Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization

We propose a technique for producing ‘visual explanations’ for decisions from a large class of Convolutional Neural Network (CNN)-based models, making them more transparent and explainable. Our approach—Gradient-weighted Class Activation Mapping (Grad-CAM), uses the gradients of any target concept (...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of computer vision Ročník 128; číslo 2; s. 336 - 359
Hlavní autoři: Selvaraju, Ramprasaath R., Cogswell, Michael, Das, Abhishek, Vedantam, Ramakrishna, Parikh, Devi, Batra, Dhruv
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.02.2020
Springer
Springer Nature B.V
Témata:
ISSN:0920-5691, 1573-1405
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We propose a technique for producing ‘visual explanations’ for decisions from a large class of Convolutional Neural Network (CNN)-based models, making them more transparent and explainable. Our approach—Gradient-weighted Class Activation Mapping (Grad-CAM), uses the gradients of any target concept (say ‘dog’ in a classification network or a sequence of words in captioning network) flowing into the final convolutional layer to produce a coarse localization map highlighting the important regions in the image for predicting the concept. Unlike previous approaches, Grad-CAM is applicable to a wide variety of CNN model-families: (1) CNNs with fully-connected layers ( e.g. VGG), (2) CNNs used for structured outputs ( e.g. captioning), (3) CNNs used in tasks with multi-modal inputs ( e.g. visual question answering) or reinforcement learning, all without architectural changes or re-training . We combine Grad-CAM with existing fine-grained visualizations to create a high-resolution class-discriminative visualization, Guided Grad-CAM, and apply it to image classification, image captioning, and visual question answering (VQA) models, including ResNet-based architectures. In the context of image classification models, our visualizations (a) lend insights into failure modes of these models (showing that seemingly unreasonable predictions have reasonable explanations), (b) outperform previous methods on the ILSVRC-15 weakly-supervised localization task, (c) are robust to adversarial perturbations, (d) are more faithful to the underlying model, and (e) help achieve model generalization by identifying dataset bias. For image captioning and VQA, our visualizations show that even non-attention based models learn to localize discriminative regions of input image. We devise a way to identify important neurons through Grad-CAM and combine it with neuron names (Bau et al. in Computer vision and pattern recognition, 2017) to provide textual explanations for model decisions. Finally, we design and conduct human studies to measure if Grad-CAM explanations help users establish appropriate trust in predictions from deep networks and show that Grad-CAM helps untrained users successfully discern a ‘stronger’ deep network from a ‘weaker’ one even when both make identical predictions. Our code is available at https://github.com/ramprs/grad-cam/ , along with a demo on CloudCV (Agrawal et al., in: Mobile cloud visual media computing, pp 265–290. Springer, 2015) ( http://gradcam.cloudcv.org ) and a video at http://youtu.be/COjUB9Izk6E .
AbstractList We propose a technique for producing ‘visual explanations’ for decisions from a large class of Convolutional Neural Network (CNN)-based models, making them more transparent and explainable. Our approach—Gradient-weighted Class Activation Mapping (Grad-CAM), uses the gradients of any target concept (say ‘dog’ in a classification network or a sequence of words in captioning network) flowing into the final convolutional layer to produce a coarse localization map highlighting the important regions in the image for predicting the concept. Unlike previous approaches, Grad-CAM is applicable to a wide variety of CNN model-families: (1) CNNs with fully-connected layers (e.g.VGG), (2) CNNs used for structured outputs (e.g.captioning), (3) CNNs used in tasks with multi-modal inputs (e.g.visual question answering) or reinforcement learning, all without architectural changes or re-training. We combine Grad-CAM with existing fine-grained visualizations to create a high-resolution class-discriminative visualization, Guided Grad-CAM, and apply it to image classification, image captioning, and visual question answering (VQA) models, including ResNet-based architectures. In the context of image classification models, our visualizations (a) lend insights into failure modes of these models (showing that seemingly unreasonable predictions have reasonable explanations), (b) outperform previous methods on the ILSVRC-15 weakly-supervised localization task, (c) are robust to adversarial perturbations, (d) are more faithful to the underlying model, and (e) help achieve model generalization by identifying dataset bias. For image captioning and VQA, our visualizations show that even non-attention based models learn to localize discriminative regions of input image. We devise a way to identify important neurons through Grad-CAM and combine it with neuron names (Bau et al. in Computer vision and pattern recognition, 2017) to provide textual explanations for model decisions. Finally, we design and conduct human studies to measure if Grad-CAM explanations help users establish appropriate trust in predictions from deep networks and show that Grad-CAM helps untrained users successfully discern a ‘stronger’ deep network from a ‘weaker’ one even when both make identical predictions. Our code is available at https://github.com/ramprs/grad-cam/, along with a demo on CloudCV (Agrawal et al., in: Mobile cloud visual media computing, pp 265–290. Springer, 2015) (http://gradcam.cloudcv.org) and a video at http://youtu.be/COjUB9Izk6E.
We propose a technique for producing 'visual explanations' for decisions from a large class of Convolutional Neural Network (CNN)-based models, making them more transparent and explainable. Our approach-Gradient-weighted Class Activation Mapping (Grad-CAM), uses the gradients of any target concept (say 'dog' in a classification network or a sequence of words in captioning network) flowing into the final convolutional layer to produce a coarse localization map highlighting the important regions in the image for predicting the concept. Unlike previous approaches, Grad-CAM is applicable to a wide variety of CNN model-families: (1) CNNs with fully-connected layers (e.g.VGG), (2) CNNs used for structured outputs (e.g.captioning), (3) CNNs used in tasks with multi-modal inputs (e.g.visual question answering) or reinforcement learning, all without architectural changes or re-training. We combine Grad-CAM with existing fine-grained visualizations to create a high-resolution class-discriminative visualization, Guided Grad-CAM, and apply it to image classification, image captioning, and visual question answering (VQA) models, including ResNet-based architectures. In the context of image classification models, our visualizations (a) lend insights into failure modes of these models (showing that seemingly unreasonable predictions have reasonable explanations), (b) outperform previous methods on the ILSVRC-15 weakly-supervised localization task, (c) are robust to adversarial perturbations, (d) are more faithful to the underlying model, and (e) help achieve model generalization by identifying dataset bias. For image captioning and VQA, our visualizations show that even non-attention based models learn to localize discriminative regions of input image. We devise a way to identify important neurons through Grad-CAM and combine it with neuron names (Bau et al. in Computer vision and pattern recognition, 2017) to provide textual explanations for model decisions. Finally, we design and conduct human studies to measure if Grad-CAM explanations help users establish appropriate trust in predictions from deep networks and show that Grad-CAM helps untrained users successfully discern a 'stronger' deep network from a 'weaker' one even when both make identical predictions. Our code is available at
We propose a technique for producing ‘visual explanations’ for decisions from a large class of Convolutional Neural Network (CNN)-based models, making them more transparent and explainable. Our approach—Gradient-weighted Class Activation Mapping (Grad-CAM), uses the gradients of any target concept (say ‘dog’ in a classification network or a sequence of words in captioning network) flowing into the final convolutional layer to produce a coarse localization map highlighting the important regions in the image for predicting the concept. Unlike previous approaches, Grad-CAM is applicable to a wide variety of CNN model-families: (1) CNNs with fully-connected layers ( e.g. VGG), (2) CNNs used for structured outputs ( e.g. captioning), (3) CNNs used in tasks with multi-modal inputs ( e.g. visual question answering) or reinforcement learning, all without architectural changes or re-training . We combine Grad-CAM with existing fine-grained visualizations to create a high-resolution class-discriminative visualization, Guided Grad-CAM, and apply it to image classification, image captioning, and visual question answering (VQA) models, including ResNet-based architectures. In the context of image classification models, our visualizations (a) lend insights into failure modes of these models (showing that seemingly unreasonable predictions have reasonable explanations), (b) outperform previous methods on the ILSVRC-15 weakly-supervised localization task, (c) are robust to adversarial perturbations, (d) are more faithful to the underlying model, and (e) help achieve model generalization by identifying dataset bias. For image captioning and VQA, our visualizations show that even non-attention based models learn to localize discriminative regions of input image. We devise a way to identify important neurons through Grad-CAM and combine it with neuron names (Bau et al. in Computer vision and pattern recognition, 2017) to provide textual explanations for model decisions. Finally, we design and conduct human studies to measure if Grad-CAM explanations help users establish appropriate trust in predictions from deep networks and show that Grad-CAM helps untrained users successfully discern a ‘stronger’ deep network from a ‘weaker’ one even when both make identical predictions. Our code is available at https://github.com/ramprs/grad-cam/ , along with a demo on CloudCV (Agrawal et al., in: Mobile cloud visual media computing, pp 265–290. Springer, 2015) ( http://gradcam.cloudcv.org ) and a video at http://youtu.be/COjUB9Izk6E .
