_s10845_023_02317_8 crossref_primary_10_3390_computers12030058 crossref_primary_10_1016_j_patcog_2021_108316 crossref_primary_10_1016_j_talanta_2025_127743 crossref_primary_10_1177_02841851211058934 crossref_primary_10_3390_diagnostics15111407 crossref_primary_10_1016_j_compbiomed_2023_107300 crossref_primary_10_1016_j_jmsy_2021_01_017 crossref_primary_10_1155_2020_8848874 crossref_primary_10_1007_s10044_024_01401_w crossref_primary_10_1016_j_eswa_2023_122268 crossref_primary_10_1016_j_ebiom_2025_105560 crossref_primary_10_1177_17562848231215579 crossref_primary_10_1016_j_ymssp_2023_110584 crossref_primary_10_3390_aerospace9090520 crossref_primary_10_1016_j_xcrm_2025_102207 crossref_primary_10_2478_acss_2023_0007 crossref_primary_10_3390_electronics13030594 crossref_primary_10_3390_healthcare10010166 crossref_primary_10_3390_s25051435 crossref_primary_10_2478_acss_2023_0005 crossref_primary_10_1097_JS9_0000000000002184 crossref_primary_10_3390_math12070958 crossref_primary_10_1109_TMI_2024_3459910 crossref_primary_10_3390_diagnostics15070845 crossref_primary_10_1016_j_patcog_2022_108604 crossref_primary_10_1016_j_scib_2023_09_039 crossref_primary_10_1016_j_compag_2023_107660 crossref_primary_10_1007_s00371_022_02755_0 crossref_primary_10_1016_j_envsci_2024_103885 crossref_primary_10_1007_s10994_024_06529_8 crossref_primary_10_3390_app14209283 crossref_primary_10_1016_j_neuropsychologia_2020_107506 crossref_primary_10_1016_j_indcrop_2024_119544 crossref_primary_10_1109_ACCESS_2024_3439523 crossref_primary_10_1016_j_ymeth_2025_07_004 crossref_primary_10_1109_JSTARS_2023_3308032 crossref_primary_10_3390_e24070974 crossref_primary_10_1145_3643639 crossref_primary_10_1002_smll_202207802 crossref_primary_10_3788_CJL250583 crossref_primary_10_1093_bjrai_ubaf013 crossref_primary_10_1007_s11704_024_40533_4 crossref_primary_10_1007_s00138_023_01473_4 crossref_primary_10_1016_j_cmpb_2024_108361 crossref_primary_10_3390_rs17091554 crossref_primary_10_1109_ACCESS_2024_3406215 crossref_primary_10_3390_horticulturae11070840 crossref_primary_10_1007_s10278_024_01121_x crossref_primary_10_1007_s00330_025_11721_y crossref_primary_10_3390_app142210413 crossref_primary_10_1007_s11548_025_03441_x crossref_primary_10_1016_j_compbiomed_2023_107323 crossref_primary_10_1038_s41551_019_0487_z crossref_primary_10_1117_1_JBO_27_6_060901 crossref_primary_10_1038_s41598_021_95969_6 crossref_primary_10_1093_bioadv_vbad166 crossref_primary_10_1093_ehjdh_ztaf034 crossref_primary_10_3389_fneur_2022_963968 crossref_primary_10_1002_ana_26435 crossref_primary_10_1016_j_ejca_2022_08_033 crossref_primary_10_1186_s13075_021_02634_4 crossref_primary_10_1016_j_eswa_2024_124775 crossref_primary_10_1093_ehjdh_ztaf025 crossref_primary_10_3389_fneur_2024_1409962 crossref_primary_10_1007_s10921_024_01121_5 crossref_primary_10_1017_eds_2025_13 crossref_primary_10_1016_j_jclinepi_2021_11_001 crossref_primary_10_1007_s42803_023_00077_8 crossref_primary_10_1145_3728637 crossref_primary_10_1016_j_patrec_2024_03_025 crossref_primary_10_3390_ai5020024 crossref_primary_10_1016_j_jneumeth_2024_110318 crossref_primary_10_3390_rs17091540 crossref_primary_10_1111_cura_12492 crossref_primary_10_1016_j_sandf_2025_101575 crossref_primary_10_1016_j_imu_2024_101559 crossref_primary_10_1371_journal_pone_0249593 crossref_primary_10_1007_s11517_023_02946_4 crossref_primary_10_3389_fphar_2020_572372 crossref_primary_10_1088_1748_9326_ad1bde crossref_primary_10_1109_TMM_2023_3266066 crossref_primary_10_1109_TNSRE_2022_3225948 crossref_primary_10_3390_make6040111 crossref_primary_10_1002_jbmr_4292 crossref_primary_10_1016_j_saa_2025_126815 crossref_primary_10_1016_j_compbiomed_2022_106182 crossref_primary_10_1088_1361_6560_ad9ce3 crossref_primary_10_1016_j_aiopen_2025_02_001 crossref_primary_10_1117_1_JRS_18_034517 crossref_primary_10_1007_JHEP11_2024_007 crossref_primary_10_1016_j_engappai_2025_110805 crossref_primary_10_1016_j_nicl_2020_102522 crossref_primary_10_1007_s00530_023_01231_6 crossref_primary_10_1016_j_neunet_2022_04_029 crossref_primary_10_1371_journal_pone_0321753 crossref_primary_10_3390_app14052158 crossref_primary_10_1007_s13246_024_01432_x crossref_primary_10_1016_j_engappai_2023_106191 crossref_primary_10_1080_08164622_2023_2197578 crossref_primary_10_1016_j_ejrad_2021_110041 crossref_primary_10_1016_j_actatropica_2025_107621 crossref_primary_10_1016_j_ymssp_2025_112925 crossref_primary_10_1007_s00256_025_04917_2 crossref_primary_10_1038_s41377_023_01309_w crossref_primary_10_3390_app15010379 crossref_primary_10_1016_j_preteyeres_2024_101305 crossref_primary_10_1016_j_rsase_2024_101412 crossref_primary_10_1016_j_neucom_2025_130797 crossref_primary_10_1148_radiol_230255 crossref_primary_10_1177_17562848231155023 crossref_primary_10_3390_app13031252 crossref_primary_10_1016_j_ascom_2020_100390 crossref_primary_10_1093_ehjdh_ztaf008 crossref_primary_10_1007_s00784_024_06049_8 crossref_primary_10_1016_j_compmedimag_2023_102220 crossref_primary_10_3390_cancers15133376 crossref_primary_10_1155_2020_8828855 crossref_primary_10_1016_j_cie_2024_110220 crossref_primary_10_1016_j_engappai_2022_105800 crossref_primary_10_1038_s41598_024_59248_4 crossref_primary_10_1038_s41598_025_94052_8 crossref_primary_10_1136_bmjhci_2023_100942 crossref_primary_10_32604_cmc_2023_038362 crossref_primary_10_3390_nu17020362 crossref_primary_10_3389_fonc_2023_1169922 crossref_primary_10_1109_JSEN_2023_3316392 crossref_primary_10_3390_ijms26157134 crossref_primary_10_1007_s12652_021_02998_0 crossref_primary_10_1016_j_arth_2023_02_053 crossref_primary_10_1016_j_brainres_2024_148876 crossref_primary_10_1007_s00405_024_08676_z crossref_primary_10_1109_TPWRS_2023_3326137 crossref_primary_10_34133_plantphenomics_0022 crossref_primary_10_1088_1741_4326_ac31d8 crossref_primary_10_1111_anec_12839 crossref_primary_10_1007_s10278_024_01263_y crossref_primary_10_1007_s12145_025_02008_3 crossref_primary_10_1055_a_2451_3071 crossref_primary_10_1007_s00521_022_08097_1 crossref_primary_10_1109_ACCESS_2025_3592239 crossref_primary_10_1016_j_atech_2025_101348 crossref_primary_10_1016_j_isprsjprs_2023_09_009 crossref_primary_10_1109_LGRS_2023_3262407 crossref_primary_10_1007_s10489_022_04156_1 crossref_primary_10_1016_j_displa_2025_103142 crossref_primary_10_1080_01431161_2024_2307325 crossref_primary_10_1109_TGRS_2022_3230378 crossref_primary_10_1097_ICU_0000000000000678 crossref_primary_10_1016_j_neuroscience_2024_11_030 crossref_primary_10_1109_TIFS_2020_2988168 crossref_primary_10_3390_fire7080286 crossref_primary_10_3390_s23031489 crossref_primary_10_1016_j_neucom_2025_131620 crossref_primary_10_3390_diagnostics14060629 crossref_primary_10_3390_horticulturae11060600 crossref_primary_10_1038_s42003_024_07109_1 crossref_primary_10_1155_2022_1473977 crossref_primary_10_1007_s10796_025_10634_x crossref_primary_10_1038_s41598_021_95240_y crossref_primary_10_1145_3494961 crossref_primary_10_1007_s11517_023_02804_3 crossref_primary_10_1016_j_compag_2020_105883 crossref_primary_10_1016_j_neucom_2025_130770 crossref_primary_10_1002_uog_27577 crossref_primary_10_3389_fcomp_2025_1566513 crossref_primary_10_1109_JBHI_2022_3186933 crossref_primary_10_1016_j_ajo_2021_09_015 crossref_primary_10_1038_s41698_024_00695_7 crossref_primary_10_1186_s12891_022_05565_6 crossref_primary_10_1007_s00330_023_10258_2 crossref_primary_10_1109_JSEN_2025_3531698 crossref_primary_10_1109_TKDE_2022_3185233 crossref_primary_10_3390_pharmaceutics15010119 crossref_primary_10_1016_j_jmapro_2021_12_030 crossref_primary_10_1016_j_knosys_2024_112015 crossref_primary_10_1016_j_compbiomed_2023_107371 crossref_primary_10_1016_j_measurement_2025_117153 crossref_primary_10_1186_s12943_025_02369_9 crossref_primary_10_1016_j_heliyon_2023_e18773 crossref_primary_10_3390_electronics11244218 crossref_primary_10_3390_cancers14194704 crossref_primary_10_3390_jcm12185960 crossref_primary_10_1007_s13042_023_01774_0 crossref_primary_10_1016_j_patcog_2023_109842 crossref_primary_10_1007_s10796_022_10330_0 crossref_primary_10_1016_j_compbiomed_2024_108525 crossref_primary_10_1155_2022_5603992 crossref_primary_10_1016_j_saa_2024_125242 crossref_primary_10_1109_TMI_2022_3205554 crossref_primary_10_1007_s11042_021_11464_0 crossref_primary_10_1109_TVT_2022_3228127 crossref_primary_10_1253_circj_CJ_25_0098 crossref_primary_10_1016_j_ultramic_2021_113249 crossref_primary_10_1155_stc_8462004 crossref_primary_10_1007_s10845_025_02671_9 crossref_primary_10_1016_j_neunet_2024_106837 crossref_primary_10_1007_s10207_025_00987_4 crossref_primary_10_1016_j_compag_2024_109751 crossref_primary_10_1109_TIFS_2024_3380248 crossref_primary_10_2196_25165 crossref_primary_10_1002_widm_1474 crossref_primary_10_3390_electronics14183698 crossref_primary_10_1007_s10278_023_00850_9 crossref_primary_10_1080_01431161_2023_2255353 crossref_primary_10_1109_ACCESS_2024_3391130 crossref_primary_10_1007_s12530_025_09656_2 crossref_primary_10_1089_ten_tea_2023_0206 crossref_primary_10_1007_s00259_025_07450_5 crossref_primary_10_1093_eurheartj_ehae619 crossref_primary_10_1016_j_echo_2025_08_008 crossref_primary_10_1016_j_jfca_2022_104964 crossref_primary_10_1016_j_eswa_2024_125208 crossref_primary_10_1007_s12350_022_02920_x crossref_primary_10_1109_ACCESS_2023_3320042 crossref_primary_10_1016_j_ynirp_2025_100259 crossref_primary_10_1038_s42003_023_04608_5 crossref_primary_10_5194_acp_23_9071_2023 crossref_primary_10_1007_s42979_021_00924_x crossref_primary_10_1038_s41467_025_62346_0 crossref_primary_10_3390_app15010343 crossref_primary_10_1021_acsphotonics_5c01710 crossref_primary_10_3389_fpls_2022_1031748 crossref_primary_10_1007_s00432_024_05986_x crossref_primary_10_3748_wjg_v31_i19_104897 crossref_primary_10_1038_s41598_020_68611_0 crossref_primary_10_1016_j_imu_2024_101572 crossref_primary_10_1007_s11633_022_1385_5 crossref_primary_10_1186_s12880_021_00551_1 crossref_primary_10_3390_jcm10194431 crossref_primary_10_3389_fonc_2023_1136922 crossref_primary_10_1155_2022_8884669 crossref_primary_10_1016_j_asoc_2023_111094 crossref_primary_10_3390_children11111401 crossref_primary_10_1109_JBHI_2023_3313785 crossref_primary_10_32604_cmc_2021_019305 crossref_primary_10_3390_s22228760 crossref_primary_10_3390_drones8110691 crossref_primary_10_1093_jamia_ocae280 crossref_primary_10_1146_annurev_cancerbio_062822_010523 crossref_primary_10_1002_jmv_29036 crossref_primary_10_1016_j_jvcir_2021_103414 crossref_primary_10_1109_TNSRE_2025_3546519 crossref_primary_10_1145_3708516 crossref_primary_10_1016_j_neucom_2025_129996 crossref_primary_10_3390_diagnostics13132309 crossref_primary_10_1038_s41598_025_05410_5 crossref_primary_10_3389_fmed_2025_1644456 crossref_primary_10_3390_s24134410 crossref_primary_10_1017_S0022377822000940 crossref_primary_10_3390_app10144716 crossref_primary_10_1109_TPAMI_2024_3429387 crossref_primary_10_1016_j_compag_2022_107500 crossref_primary_10_1007_s11069_021_04838_y crossref_primary_10_3390_s23208573 crossref_primary_10_1038_s41428_021_00531_w crossref_primary_10_1109_ACCESS_2024_3412608 crossref_primary_10_1016_j_jfoodeng_2025_112515 crossref_primary_10_1093_bib_bbab001 crossref_primary_10_3390_fishes7050219 crossref_primary_10_1016_j_ijmedinf_2024_105689 crossref_primary_10_1007_s42979_025_04034_w crossref_primary_10_3390_mi15040491 crossref_primary_10_1016_j_imu_2025_101658 crossref_primary_10_3390_cancers15154002 crossref_primary_10_1016_j_isprsjprs_2025_06_006 crossref_primary_10_1016_j_jmapro_2025_01_023 crossref_primary_10_1016_j_gsf_2023_101770 crossref_primary_10_1016_j_compmedimag_2024_102469 crossref_primary_10_3389_fdgth_2025_1484231 crossref_primary_10_1016_j_jksuci_2023_101555 crossref_primary_10_4274_dir_2024_242854 crossref_primary_10_1038_s41598_025_86527_5 crossref_primary_10_1007_s11517_024_03138_4 crossref_primary_10_1007_s40123_023_00680_6 crossref_primary_10_1186_s12916_022_02350_z crossref_primary_10_1016_j_autcon_2024_105680 crossref_primary_10_1002_mp_17385 crossref_primary_10_1007_s43995_024_00094_w crossref_primary_10_1038_s41598_021_02774_2 crossref_primary_10_1007_s11042_024_20502_6 crossref_primary_10_1016_j_image_2023_117027 crossref_primary_10_1038_s41598_025_89735_1 crossref_primary_10_3390_rs16010165 crossref_primary_10_1016_j_measurement_2022_111417 crossref_primary_10_7554_eLife_95273 crossref_primary_10_1016_j_gie_2023_11_059 crossref_primary_10_3390_app14093621 crossref_primary_10_1145_3625227 crossref_primary_10_3233_CBM_230444 crossref_primary_10_3390_technologies12090151 crossref_primary_10_1016_j_postharvbio_2022_112154 