Audience Academic
Author Vedantam, Ramakrishna
Cogswell, Michael
Parikh, Devi
Batra, Dhruv
Das, Abhishek
Selvaraju, Ramprasaath R.
Author_xml – sequence: 1
  givenname: Ramprasaath R.
  surname: Selvaraju
  fullname: Selvaraju, Ramprasaath R.
  email: ramprs@gatech.edu
  organization: Georgia Institute of Technology
– sequence: 2
  givenname: Michael
  surname: Cogswell
  fullname: Cogswell, Michael
  organization: Georgia Institute of Technology
– sequence: 3
  givenname: Abhishek
  surname: Das
  fullname: Das, Abhishek
  organization: Georgia Institute of Technology
– sequence: 4
  givenname: Ramakrishna
  surname: Vedantam
  fullname: Vedantam, Ramakrishna
  organization: Georgia Institute of Technology
– sequence: 5
  givenname: Devi
  surname: Parikh
  fullname: Parikh, Devi
  organization: Georgia Institute of Technology, Facebook AI Research
– sequence: 6
  givenname: Dhruv
  surname: Batra
  fullname: Batra, Dhruv
  organization: Georgia Institute of Technology, Facebook AI Research
BookMark eNp9kUtvEzEURi1UJNLHH2A1EisWLn7OeNiF0JZKKSAKbK1bPyKXyTi1HVr49XUzlVBZVJZl6eocX_t--2hvjKND6DUlx5SQ7l2mlLUcE9rXzZjC3Qs0o7LjmAoi99CM9Ixg2fb0FdrP-ZoQwhTjM_T1LIHFi_nF--ZnyFsYmpO7zQAjlBDH3PgU181H5zbNZ1duY_qVm98BmgcpuLHgD5CdbZbRwBD-7pxD9NLDkN3R43mAfpyefF98wssvZ-eL-RIbIVXB3IIA5XtnpLUdU8b3VtgOODctN6xWqPIt87RTVwKuvLWG2p4YwwRtnQV-gN5M925SvNm6XPR13KaxttSMS8b7TglZqeOJWsHgdBh9LAlMXdatg6kz9KHW5y0VVDIh-yq8fSJUpri7soJtzvr88ttTlk2sSTHn5LzepLCG9EdToh9i0VMsusaid7HorkrqP8mEsptcfVkYnlf5pObaZ1y59O_Lz1j3NfiiUA
CitedBy_id crossref_primary_10_1007_s12021_022_09602_6
crossref_primary_10_1016_j_ijmecsci_2025_110861
crossref_primary_10_1109_TMI_2020_3023463
crossref_primary_10_3390_agriengineering6040263
crossref_primary_10_1109_JBHI_2023_3337511
crossref_primary_10_1109_TIFS_2024_3411921
crossref_primary_10_1109_ACCESS_2025_3562229
crossref_primary_10_3390_biology14080909
crossref_primary_10_1007_s00247_025_06311_5
crossref_primary_10_3390_jimaging9100220
crossref_primary_10_1016_j_jdent_2022_104107
crossref_primary_10_1109_ACCESS_2020_2992907
crossref_primary_10_1111_exsy_13770
crossref_primary_10_1177_08465371241236376
crossref_primary_10_1109_TNSRE_2025_3602548
crossref_primary_10_1016_j_ins_2025_122143
crossref_primary_10_1038_s44172_024_00254_9
crossref_primary_10_1109_TITS_2024_3396915
crossref_primary_10_1145_3706573
crossref_primary_10_1007_s00138_023_01379_1
crossref_primary_10_1007_s10489_022_03882_w
crossref_primary_10_1016_j_compbiomed_2022_105942
crossref_primary_10_1016_j_ces_2023_119425
crossref_primary_10_1016_j_arthro_2024_05_027
crossref_primary_10_1016_j_cmpb_2025_108922
crossref_primary_10_1109_ACCESS_2022_3204051
crossref_primary_10_1093_braincomms_fcaf159
crossref_primary_10_1109_ACCESS_2021_3120199
crossref_primary_10_1145_3649458
crossref_primary_10_1109_JBHI_2023_3242262
crossref_primary_10_1111_jph_13374
crossref_primary_10_1093_pcp_pcad144
crossref_primary_10_1109_ACCESS_2023_3348450
crossref_primary_10_1109_ACCESS_2025_3585353
crossref_primary_10_1115_1_4065416
crossref_primary_10_3390_agriengineering6040277
crossref_primary_10_1016_j_aei_2025_103220
crossref_primary_10_1038_s41746_025_01857_y
crossref_primary_10_1007_s10044_024_01211_0
crossref_primary_10_1038_s41598_024_66989_9
crossref_primary_10_1038_s41467_025_61279_y
crossref_primary_10_1109_TPAMI_2022_3206549
crossref_primary_10_1080_07853890_2025_2551819
crossref_primary_10_1016_j_inffus_2025_103275
crossref_primary_10_3390_jcm11133918
crossref_primary_10_1016_j_asoc_2024_112450
crossref_primary_10_1016_j_procir_2021_11_242
crossref_primary_10_1038_s41598_023_49563_7
crossref_primary_10_1109_TAES_2024_3507786
crossref_primary_10_7717_peerj_cs_479
crossref_primary_10_1186_s13048_024_01544_8
crossref_primary_10_1038_s41374_022_00742_6
crossref_primary_10_1016_j_atech_2023_100295
crossref_primary_10_1016_j_heliyon_2024_e29077
crossref_primary_10_1007_s11042_025_21036_1
crossref_primary_10_1088_1361_6501_ad730b
crossref_primary_10_1016_j_oooo_2024_02_010
crossref_primary_10_1109_TPAMI_2024_3446949
crossref_primary_10_1016_j_csi_2024_103889
crossref_primary_10_1109_ACCESS_2020_3016116
crossref_primary_10_3390_app14020496
crossref_primary_10_1186_s44356_025_00032_5
crossref_primary_10_1016_j_eswa_2021_115927
crossref_primary_10_3233_JIFS_219166
crossref_primary_10_1038_s41598_023_42946_w
crossref_primary_10_1007_s10278_024_01017_w
crossref_primary_10_1007_s11042_023_14358_5
crossref_primary_10_1016_j_xphs_2024_03_003
crossref_primary_10_1186_s13007_025_01436_y
crossref_primary_10_3390_info15010058
crossref_primary_10_1088_1361_6560_ad7455
crossref_primary_10_1016_j_compag_2024_109281
crossref_primary_10_1002_aisy_202500069
crossref_primary_10_1007_s42979_022_01545_8
crossref_primary_10_1016_j_eswa_2022_119339
crossref_primary_10_3390_f16071095
crossref_primary_10_1016_j_asoc_2024_111589
crossref_primary_10_1038_s41598_025_87305_z
crossref_primary_10_3390_rs16142636
crossref_primary_10_3389_fbioe_2024_1228846
crossref_primary_10_3390_s21165428
crossref_primary_10_32604_cmc_2024_057453
crossref_primary_10_1016_j_knosys_2024_112387
crossref_primary_10_1109_TII_2022_3182385
crossref_primary_10_1007_s13755_024_00290_x
crossref_primary_10_1016_j_jobe_2024_111315
crossref_primary_10_1038_s41598_025_16261_5
crossref_primary_10_1007_s10489_021_02527_8
crossref_primary_10_1145_3469841
crossref_primary_10_3389_fmars_2024_1378159
crossref_primary_10_1007_s00062_024_01490_4
crossref_primary_10_1109_JIOT_2023_3330996
crossref_primary_10_1016_j_eswa_2022_117144
crossref_primary_10_1016_j_labinv_2025_104211
crossref_primary_10_1016_j_atech_2025_100867
crossref_primary_10_1038_s41467_022_35233_1
crossref_primary_10_3390_diagnostics15131728
crossref_primary_10_1016_j_isprsjprs_2023_11_021
crossref_primary_10_1038_s41598_025_09938_4
crossref_primary_10_1016_j_comcom_2023_03_007
crossref_primary_10_1016_j_gexplo_2023_107274
crossref_primary_10_1038_s41698_024_00616_8
crossref_primary_10_1016_j_compbiomed_2020_104026
crossref_primary_10_1177_01617346221099435
crossref_primary_10_3389_fneur_2025_1455613
crossref_primary_10_3390_bioengineering12010082
crossref_primary_10_3390_diagnostics15162040
crossref_primary_10_1016_j_microc_2025_114674
crossref_primary_10_1109_ACCESS_2024_3434670
crossref_primary_10_32604_cmc_2023_040710
crossref_primary_10_1007_s11119_022_09932_0
crossref_primary_10_3390_s24020654
crossref_primary_10_1007_s00330_020_07065_4
crossref_primary_10_3390_electronics14030571
crossref_primary_10_1016_j_aiia_2025_01_004
crossref_primary_10_1016_j_hpb_2023_01_015
crossref_primary_10_1371_journal_pcbi_1012361
crossref_primary_10_3389_fimmu_2022_897959
crossref_primary_10_1038_s41598_023_46782_w
crossref_primary_10_1016_j_ijepes_2025_110682
crossref_primary_10_1186_s40662_020_00182_7
crossref_primary_10_3390_diagnostics15091177
crossref_primary_10_3390_rs13152908
crossref_primary_10_1145_3699752
crossref_primary_10_1016_j_modpat_2023_100157
crossref_primary_10_1186_s41747_023_00417_x
crossref_primary_10_1259_dmfr_20200375
crossref_primary_10_1016_j_engappai_2025_110027
crossref_primary_10_1109_TPAMI_2025_3576755
crossref_primary_10_1016_j_eswa_2024_125397
crossref_primary_10_1109_TPAMI_2024_3363642
crossref_primary_10_1016_j_foohum_2023_07_018
crossref_primary_10_3390_app142311208
crossref_primary_10_1097_TP_0000000000005500
crossref_primary_10_3389_fninf_2024_1414925
crossref_primary_10_18699_vjgb_25_49
crossref_primary_10_3390_a15120455
crossref_primary_10_3390_jmse12050726
crossref_primary_10_1109_JSEN_2025_3541769
crossref_primary_10_1016_j_bspc_2024_106943
crossref_primary_10_1016_j_procs_2024_09_410
crossref_primary_10_1007_s00500_025_10660_6
crossref_primary_10_1016_j_jag_2024_103696
crossref_primary_10_1051_e3sconf_202125302080
crossref_primary_10_1016_j_optlastec_2024_111087
crossref_primary_10_3390_medicina58081090
crossref_primary_10_3390_s22082850
crossref_primary_10_1007_s13246_022_01202_7
crossref_primary_10_1109_ACCESS_2023_3235739
crossref_primary_10_3390_bioengineering12010020
crossref_primary_10_3847_1538_4357_ac3760
crossref_primary_10_1016_j_joca_2023_11_022
crossref_primary_10_1016_j_media_2021_102313
crossref_primary_10_1109_ACCESS_2025_3585764
crossref_primary_10_1038_s41746_021_00546_w
crossref_primary_10_1371_journal_pone_0269323
crossref_primary_10_1016_j_eswa_2025_128725
crossref_primary_10_1109_JBHI_2021_3110593
crossref_primary_10_1212_WNL_0000000000213691
crossref_primary_10_1109_ACCESS_2024_3487114
crossref_primary_10_1109_TGRS_2025_3585878
crossref_primary_10_3389_fpls_2023_1204791
crossref_primary_10_3390_jimaging9100203
crossref_primary_10_1016_j_artint_2021_103571
crossref_primary_10_1002_aisy_202300885
crossref_primary_10_1080_19475705_2025_2485329
crossref_primary_10_3390_ai5020023
crossref_primary_10_1007_s00103_025_04101_w
crossref_primary_10_1016_j_image_2024_117151
crossref_primary_10_1016_j_sysarc_2023_103063
crossref_primary_10_1016_j_jvoice_2020_08_003
crossref_primary_10_1186_s12891_025_08602_2
crossref_primary_10_1016_j_medntd_2025_100385
crossref_primary_10_1016_j_neunet_2025_108019
crossref_primary_10_1016_j_ymssp_2024_112285
crossref_primary_10_1002_mp_15390
crossref_primary_10_1016_j_heliyon_2023_e16761
crossref_primary_10_1007_s10618_022_00821_8
crossref_primary_10_1016_j_matdes_2022_111029
crossref_primary_10_1002_mp_15392
crossref_primary_10_1016_j_autcon_2024_105495
crossref_primary_10_1007_s00261_025_04929_5
crossref_primary_10_3389_fdgth_2025_1403047
crossref_primary_10_1016_j_measurement_2021_109088
crossref_primary_10_1016_j_procir_2021_05_075
crossref_primary_10_1038_s41598_025_14060_6
crossref_primary_10_3389_fneur_2025_1581338
crossref_primary_10_1093_icb_icae127
crossref_primary_10_1109_JBHI_2024_3515995
crossref_primary_10_1016_j_ijleo_2020_165373
crossref_primary_10_1016_j_patcog_2022_109019
crossref_primary_10_1007_s11282_025_00838_x
crossref_primary_10_3390_cardiogenetics14010001
crossref_primary_10_1186_s13049_021_00953_8
crossref_primary_10_1063_5_0281935
crossref_primary_10_3390_rs17122026
crossref_primary_10_1016_j_microc_2025_114231
crossref_primary_10_1016_j_cscm_2025_e04613
crossref_primary_10_1016_j_gpb_2022_11_014
crossref_primary_10_1049_ipr2_12331
crossref_primary_10_1109_JSTARS_2025_3532829
crossref_primary_10_1007_s10489_024_05374_5
crossref_primary_10_1016_j_nucengdes_2025_113918
crossref_primary_10_3389_fmed_2020_619787
crossref_primary_10_3389_fmed_2022_959068
crossref_primary_10_3390_electronics14153019
crossref_primary_10_1007_s11042_023_15285_1
crossref_primary_10_1371_journal_pone_0322028