crossref_primary_10_1109_TPAMI_2023_3282631 crossref_primary_10_2478_jaiscr_2024_0007 crossref_primary_10_1016_j_microc_2023_109337 crossref_primary_10_3390_biology12030369 crossref_primary_10_3348_kjr_2023_0940 crossref_primary_10_1038_s42256_022_00536_x crossref_primary_10_1097_TP_0000000000004876 crossref_primary_10_1002_adfm_202420045 crossref_primary_10_1063_5_0268702 crossref_primary_10_1007_s44163_024_00196_3 crossref_primary_10_1016_j_patcog_2022_109212 crossref_primary_10_1007_s11042_021_11866_0 crossref_primary_10_1016_j_ijpvp_2023_105112 crossref_primary_10_1093_gigascience_giae093 crossref_primary_10_1109_ACCESS_2025_3596221 crossref_primary_10_3389_fmars_2025_1581794 crossref_primary_10_1016_j_crad_2025_107023 crossref_primary_10_1063_5_0194391 crossref_primary_10_3390_agronomy15010042 crossref_primary_10_1109_ACCESS_2023_3282309 crossref_primary_10_1007_s10120_020_01077_1 crossref_primary_10_2196_49949 crossref_primary_10_1109_TNNLS_2022_3190671 crossref_primary_10_1016_j_media_2021_102125 crossref_primary_10_3389_fdata_2024_1366415 crossref_primary_10_1038_s43856_024_00722_5 crossref_primary_10_1091_mbc_E20_03_0187 crossref_primary_10_1117_1_JMI_10_4_044503 crossref_primary_10_1038_s41598_021_83188_y crossref_primary_10_1109_TCSVT_2023_3268997 crossref_primary_10_1007_s10115_022_01690_9 crossref_primary_10_1016_j_health_2023_100206 crossref_primary_10_1007_s12145_023_01162_w crossref_primary_10_1016_j_cmpb_2022_106935 crossref_primary_10_1007_s41348_023_00826_5 crossref_primary_10_1016_j_engappai_2023_106442 crossref_primary_10_1016_j_measurement_2024_114663 crossref_primary_10_1016_j_jacep_2024_01_022 crossref_primary_10_1007_s11633_023_1445_5 crossref_primary_10_1109_JBHI_2023_3292312 crossref_primary_10_1007_s00371_024_03431_1 crossref_primary_10_1109_TIP_2023_3335830 crossref_primary_10_1007_s10278_025_01581_9 crossref_primary_10_1109_TITS_2024_3390576 crossref_primary_10_3390_batteries10030099 crossref_primary_10_1007_s00259_025_07090_9 crossref_primary_10_1007_s12652_021_03599_7 crossref_primary_10_1038_s41598_021_95561_y crossref_primary_10_1016_j_snb_2023_133865 crossref_primary_10_1109_TCSVT_2024_3510735 crossref_primary_10_3389_fcell_2021_652848 crossref_primary_10_1016_j_csbj_2022_11_062 crossref_primary_10_1007_s11886_022_01655_y crossref_primary_10_3390_electronics13132541 crossref_primary_10_1109_TITS_2024_3411117 crossref_primary_10_1007_s42154_023_00220_9 crossref_primary_10_3390_app13074272 crossref_primary_10_1016_j_cbpa_2021_102111 crossref_primary_10_1080_00365521_2022_2163185 crossref_primary_10_3390_foods11233800 crossref_primary_10_1007_s11517_022_02551_x crossref_primary_10_1016_j_spinee_2022_01_004 crossref_primary_10_1016_j_wneu_2025_123669 crossref_primary_10_1016_j_mineng_2021_107126 crossref_primary_10_1016_j_jhydrol_2024_131867 crossref_primary_10_1016_j_sysarc_2024_103105 crossref_primary_10_1109_TNNLS_2024_3382937 crossref_primary_10_1016_j_jfca_2025_108123 crossref_primary_10_1167_tvst_14_5_18 crossref_primary_10_3390_app15116286 crossref_primary_10_1016_j_compbiolchem_2025_108645 crossref_primary_10_1016_j_mimet_2023_106739 crossref_primary_10_1109_TCPMT_2023_3249193 crossref_primary_10_17116_klinderma202322031287 crossref_primary_10_1109_ACCESS_2020_3028770 crossref_primary_10_1016_j_eplepsyres_2021_106815 crossref_primary_10_1371_journal_pcbi_1013435 crossref_primary_10_1016_j_envsoft_2025_106571 crossref_primary_10_1016_j_triboint_2023_109015 crossref_primary_10_1016_j_ins_2023_03_020 crossref_primary_10_1681_ASN_0000000514 crossref_primary_10_1007_s11676_022_01457_6 crossref_primary_10_1038_s41598_025_05009_w crossref_primary_10_1007_s44327_025_00109_8 crossref_primary_10_1016_j_ejro_2024_100594 crossref_primary_10_3390_s24123783 crossref_primary_10_1016_j_aei_2023_101963 crossref_primary_10_3390_sym16040451 crossref_primary_10_3390_metabo12121264 crossref_primary_10_1109_ACCESS_2024_3425910 crossref_primary_10_3390_rs15225425 crossref_primary_10_1016_j_jmapro_2024_06_074 crossref_primary_10_32604_cmc_2024_058586 crossref_primary_10_1111_ipd_13282 crossref_primary_10_3847_1538_4357_adabc7 crossref_primary_10_1016_j_cirp_2024_04_014 crossref_primary_10_1016_j_compag_2024_109478 crossref_primary_10_1016_j_fuel_2024_131145 crossref_primary_10_1016_j_cmpb_2022_106906 crossref_primary_10_1371_journal_pone_0304847 crossref_primary_10_1016_j_biosystemseng_2025_104243 crossref_primary_10_3390_app14114654 crossref_primary_10_3390_s25164954 crossref_primary_10_3389_fendo_2023_1224191 crossref_primary_10_1109_ACCESS_2020_2986476 crossref_primary_10_3390_diagnostics14182009 crossref_primary_10_3390_app15063232 crossref_primary_10_1038_s41540_023_00293_6 crossref_primary_10_1007_s00500_023_09417_w crossref_primary_10_1016_j_nhres_2024_11_004 crossref_primary_10_1038_s41598_025_86593_9 crossref_primary_10_1093_biomethods_bpae080 crossref_primary_10_1111_jdv_20347 crossref_primary_10_4103_wjtcm_wjtcm_104_24 crossref_primary_10_1016_j_jmatprotec_2025_118752 crossref_primary_10_1007_s11547_023_01744_0 crossref_primary_10_1007_s00146_022_01591_z crossref_primary_10_1016_j_foodcont_2025_111460 crossref_primary_10_1136_bmjopen_2022_063411 crossref_primary_10_1038_s41746_025_01454_z crossref_primary_10_3390_app13031901 crossref_primary_10_1002_ima_22810 crossref_primary_10_1016_j_bspc_2024_107146 crossref_primary_10_1007_s10489_025_06719_4 crossref_primary_10_1007_s00521_023_08452_w crossref_primary_10_3389_fcell_2024_1484329 crossref_primary_10_1109_JSEN_2024_3430009 crossref_primary_10_1186_s12880_024_01202_x crossref_primary_10_4035_jsfwr_60_25 crossref_primary_10_1038_s41598_023_35846_6 crossref_primary_10_3390_app14156461 crossref_primary_10_1109_TIP_2022_3197931 crossref_primary_10_3390_brainsci15060576 crossref_primary_10_1109_ACCESS_2023_3309925 crossref_primary_10_3389_fsufs_2024_1366387 crossref_primary_10_1007_s00530_024_01619_y crossref_primary_10_1109_JSTARS_2025_3591493 crossref_primary_10_1002_ird3_113 crossref_primary_10_1093_cercor_bhac462 crossref_primary_10_48084_etasr_11372 crossref_primary_10_1093_ced_llad107 crossref_primary_10_3389_fpubh_2022_964385 crossref_primary_10_1007_s11042_025_20743_z crossref_primary_10_1016_j_compag_2022_107580 crossref_primary_10_1016_j_cageo_2022_105227 crossref_primary_10_1145_3670685 crossref_primary_10_3390_app15094770 crossref_primary_10_1109_TCSVT_2023_3271275 crossref_primary_10_1016_j_actaastro_2025_07_017 crossref_primary_10_1016_j_srs_2024_100189 crossref_primary_10_1109_JBHI_2022_3172705 crossref_primary_10_1016_j_procs_2024_06_390 crossref_primary_10_1186_s43020_025_00177_6 crossref_primary_10_3390_rs14143240 crossref_primary_10_1016_j_optlaseng_2024_108058 crossref_primary_10_1088_1748_0221_19_12_C12005 crossref_primary_10_1088_1361_6560_adc9f8 crossref_primary_10_3390_electronics11213599 crossref_primary_10_3390_biom10111534 crossref_primary_10_3390_s23094409 crossref_primary_10_1148_ryai_220160 crossref_primary_10_1109_TIP_2021_3127851 crossref_primary_10_3390_jtaer20030191 crossref_primary_10_5194_jsss_14_119_2025 crossref_primary_10_1097_IAE_0000000000003884 crossref_primary_10_1259_dmfr_20200513 crossref_primary_10_3390_bioengineering11050484 crossref_primary_10_1038_s41597_024_03944_3 crossref_primary_10_1109_TNNLS_2025_3556019 crossref_primary_10_3389_fnins_2022_695888 crossref_primary_10_1109_TIP_2023_3238642 crossref_primary_10_1016_j_ultrasmedbio_2025_07_024 crossref_primary_10_1007_s11694_025_03351_1 crossref_primary_10_1088_1361_6501_ad78f1 crossref_primary_10_1109_ACCESS_2024_3460788 crossref_primary_10_1007_s10618_022_00823_6 crossref_primary_10_1007_s11045_024_00890_6 crossref_primary_10_1007_s11103_024_01491_4 crossref_primary_10_1016_j_compbiomed_2025_110274 crossref_primary_10_1016_j_saa_2023_122686 crossref_primary_10_1016_j_imavis_2025_105738 crossref_primary_10_1038_s41598_025_95580_z crossref_primary_10_1002_mp_17774 crossref_primary_10_1016_j_engappai_2025_111590 crossref_primary_10_1016_j_rcim_2022_102393 crossref_primary_10_3389_fpls_2022_910878 crossref_primary_10_1155_2022_4509394 crossref_primary_10_3390_app10051681 crossref_primary_10_1016_j_cja_2025_103647 crossref_primary_10_1017_wsc_2024_63 crossref_primary_10_1038_s42003_024_06371_7 crossref_primary_10_7717_peerj_cs_1400 crossref_primary_10_1186_s12880_025_01844_5 crossref_primary_10_3390_app15147856 crossref_primary_10_3390_app15126931 crossref_primary_10_1007_s00414_025_03558_3 crossref_primary_10_1088_2631_8695_adf59b crossref_primary_10_1109_TIM_2022_3148739 crossref_primary_10_1016_j_patcog_2024_110336 crossref_primary_10_1016_j_patcog_2025_111942 crossref_primary_10_1016_j_engstruct_2025_120581 crossref_primary_10_3390_s22176595 crossref_primary_10_3390_math13091376 crossref_primary_10_1016_j_csbj_2024_12_033 crossref_primary_10_1038_s41746_024_01226_1 crossref_primary_10_1109_ACCESS_2020_3044858 crossref_primary_10_1016_j_engappai_2024_108078 crossref_primary_10_1007_s10994_024_06672_2 crossref_primary_10_1063_5_0277279 crossref_primary_10_1080_01431161_2025_2491817 crossref_primary_10_1111_aos_16660 crossref_primary_10_3390_math11071694 crossref_primary_10_1002_advs_202405789 crossref_primary_10_1007_s00192_021_05064_7 crossref_primary_10_1109_ACCESS_2024_3397329 crossref_primary_10_1007_s11760_024_03053_z crossref_primary_10_1016_j_compbiomed_2022_105339 crossref_primary_10_1109_ACCESS_2025_3543759 crossref_primary_10_1109_TFUZZ_2024_3485212 crossref_primary_10_1016_j_engappai_2025_111520 crossref_primary_10_1016_j_neucom_2024_127942 crossref_primary_10_1038_s41422_024_00989_2 crossref_primary_10_3847_1538_4357_adbb66 crossref_primary_10_1186_s13023_021_01979_y crossref_primary_10_1109_ACCESS_2025_3553548 crossref_primary_10_1007_s00784_022_04724_2 crossref_primary_10_3389_fnagi_2022_871706 crossref_primary_10_1109_TMM_2023_3248170 crossref_primary_10_1016_j_saa_2024_123889 crossref_primary_10_1088_1361_6501_ad1811 crossref_primary_10_1016_j_engappai_2025_110677 crossref_primary_10_1016_j_ipm_2022_103225 crossref_primary_10_1051_epjconf_202429502008 crossref_primary_10_1016_j_neunet_2025_107776 crossref_primary_10_3389_fonc_2025_1539537 crossref_primary_10_1016_j_compag_2022_107534 crossref_primary_10_1016_j_inffus_2020_11_005 crossref_primary_10_1016_j_compag_2021_106367 crossref_primary_10_1093_biomethods_bpae063 crossref_primary_10_1016_j_jbi_2025_104811 crossref_primary_10_1016_j_knosys_2022_109287 crossref_primary_10_1016_j_artmed_2023_102737 crossref_primary_10_1016_j_cmpb_2023_107688 crossref_primary_10_1016_j_autcon_2025_106376 crossref_primary_10_1148_ryai_210315 crossref_primary_10_1016_j_jobe_2024_110678 crossref_primary_10_1080_10589759_2025_2554915 crossref_primary_10_1038_s41598_025_88301_z crossref_primary_10_1088_1742_6596_1992_4_042024 crossref_primary_10_1016_j_compbiomed_2023_106974 crossref_primary_10_1016_j_nic_2020_06_002 crossref_primary_10_1109_ACCESS_2022_3176965 crossref_primary_10_1016_j_ijleo_2021_167100 crossref_primary_10_1001_jamanetworkopen_2023_15174 crossref_primary_10_1007_s42979_021_00841_z crossref_primary_10_1016_j_eswa_2025_126383 crossref_primary_10_1016_j_jqsrt_2025_109533 crossref_primary_10_1007_s00521_022_07400_4 crossref_primary_10_1177_14727978241296369 crossref_primary_10_1109_TMC_2024_3381952 crossref_primary_10_3390_agriculture12122046 crossref_primary_10_1016_j_patter_2025_101340 crossref_primary_10_1016_j_euf_2021_07_004 crossref_primary_10_1016_j_dcmed_2025_05_005 crossref_primary_10_1109_ACCESS_2021_3075272 crossref_primary_10_1038_s41598_024_69848_9 crossref_primary_10_1109_TIM_2024_3485394 crossref_primary_10_1016_j_engfailanal_2025_109551 crossref_primary_10_1109_JSEN_2024_3485216 crossref_primary_10_1016_j_epsr_2025_111860 crossref_primary_10_1002_mp_15549 crossref_primary_10_1016_j_buildenv_2025_112814 crossref_primary_10_3390_agriculture13051023 crossref_primary_10_1016_j_compag_2025_110354 crossref_primary_10_1016_j_engappai_2025_111544 crossref_primary_10_1007_s10845_022_02001_3 crossref_primary_10_1371_journal_pdig_0000282 crossref_primary_10_1016_j_jneumeth_2025_110363 crossref_primary_10_3390_medicina61081497 crossref_primary_10_1016_j_eswa_2023_121346 crossref_primary_10_1016_j_ndteint_2025_103487 crossref_primary_10_1016_j_artmed_2022_102453 crossref_primary_10_1109_ACCESS_2025_3557929 crossref_primary_10_1109_JSEN_2025_3581211 crossref_primary_10_1088_1402_4896_ad3e37 crossref_primary_10_1177_14613484251352179 crossref_primary_10_1007_s11432_021_3457_7 crossref_primary_10_1016_j_compbiomed_2025_110222 crossref_primary_10_1145_3631130 crossref_primary_10_3390_rs14184635 crossref_primary_10_1016_j_visres_2021_09_004 crossref_primary_10_1038_s41598_020_79653_9 crossref_primary_10_1109_TII_2022_3222396 crossref_primary_10_1088_1361_6560_ad111d crossref_primary_10_3390_jmse13020199 crossref_primary_10_1007_s11604_023_01527_7 crossref_primary_10_1016_j_chemolab_2021_104336 crossref_primary_10_1007_s00330_022_08927_9 crossref_primary_10_1016_j_nuclcard_2024_101889 crossref_primary_10_3390_app13095608 crossref_primary_10_1016_j_ultrasmedbio_2023_08_003 crossref_primary_10_1016_j_bspc_2024_106334 crossref_primary_10_1038_s41433_023_02885_2 crossref_primary_10_1002_cem_70067 crossref_primary_10_1007_s10278_023_00838_5 crossref_primary_10_1016_j_neucom_2024_127974 crossref_primary_10_1088_1361_6501_ade271 crossref_primary_10_1007_s10916_025_02245_5 crossref_primary_10_1109_JBHI_2024_3519600 crossref_primary_10_3390_app10155040 crossref_primary_10_1007_s10462_025_11159_0 crossref_primary_10_1186_s13023_022_02304_x crossref_primary_10_1111_tops_12737 crossref_primary_10_3389_fphys_2025_1558001 crossref_primary_10_1109_TGRS_2025_3565579 crossref_primary_10_1016_j_bspc_2023_105197 crossref_primary_10_1001_jamaophthalmol_2020_5900 crossref_primary_10_3390_chemosensors12070140 crossref_primary_10_1038_s41698_024_00632_8 crossref_primary_10_3389_fdgth_2022_929508 crossref_primary_10_32604_cmc_2023_042313 crossref_primary_10_1038_s42003_025_08453_6 crossref_primary_10_3390_info16010053 crossref_primary_10_1007_s00417_021_05427_2 crossref_primary_10_1049_ipr2_12616 crossref_primary_10_1038_s41467_020_17971_2 crossref_primary_10_1016_j_imavis_2024_105384 crossref_primary_10_1016_j_rse_2024_114202 crossref_primary_10_1371_journal_pone_0264219 crossref_primary_10_3389_frai_2020_564878 crossref_primary_10_3390_s25165038 crossref_primary_10_1007_s00330_022_09330_0 crossref_primary_10_1088_1361_6560_ac73d4 crossref_primary_10_1016_j_chemolab_2021_104354 crossref_primary_10_1016_j_engappai_2025_111619 crossref_primary_10_1109_JIOT_2024_3403174 crossref_primary_10_1088_1361_6501_adc3b5 crossref_primary_10_1016_j_bspc_2024_106796 crossref_primary_10_1145_3563691 crossref_primary_10_1001_jamacardio_2025_0498 crossref_primary_10_1016_j_radonc_2024_110368 crossref_primary_10_3390_agriculture13071461 crossref_primary_10_1007_s43684_025_00092_2 crossref_primary_10_1186_s13007_024_01191_6 crossref_primary_10_1007_s10278_025_01653_w crossref_primary_10_1016_j_neunet_2024_106510 crossref_primary_10_1038_s41598_025_13452_y crossref_primary_10_1145_3677380 crossref_primary_10_1109_JBHI_2021_3094578 crossref_primary_10_1007_s10916_020_01627_1 crossref_primary_10_3390_app11209556 crossref_primary_10_1016_j_foodcont_2025_111411 crossref_primary_10_1109_JSEN_2021_3062442 crossref_primary_10_1016_j_dsp_2025_105562 crossref_primary_10_1186_s13244_022_01250_3 crossref_primary_10_1155_2023_5146543 crossref_primary_10_1109_TNSRE_2023_3324343 crossref_primary_10_1007_s10489_025_06366_9 crossref_primary_10_1259_bjr_20210539 crossref_primary_10_1016_j_cageo_2021_104922 crossref_primary_10_1109_ACCESS_2025_3562908 crossref_primary_10_1109_ACCESS_2023_3343465 crossref_primary_10_1007_s10994_024_06602_2 crossref_primary_10_32604_cmc_2023_044994 crossref_primary_10_1002_cai2_136 crossref_primary_10_1016_j_asr_2024_07_038 crossref_primary_10_1007_s10489_022_03351_4 crossref_primary_10_3390_app11104573 crossref_primary_10_1038_s41467_020_15027_z crossref_primary_10_1016_j_siny_2024_101561 crossref_primary_10_1055_s_0045_1805184 crossref_primary_10_1016_j_patrec_2021_10_027 crossref_primary_10_1177_20552076241269536 crossref_primary_10_3390_app11199313 crossref_primary_10_1109_ACCESS_2023_3329581 crossref_primary_10_1016_j_asoc_2025_113472 crossref_primary_10_1002_srin_202200284 crossref_primary_10_1186_s12880_023_01023_4 crossref_primary_10_3390_agriculture14101710 crossref_primary_10_1007_s40747_025_01855_3 crossref_primary_10_1093_bib_bbaf373 crossref_primary_10_3390_rs14133087 crossref_primary_10_1063_5_0260424 crossref_primary_10_1109_JSEN_2025_3530076 crossref_primary_10_3389_frai_2023_1278118 crossref_primary_10_1103_PhysRevResearch_3_033278 crossref_primary_10_1109_TIFS_2024_3441945 crossref_primary_10_1111_jon_13043 crossref_primary_10_1038_s41598_022_11990_3 crossref_primary_10_1016_j_neo_2023_100889 crossref_primary_10_3390_f13010001 crossref_primary_10_1109_JBHI_2021_3119519 crossref_primary_10_1007_s10845_023_02207_z crossref_primary_10_5194_we_24_81_2024 crossref_primary_10_1016_j_patter_2025_101286 crossref_primary_10_1186_s12859_021_04471_3 crossref_primary_10_1016_j_radi_2023_09_012 crossref_primary_10_48084_etasr_10888 crossref_primary_10_3390_app15137605 crossref_primary_10_1186_s13014_024_02519_1 crossref_primary_10_1108_IJICC_08_2024_0383 crossref_primary_10_1002_smll_202411833 crossref_primary_10_1007_s11831_023_09987_w crossref_primary_10_1002_ceat_202200356 crossref_primary_10_3390_jcm13247499 crossref_primary_10_1016_j_isprsjprs_2025_02_020 crossref_primary_10_1016_j_ajo_2025_04_006 crossref_primary_10_1039_D4AY02221A crossref_primary_10_1371_journal_pdig_0000784 crossref_primary_10_1109_LGRS_2023_3271649 crossref_primary_10_1186_s13550_021_00751_4 crossref_primary_10_1007_s42979_024_03351_w crossref_primary_10_1111_jop_13227 crossref_primary_10_1038_s41598_022_05169_z crossref_primary_10_1038_s41746_023_00880_1 crossref_primary_10_3390_info16070570 crossref_primary_10_1016_j_eswa_2024_124645 crossref_primary_10_1016_j_jtice_2023_105318 crossref_primary_10_1117_1_JMI_9_4_044501 crossref_primary_10_1007_s11604_021_01106_8 crossref_primary_10_3389_fimmu_2023_1214425 crossref_primary_10_1371_journal_pone_0316919 crossref_primary_10_3390_rs17040705 crossref_primary_10_1109_ACCESS_2020_3003810 crossref_primary_10_1007_s00500_024_09778_w crossref_primary_10_1016_j_ins_2024_120383 crossref_primary_10_1021_acssensors_4c02272 crossref_primary_10_1186_s12880_025_01684_3 crossref_primary_10_1016_j_compmedimag_2021_101926 crossref_primary_10_3390_app12031353 crossref_primary_10_1016_j_engappai_2025_110727 crossref_primary_10_1016_j_neucom_2025_131325 crossref_primary_10_1177_17298806251326420 crossref_primary_10_1002_jbio_202100274 crossref_primary_10_1177_00220345241235606 crossref_primary_10_36548_jscp_2025_2_004 crossref_primary_10_1016_S1872_2067_23_64467_5 crossref_primary_10_3389_fonc_2022_905955 crossref_primary_10_3847_1538_4357_ac4399 crossref_primary_10_3390_math12060806 crossref_primary_10_1259_bjr_20220778 crossref_primary_10_1109_TAI_2025_3526137 crossref_primary_10_7566_JPSJ_94_031007 crossref_primary_10_3389_ffgc_2023_1136969 crossref_primary_10_1109_TGRS_2023_3236500 crossref_primary_10_1109_TMM_2022_3167805 crossref_primary_10_1007_s10586_025_05344_7 crossref_primary_10_1080_08839514_2025_2514324 crossref_primary_10_1007_s10462_025_11194_x crossref_primary_10_1038_s43856_025_00732_x crossref_primary_10_1016_j_optlastec_2025_113690 crossref_primary_10_1109_TIP_2021_3089943 crossref_primary_10_1016_j_ijar_2024_109206 crossref_primary_10_3390_machines11010099 crossref_primary_10_3390_s25092738 crossref_primary_10_1002_advs_202503059 crossref_primary_10_1016_j_eswa_2024_124659 crossref_primary_10_1109_ACCESS_2021_3110200 crossref_primary_10_1073_pnas_2202713119 crossref_primary_10_3390_diagnostics14212346 crossref_primary_10_3389_fonc_2021_709137 crossref_primary_10_1016_j_foodchem_2023_138082 crossref_primary_10_1186_s12859_021_04293_3 crossref_primary_10_1007_s00415_024_12810_6 crossref_primary_10_1109_TGRS_2021_3113655 crossref_primary_10_1007_s00521_024_10401_0 crossref_primary_10_1007_s10489_024_05640_6 crossref_primary_10_1017_exp_2022_3 crossref_primary_10_1515_itit_2022_0004 crossref_primary_10_3233_THC_236007 crossref_primary_10_1002_art_42650 crossref_primary_10_1016_j_patcog_2022_108753 crossref_primary_10_3233_JAD_230705 crossref_primary_10_1061_AJRUA6_RUENG_1575 crossref_primary_10_1109_ACCESS_2020_2980742 crossref_primary_10_1111_mice_12578 crossref_primary_10_1016_j_meddos_2025_07_006 crossref_primary_10_1007_s00138_024_01512_8 crossref_primary_10_1007_s40815_022_01392_y crossref_primary_10_1109_JIOT_2021_3051080 crossref_primary_10_1016_j_knosys_2025_113711 crossref_primary_10_1016_j_neuri_2022_100069 crossref_primary_10_1007_s10462_022_10223_3 crossref_primary_10_1038_s41598_025_94876_4 crossref_primary_10_1186_s13244_024_01639_2 crossref_primary_10_1186_s42400_024_00330_9 crossref_primary_10_32604_cmc_2023_041419 crossref_primary_10_1083_jcb_202311073 crossref_primary_10_1016_j_patcog_2023_109991 crossref_primary_10_3390_biology11010033 crossref_primary_10_3390_s24248043 crossref_primary_10_1016_j_ajpath_2025_06_006 crossref_primary_10_1038_s41598_022_10150_x crossref_primary_10_1039_D5FB00118H crossref_primary_10_1109_TIM_2025_3603655 crossref_primary_10_3390_rs15123065 crossref_primary_10_1016_j_sciaf_2023_e01649 crossref_primary_10_1016_j_measurement_2024_114717 crossref_primary_10_1016_j_compeleceng_2022_108314 crossref_primary_10_1016_j_ijmedinf_2023_105007 crossref_primary_10_1061_JAEIED_AEENG_1635 crossref_primary_10_1115_1_4065276 crossref_primary_10_1007_s00530_025_01820_7 crossref_primary_10_1016_j_clon_2021_12_002 crossref_primary_10_1109_ACCESS_2024_3423701 crossref_primary_10_1155_2021_6637936 crossref_primary_10_1016_j_jclepro_2022_130943 crossref_primary_10_1093_mnras_stab1677 crossref_primary_10_1109_ACCESS_2022_3146334 crossref_primary_10_3390_diagnostics12010069 crossref_primary_10_3390_s21217352 crossref_primary_10_3390_reports5020020 crossref_primary_10_3389_fendo_2025_1634875 crossref_primary_10_1016_j_bdr_2024_100451 crossref_primary_10_1088_1555_6611_acf709 crossref_primary_10_1016_j_knosys_2021_107568 crossref_primary_10_3390_bioengineering12070728 crossref_primary_10_1080_17452759_2025_2523550 crossref_primary_10_1016_j_ocemod_2025_102622 crossref_primary_10_1063_5_0156044 crossref_primary_10_1007_s10278_025_01394_w crossref_primary_10_3389_fcell_2023_1197239 crossref_primary_10_1016_j_asoc_2024_112258 crossref_primary_10_3389_fonc_2022_890659 crossref_primary_10_1109_TGRS_2022_3208333 crossref_primary_10_1155_2022_9483834 crossref_primary_10_1016_j_compbiomed_2023_107005 crossref_primary_10_1109_JBHI_2023_3271858 crossref_primary_10_1109_ACCESS_2025_3569575 crossref_primary_10_1007_s00330_020_07024_z crossref_primary_10_1016_j_displa_2022_102339 crossref_primary_10_1364_AO_423333 crossref_primary_10_1016_j_ajpath_2024_12_018 crossref_primary_10_1038_s41598_025_11985_w crossref_primary_10_1038_s41598_025_95002_0 crossref_primary_10_3390_life13091870 crossref_primary_10_1109_ACCESS_2022_3207765 crossref_primary_10_1016_j_currproblcancer_2024_101150 crossref_primary_10_3390_rs14184669 crossref_primary_10_1016_j_ultrasmedbio_2022_12_016 crossref_primary_10_1038_s41467_021_25503_9 crossref_primary_10_1136_bjo_2022_321833 crossref_primary_10_1080_19475705_2025_2502593 crossref_primary_10_3390_informatics9010006 crossref_primary_10_1016_j_isci_2024_111131 crossref_primary_10_1109_LGRS_2022_3228967 crossref_primary_10_1186_s12938_023_01193_w crossref_primary_10_3389_frai_2022_903875 crossref_primary_10_1016_j_joca_2020_12_018 crossref_primary_10_1038_s41598_024_80675_w crossref_primary_10_1002_aisy_202200352 crossref_primary_10_1038_s41467_021_21896_9 crossref_primary_10_1080_10298436_2023_2295906 crossref_primary_10_3390_bioengineering10080971 crossref_primary_10_1016_j_foodchem_2024_139078 crossref_primary_10_3390_electronics12194019 crossref_primary_10_1007_s42461_024_01169_x crossref_primary_10_1016_j_psep_2025_107402 crossref_primary_10_1186_s40538_024_00681_y crossref_primary_10_1109_TMM_2022_3233307 crossref_primary_10_3390_ani13101713 crossref_primary_10_1016_j_patrec_2025_04_035 crossref_primary_10_1038_s41598_023_45368_w crossref_primary_10_32604_cmes_2021_017679 crossref_primary_10_3390_app132011273 crossref_primary_10_34133_plantphenomics_0125 crossref_primary_10_3390_bioengineering10080978 crossref_primary_10_1016_j_ijhydene_2024_04_283 crossref_primary_10_2183_pjab_101_023 crossref_primary_10_3390_jmse11030625 crossref_primary_10_1145_3583690 crossref_primary_10_1109_ACCESS_2021_3056088 crossref_primary_10_1016_j_array_2025_100442 crossref_primary_10_1016_j_infrared_2025_105777 crossref_primary_10_1016_j_compbiomed_2024_108643 crossref_primary_10_1002_hbm_26581 crossref_primary_10_1007_s11926_023_01114_9 crossref_primary_10_1109_JBHI_2023_3331944 crossref_primary_10_1007_s12021_024_09694_2 crossref_primary_10_1093_neuonc_noac280 crossref_primary_10_17780_ksujes_1614945 crossref_primary_10_1109_TMI_2022_3142048 crossref_primary_10_1007_s00414_020_02489_5 