crossref_primary_10_1109_JSTARS_2020_3018307
crossref_primary_10_3390_s25072104
crossref_primary_10_21015_vtse_v13i2_2082
crossref_primary_10_1016_j_postharvbio_2023_112615
crossref_primary_10_1117_1_JATIS_9_4_049005
crossref_primary_10_1109_JBHI_2024_3414389
crossref_primary_10_1016_j_crad_2023_08_017
crossref_primary_10_1186_s13619_025_00239_9
crossref_primary_10_3390_plants13172444
crossref_primary_10_3390_app122412604
crossref_primary_10_3390_bioengineering10060654
crossref_primary_10_3389_fpls_2025_1643096
crossref_primary_10_3390_make7010006
crossref_primary_10_1038_s41598_021_92160_9
crossref_primary_10_1109_TPAMI_2023_3283780
crossref_primary_10_3390_s22208066
crossref_primary_10_3390_jimaging9020053
crossref_primary_10_1109_TIM_2023_3276529
crossref_primary_10_1007_s11760_024_03763_4
crossref_primary_10_1016_j_jclepro_2024_143781
crossref_primary_10_1038_s41598_023_28742_6
crossref_primary_10_1007_s44163_024_00110_x
crossref_primary_10_1111_bjop_12714
crossref_primary_10_1007_s11282_024_00739_5
crossref_primary_10_1364_PRJ_428425
crossref_primary_10_3390_rs15194818
crossref_primary_10_1016_j_bspc_2023_104810
crossref_primary_10_3389_fmed_2021_626369
crossref_primary_10_1007_s40766_025_00073_4
crossref_primary_10_1007_s10278_022_00674_z
crossref_primary_10_1007_s10278_024_01226_3
crossref_primary_10_3390_ijerph19031133
crossref_primary_10_1088_1361_6560_ad2637
crossref_primary_10_1109_TSIPN_2025_3573591
crossref_primary_10_1016_j_fusengdes_2025_115401
crossref_primary_10_1016_j_jvcir_2025_104453
crossref_primary_10_1080_02713683_2024_2303713
crossref_primary_10_1177_01455613231212051
crossref_primary_10_1016_j_est_2025_117233
crossref_primary_10_1007_s11263_024_02208_2
crossref_primary_10_1016_j_csbj_2021_08_033
crossref_primary_10_1186_s13007_023_01020_2
crossref_primary_10_1038_s41598_021_83102_6
crossref_primary_10_2186_jpr_JPR_D_22_00053
crossref_primary_10_3389_fnins_2022_807085
crossref_primary_10_1109_JBHI_2021_3061457
crossref_primary_10_1016_j_imavis_2024_105214
crossref_primary_10_1109_ACCESS_2025_3596051
crossref_primary_10_1016_j_ijmedinf_2021_104583
crossref_primary_10_1038_s41598_023_36148_7
crossref_primary_10_1109_TETCI_2025_3543361
crossref_primary_10_1016_j_compbiomed_2021_104399
crossref_primary_10_1016_j_ebiom_2024_105047
crossref_primary_10_1002_cepa_2141
crossref_primary_10_1016_j_inffus_2020_10_004
crossref_primary_10_3390_jimaging9020037
crossref_primary_10_1186_s13244_023_01542_2
crossref_primary_10_1371_journal_pone_0322052
crossref_primary_10_3390_diagnostics15080953
crossref_primary_10_1109_JSTARS_2024_3419035
crossref_primary_10_1097_JS9_0000000000002667
crossref_primary_10_3390_rs16132427
crossref_primary_10_1016_j_knosys_2022_109474
crossref_primary_10_1186_s12911_023_02386_y
crossref_primary_10_1038_s41598_021_84593_z
crossref_primary_10_3389_fnins_2023_1268860
crossref_primary_10_1109_TCSVT_2022_3171972
crossref_primary_10_1109_TITS_2025_3558469
crossref_primary_10_3389_fpls_2025_1561018
crossref_primary_10_3389_fmed_2022_923096
crossref_primary_10_3390_agriculture15020205
crossref_primary_10_1016_j_eswa_2023_122878
crossref_primary_10_1109_ACCESS_2023_3315589
crossref_primary_10_1186_s13007_022_00839_5
crossref_primary_10_1016_j_eswa_2025_128774
crossref_primary_10_1109_ACCESS_2022_3169159
crossref_primary_10_1109_TIE_2021_3086714
crossref_primary_10_3389_fnagi_2023_1102869
crossref_primary_10_1126_sciadv_ads5185
crossref_primary_10_1007_s40200_025_01596_7
crossref_primary_10_1080_01431161_2023_2288945
crossref_primary_10_1109_TGRS_2023_3348931
crossref_primary_10_1016_j_isci_2025_113045
crossref_primary_10_1109_JSTARS_2024_3357171
crossref_primary_10_1016_j_cageo_2024_105532
crossref_primary_10_1016_j_cmpb_2023_107466
crossref_primary_10_3390_sym17050724
crossref_primary_10_1002_nem_70007
crossref_primary_10_1109_TAFFC_2024_3378698
crossref_primary_10_1245_s10434_023_14083_1
crossref_primary_10_3390_electronics11172706
crossref_primary_10_1287_isre_2023_0029
crossref_primary_10_1111_ene_15181
crossref_primary_10_1155_2021_5531186
crossref_primary_10_1016_j_knosys_2025_113173
crossref_primary_10_3390_app131810179
crossref_primary_10_1073_pnas_2021171118
crossref_primary_10_1007_s10549_022_06521_7
crossref_primary_10_1007_s12559_023_10192_x
crossref_primary_10_1016_j_birob_2025_100249
crossref_primary_10_1088_2058_9565_aca55d
crossref_primary_10_3390_math12152354
crossref_primary_10_1002_mp_16623
crossref_primary_10_3390_brainsci13121706
crossref_primary_10_1016_j_aei_2024_102964
crossref_primary_10_1016_j_preteyeres_2025_101352
crossref_primary_10_1016_j_geoen_2024_212938
crossref_primary_10_1109_ACCESS_2024_3422235
crossref_primary_10_1111_jgh_15904
crossref_primary_10_3233_XST_221151
crossref_primary_10_1016_j_ijpharm_2024_125127
crossref_primary_10_1016_j_tws_2025_113865
crossref_primary_10_1109_TMM_2023_3313507
crossref_primary_10_1007_s00521_023_08966_3
crossref_primary_10_1016_j_jhydrol_2024_132551
crossref_primary_10_3389_fonc_2022_969707
crossref_primary_10_1007_s11548_025_03382_5
crossref_primary_10_3390_foods14111987
crossref_primary_10_1038_s41598_022_23078_z
crossref_primary_10_1186_s10086_023_02096_z
crossref_primary_10_1109_JBHI_2024_3355020
crossref_primary_10_1016_j_eswa_2025_128329
crossref_primary_10_1016_j_neunet_2024_106393
crossref_primary_10_3389_fmed_2024_1447951
crossref_primary_10_1038_s41598_025_02194_6
crossref_primary_10_1186_s12984_025_01570_7
crossref_primary_10_1016_j_talanta_2023_124946
crossref_primary_10_1109_TCSVT_2025_3525796
crossref_primary_10_1109_TIP_2022_3142511
crossref_primary_10_1007_s13246_020_00957_1
crossref_primary_10_1016_j_cmpb_2023_107441
crossref_primary_10_1016_j_optlastec_2025_113077
crossref_primary_10_1080_07853890_2023_2279239
crossref_primary_10_1097_CORR_0000000000002771
crossref_primary_10_3390_rs17132213
crossref_primary_10_1016_j_artmed_2025_103191
crossref_primary_10_1016_j_cmpb_2022_107161
crossref_primary_10_3390_jimaging11030076
crossref_primary_10_1088_1748_0221_20_09_P09032
crossref_primary_10_1109_TUFFC_2023_3248968
crossref_primary_10_1016_j_engappai_2024_109183
crossref_primary_10_1109_TITS_2022_3147669
crossref_primary_10_1016_j_asoc_2020_106744
crossref_primary_10_1016_j_bspc_2025_108562
crossref_primary_10_1109_ACCESS_2022_3197645
crossref_primary_10_1016_j_labinv_2023_100127
crossref_primary_10_3390_rs17132219
crossref_primary_10_1007_s00521_022_07019_5
crossref_primary_10_1109_JSTARS_2024_3394571
crossref_primary_10_1002_mp_15307
crossref_primary_10_1002_mp_17968
crossref_primary_10_3390_app12073341
crossref_primary_10_1016_j_humpath_2025_105762
crossref_primary_10_1088_2057_1976_ada6bd
crossref_primary_10_1007_s00027_025_01177_z
crossref_primary_10_1109_ACCESS_2021_3059806
crossref_primary_10_1007_s10462_025_11165_2
crossref_primary_10_3390_make7010012
crossref_primary_10_1371_journal_pone_0280987
crossref_primary_10_1016_j_fct_2025_115401
crossref_primary_10_1038_s41598_023_33021_5
crossref_primary_10_3390_agriculture15010037
crossref_primary_10_1186_s40644_021_00425_3
crossref_primary_10_1038_s41598_025_15160_z
crossref_primary_10_1038_s41598_023_34303_8
crossref_primary_10_1109_ACCESS_2023_3276642
crossref_primary_10_1007_s10388_025_01106_x
crossref_primary_10_1162_imag_a_00084
crossref_primary_10_1016_j_jos_2023_05_004
crossref_primary_10_1049_gtd2_12428
crossref_primary_10_3390_info15090557
crossref_primary_10_1186_s12911_022_01788_8
crossref_primary_10_1080_00051144_2024_2374179
crossref_primary_10_3390_math10214153
crossref_primary_10_1038_s41598_022_17602_4
crossref_primary_10_1080_23311916_2021_2010510
crossref_primary_10_3390_app122311880
crossref_primary_10_1038_s41746_021_00496_3
crossref_primary_10_1364_BOE_559663
crossref_primary_10_3389_fnins_2025_1635588
crossref_primary_10_1109_TNNLS_2024_3370294
crossref_primary_10_1002_ima_23173
crossref_primary_10_1016_j_ndteint_2023_102978
crossref_primary_10_1155_2021_6939094
crossref_primary_10_1002_int_22686
crossref_primary_10_1038_s41698_024_00678_8
crossref_primary_10_1088_1361_6560_ad9db3
crossref_primary_10_1007_s11571_023_10028_2
crossref_primary_10_3390_app11062732
crossref_primary_10_1016_j_bspc_2024_106585
crossref_primary_10_1109_TITS_2023_3270879
crossref_primary_10_1109_TITS_2024_3513400
crossref_primary_10_3390_fluids7070239
crossref_primary_10_1038_s41598_024_75915_y
crossref_primary_10_1109_TIP_2021_3056887
crossref_primary_10_1007_s00521_024_10273_4
crossref_primary_10_1038_s41598_021_95653_9
crossref_primary_10_1097_CM9_0000000000003575
crossref_primary_10_1007_s00138_023_01383_5
crossref_primary_10_1007_s00371_024_03701_y
crossref_primary_10_1007_s10845_021_01870_4
crossref_primary_10_1016_j_procir_2022_09_058
crossref_primary_10_1177_15353702231171898
crossref_primary_10_1016_j_engappai_2025_110518
crossref_primary_10_1038_s41598_022_24356_6
crossref_primary_10_1016_j_measurement_2025_117473
crossref_primary_10_1177_14759217251316329
crossref_primary_10_1088_1742_6596_2029_1_012145
crossref_primary_10_1080_17480930_2024_2372508
crossref_primary_10_3389_frai_2025_1645877
crossref_primary_10_1109_ACCESS_2021_3119664
crossref_primary_10_1088_1361_6579_ada86a
crossref_primary_10_1016_j_neunet_2023_01_018
crossref_primary_10_1007_s11042_024_18401_x
crossref_primary_10_26508_lsa_202403067
crossref_primary_10_1016_j_coldregions_2024_104179
crossref_primary_10_3390_info15090531
crossref_primary_10_4018_IJNCR_310006
crossref_primary_10_1016_j_imavis_2025_105456
crossref_primary_10_1016_j_nicl_2022_103266
crossref_primary_10_1038_s41598_025_97645_5
crossref_primary_10_1088_2631_8695_ad6af6
crossref_primary_10_1631_FITEE_1900637
crossref_primary_10_1016_j_eswa_2023_121497
crossref_primary_10_1016_j_renene_2021_10_025
crossref_primary_10_3389_fnhum_2023_1134599
crossref_primary_10_7717_peerj_cs_1253
crossref_primary_10_1016_j_jksuci_2023_01_017
crossref_primary_10_3389_fpsyg_2021_808414
crossref_primary_10_1007_s00330_020_07213_w
crossref_primary_10_1016_j_addma_2024_104575
crossref_primary_10_1007_s10916_022_01806_2
crossref_primary_10_1007_s10489_023_05231_x
crossref_primary_10_3390_agriculture12020232
crossref_primary_10_3390_agronomy15051234
crossref_primary_10_1007_s11042_024_19716_5
crossref_primary_10_1080_17499518_2024_2316265
crossref_primary_10_1007_s10207_023_00689_9
crossref_primary_10_1038_s41467_025_56908_5
crossref_primary_10_3390_app15094950
crossref_primary_10_1016_j_bspc_2022_103770
crossref_primary_10_1038_s41598_021_95533_2
crossref_primary_10_1002_jmri_28856
crossref_primary_10_1088_1361_6501_adb2b5
crossref_primary_10_1039_D5AY00475F