crossref_primary_10_3389_fnins_2023_1269100 crossref_primary_10_1021_acs_jpclett_4c03650 crossref_primary_10_1016_j_ecoinf_2021_101253 crossref_primary_10_1186_s40537_025_01265_9 crossref_primary_10_1017_S0263574725102038 crossref_primary_10_1007_s10499_024_01737_4 crossref_primary_10_3390_app14010008 crossref_primary_10_1007_s00234_024_03298_y crossref_primary_10_3390_agriculture15141530 crossref_primary_10_1111_iej_14273 crossref_primary_10_1016_j_cviu_2023_103663 crossref_primary_10_1016_j_neuroimage_2025_121077 crossref_primary_10_3389_fonc_2021_802205 crossref_primary_10_1109_JSTARS_2022_3206901 crossref_primary_10_3390_app15116302 crossref_primary_10_3390_cancers17101620 crossref_primary_10_3390_jmse12101839 crossref_primary_10_1002_advs_202204723 crossref_primary_10_2196_74402 crossref_primary_10_1109_TIM_2023_3282664 crossref_primary_10_1186_s12859_022_04762_3 crossref_primary_10_1007_s10384_025_01205_3 crossref_primary_10_1002_int_22458 crossref_primary_10_1016_j_chemosphere_2021_132324 crossref_primary_10_3389_fphy_2022_1007861 crossref_primary_10_1016_j_displa_2021_102008 crossref_primary_10_1109_JSTARS_2024_3447356 crossref_primary_10_1145_3737445 crossref_primary_10_1016_j_jfca_2024_106144 crossref_primary_10_1016_j_compag_2024_109868 crossref_primary_10_1080_0144929X_2024_2431055 crossref_primary_10_3390_s20174852 crossref_primary_10_1016_j_engappai_2023_106368 crossref_primary_10_1016_j_ebiom_2021_103522 crossref_primary_10_1161_CIRCULATIONAHA_124_069047 crossref_primary_10_1088_2057_1976_ad7bc0 crossref_primary_10_3390_rs15041151 crossref_primary_10_1088_1475_7516_2023_11_075 crossref_primary_10_1007_s00330_025_11980_9 crossref_primary_10_1520_SSMS20230035 crossref_primary_10_1002_path_6373 crossref_primary_10_3390_agronomy14122796 crossref_primary_10_1186_s12886_023_03079_w crossref_primary_10_1016_j_engappai_2024_107982 crossref_primary_10_1109_JSTARS_2024_3378348 crossref_primary_10_1155_2022_4316507 crossref_primary_10_3390_jmse11020320 crossref_primary_10_1016_j_microc_2025_113256 crossref_primary_10_1007_s42452_024_06070_2 crossref_primary_10_1038_s41524_023_01172_8 crossref_primary_10_1007_s13349_025_00908_y crossref_primary_10_1109_JSTARS_2024_3403882 crossref_primary_10_1148_ryai_2021200165 crossref_primary_10_59681_2175_4411_v16_iEspecial_2024_1302 crossref_primary_10_3390_electronics13234645 crossref_primary_10_1007_s11263_025_02548_7 crossref_primary_10_1016_j_compbiomed_2024_109520 crossref_primary_10_1080_19392699_2025_2453058 crossref_primary_10_1007_s10044_025_01429_6 crossref_primary_10_1016_j_procs_2025_07_170 crossref_primary_10_1080_10447318_2025_2539458 crossref_primary_10_1016_j_compbiomed_2022_105812 crossref_primary_10_1016_j_ecoinf_2025_103338 crossref_primary_10_3389_fonc_2025_1601929 crossref_primary_10_1007_s11760_025_04394_z crossref_primary_10_1186_s40537_025_01293_5 crossref_primary_10_1016_j_knosys_2025_113885 crossref_primary_10_1109_TIFS_2024_3361216 crossref_primary_10_1186_s12957_025_03819_w crossref_primary_10_1002_jmri_29245 crossref_primary_10_1016_j_istruc_2024_106276 crossref_primary_10_3390_drones8040140 crossref_primary_10_1016_j_artmed_2021_102059 crossref_primary_10_1038_s44172_023_00105_z crossref_primary_10_1038_s42256_021_00399_8 crossref_primary_10_3390_jmmp7010017 crossref_primary_10_1109_LGRS_2020_3018186 crossref_primary_10_1016_j_compmedimag_2024_102371 crossref_primary_10_1038_s41598_021_96031_1 crossref_primary_10_1145_3763230 crossref_primary_10_2196_58776 crossref_primary_10_1038_s41598_022_14440_2 crossref_primary_10_1016_j_compbiomed_2024_109535 crossref_primary_10_1186_s13007_024_01188_1 crossref_primary_10_1109_ACCESS_2025_3565638 crossref_primary_10_1016_j_engappai_2023_107679 crossref_primary_10_1109_ACCESS_2024_3460830 crossref_primary_10_1016_j_scitotenv_2022_158496 crossref_primary_10_3390_mi12121504 crossref_primary_10_3390_agronomy12081846 crossref_primary_10_1007_s00202_023_01808_4 crossref_primary_10_1080_01431161_2023_2285739 crossref_primary_10_1016_j_bonr_2022_101632 crossref_primary_10_1109_TMI_2023_3312988 crossref_primary_10_1007_s11042_024_20414_5 crossref_primary_10_1016_j_jelectrocard_2024_03_005 crossref_primary_10_1016_j_eswa_2025_128814 crossref_primary_10_1016_j_aca_2022_340772 crossref_primary_10_1016_j_epsr_2023_109701 crossref_primary_10_1109_JSEN_2023_3246133 crossref_primary_10_3390_jpm12020143 crossref_primary_10_1016_j_knosys_2022_108427 crossref_primary_10_1371_journal_pone_0269016 crossref_primary_10_1371_journal_pone_0306703 crossref_primary_10_1088_2631_8695_adcd3c crossref_primary_10_1111_pbi_70208 crossref_primary_10_1016_j_radonc_2020_09_014 crossref_primary_10_26508_lsa_202503319 crossref_primary_10_1111_myc_13540 crossref_primary_10_3390_s20174898 crossref_primary_10_1109_TGRS_2024_3477749 crossref_primary_10_3390_rs17111856 crossref_primary_10_1155_2021_5853128 crossref_primary_10_1109_ACCESS_2024_3471948 crossref_primary_10_3390_ani14050755 crossref_primary_10_1155_2022_8447453 crossref_primary_10_23919_AISE_2005_000007 crossref_primary_10_1145_3623399 crossref_primary_10_1515_itit_2025_0007 crossref_primary_10_1093_plphys_kiaf132 crossref_primary_10_1109_ACCESS_2020_2989898 crossref_primary_10_1038_s41598_025_05568_y crossref_primary_10_1109_TIP_2022_3227503 crossref_primary_10_3389_fninf_2022_872035 crossref_primary_10_1016_j_ejmp_2021_02_006 crossref_primary_10_1109_TAI_2022_3227142 crossref_primary_10_3390_s21030891 crossref_primary_10_1016_j_jdent_2023_104701 crossref_primary_10_3390_a17060238 crossref_primary_10_1002_acm2_14547 crossref_primary_10_1109_ACCESS_2024_3505608 crossref_primary_10_1016_j_scs_2025_106671 crossref_primary_10_1093_bib_bbab569 crossref_primary_10_1103_PhysRevResearch_6_033279 crossref_primary_10_1109_ACCESS_2021_3110239 crossref_primary_10_3390_agronomy14091934 crossref_primary_10_1016_j_ajo_2021_02_004 crossref_primary_10_3389_frwa_2022_934709 crossref_primary_10_1016_j_neubiorev_2025_106201 crossref_primary_10_1016_j_asoc_2022_109656 crossref_primary_10_1109_JBHI_2023_3337661 crossref_primary_10_1007_s13246_023_01262_3 crossref_primary_10_1364_OME_558459 crossref_primary_10_1016_j_bspc_2025_108020 crossref_primary_10_3390_electronics14030442 crossref_primary_10_1109_TITS_2025_3547879 crossref_primary_10_3390_electronics12143066 crossref_primary_10_2196_72649 crossref_primary_10_1016_j_compbiomed_2025_111063 crossref_primary_10_1109_JSTARS_2022_3188493 crossref_primary_10_1007_s13534_025_00495_3 crossref_primary_10_3390_a17060227 crossref_primary_10_3390_diseases10030056 crossref_primary_10_1016_j_compbiomed_2022_105852 crossref_primary_10_3389_fcomp_2025_1576958 crossref_primary_10_3390_s25154820 crossref_primary_10_1007_s10489_021_02628_4 crossref_primary_10_1016_j_cmpb_2025_108830 crossref_primary_10_1007_s10618_023_00915_x crossref_primary_10_1007_s11548_023_02989_w crossref_primary_10_1016_j_eswa_2023_121644 crossref_primary_10_1136_jnnp_2022_330230 crossref_primary_10_3390_ani13132078 crossref_primary_10_1155_2021_6652897 crossref_primary_10_1002_aisy_202400986 crossref_primary_10_1016_j_powtec_2020_08_088 crossref_primary_10_1259_bjr_20220835 crossref_primary_10_3389_fcell_2024_1447067 crossref_primary_10_3389_fonc_2022_950185 crossref_primary_10_1016_j_inffus_2021_11_008 crossref_primary_10_1016_j_medengphy_2024_104117 crossref_primary_10_1097_RLI_0000000000001114 crossref_primary_10_1109_JSEN_2025_3552768 crossref_primary_10_1148_radiol_232635 crossref_primary_10_3390_diagnostics11091554 crossref_primary_10_3390_jpm11111213 crossref_primary_10_1016_j_foodchem_2023_136309 crossref_primary_10_1109_JBHI_2023_3311021 crossref_primary_10_1038_s41545_024_00367_w crossref_primary_10_3390_biology11121727 crossref_primary_10_1016_j_autcon_2024_105369 crossref_primary_10_1177_23969873231183206 crossref_primary_10_1080_17517575_2022_2098537 crossref_primary_10_1111_mice_13224 crossref_primary_10_1038_s41598_022_05727_5 crossref_primary_10_1186_s40644_023_00524_3 crossref_primary_10_1016_j_pnucene_2025_105605 crossref_primary_10_1186_s13244_024_01610_1 crossref_primary_10_1016_j_measurement_2025_118176 crossref_primary_10_1016_j_measurement_2025_119025 crossref_primary_10_1080_00405000_2024_2392893 crossref_primary_10_1016_j_inffus_2024_102800 crossref_primary_10_1038_s41598_024_54251_1 crossref_primary_10_1016_j_conbuildmat_2025_142779 crossref_primary_10_1371_journal_pone_0260622 crossref_primary_10_1016_j_engappai_2025_112348 crossref_primary_10_1016_j_jmb_2023_168045 crossref_primary_10_1016_j_medengphy_2025_104405 crossref_primary_10_3390_diagnostics11091562 crossref_primary_10_4103_tjo_tjo_8_22 crossref_primary_10_1038_s41598_023_47866_3 crossref_primary_10_1088_1741_2552_ac64c4 crossref_primary_10_1109_ACCESS_2023_3274851 crossref_primary_10_1007_s13218_024_00835_y crossref_primary_10_5194_amt_15_1829_2022 crossref_primary_10_1016_j_bspc_2023_105646 crossref_primary_10_1016_j_asoc_2021_107184 crossref_primary_10_1016_j_ijmedinf_2024_105341 crossref_primary_10_1093_gji_ggaf303 crossref_primary_10_3390_agronomy14020333 crossref_primary_10_1007_s10489_024_05509_8 crossref_primary_10_3389_fcell_2021_765654 crossref_primary_10_1016_j_inffus_2024_102814 crossref_primary_10_1109_TGRS_2023_3264232 crossref_primary_10_3390_app132112032 crossref_primary_10_1109_TIP_2020_2983560 crossref_primary_10_1109_ACCESS_2023_3305455 crossref_primary_10_3390_agronomy15051088 crossref_primary_10_1016_j_knosys_2022_109386 crossref_primary_10_1016_j_foodcont_2025_111581 crossref_primary_10_1016_j_jag_2025_104571 crossref_primary_10_1542_peds_2020_034546 crossref_primary_10_3390_electronics12143039 crossref_primary_10_1177_02783649251351658 crossref_primary_10_3390_met11040549 crossref_primary_10_3390_a16090435 crossref_primary_10_1167_tvst_14_8_38 crossref_primary_10_3390_min11121354 crossref_primary_10_3390_s23135811 crossref_primary_10_3390_diagnostics12123216 crossref_primary_10_1016_S1470_2045_20_30535_0 crossref_primary_10_1007_s10994_022_06261_1 crossref_primary_10_3390_rs14205250 crossref_primary_10_1016_j_ejrad_2022_110527 crossref_primary_10_3847_1538_3881_ace0ff crossref_primary_10_1007_s40194_025_01952_4 crossref_primary_10_3390_app15094652 crossref_primary_10_1016_j_ecolmodel_2021_109555 crossref_primary_10_1103_PhysRevResearch_4_033094 crossref_primary_10_1016_j_ijleo_2022_169986 crossref_primary_10_1016_j_labinv_2023_100225 crossref_primary_10_1002_mp_15208 crossref_primary_10_1007_s11063_023_11180_w crossref_primary_10_1016_j_neunet_2025_107857 crossref_primary_10_1016_j_csbj_2025_04_002 crossref_primary_10_1016_j_arr_2023_102144 crossref_primary_10_1002_JPER_21_0492 crossref_primary_10_3390_ai2030020 crossref_primary_10_1109_TGRS_2023_3264653 crossref_primary_10_1016_j_eswa_2024_125067 crossref_primary_10_1145_3421725 crossref_primary_10_1016_j_is_2023_102317 crossref_primary_10_1016_j_asmr_2024_100940 crossref_primary_10_1109_TASLP_2024_3463491 crossref_primary_10_1038_s41598_025_85372_w crossref_primary_10_1016_j_bspc_2024_106399 crossref_primary_10_1117_1_JBO_30_5_055001 crossref_primary_10_1016_j_bspc_2024_107248 crossref_primary_10_1016_j_eswa_2023_122507 crossref_primary_10_3788_LOP242530 crossref_primary_10_1007_s00530_025_01685_w crossref_primary_10_1007_s41062_024_01627_x crossref_primary_10_3390_app11167541 crossref_primary_10_3390_diagnostics13101793 crossref_primary_10_1088_1748_0221_19_05_P05050 crossref_primary_10_1109_ACCESS_2022_3208115 crossref_primary_10_1016_j_ibneur_2022_10_014 crossref_primary_10_3390_brainsci15080886 crossref_primary_10_1038_s41746_025_01693_0 crossref_primary_10_1109_JSEN_2024_3441237 crossref_primary_10_1051_0004_6361_202449929 crossref_primary_10_14358_PERS_24_00060R2 crossref_primary_10_1016_j_bbe_2022_02_009 crossref_primary_10_1088_2631_8695_adc8ff crossref_primary_10_1016_j_patcog_2024_110485 crossref_primary_10_1055_s_0043_1776428 crossref_primary_10_1038_s41598_024_67879_w crossref_primary_10_1038_s42256_023_00634_4 crossref_primary_10_1371_journal_pone_0293967 crossref_primary_10_3389_fonc_2020_598721 crossref_primary_10_1016_j_solener_2025_113672 crossref_primary_10_1183_16000617_0055_2023 crossref_primary_10_12677_acm_2025_1572158 crossref_primary_10_1001_jamaoncol_2024_5356 crossref_primary_10_1016_j_engappai_2025_110131 crossref_primary_10_1016_j_talanta_2025_128006 crossref_primary_10_1007_s11042_022_12373_6 crossref_primary_10_3390_e24030313 crossref_primary_10_1109_TIE_2021_3094452 crossref_primary_10_1177_1468087420974148 crossref_primary_10_1016_j_eswa_2023_120330 crossref_primary_10_1038_s44304_024_00047_2 crossref_primary_10_1080_00207543_2025_2513574 crossref_primary_10_12688_wellcomeopenres_17164_2 crossref_primary_10_1259_bjr_20211066 crossref_primary_10_3389_fmed_2022_1036974 crossref_primary_10_1088_1741_2552_addd4a crossref_primary_10_2514_1_I011514 crossref_primary_10_1016_j_neucom_2024_127806 crossref_primary_10_1016_j_compind_2021_103585 crossref_primary_10_1007_s10489_023_04656_8 crossref_primary_10_1016_j_clinph_2021_09_018 crossref_primary_10_1016_j_bspc_2025_108436 crossref_primary_10_1016_j_media_2025_103663 crossref_primary_10_2196_24973 crossref_primary_10_3389_fnins_2021_630747 crossref_primary_10_1007_s42803_023_00070_1 crossref_primary_10_1016_j_dld_2023_07_005 crossref_primary_10_1016_j_ecoinf_2023_102288 crossref_primary_10_3389_fpls_2022_758818 crossref_primary_10_1088_1361_6501_ac6d48 crossref_primary_10_1186_s42234_022_00103_0 crossref_primary_10_1038_s41598_024_76807_x crossref_primary_10_1016_j_xops_2025_100847 crossref_primary_10_1109_JSTARS_2024_3465231 crossref_primary_10_3390_jcm13030807 crossref_primary_10_1109_ACCESS_2023_3325034 crossref_primary_10_3390_diagnostics12102333 crossref_primary_10_1016_j_artmed_2024_102946 crossref_primary_10_3390_app14188122 crossref_primary_10_3390_s22093494 crossref_primary_10_1016_j_cmpb_2022_107058 crossref_primary_10_1109_TIM_2023_3334350 crossref_primary_10_1177_00220345251316514 crossref_primary_10_1183_20734735_0056_2024 crossref_primary_10_1007_s10585_023_10235_5 crossref_primary_10_1109_TCSVT_2021_3133859 crossref_primary_10_1007_s10618_023_00933_9 crossref_primary_10_1148_ryai_210221 crossref_primary_10_1007_s41324_023_00535_z crossref_primary_10_3389_fmed_2025_1584378 crossref_primary_10_1007_s11431_021_1848_7 crossref_primary_10_1016_j_bspc_2022_103549 crossref_primary_10_1148_ryai_230296 crossref_primary_10_1016_j_aap_2024_107636 crossref_primary_10_1177_00220345221089858 crossref_primary_10_3390_electronics14101965 crossref_primary_10_1016_j_jestch_2024_101940 crossref_primary_10_3390_app13158747 crossref_primary_10_1515_hf_2020_0079 crossref_primary_10_1038_s41598_022_18535_8 crossref_primary_10_1016_j_compag_2021_106483 crossref_primary_10_1016_j_jhepr_2025_101592 crossref_primary_10_1177_17531934221127092 crossref_primary_10_1016_j_artint_2023_103897 crossref_primary_10_17586_2226_1494_2025_25_4_694_702 crossref_primary_10_1007_s11263_024_02282_6 crossref_primary_10_1016_j_displa_2023_102397 crossref_primary_10_3390_agronomy12071638 crossref_primary_10_1186_s12943_024_02189_3 crossref_primary_10_1177_20584601241288509 crossref_primary_10_1186_s40494_021_00562_9 crossref_primary_10_1097_OI9_0000000000000283 crossref_primary_10_1016_j_jneumeth_2021_109421 crossref_primary_10_1097_IAE_0000000000003714 crossref_primary_10_1007_s10044_024_01404_7 crossref_primary_10_1007_s40747_024_01610_0 crossref_primary_10_1016_j_etran_2023_100281 crossref_primary_10_1155_2021_6695518 crossref_primary_10_3390_app14177462 crossref_primary_10_3390_app13095472 crossref_primary_10_1001_jamaophthalmol_2025_1513 crossref_primary_10_1007_s00521_022_07280_8 crossref_primary_10_1007_s42979_022_01032_0 crossref_primary_10_1016_j_inffus_2025_103136 crossref_primary_10_1016_j_compositesa_2024_108512 crossref_primary_10_1038_s41598_025_95853_7 crossref_primary_10_1097_RLU_0000000000005898 crossref_primary_10_1021_acs_jcim_5c00366 crossref_primary_10_1108_IJWIS_10_2023_0192 crossref_primary_10_1016_j_patcog_2023_110146 crossref_primary_10_1021_acs_jcim_5c01693 crossref_primary_10_3390_s22093471 crossref_primary_10_1007_s13246_020_00934_8 crossref_primary_10_3390_agriculture14122244 crossref_primary_10_1038_s41467_023_40890_x crossref_primary_10_1016_j_neucom_2024_127837 crossref_primary_10_1016_j_wneu_2024_01_076 crossref_primary_10_1016_j_acags_2025_100257 crossref_primary_10_1109_JSTARS_2025_3556096 crossref_primary_10_1007_s00330_025_11682_2 crossref_primary_10_1038_s44271_024_00119_z crossref_primary_10_1038_s41598_025_87953_1 crossref_primary_10_1038_s41598_025_98434_w crossref_primary_10_1038_s41467_022_35704_5 crossref_primary_10_1016_j_artmed_2022_102332 crossref_primary_10_1016_j_neunet_2023_09_028 crossref_primary_10_1007_s11063_024_11682_1 crossref_primary_10_1021_jacs_3c07513 crossref_primary_10_1097_ICO_0000000000002830 crossref_primary_10_1016_j_bas_2023_102738 crossref_primary_10_1109_TIP_2023_3277389 crossref_primary_10_1109_JSTARS_2024_3387744 crossref_primary_10_3390_diagnostics13091594 crossref_primary_10_1109_TIM_2025_3551952 crossref_primary_10_3390_ijerph182010798 crossref_primary_10_1016_j_chbah_2023_100021 crossref_primary_10_1049_cit2_12074 crossref_primary_10_1016_j_acra_2025_05_031 crossref_primary_10_1016_j_ijcard_2025_133203 crossref_primary_10_1016_j_ijleo_2021_167441 crossref_primary_10_1002_ima_70178 crossref_primary_10_1038_s43856_022_00166_9 crossref_primary_10_1016_j_apacoust_2022_108965 crossref_primary_10_1109_JRFID_2022_3209237 crossref_primary_10_3390_biomedicines10050941 crossref_primary_10_3390_s22155868 crossref_primary_10_1007_s11053_023_10298_x crossref_primary_10_1038_s41598_022_08571_9 crossref_primary_10_1051_0004_6361_202142952 crossref_primary_10_1186_s40537_022_00650_y crossref_primary_10_1109_ACCESS_2021_3139129 crossref_primary_10_1109_JBHI_2023_3306460 crossref_primary_10_1109_ACCESS_2024_3514197 crossref_primary_10_1148_radiol_222441 crossref_primary_10_1038_s42256_021_00338_7 crossref_primary_10_1016_j_radonc_2025_110995 crossref_primary_10_1029_2021GL094407 crossref_primary_10_1007_s10462_023_10692_0 crossref_primary_10_1007_s11263_025_02552_x crossref_primary_10_3389_fpls_2022_1023515 crossref_primary_10_1016_j_engappai_2025_110633 crossref_primary_10_1007_s10845_023_02302_1 crossref_primary_10_1109_ACCESS_2022_3187185 crossref_primary_10_3390_biom11060815 crossref_primary_10_1016_j_eswa_2023_122494 crossref_primary_10_1038_s44325_025_00064_8 crossref_primary_10_1016_j_cmpb_2023_107804 crossref_primary_10_1007_s11042_023_17483_3 crossref_primary_10_3390_s21134486 crossref_primary_10_1016_j_acra_2025_05_001 crossref_primary_10_1080_15230406_2023_2172081 crossref_primary_10_3390_ani14152189 crossref_primary_10_1016_j_engappai_2023_105936 crossref_primary_10_1016_j_compag_2022_107171 crossref_primary_10_1109_TMM_2023_3349075 crossref_primary_10_1007_s00371_025_04117_y crossref_primary_10_1002_ps_7959 crossref_primary_10_1007_s12204_021_2393_2 crossref_primary_10_1016_j_eswa_2023_120288 crossref_primary_10_3389_fdgth_2021_637944 crossref_primary_10_1016_j_eswa_2025_128364 crossref_primary_10_3390_math10193592 crossref_primary_10_1016_j_energy_2024_133774 crossref_primary_10_1038_s41598_025_09833_y crossref_primary_10_1109_TNNLS_2024_3511575 crossref_primary_10_1145_3746229 crossref_primary_10_3390_diagnostics15182300 crossref_primary_10_1007_s11042_024_18106_1 crossref_primary_10_1016_j_jksuci_2020_11_029 crossref_primary_10_1016_j_tust_2023_105107 crossref_primary_10_1016_j_compag_2022_107163 crossref_primary_10_1109_TITS_2025_3535498 crossref_primary_10_1109_TMI_2023_3283517 crossref_primary_10_1016_j_measurement_2025_118657 crossref_primary_10_1109_ACCESS_2022_3157330 crossref_primary_10_3390_agriculture14122324 crossref_primary_10_1016_j_ejrad_2022_110592 crossref_primary_10_1109_TPAMI_2024_3355461 crossref_primary_10_1016_j_ecoinf_2023_102237 crossref_primary_10_1016_j_ymssp_2024_111948 crossref_primary_10_3847_2041_8213_ad8dd4 crossref_primary_10_1136_bmjophth_2024_001794 crossref_primary_10_1007_s10994_022_06204_w crossref_primary_10_1016_j_engappai_2024_108046 crossref_primary_10_1109_TPAMI_2024_3396809 crossref_primary_10_1109_JBHI_2021_3060997 crossref_primary_10_1136_jnis_2023_021154 crossref_primary_10_1109_ACCESS_2025_3567488 crossref_primary_10_1016_j_compag_2024_108610 crossref_primary_10_1007_s10032_024_00483_w crossref_primary_10_1039_D5CC01291K crossref_primary_10_1371_journal_pntd_0011118 crossref_primary_10_3390_ijerph20021268 crossref_primary_10_1093_jncics_pkaf037 crossref_primary_10_1145_3701762 crossref_primary_10_1038_s41416_022_02092_y crossref_primary_10_1016_j_cropro_2024_106715 crossref_primary_10_1007_s10278_025_01589_1 crossref_primary_10_1016_j_ijar_2021_06_003 crossref_primary_10_1007_s10845_022_02053_5 crossref_primary_10_3390_rs13091704 crossref_primary_10_3847_1538_4357_ad3b95 crossref_primary_10_1007_s00521_022_07428_6 crossref_primary_10_1109_TCSVT_2025_3558939 crossref_primary_10_1109_TETCI_2024_3444603 crossref_primary_10_1117_1_JEI_34_2_023016 crossref_primary_10_1002_jcsm_13144 crossref_primary_10_1109_JBHI_2024_3495975 crossref_primary_10_3389_fpls_2025_1571228 crossref_primary_10_1155_2022_5072666 crossref_primary_10_1038_s41433_024_03388_4 crossref_primary_10_1016_j_jia_2024_12_017 crossref_primary_10_1109_ACCESS_2023_3330465 crossref_primary_10_1017_hpl_2023_85 crossref_primary_10_3389_fclim_2022_1058677 crossref_primary_10_1038_s42003_021_02716_8 crossref_primary_10_3390_agriculture15151639 crossref_primary_10_1073_pnas_2406675122 crossref_primary_10_1016_j_procs_2022_09_532 crossref_primary_10_1155_2021_5792975 crossref_primary_10_1007_s10462_021_10088_y crossref_primary_10_1016_j_crad_2023_05_010 crossref_primary_10_1136_rmdopen_2024_004628 crossref_primary_10_3847_1538_3881_ade3cb crossref_primary_10_1007_s10044_025_01499_6 crossref_primary_10_1186_s12891_021_04260_2 crossref_primary_10_1016_j_ejrad_2025_112377 crossref_primary_10_1016_j_neunet_2024_106224 crossref_primary_10_1109_TVCG_2022_3184247 crossref_primary_10_3390_app14177873 crossref_primary_10_1109_TMM_2025_3557677 crossref_primary_10_1109_ACCESS_2024_3442926 crossref_primary_10_1007_s12559_022_10076_6 crossref_primary_10_1177_03611981241264275 crossref_primary_10_1016_j_ajoint_2025_100167 crossref_primary_10_1109_TIM_2023_3280511 crossref_primary_10_3390_mi13040501 crossref_primary_10_1002_jmri_29637 crossref_primary_10_1016_j_inffus_2023_102094 crossref_primary_10_3390_info13040160 crossref_primary_10_1007_s00247_022_05368_w crossref_primary_10_3389_fnmol_2021_796070 crossref_primary_10_1109_TIFS_2023_3249566 crossref_primary_10_1109_JSTARS_2024_3447086 crossref_primary_10_1016_j_bspc_2021_103319 crossref_primary_10_3390_pr10071285 crossref_primary_10_5194_hess_26_795_2022 crossref_primary_10_1038_s41598_023_27671_8 crossref_primary_10_3233_THC_220141 crossref_primary_10_1145_3761818 crossref_primary_10_3390_fractalfract8100551 crossref_primary_10_1038_s41598_021_02179_1 crossref_primary_10_1016_j_compag_2021_106410 crossref_primary_10_1016_j_heliyon_2023_e20467 crossref_primary_10_1038_s41598_024_83347_x crossref_primary_10_3390_math9233137 crossref_primary_10_1016_j_jmapro_2022_06_034 crossref_primary_10_1158_1078_0432_CCR_20_3596 crossref_primary_10_1186_s12859_022_04767_y crossref_primary_10_1016_j_commatsci_2024_112863 crossref_primary_10_1145_3617597 crossref_primary_10_3389_fpls_2021_763479 crossref_primary_10_3389_frai_2024_1310518 crossref_primary_10_1007_s40747_024_01445_9 crossref_primary_10_1093_pnasnexus_pgaf137 crossref_primary_10_1007_s13349_022_00660_7 crossref_primary_10_1186_s13018_025_05830_z crossref_primary_10_1109_TGRS_2023_3258488 crossref_primary_10_1007_s00414_020_02497_5 crossref_primary_10_1038_s41576_022_00532_2 crossref_primary_10_3390_healthcare11030410 crossref_primary_10_1109_ACCESS_2024_3387702 crossref_primary_10_1016_j_ces_2022_117991 crossref_primary_10_1016_j_jhepr_2024_101209 crossref_primary_10_3390_s25082398 crossref_primary_10_1007_s42979_022_01464_8 crossref_primary_10_1038_s41598_023_36024_4 crossref_primary_10_3390_ijerph20032377 crossref_primary_10_1007_s10278_022_00711_x crossref_primary_10_1038_s41598_025_09846_7 crossref_primary_10_1109_TGRS_2024_3436814 crossref_primary_10_1016_j_indcrop_2025_121515 crossref_primary_10_1093_dmfr_twae029 crossref_primary_10_1007_s00138_024_01537_z crossref_primary_10_1109_JSTARS_2025_3574229 crossref_primary_10_1088_1741_2552_ac697d crossref_primary_10_3390_math10244765 crossref_primary_10_1007_s00247_025_06376_2 crossref_primary_10_1136_bmjopen_2024_086896 crossref_primary_10_3389_fpls_2023_1150748 crossref_primary_10_1109_ACCESS_2021_3069211 crossref_primary_10_3390_s22186993 crossref_primary_10_1016_j_asoc_2025_113786 crossref_primary_10_1038_s41598_024_76308_x crossref_primary_10_1109_TIM_2024_3476708 crossref_primary_10_1007_s40194_025_02125_z crossref_primary_10_1016_j_compbiomed_2025_110989 crossref_primary_10_1109_ACCESS_2024_3521330 crossref_primary_10_1109_JBHI_2023_3326467 crossref_primary_10_3389_fonc_2025_1608963 crossref_primary_10_1007_s10489_022_03788_7 crossref_primary_10_1007_s00330_023_09568_2 