crossref_primary_10_3390_jmse11071392
crossref_primary_10_1016_j_asoc_2025_113265
crossref_primary_10_1016_j_atech_2025_101286
crossref_primary_10_1145_3588320
crossref_primary_10_1007_s00464_024_11115_z
crossref_primary_10_1016_j_compbiomed_2023_106788
crossref_primary_10_1109_ACCESS_2025_3546683
crossref_primary_10_3390_agriculture15050503
crossref_primary_10_1038_s41598_022_21408_9
crossref_primary_10_1016_j_eswa_2022_117946
crossref_primary_10_1007_s11554_024_01551_4
crossref_primary_10_1016_j_clinimag_2024_110254
crossref_primary_10_1155_2023_4301745
crossref_primary_10_3390_w17101465
crossref_primary_10_3390_cancers17091575
crossref_primary_10_3389_fpls_2024_1381367
crossref_primary_10_3390_app10062050
crossref_primary_10_1016_j_eswa_2024_124866
crossref_primary_10_1109_TIP_2023_3346295
crossref_primary_10_1007_s00330_024_11312_3
crossref_primary_10_1016_j_cmpb_2023_107986
crossref_primary_10_1016_j_cmpb_2025_109016
crossref_primary_10_1016_j_jfca_2025_107947
crossref_primary_10_1213_ANE_0000000000007691
crossref_primary_10_1109_TCSVT_2024_3358850
crossref_primary_10_1245_s10434_022_12055_5
crossref_primary_10_1161_CIRCOUTCOMES_123_010602
crossref_primary_10_1109_TIFS_2024_3378427
crossref_primary_10_1038_s41598_024_62329_z
crossref_primary_10_1109_TCSS_2024_3378065
crossref_primary_10_3390_app132111657
crossref_primary_10_1158_0008_5472_CAN_24_4190
crossref_primary_10_1177_23969873241260154
crossref_primary_10_3390_math10214114
crossref_primary_10_1016_j_cjca_2021_09_004
crossref_primary_10_1038_s41598_024_68866_x
crossref_primary_10_1145_3703839
crossref_primary_10_1016_j_measurement_2023_113341
crossref_primary_10_1016_j_iswa_2022_200094
crossref_primary_10_1002_lom3_10723
crossref_primary_10_1109_LCOMM_2025_3566862
crossref_primary_10_1002_hbm_26399
crossref_primary_10_1245_s10434_025_17717_8
crossref_primary_10_1093_sysbio_syad044
crossref_primary_10_1016_j_trac_2022_116804
crossref_primary_10_1080_1206212X_2023_2285533
crossref_primary_10_1016_j_cropro_2024_106823
crossref_primary_10_1016_j_spasta_2023_100740
crossref_primary_10_1007_s00530_025_01893_4
crossref_primary_10_1109_JBHI_2020_3045743
crossref_primary_10_1038_s41374_021_00579_5
crossref_primary_10_1016_j_optlastec_2025_113486
crossref_primary_10_1016_j_microc_2025_113840
crossref_primary_10_1016_j_eswa_2025_128278
crossref_primary_10_1109_TMM_2021_3126153
crossref_primary_10_1016_j_compbiomed_2023_107650
crossref_primary_10_1007_s11760_025_04259_5
crossref_primary_10_1148_radiol_2021204731
crossref_primary_10_3389_fphys_2025_1592593
crossref_primary_10_3390_rs14236096
crossref_primary_10_1016_j_jmr_2021_106936
crossref_primary_10_1038_s41746_024_01260_z
crossref_primary_10_1016_j_artmed_2024_102897
crossref_primary_10_3390_rs16234347
crossref_primary_10_1016_j_scienta_2023_112821
crossref_primary_10_1038_s41598_022_13275_1
crossref_primary_10_1109_JBHI_2021_3103389
crossref_primary_10_3389_fspas_2022_1016453
crossref_primary_10_1016_j_eswa_2021_115045
crossref_primary_10_3390_rs17050745
crossref_primary_10_1002_aisy_202400293
crossref_primary_10_3390_agronomy14102208
crossref_primary_10_1016_j_acra_2024_03_044
crossref_primary_10_1016_j_bspc_2025_108609
crossref_primary_10_1016_j_imavis_2025_105491
crossref_primary_10_1007_s10845_024_02397_0
crossref_primary_10_1016_j_engappai_2025_110966
crossref_primary_10_3847_1538_4357_ac5019
crossref_primary_10_1007_s11263_022_01706_5
crossref_primary_10_3390_rs13142697
crossref_primary_10_1016_j_eswa_2025_129135
crossref_primary_10_3390_electronics13020452
crossref_primary_10_1002_lary_28539
crossref_primary_10_1016_j_ejca_2024_115199
crossref_primary_10_1007_s10462_025_11135_8
crossref_primary_10_3390_app10082908
crossref_primary_10_1186_s43074_022_00079_9
crossref_primary_10_1007_s42452_025_06565_6
crossref_primary_10_1016_j_biosystemseng_2022_08_018
crossref_primary_10_1021_acsami_5c09372
crossref_primary_10_3390_diagnostics11010041
crossref_primary_10_1109_JBHI_2024_3405993
crossref_primary_10_3389_fninf_2021_802938
crossref_primary_10_3390_info14120660
crossref_primary_10_3390_rs16030486
crossref_primary_10_1016_j_chaos_2025_117047
crossref_primary_10_1038_s41598_025_08080_5
crossref_primary_10_1109_TIP_2022_3157149
crossref_primary_10_1007_s00500_023_09530_w
crossref_primary_10_2147_CCID_S360450
crossref_primary_10_1038_s41591_020_0942_0
crossref_primary_10_1007_s40789_023_00579_4
crossref_primary_10_1002_jbio_202200227
crossref_primary_10_1016_j_isatra_2021_11_019
crossref_primary_10_1002_nau_25490
crossref_primary_10_1038_s41591_023_02643_7
crossref_primary_10_1016_j_isci_2024_110013
crossref_primary_10_1016_j_acra_2024_05_023
crossref_primary_10_1080_17452759_2024_2427243
crossref_primary_10_3390_heritage8030102
crossref_primary_10_1109_TCSVT_2024_3520734
crossref_primary_10_1109_TITS_2021_3135006
crossref_primary_10_1016_j_rcim_2024_102806
crossref_primary_10_1016_j_jelectrocard_2023_07_002
crossref_primary_10_1080_08839514_2025_2502568
crossref_primary_10_1109_ACCESS_2024_3398061
crossref_primary_10_1109_TAI_2022_3222618
crossref_primary_10_1109_TIFS_2025_3592561
crossref_primary_10_3724_SP_J_1089_2022_18927
crossref_primary_10_1016_j_artint_2022_103823
crossref_primary_10_3389_fonc_2021_665929
crossref_primary_10_1007_s10462_022_10354_7
crossref_primary_10_1109_TCE_2024_3407713
crossref_primary_10_1371_journal_pone_0311811
crossref_primary_10_1186_s13195_025_01827_2
crossref_primary_10_1007_s12194_024_00875_x
crossref_primary_10_1091_mbc_E23_08_0298
crossref_primary_10_1007_s42979_023_02308_9
crossref_primary_10_1080_19475705_2023_2213807
crossref_primary_10_1016_j_measurement_2023_113708
crossref_primary_10_3390_electronics12010048
crossref_primary_10_1186_s13195_024_01425_8
crossref_primary_10_1016_j_engappai_2024_108782
crossref_primary_10_3390_life14101248
crossref_primary_10_3390_agriculture12101736
crossref_primary_10_1016_j_compbiomed_2022_106060
crossref_primary_10_1016_j_knosys_2023_111186
crossref_primary_10_3390_rs17162825
crossref_primary_10_1007_s11042_024_18863_z
crossref_primary_10_1016_j_patcog_2023_109760
crossref_primary_10_1109_TITS_2024_3520103
crossref_primary_10_1016_j_aichem_2023_100010
crossref_primary_10_1111_acel_14196
crossref_primary_10_1088_1361_6587_acb465
crossref_primary_10_1186_s13244_025_01950_6
crossref_primary_10_1109_TCSVT_2022_3210010
crossref_primary_10_1145_3564702
crossref_primary_10_1016_j_bspc_2024_106955
crossref_primary_10_1038_s41598_023_32899_5
crossref_primary_10_1016_j_scienta_2024_113155
crossref_primary_10_1016_j_patrec_2025_05_019
crossref_primary_10_1007_s00330_022_09319_9
crossref_primary_10_1109_ACCESS_2023_3325404
crossref_primary_10_2463_mrms_mp_2025_0064
crossref_primary_10_3390_rs13142658
crossref_primary_10_1016_j_imavis_2022_104566
crossref_primary_10_1109_TVCG_2021_3122388
crossref_primary_10_1007_s12559_023_10196_7
crossref_primary_10_1016_j_compbiomed_2022_106095
crossref_primary_10_3390_s24227345
crossref_primary_10_1016_j_jcp_2024_113224
crossref_primary_10_1016_j_jmb_2023_168121
crossref_primary_10_1038_s41379_021_00859_x
crossref_primary_10_1016_j_compbiomed_2020_103699
crossref_primary_10_1093_icb_icab107
crossref_primary_10_3390_app15169061
crossref_primary_10_1109_TIM_2022_3206810
crossref_primary_10_1016_j_isprsjprs_2024_10_003
crossref_primary_10_1109_TNNLS_2022_3201586
crossref_primary_10_1016_j_cageo_2020_104479
crossref_primary_10_1136_heartjnl_2024_324612
crossref_primary_10_1016_j_bspc_2023_105329
crossref_primary_10_1134_S1054661824700974
crossref_primary_10_1016_j_matt_2025_102138
crossref_primary_10_3390_bios13120993
crossref_primary_10_1038_s41551_022_00923_0
crossref_primary_10_1038_s41598_023_43125_7
crossref_primary_10_3390_bioengineering11101005
crossref_primary_10_1016_j_ssci_2024_106590
crossref_primary_10_1016_j_msard_2024_105743
crossref_primary_10_3390_life12070958
crossref_primary_10_1088_2632_2153_ade6c4
crossref_primary_10_3390_electronics11244114
crossref_primary_10_1016_j_compbiomed_2025_109838
crossref_primary_10_1007_s13369_025_10223_9
crossref_primary_10_1063_5_0193621
crossref_primary_10_1109_JBHI_2021_3106837
crossref_primary_10_1016_j_bspc_2020_102210
crossref_primary_10_1007_s11548_020_02305_w
crossref_primary_10_1016_j_joen_2024_05_014
crossref_primary_10_1109_TIP_2024_3349868
crossref_primary_10_1038_s41598_025_12825_7
crossref_primary_10_3390_s23115201
crossref_primary_10_1016_j_compeleceng_2023_108861
crossref_primary_10_1007_s11053_025_10462_5
crossref_primary_10_1016_j_compag_2024_108762
crossref_primary_10_1007_s42044_024_00190_z
crossref_primary_10_3389_fcvm_2022_989091
crossref_primary_10_1016_j_kint_2024_12_007
crossref_primary_10_1109_TPAMI_2024_3361862
crossref_primary_10_1016_j_jmapro_2020_10_019
crossref_primary_10_1016_j_mtcomm_2024_110294
crossref_primary_10_1016_j_ins_2024_121418
crossref_primary_10_1177_14759217241246953
crossref_primary_10_3389_fnins_2021_657540
crossref_primary_10_3390_e25091350
crossref_primary_10_1016_j_ese_2025_100538
crossref_primary_10_1016_j_cmpb_2023_107911
crossref_primary_10_1038_s41467_023_36736_1
crossref_primary_10_1016_j_patcog_2021_108243
crossref_primary_10_3390_app121910180
crossref_primary_10_1016_j_engappai_2024_107886
crossref_primary_10_1038_s41746_025_01831_8
crossref_primary_10_1007_s12599_025_00932_8
crossref_primary_10_1109_ACCESS_2025_3561848
crossref_primary_10_1155_2021_6633755
crossref_primary_10_3390_e26110974
crossref_primary_10_1007_s12539_025_00766_8
crossref_primary_10_1007_s11263_024_02136_1
crossref_primary_10_1007_s10694_025_01778_y
crossref_primary_10_1007_s10462_025_11335_2
crossref_primary_10_1109_ACCESS_2025_3593428
crossref_primary_10_3390_electronics14173523
crossref_primary_10_1007_s41095_020_0191_7
crossref_primary_10_3390_plants10061257
crossref_primary_10_1007_s00330_023_09436_z
crossref_primary_10_1016_j_asoc_2022_109947
crossref_primary_10_1145_3734191
crossref_primary_10_1016_j_cose_2024_104252
crossref_primary_10_1097_IAE_0000000000003287
crossref_primary_10_1016_j_compeleceng_2022_108127
crossref_primary_10_1016_j_engappai_2024_108768
crossref_primary_10_1371_journal_pntd_0013234
crossref_primary_10_1109_TCSVT_2021_3088446
crossref_primary_10_1109_ACCESS_2020_2979549
crossref_primary_10_1186_s12859_022_04773_0
crossref_primary_10_1109_ACCESS_2025_3570792
crossref_primary_10_1109_TNSE_2025_3541138
crossref_primary_10_3389_fmars_2023_1147690
crossref_primary_10_3389_fninf_2023_1123376
crossref_primary_10_1007_s00330_021_08247_4
crossref_primary_10_1007_s10489_021_03152_1
crossref_primary_10_1016_j_cjca_2021_07_016