crossref_primary_10_1016_j_jmsy_2023_03_005 crossref_primary_10_1109_TAI_2022_3153754 crossref_primary_10_1007_s13167_025_00412_9 crossref_primary_10_1002_ange_202506744 crossref_primary_10_1186_s12859_024_05758_x crossref_primary_10_1016_j_jpurol_2021_10_009 crossref_primary_10_1002_bkcs_70056 crossref_primary_10_1007_s10489_022_03490_8 crossref_primary_10_3389_fbioe_2022_952198 crossref_primary_10_3390_electronics12244892 crossref_primary_10_1016_j_eclinm_2025_103118 crossref_primary_10_1038_s41598_024_75884_2 crossref_primary_10_1016_j_patcog_2023_109659 crossref_primary_10_1109_ACCESS_2023_3241013 crossref_primary_10_3389_fcvm_2022_1016032 crossref_primary_10_1016_j_knosys_2023_111066 crossref_primary_10_3390_diagnostics13081371 crossref_primary_10_1038_s41598_023_47546_2 crossref_primary_10_1053_j_ro_2025_06_003 crossref_primary_10_1007_s11255_022_03165_w crossref_primary_10_1038_s44222_025_00363_w crossref_primary_10_1016_j_acra_2025_07_013 crossref_primary_10_1016_j_saa_2025_126611 crossref_primary_10_1080_02713683_2024_2375401 crossref_primary_10_1007_s10694_022_01275_6 crossref_primary_10_1088_1742_6596_2891_10_102029 crossref_primary_10_1016_j_compag_2025_110823 crossref_primary_10_1161_JAHA_124_036882 crossref_primary_10_1007_s00530_025_01889_0 crossref_primary_10_1002_mp_14711 crossref_primary_10_1111_ppa_13684 crossref_primary_10_1177_00405175231192057 crossref_primary_10_3390_f16050783 crossref_primary_10_1038_s41598_025_04807_6 crossref_primary_10_1145_3705301 crossref_primary_10_1038_s41598_025_97718_5 crossref_primary_10_1016_j_neucom_2025_129577 crossref_primary_10_1016_j_neucom_2025_129572 crossref_primary_10_1136_bmjopen_2024_095342 crossref_primary_10_1177_10944281251323248 crossref_primary_10_1007_s00586_025_09179_z crossref_primary_10_1016_j_compind_2025_104305 crossref_primary_10_1109_TIFS_2023_3307908 crossref_primary_10_1016_j_chaos_2020_110153 crossref_primary_10_1109_JSTARS_2025_3595197 crossref_primary_10_1515_bmt_2021_0272 crossref_primary_10_1016_j_hroo_2025_01_008 crossref_primary_10_1109_ACCESS_2019_2963055 crossref_primary_10_1016_j_knosys_2025_113814 crossref_primary_10_1016_j_patcog_2021_108102 crossref_primary_10_1038_s41467_023_36383_6 crossref_primary_10_1371_journal_pone_0322854 crossref_primary_10_1080_09500340_2023_2248634 crossref_primary_10_1109_TIM_2021_3109722 crossref_primary_10_1080_13658816_2025_2530060 crossref_primary_10_3390_agriculture12060863 crossref_primary_10_1088_2632_2153_adcff6 crossref_primary_10_1371_journal_pone_0329482 crossref_primary_10_1109_ACCESS_2022_3144035 crossref_primary_10_1007_s10384_025_01163_w crossref_primary_10_1186_s13059_023_03134_1 crossref_primary_10_1177_30504554251314334 crossref_primary_10_3390_f13030366 crossref_primary_10_1007_s40996_023_01193_9 crossref_primary_10_3390_rs13081506 crossref_primary_10_1109_TSMC_2021_3103842 crossref_primary_10_3390_buildings15030505 crossref_primary_10_1109_JBHI_2024_3507532 crossref_primary_10_3390_buildings13123113 crossref_primary_10_3390_pr13041006 crossref_primary_10_1109_TIP_2020_2987161 crossref_primary_10_1007_s11280_023_01150_6 crossref_primary_10_1007_s00500_025_10653_5 crossref_primary_10_1016_j_cmpb_2022_106651 crossref_primary_10_1007_s13755_021_00169_1 crossref_primary_10_1002_ece3_71648 crossref_primary_10_1016_j_addma_2025_104952 crossref_primary_10_1080_0886022X_2025_2528106 crossref_primary_10_3390_f14071292 crossref_primary_10_1093_bib_bbae559 crossref_primary_10_1109_TIP_2024_3512354 crossref_primary_10_3390_rs16173210 crossref_primary_10_1007_s11063_023_11328_8 crossref_primary_10_1155_hbe2_9977058 crossref_primary_10_1371_journal_pdig_0000830 crossref_primary_10_3390_s24113596 crossref_primary_10_1038_s41598_025_87588_2 crossref_primary_10_1038_s41598_025_12670_8 crossref_primary_10_1371_journal_pdig_0000816 crossref_primary_10_1016_j_chemolab_2022_104520 crossref_primary_10_1002_mp_16067 crossref_primary_10_1016_j_addma_2021_101965 crossref_primary_10_1038_s41598_025_04344_2 crossref_primary_10_1029_2020EA001423 crossref_primary_10_1016_j_jobe_2025_112002 crossref_primary_10_1016_j_jclepro_2025_145547 crossref_primary_10_1002_arch_70060 crossref_primary_10_1109_JSTARS_2025_3569743 crossref_primary_10_1016_j_procs_2024_09_255 crossref_primary_10_1016_j_eswa_2023_120706 crossref_primary_10_1007_s11282_024_00741_x crossref_primary_10_1016_j_jmsy_2025_06_004 crossref_primary_10_3389_fpubh_2023_1239231 crossref_primary_10_1109_ACCESS_2025_3547433 crossref_primary_10_1109_JSTQE_2020_3038845 crossref_primary_10_3389_fonc_2025_1542265 crossref_primary_10_1007_s12149_024_01925_5 crossref_primary_10_1016_j_media_2022_102687 crossref_primary_10_1109_ACCESS_2024_3454966 crossref_primary_10_1016_j_cag_2021_09_002 crossref_primary_10_1061_JCCEE5_CPENG_5857 crossref_primary_10_1016_j_patrec_2021_06_021 crossref_primary_10_1007_s10694_022_01231_4 crossref_primary_10_1109_JSEN_2023_3317426 crossref_primary_10_1007_s00521_025_11375_3 crossref_primary_10_1073_pnas_2303060120 crossref_primary_10_1038_s41467_021_25975_9 crossref_primary_10_1371_journal_pone_0320219 crossref_primary_10_3390_jcm10020254 crossref_primary_10_1016_j_ijpharm_2024_123873 crossref_primary_10_1016_j_engappai_2024_108890 crossref_primary_10_1007_s12193_020_00332_0 crossref_primary_10_1016_j_knosys_2023_111092 crossref_primary_10_1016_j_mtcomm_2023_106896 crossref_primary_10_1186_s13244_025_02014_5 crossref_primary_10_1016_j_spinee_2023_09_019 crossref_primary_10_1016_j_ins_2021_12_020 crossref_primary_10_1109_JBHI_2025_3574688 crossref_primary_10_3390_app132111953 crossref_primary_10_3390_s25134002 crossref_primary_10_1007_s00417_022_05741_3 crossref_primary_10_1007_s11042_024_20288_7 crossref_primary_10_3390_rs14163883 crossref_primary_10_3390_jmse8100770 crossref_primary_10_1016_j_cmpb_2022_106624 crossref_primary_10_1093_cercor_bhae065 crossref_primary_10_1109_TCSVT_2025_3543408 crossref_primary_10_1016_j_inffus_2024_102303 crossref_primary_10_1109_TIV_2022_3216734 crossref_primary_10_1016_j_engappai_2024_109724 crossref_primary_10_1063_5_0229577 crossref_primary_10_1007_s00449_024_03110_4 crossref_primary_10_1016_j_rcim_2022_102513 crossref_primary_10_3390_app11115139 crossref_primary_10_1109_TMI_2022_3166129 crossref_primary_10_1016_j_optlaseng_2025_108857 crossref_primary_10_1007_s12539_025_00721_7 crossref_primary_10_1007_s10346_024_02323_8 |
| Cites_doi | 10.1109/CVPR.2014.222 10.1109/CVPR.2016.494 10.1007/978-3-642-33712-3_25 10.1007/978-3-319-46493-0_42 10.1109/CVPR.2016.90 10.1109/CVPR.2015.7298935 10.1109/CVPR.2016.319 10.1038/nature16961 10.1109/TPAMI.2013.50 10.1109/ICCV.2015.9 10.1109/CVPR.2015.7298754 10.18653/v1/D16-1203 10.1109/CVPR.2015.7298668 10.1109/WACV.2016.7477688 10.1109/CVPR.2009.5206848 10.1007/978-3-319-10602-1_48 10.1109/CVPR.2016.308 10.1145/2647868.2654889 10.1109/ICCV.2015.279 10.18653/v1/D16-1092 10.1007/s11263-016-0911-8 10.1109/CVPR.2015.7298872 10.1109/ICCV.2019.00268 10.1007/978-3-319-10590-1_53 10.1007/978-3-319-24702-1_11 10.1007/978-3-319-46466-4_8 10.1007/978-3-319-46493-0_33 10.1109/CVPR.2015.7298965 10.1109/CVPR.2015.7298877 10.1109/CVPR.2017.475 10.1109/CVPR.2014.81 10.1109/CVPR.2015.7298932 10.18653/v1/N16-3020 10.1007/978-3-030-01261-8_32 10.1109/CVPR.2015.7298780 10.1109/ICCV.2013.8 10.1109/CVPR.2017.354 10.1109/ICCV.2017.321 10.1109/CVPR.2017.121 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 COPYRIGHT 2020 Springer International Journal of Computer Vision is a copyright of Springer, (2019). All Rights Reserved. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: COPYRIGHT 2020 Springer – notice: International Journal of Computer Vision is a copyright of Springer, (2019). All Rights Reserved. |
| DBID | AAYXX CITATION ISR 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PYYUZ Q9U |
| DOI | 10.1007/s11263-019-01228-7 |
| DatabaseName | CrossRef Gale In Context: Science ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Complete ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database (ProQuest) ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Databases ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ABI/INFORM Collection China ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ABI/INFORM China ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISSN | 1573-1405 |
| EndPage | 359 |
| ExternalDocumentID | A614152459 10_1007_s11263_019_01228_7 |
| GrantInformation_xml | – fundername: Alfred P. Sloan Foundation funderid: http://dx.doi.org/10.13039/100000879 – fundername: Google funderid: http://dx.doi.org/10.13039/100006785 – fundername: Defense Advanced Research Projects Agency funderid: http://dx.doi.org/10.13039/100000185 – fundername: Virginia Polytechnic Institute and State University funderid: http://dx.doi.org/10.13039/100007263 – fundername: Army Research Office funderid: http://dx.doi.org/10.13039/100000183 – fundername: Paul G. Allen Family Foundation funderid: http://dx.doi.org/10.13039/100000952 – fundername: Amazon Web Services funderid: http://dx.doi.org/10.13039/100008536 – fundername: Office of Naval Research funderid: http://dx.doi.org/10.13039/100000006 – fundername: Nvidia funderid: http://dx.doi.org/10.13039/100007065 – fundername: National Science Foundation funderid: http://dx.doi.org/10.13039/100000001 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29J 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EAS EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ICD PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c458t-3da4a8f9ec5dd728cf9d4d7a33c63c272818f62f178b4abfddc1d90cc2416eda3 |
| IEDL.DBID | M0C |
| ISICitedReferencesCount | 17542 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000511807100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0920-5691 |
| IngestDate | Wed Nov 05 01:13:58 EST 2025 Sat Nov 29 10:19:00 EST 2025 Wed Nov 26 09:20:46 EST 2025 Tue Nov 18 20:59:26 EST 2025 Sat Nov 29 06:42:27 EST 2025 Fri Feb 21 02:35:18 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Transparency Explanations Interpretability Visualizations Grad-CAM Visual explanations |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c458t-3da4a8f9ec5dd728cf9d4d7a33c63c272818f62f178b4abfddc1d90cc2416eda3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2352397845 |
| PQPubID | 1456341 |
| PageCount | 24 |
| ParticipantIDs | proquest_journals_2352397845 gale_infotracacademiconefile_A614152459 gale_incontextgauss_ISR_A614152459 crossref_primary_10_1007_s11263_019_01228_7 crossref_citationtrail_10_1007_s11263_019_01228_7 springer_journals_10_1007_s11263_019_01228_7 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-02-01 |
| PublicationDateYYYYMMDD | 2020-02-01 |
| PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | International journal of computer vision |
| PublicationTitleAbbrev | Int J Comput Vis |
| PublicationYear | 2020 |
| Publisher | Springer US Springer Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
| References | Das, A., Agrawal, H., Zitnick, C. L., Parikh, D., & Batra, D. (2016). Human attention in visual question answering: Do humans and deep networks look at the same regions? In EMNLP. SilverDHuangAMaddisonCJGuezASifreLVan Den DriesscheGSchrittwieserJAntonoglouIPanneershelvamVLanctotMMastering the game of go with deep neural networks and tree searchNature2016529758748448910.1038/nature16961 Selvaraju, R. R., Lee, S., Shen, Y., Jin, H., Ghosh, S., Heck, L., Batra, D., & Parikh, D. (2019) Taking a hint: Leveraging explanations to make vision and language models more grounded. In Proceedings of the international conference on computer vision (ICCV). Goodfellow, I. J., Shlens, J., & Szegedy, C. (2015). Explaining and harnessing adversarial examples. stat. BengioYCourvilleAVincentPRepresentation learning: A review and new perspectivesIEEE Transactions on Pattern Analysis and Machine Intelligence20133581798182810.1109/TPAMI.2013.50 Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., & Torralba, A. (2017). Places: A 10 million image database for scene recognition. IEEE transactions on pattern analysis and machine intelligence. Gan, C., Wang, N., Yang, Y., Yeung, D.-Y., & Hauptmann, A. G. (2015). Devnet: A deep event network for multimedia event detection and evidence recounting. In CVPR. Johnson, J., Karpathy, A., & Fei-Fei, L. (2016). DenseCap: Fully convolutional localization networks for dense captioning. In CVPR. Lu, J., Lin, X., Batra, D., & Parikh, D. (2015). Deeper LSTM and normalized CNN visual question answering model. https://github.com/VT-vision-lab/VQA_LSTM_CNN. Chen, X., Fang, H., Lin, T.-Y., Vedantam, R., Gupta, S., Dollár, P., & Zitnick, C. L. (2015). Microsoft COCO captions: Data collection and evaluation server. arXiv preprint arXiv:1504.00325. Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). “Why should i trust you?” Explaining the predictions of any classifier. In SIGKDD. Dosovitskiy, A., & Brox, T. (2015). Inverting convolutional networks with convolutional networks. In CVPR. Gordon, D., Kembhavi, A., Rastegari, M., Redmon, J., Fox, D., & Farhadi, A. (2017). Iqa: Visual question answering in interactive environments. arXiv preprint arXiv:1712.03316. Johns, E., Mac Aodha, O., & Brostow, G. J. (2015). Becoming the expert—interactive multi-class machine teaching. In CVPR. Agrawal, H., Mathialagan, C. S., Goyal, Y., Chavali, N., Banik, P., Mohapatra, A., Osman, A., & Batra, D. (2015). CloudCV: Large scale distributed computer vision as a cloud service. In Mobile cloud visual media computing (pp. 265–290). Springer. Oquab, M., Bottou, L., Laptev, I., & Sivic, J. (2015). Is object localization for free?—weakly-supervised learning with convolutional neural networks. In CVPR. Cinbis, R. G., Verbeek, J., & Schmid, C. (2016). Weakly supervised object localization with multi-fold multiple instance learning. IEEE transactions on pattern analysis and machine intelligence. Lu, J., Yang, J., Batra, D., & Parikh, D. (2016). Hierarchical question-image co-attention for visual question answering. In NIPS. Agrawal, A., Batra, D., & Parikh, D. (2016). Analyzing the behavior of visual question answering models. In EMNLP. Lin, M., Chen, Q., & Yan, S. (2014a). Network in network. In ICLR. Das, A., Kottur, S., Moura, J. M., Lee, S., & Batra, D. (2017b). Learning cooperative visual dialog agents with deep reinforcement learning. In Proceedings of the IEEE international conference on computer vision (ICCV). Zhang, J., Lin, Z., Brandt, J., Shen, X., & Sclaroff, S. (2016). Top-down neural attention by excitation backprop. In ECCV. Lipton, Z. C. (2016). The mythos of model interpretability. arXiv preprint arXiv:1606.03490v3. Das, A., Datta, S., Gkioxari, G., Lee, S., Parikh, D., & Batra, D. (2018). Embodied question answering. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR). Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. In ICLR. Mahendran, A., & Vedaldi, A. (2016a). Salient deconvolutional networks. In European conference on computer vision. Vinyals, O., Toshev, A., Bengio, S., & Erhan, D. (2015). Show and tell: A neural image caption generator. In CVPR. Bazzani, L., Bergamo, A., Anguelov, D., Torresani, L. (2016). Self-taught object localization with deep networks. In WACV. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In CVPR. Malinowski, M., Rohrbach, M., & Fritz, M. (2015). Ask your neurons: A neural-based approach to answering questions about images. In ICCV. Vondrick, C., Khosla, A., Malisiewicz, T., & Torralba, A. (2013). HOGgles: Visualizing object detection features. ICCV. Simonyan, K., Vedaldi, A., & Zisserman, A. (2013). Deep inside convolutional networks: Visualising image classification models and saliency maps. CoRR. arXiv:1312.6034 Antol, S., Agrawal, A., Lu, J., Mitchell, M., Batra, D., Lawrence Zitnick, C., & Parikh, D. (2015). VQA: Visual question answering. In ICCV. Selvaraju, R. R., Chattopadhyay, P., Elhoseiny, M., Sharma, T., Batra, D., Parikh, D., & Lee, S. (2018). Choose your neuron: Incorporating domain knowledge through neuron-importance. In Proceedings of the European conference on computer vision (ECCV) (pp. 526–541). Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., & Zisserman, A. (2009). The PASCAL visual object classes challenge 2007 (VOC2007) results. http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2818–2826). Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). ImageNet: A large-scale hierarchical image database. In CVPR. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., & Darrell, T. (2014). Caffe: Convolutional architecture for fast feature embedding. In ACM MM. Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, C. L. (2014b). Microsoft coco: Common objects in context. In ECCV. Oquab, M., Bottou, L., Laptev, I., & Sivic, J. (2014). Learning and transferring mid-level image representations using convolutional neural networks. In CVPR. Selvaraju, R. R., Das, A., Vedantam, R., Cogswell, M., Parikh, D., & Batra, D. (2016). Grad-CAM: Why did you say that? Visual explanations from deep networks via gradient-based localization. CoRR. arXiv:1610.02391 Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., & Torralba, A. (2016). Learning deep features for discriminative localization. In CVPR. Mahendran, A., & Vedaldi, A. (2016b). Visualizing deep convolutional neural networks using natural pre-images. International Journal of Computer Vision, 1–23. JacksonPIntroduction to expert systems19983Boston, MAAddison-Wesley Longman Publishing Co., Inc,0634.68086 Zhou, B., Khosla, A., Lapedriza, À., Oliva, A., & Torralba, A. (2014). Object detectors emerge in deep scene cnns. CoRR. arXiv:1412.6856 Kolesnikov, A., & Lampert, C. H. (2016). Seed, expand and constrain: Three principles for weakly-supervised image segmentation. In ECCV. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In NIPS. de Vries, H., Strub, F., Chandar, S., Pietquin, O., Larochelle, H., & Courville, A. C. (2017). Guesswhat?! visual object discovery through multi-modal dialogue. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR). Erhan, D., Bengio, Y., Courville, A., & Vincent, P. (2009). Visualizing higher-layer features of a deep network. University of Montreal, 1341. Das, A., Kottur, S., Gupta, K., Singh, A., Yadav, D., Moura, J. M., Parikh, D., & Batra, D. (2017a). Visual dialog. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR). Fang, H., Gupta, S., Iandola, F., Srivastava, R. K., Deng, L., Dollár, P., Gao, J., He, X., Mitchell, M., Platt, J. C., et al. (2015). From captions to visual concepts and back. In CVPR. Hoiem, D., Chodpathumwan, Y., & Dai, Q. (2012). Diagnosing error in object detectors. In ECCV. Bau, D., Zhou, B., Khosla, A., Oliva, A., & Torralba, A. (2017). Network dissection: Quantifying interpretability of deep visual representations. In computer vision and pattern recognition. Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR. Karpathy, A., & Fei-Fei, L. (2015). Deep visual-semantic alignments for generating image descriptions. In CVPR. Gao, H., Mao, J., Zhou, J., Huang, Z., Wang, L., & Xu, W. (2015). Are you talking to a machine? In NIPS: Dataset and methods for multilingual image question answering. Pinheiro, P. O., & Collobert, R. (2015). From image-level to pixel-level labeling with convolutional networks. In CVPR. Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In ECCV. Ren, M., Kiros, R., & Zemel, R. (2015). Exploring models and data for image question answering. In NIPS. Karpathy, A. (2014). What I learned from competing against a ConvNet on ImageNet. http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/. Springenberg, J. T., Dosovitskiy, A., Brox, T., & Riedmiller, M. A. (2014). Striving for simplicity: The all convolutional net. CoRR. arXiv:1412.6806 Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In CVPR. D Silver (1228_CR51) 2016; 529 Y Bengio (1228_CR6) 2013; 35 1228_CR53 1228_CR52 1228_CR11 1228_CR55 1228_CR10 1228_CR54 1228_CR50 1228_CR17 1228_CR16 1228_CR19 1228_CR18 1228_CR13 1228_CR57 1228_CR12 1228_CR56 1228_CR15 1228_CR59 1228_CR14 1228_CR58 1228_CR3 1228_CR4 1228_CR5 1228_CR1 1228_CR2 1228_CR42 1228_CR41 1228_CR44 1228_CR43 1228_CR7 1228_CR8 1228_CR9 1228_CR40 1228_CR49 1228_CR46 1228_CR45 1228_CR48 1228_CR47 1228_CR31 1228_CR30 1228_CR33 1228_CR32 1228_CR39 1228_CR38 1228_CR35 P Jackson (1228_CR26) 1998 1228_CR34 1228_CR37 1228_CR36 1228_CR20 1228_CR22 1228_CR21 1228_CR60 1228_CR62 1228_CR61 1228_CR28 1228_CR27 1228_CR29 1228_CR24 1228_CR23 1228_CR25 |
| References_xml | – reference: Das, A., Datta, S., Gkioxari, G., Lee, S., Parikh, D., & Batra, D. (2018). Embodied question answering. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR). – reference: Springenberg, J. T., Dosovitskiy, A., Brox, T., & Riedmiller, M. A. (2014). Striving for simplicity: The all convolutional net. CoRR. arXiv:1412.6806 – reference: Oquab, M., Bottou, L., Laptev, I., & Sivic, J. (2014). Learning and transferring mid-level image representations using convolutional neural networks. In CVPR. – reference: Das, A., Kottur, S., Moura, J. M., Lee, S., & Batra, D. (2017b). Learning cooperative visual dialog agents with deep reinforcement learning. In Proceedings of the IEEE international conference on computer vision (ICCV). – reference: Gao, H., Mao, J., Zhou, J., Huang, Z., Wang, L., & Xu, W. (2015). Are you talking to a machine? In NIPS: Dataset and methods for multilingual image question answering. – reference: Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. In ICLR. – reference: Agrawal, H., Mathialagan, C. S., Goyal, Y., Chavali, N., Banik, P., Mohapatra, A., Osman, A., & Batra, D. (2015). CloudCV: Large scale distributed computer vision as a cloud service. In Mobile cloud visual media computing (pp. 265–290). Springer. – reference: Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., & Torralba, A. (2017). Places: A 10 million image database for scene recognition. IEEE transactions on pattern analysis and machine intelligence. – reference: Zhang, J., Lin, Z., Brandt, J., Shen, X., & Sclaroff, S. (2016). Top-down neural attention by excitation backprop. In ECCV. – reference: Cinbis, R. G., Verbeek, J., & Schmid, C. (2016). Weakly supervised object localization with multi-fold multiple instance learning. IEEE transactions on pattern analysis and machine intelligence. – reference: Simonyan, K., Vedaldi, A., & Zisserman, A. (2013). Deep inside convolutional networks: Visualising image classification models and saliency maps. CoRR. arXiv:1312.6034 – reference: Zhou, B., Khosla, A., Lapedriza, À., Oliva, A., & Torralba, A. (2014). Object detectors emerge in deep scene cnns. CoRR. arXiv:1412.6856 – reference: Hoiem, D., Chodpathumwan, Y., & Dai, Q. (2012). Diagnosing error in object detectors. In ECCV. – reference: Goodfellow, I. J., Shlens, J., & Szegedy, C. (2015). Explaining and harnessing adversarial examples. stat. – reference: Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). ImageNet: A large-scale hierarchical image database. In CVPR. – reference: Lu, J., Lin, X., Batra, D., & Parikh, D. (2015). Deeper LSTM and normalized CNN visual question answering model. https://github.com/VT-vision-lab/VQA_LSTM_CNN. – reference: Johns, E., Mac Aodha, O., & Brostow, G. J. (2015). Becoming the expert—interactive multi-class machine teaching. In CVPR. – reference: Lu, J., Yang, J., Batra, D., & Parikh, D. (2016). Hierarchical question-image co-attention for visual question answering. In NIPS. – reference: Bau, D., Zhou, B., Khosla, A., Oliva, A., & Torralba, A. (2017). Network dissection: Quantifying interpretability of deep visual representations. In computer vision and pattern recognition. – reference: Kolesnikov, A., & Lampert, C. H. (2016). Seed, expand and constrain: Three principles for weakly-supervised image segmentation. In ECCV. – reference: BengioYCourvilleAVincentPRepresentation learning: A review and new perspectivesIEEE Transactions on Pattern Analysis and Machine Intelligence20133581798182810.1109/TPAMI.2013.50 – reference: SilverDHuangAMaddisonCJGuezASifreLVan Den DriesscheGSchrittwieserJAntonoglouIPanneershelvamVLanctotMMastering the game of go with deep neural networks and tree searchNature2016529758748448910.1038/nature16961 – reference: Vondrick, C., Khosla, A., Malisiewicz, T., & Torralba, A. (2013). HOGgles: Visualizing object detection features. ICCV. – reference: Lipton, Z. C. (2016). The mythos of model interpretability. arXiv preprint arXiv:1606.03490v3. – reference: Bazzani, L., Bergamo, A., Anguelov, D., Torresani, L. (2016). Self-taught object localization with deep networks. In WACV. – reference: Lin, M., Chen, Q., & Yan, S. (2014a). Network in network. In ICLR. – reference: Vinyals, O., Toshev, A., Bengio, S., & Erhan, D. (2015). Show and tell: A neural image caption generator. In CVPR. – reference: Gordon, D., Kembhavi, A., Rastegari, M., Redmon, J., Fox, D., & Farhadi, A. (2017). Iqa: Visual question answering in interactive environments. arXiv preprint arXiv:1712.03316. – reference: Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In CVPR. – reference: Dosovitskiy, A., & Brox, T. (2015). Inverting convolutional networks with convolutional networks. In CVPR. – reference: Oquab, M., Bottou, L., Laptev, I., & Sivic, J. (2015). Is object localization for free?—weakly-supervised learning with convolutional neural networks. In CVPR. – reference: Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR. – reference: Das, A., Agrawal, H., Zitnick, C. L., Parikh, D., & Batra, D. (2016). Human attention in visual question answering: Do humans and deep networks look at the same regions? In EMNLP. – reference: Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., & Darrell, T. (2014). Caffe: Convolutional architecture for fast feature embedding. In ACM MM. – reference: Karpathy, A. (2014). What I learned from competing against a ConvNet on ImageNet. http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/. – reference: Das, A., Kottur, S., Gupta, K., Singh, A., Yadav, D., Moura, J. M., Parikh, D., & Batra, D. (2017a). Visual dialog. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR). – reference: Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, C. L. (2014b). Microsoft coco: Common objects in context. In ECCV. – reference: Agrawal, A., Batra, D., & Parikh, D. (2016). Analyzing the behavior of visual question answering models. In EMNLP. – reference: Malinowski, M., Rohrbach, M., & Fritz, M. (2015). Ask your neurons: A neural-based approach to answering questions about images. In ICCV. – reference: Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2818–2826). – reference: Antol, S., Agrawal, A., Lu, J., Mitchell, M., Batra, D., Lawrence Zitnick, C., & Parikh, D. (2015). VQA: Visual question answering. In ICCV. – reference: Karpathy, A., & Fei-Fei, L. (2015). Deep visual-semantic alignments for generating image descriptions. In CVPR. – reference: Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In NIPS. – reference: JacksonPIntroduction to expert systems19983Boston, MAAddison-Wesley Longman Publishing Co., Inc,0634.68086 – reference: Gan, C., Wang, N., Yang, Y., Yeung, D.-Y., & Hauptmann, A. G. (2015). Devnet: A deep event network for multimedia event detection and evidence recounting. In CVPR. – reference: Chen, X., Fang, H., Lin, T.-Y., Vedantam, R., Gupta, S., Dollár, P., & Zitnick, C. L. (2015). Microsoft COCO captions: Data collection and evaluation server. arXiv preprint arXiv:1504.00325. – reference: Pinheiro, P. O., & Collobert, R. (2015). From image-level to pixel-level labeling with convolutional networks. In CVPR. – reference: Selvaraju, R. R., Chattopadhyay, P., Elhoseiny, M., Sharma, T., Batra, D., Parikh, D., & Lee, S. (2018). Choose your neuron: Incorporating domain knowledge through neuron-importance. In Proceedings of the European conference on computer vision (ECCV) (pp. 526–541). – reference: Mahendran, A., & Vedaldi, A. (2016a). Salient deconvolutional networks. In European conference on computer vision. – reference: Fang, H., Gupta, S., Iandola, F., Srivastava, R. K., Deng, L., Dollár, P., Gao, J., He, X., Mitchell, M., Platt, J. C., et al. (2015). From captions to visual concepts and back. In CVPR. – reference: Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., & Torralba, A. (2016). Learning deep features for discriminative localization. In CVPR. – reference: Mahendran, A., & Vedaldi, A. (2016b). Visualizing deep convolutional neural networks using natural pre-images. International Journal of Computer Vision, 1–23. – reference: He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In CVPR. – reference: de Vries, H., Strub, F., Chandar, S., Pietquin, O., Larochelle, H., & Courville, A. C. (2017). Guesswhat?! visual object discovery through multi-modal dialogue. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR). – reference: Selvaraju, R. R., Lee, S., Shen, Y., Jin, H., Ghosh, S., Heck, L., Batra, D., & Parikh, D. (2019) Taking a hint: Leveraging explanations to make vision and language models more grounded. In Proceedings of the international conference on computer vision (ICCV). – reference: Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., & Zisserman, A. (2009). The PASCAL visual object classes challenge 2007 (VOC2007) results. http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html. – reference: Johnson, J., Karpathy, A., & Fei-Fei, L. (2016). DenseCap: Fully convolutional localization networks for dense captioning. In CVPR. – reference: Selvaraju, R. R., Das, A., Vedantam, R., Cogswell, M., Parikh, D., & Batra, D. (2016). Grad-CAM: Why did you say that? Visual explanations from deep networks via gradient-based localization. CoRR. arXiv:1610.02391 – reference: Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In ECCV. – reference: Ren, M., Kiros, R., & Zemel, R. (2015). Exploring models and data for image question answering. In NIPS. – reference: Erhan, D., Bengio, Y., Courville, A., & Vincent, P. (2009). Visualizing higher-layer features of a deep network. University of Montreal, 1341. – reference: Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). “Why should i trust you?” Explaining the predictions of any classifier. In SIGKDD. – ident: 1228_CR39 – ident: 1228_CR16 – ident: 1228_CR43 doi: 10.1109/CVPR.2014.222 – ident: 1228_CR29 doi: 10.1109/CVPR.2016.494 – ident: 1228_CR54 – ident: 1228_CR25 doi: 10.1007/978-3-642-33712-3_25 – ident: 1228_CR32 doi: 10.1007/978-3-319-46493-0_42 – ident: 1228_CR24 doi: 10.1109/CVPR.2016.90 – ident: 1228_CR56 doi: 10.1109/CVPR.2015.7298935 – ident: 1228_CR61 doi: 10.1109/CVPR.2016.319 – volume: 529 start-page: 484 issue: 7587 year: 2016 ident: 1228_CR51 publication-title: Nature doi: 10.1038/nature16961 – volume: 35 start-page: 1798 issue: 8 year: 2013 ident: 1228_CR6 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2013.50 – ident: 1228_CR42 doi: 10.1109/ICCV.2015.9 – ident: 1228_CR8 – ident: 1228_CR22 – ident: 1228_CR60 – ident: 1228_CR18 doi: 10.1109/CVPR.2015.7298754 – ident: 1228_CR49 – ident: 1228_CR15 – ident: 1228_CR1 doi: 10.18653/v1/D16-1203 – ident: 1228_CR44 doi: 10.1109/CVPR.2015.7298668 – ident: 1228_CR36 – ident: 1228_CR53 – ident: 1228_CR5 doi: 10.1109/WACV.2016.7477688 – ident: 1228_CR14 doi: 10.1109/CVPR.2009.5206848 – ident: 1228_CR46 – ident: 1228_CR35 doi: 10.1007/978-3-319-10602-1_48 – ident: 1228_CR55 doi: 10.1109/CVPR.2016.308 – ident: 1228_CR27 doi: 10.1145/2647868.2654889 – ident: 1228_CR3 doi: 10.1109/ICCV.2015.279 – ident: 1228_CR9 doi: 10.18653/v1/D16-1092 – ident: 1228_CR20 – ident: 1228_CR41 doi: 10.1007/s11263-016-0911-8 – ident: 1228_CR10 – ident: 1228_CR19 doi: 10.1109/CVPR.2015.7298872 – ident: 1228_CR50 doi: 10.1109/ICCV.2019.00268 – ident: 1228_CR58 doi: 10.1007/978-3-319-10590-1_53 – ident: 1228_CR33 – ident: 1228_CR52 – ident: 1228_CR2 doi: 10.1007/978-3-319-24702-1_11 – ident: 1228_CR40 doi: 10.1007/978-3-319-46466-4_8 – ident: 1228_CR59 doi: 10.1007/978-3-319-46493-0_33 – ident: 1228_CR37 doi: 10.1109/CVPR.2015.7298965 – volume-title: Introduction to expert systems year: 1998 ident: 1228_CR26 – ident: 1228_CR28 doi: 10.1109/CVPR.2015.7298877 – ident: 1228_CR13 doi: 10.1109/CVPR.2017.475 – ident: 1228_CR62 – ident: 1228_CR21 doi: 10.1109/CVPR.2014.81 – ident: 1228_CR38 – ident: 1228_CR17 – ident: 1228_CR31 doi: 10.1109/CVPR.2015.7298932 – ident: 1228_CR47 doi: 10.18653/v1/N16-3020 – ident: 1228_CR48 doi: 10.1007/978-3-030-01261-8_32 – ident: 1228_CR34 – ident: 1228_CR45 doi: 10.1109/CVPR.2015.7298780 – ident: 1228_CR30 – ident: 1228_CR57 doi: 10.1109/ICCV.2013.8 – ident: 1228_CR4 doi: 10.1109/CVPR.2017.354 – ident: 1228_CR7 – ident: 1228_CR12 doi: 10.1109/ICCV.2017.321 – ident: 1228_CR23 – ident: 1228_CR11 doi: 10.1109/CVPR.2017.121 |
| SSID | ssj0002823 |
| Score | 2.7443838 |
| Snippet | We propose a technique for producing ‘visual explanations’ for decisions from a large class of Convolutional Neural Network (CNN)-based models, making them... We propose a technique for producing 'visual explanations' for decisions from a large class of Convolutional Neural Network (CNN)-based models, making them... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 336 |
| SubjectTerms | Artificial Intelligence Artificial neural networks Computer Imaging Computer Science Computer vision Decisions Failure modes Image classification Image Processing and Computer Vision Localization Machine learning Machine vision Mapping Mobile computing Neural networks Pattern Recognition Pattern Recognition and Graphics Predictions Questions Vision |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB61tIdeoE91ecmqKnGgljaOk9jcFgptJbpC0CJulmM71UpoQetdfj8zicOKviS4OmPHGT9mHM_3DcBHnxHJntO88S7nMuQV140NXEs1LK326MO37PrH1XisLi70SQKFxT7avb-SbHfqJdgtE3TnSKCbTAjFq6fwDM2dooQNp2fnd_svHiK6BPJ4MCpKnSWozN_buGeOft-U_7gdbY3O0drjuvsSVpOTyUbdrHgFT8L0Nawlh5Ol5RyxqM_p0Je9gZMvM-v5wej7HjufxAW2QlF6tvtnGBmhUdjnEK7ZuIsfj-xmYhlVImAl30ej6NkxGcgE8HwLP48Ofxx85SnrAneyUHOeeyutanRwhfeVUK7RXvrK4oiWuRMV0Uc1pWiyStXS1o33LvN66Bz6AmXwNn8HK9OraXgPrC4I-YqjHayQpVW1J7b1emgL14KoBpD1yjcuUZJTZoxLsyRTJi0a1KJptWiqAeze1bnuCDn-K_2BxtQQ08WUQml-2UWM5tvZqRmhY4LOiyz0AHaSUHOFr3c2IRPwI4gc657kZj83TFrr0Qj0YdGrU7IYwKd-Liwf_7tz6w8T34AXgg77bcj4JqzMZ4uwBc_dzXwSZ9vtGrgFOmP9Sw priority: 102 providerName: Springer Nature |
| Title | Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization |
| URI | https://link.springer.com/article/10.1007/s11263-019-01228-7 https://www.proquest.com/docview/2352397845 |
| Volume | 128 |
| WOSCitedRecordID | wos000511807100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink customDbUrl: eissn: 1573-1405 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002823 issn: 0920-5691 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xjQdeNj61bqOyEBIPYNE4H473grqyAWKrqg7G4MVybAdVQm3XtPv7uUucVQOxF14sxbEdR2f7zvb9fgfw0kVEsmcVL52NeeJjyVVpPFdJ3suMcmjD1-z6p3I4zC8v1SgcuFXBrbJdE-uF2s0snZG_FWgpoO7Mk_Td_IpT1Ci6XQ0hNDZgiywbcuk76w1uVmLcTjSh5HGLlGYqCqCZBjoXCbrBJAhPJETO5S3F9Ofy_Nc9aa1-Tnb-t-MPYTsYnqzfjJRHcM9PH8NOMEJZmOIVZrVxHtq8JzD6sDCOD_pnh-xiUq2wFfLcM805YsUIocLeez9nw8anvGLXE8OoEoEt-REqSsdOSWkG0OdT-Hpy_GXwkYdIDNwmab7ksTOJyUvlbeqcFLktlUucNCjlLLZCEqVUmYkyknmRmKJ0zkZO9axF-yDzzsTPYHM6m_pdYEVKaFgcAd6IJDN54YiBveiZ1NbAqg5ErRi0DTTlFC3jl14TLJPoNIpO16LTsgOvb-rMG5KOO0u_IOlqYr-YknvNT7OqKv3pfKz7aKygQZOkqgOvQqFyhp-3JqAV8CeIMOtWyYNW7jrM_0qvhd6BN-3IWb_-d-f27m5tHx4I2vDXbuMHsLlcrPxzuG-vl5Nq0YUN-e17F7aOjoejMT59lrxbzwhMR-kPTMfnF78Bo1IM2w |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFL0aA4m9MD61wgALgXgAi8ZxYhsJobIxVrWrJtjQ3oxjO6gSakvTDvGn-I34Js6qgdjbHnhNHOfr-N5r-55zAZ66BEX2rKKlsynlPhVUlcZTxWU3N8qFGL5W1x-K0UienKjDNfjVcmEwrbK1ibWhdlOLa-SvWIgUgu-UPHs7-06xahTurrYlNBpYDPzPH2HKVr3p74b_-4yxvfdHO_s0VhWglmdyQVNnuJGl8jZzTjBpS-W4EyY8cZ5aJlAeqcxZmQhZcFOUztnEqa61wdfl3pk09HsFrvJUChxXA0HPLH-YvjSl68OULMtVEkk6DVUvYbhjipShhDFJxTlH-Kc7-GtftnZ3e5v_24e6CTdiYE16zUi4BWt-chs2Y5BNogmrwqG2jkV77A4cfpgbR3d6B6_J53G1DL1gZqJp1kkrggwcsuv9jIyanPmKnI4NwYuQTErfhUDAkSEGBZHUeheOL-VV78H6ZDrxW0CKDNm-AeHeMJ4bWThUmC-6JrM1cawDSfvbtY0y7FgN5JteCUgjVHSAiq6hokUHXpxdM2tESC5s_QTRpFHdY4LpQ1_Nsqp0_9NH3QvBWAjYeKY68Dw2Kqfh9tZENkZ4CRQEO9dyu8WZjvat0iuQdeBli9TV6X8_3P2Le3sM1_ePDoZ62B8NHsAGw8WNOkV-G9YX86V_CNfs6WJczR_VI4_Al8tG8G-olGdP |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tC0JcWJ6isICFQBzA2sZ5GgmhsqVQbakqXlpxMY7toEqoLXW7iL_Gr2MmcbZaEHvbA9fEduLks2dsz_cNwEMbkciekbyyJuaJi3MuK-24TIpupqVFH75W1x_l43FxeCgnW_Cr5cJQWGU7J9YTtZ0b2iPfE-gpoO0sknSvCmERk_7gxeI7pwxSdNLaptNoIHLgfv7A5Zt_Puzjv34kxODVh_03PGQY4CZJixWPrU50UUlnUmtzUZhK2sTmGt8-i43ISSqpykQV5UWZ6LKy1kRWdo1Bu5c5q2Ns9xycz3GNSeGEk_TzsRXApUyTxh6XZ2kmo0DYaWh7kaDTU6IPRUIUPD9hFP80DX-d0damb7DzP3-0K3A5ONys14yQq7DlZtdgJzjfLExtHi-1-S3aa9dh8nqpLd_vvX3GPk39GluhiEXd7J96Rswc1nduwcZNLL1nR1PNqBKRTPlLdBAsG5GzEMiuN-DjmXT1JmzP5jN3C1iZEgsYke-0SDJdlJaU58uuTk1NKOtA1EJAmSDPTllCvqmNsDTBRiFsVA0blXfgyXGdRSNOcmrpB4QsRaofM4LCV732Xg3fv1M9dNLQkUtS2YHHoVA1x8cbHVga2AkSCjtRcrfFnArznlcbwHXgaYvaze1_v9zt01u7DxcRuGo0HB_cgUuC9jzqyPld2F4t1-4uXDBHq6lf3qsHIYMvZw3g3_SmcHM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Grad-CAM%3A+Visual+Explanations+from+Deep+Networks+via+Gradient-Based+Localization&rft.jtitle=International+journal+of+computer+vision&rft.au=Selvaraju%2C+Ramprasaath+R&rft.au=Cogswell%2C+Michael&rft.au=Das+Abhishek&rft.au=Vedantam+Ramakrishna&rft.date=2020-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-5691&rft.eissn=1573-1405&rft.volume=128&rft.issue=2&rft.spage=336&rft.epage=359&rft_id=info:doi/10.1007%2Fs11263-019-01228-7&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5691&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5691&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5691&client=summon |