crossref_primary_10_1016_j_patrec_2020_04_004
crossref_primary_10_1016_j_knosys_2024_112343
crossref_primary_10_1186_s13007_024_01243_x
crossref_primary_10_2147_CMAR_S312608
crossref_primary_10_1002_jum_15868
crossref_primary_10_1177_20552076231225853
crossref_primary_10_1097_APO_0000000000000576
crossref_primary_10_1109_TIE_2021_3099254
crossref_primary_10_1007_s10278_024_01022_z
crossref_primary_10_1007_s11042_024_18645_7
crossref_primary_10_1109_ACCESS_2024_3474690
crossref_primary_10_1371_journal_pone_0317181
crossref_primary_10_1007_s10845_024_02379_2
crossref_primary_10_1093_bib_bbae699
crossref_primary_10_1007_s11042_023_14764_9
crossref_primary_10_1007_s11548_022_02696_y
crossref_primary_10_1016_j_compbiomed_2021_104887
crossref_primary_10_1016_j_engappai_2024_109601
crossref_primary_10_1109_TIV_2024_3412198
crossref_primary_10_3390_ijms24065323
crossref_primary_10_1088_2057_1976_ad6f17
crossref_primary_10_1109_JBHI_2023_3348130
crossref_primary_10_3390_cancers13236048
crossref_primary_10_1007_s00292_024_01324_7
crossref_primary_10_1016_j_neucom_2022_01_082
crossref_primary_10_1002_cem_3643
crossref_primary_10_1002_hbm_70008
crossref_primary_10_3390_ijerph191811193
crossref_primary_10_1016_j_compag_2023_108473
crossref_primary_10_1038_s41598_025_16422_6
crossref_primary_10_1016_j_engappai_2023_107133
crossref_primary_10_1016_j_jas_2021_105375
crossref_primary_10_1145_3675392
crossref_primary_10_1108_EC_08_2023_0446
crossref_primary_10_1016_j_patcog_2024_111092
crossref_primary_10_1109_ACCESS_2025_3581450
crossref_primary_10_3389_fonc_2022_846775
crossref_primary_10_1007_s10489_024_05729_y
crossref_primary_10_1109_ACCESS_2021_3054484
crossref_primary_10_1016_j_bspc_2025_108230
crossref_primary_10_1177_14759217231202543
crossref_primary_10_1007_s10845_023_02156_7
crossref_primary_10_1016_j_compag_2025_110645
crossref_primary_10_1371_journal_pone_0313277
crossref_primary_10_1016_j_matlet_2021_130363
crossref_primary_10_3389_fnins_2022_883385
crossref_primary_10_3390_rs13173533
crossref_primary_10_1016_j_foodchem_2024_139283
crossref_primary_10_1016_j_chemosphere_2022_136119
crossref_primary_10_1016_j_saa_2023_122743
crossref_primary_10_2478_acss_2025_0002
crossref_primary_10_1007_s11263_023_01919_2
crossref_primary_10_1038_s41597_022_01238_0
crossref_primary_10_1016_j_neunet_2025_107228
crossref_primary_10_1002_joa3_13037
crossref_primary_10_1002_advs_202417682
crossref_primary_10_1002_jmri_28160
crossref_primary_10_1016_j_patcog_2023_109828
crossref_primary_10_1109_JIOT_2023_3339476
crossref_primary_10_1109_TCBB_2022_3190265
crossref_primary_10_1007_s00403_022_02492_3
crossref_primary_10_1016_j_jhazmat_2021_126746
crossref_primary_10_1016_j_csbj_2023_11_040
crossref_primary_10_1016_j_media_2022_102526
crossref_primary_10_1186_s12920_024_01796_9
crossref_primary_10_3390_cancers17152476
crossref_primary_10_1016_j_imu_2021_100557
crossref_primary_10_1007_s13534_025_00493_5
crossref_primary_10_1063_5_0135015
crossref_primary_10_1016_j_displa_2022_102241
crossref_primary_10_1016_j_jdent_2022_104239
crossref_primary_10_1007_s41348_024_01050_5
crossref_primary_10_3389_fams_2021_716044
crossref_primary_10_3390_agriculture15030331
crossref_primary_10_1136_bjophthalmol_2020_316984
crossref_primary_10_1021_acs_jproteome_4c00759
crossref_primary_10_1038_s41598_024_82378_8
crossref_primary_10_2196_24762
crossref_primary_10_1007_s10118_025_3293_y
crossref_primary_10_1109_JBHI_2022_3232811
crossref_primary_10_1007_s00066_021_01874_2
crossref_primary_10_1007_s11665_023_07949_8
crossref_primary_10_3390_app13095281
crossref_primary_10_1167_tvst_14_6_25
crossref_primary_10_1007_s44174_025_00455_6
crossref_primary_10_1007_s11063_024_11547_7
crossref_primary_10_3390_agriculture12111929
crossref_primary_10_1007_s10311_023_01604_3
crossref_primary_10_1177_00045632231154782
crossref_primary_10_1109_TIFS_2025_3539946
crossref_primary_10_1109_TMM_2021_3050082
crossref_primary_10_1186_s12880_024_01352_y
crossref_primary_10_3389_fpls_2024_1382715
crossref_primary_10_1109_ACCESS_2023_3347038
crossref_primary_10_1016_j_inffus_2023_101883
crossref_primary_10_3390_app12115310
crossref_primary_10_1016_j_eja_2024_127489
crossref_primary_10_1016_j_wneu_2022_01_068
crossref_primary_10_1016_j_bspc_2025_108259
crossref_primary_10_1007_s10994_025_06857_3
crossref_primary_10_1109_JSEN_2023_3235252
crossref_primary_10_1016_j_displa_2022_102233
crossref_primary_10_1016_j_tree_2023_11_002
crossref_primary_10_1016_j_displa_2022_102239
crossref_primary_10_1038_s41598_023_45314_w
crossref_primary_10_1038_s41598_023_43386_2
crossref_primary_10_15184_aqy_2023_175
crossref_primary_10_1007_s12553_024_00823_0
crossref_primary_10_1016_j_ijrobp_2023_11_059
crossref_primary_10_1155_2022_2067990
crossref_primary_10_1111_aab_12804
crossref_primary_10_1016_j_jrmge_2024_10_027
crossref_primary_10_1016_j_eswa_2025_127721
crossref_primary_10_1109_TIM_2024_3481551
crossref_primary_10_1016_j_cropro_2024_107058
crossref_primary_10_1016_j_patrec_2023_02_018
crossref_primary_10_1038_s41598_021_04603_y
crossref_primary_10_1016_j_aei_2025_103320
crossref_primary_10_1021_acsnano_5c00670
crossref_primary_10_1109_ACCESS_2020_3040349
crossref_primary_10_1186_s12876_022_02312_y
crossref_primary_10_1007_s40123_024_01009_7
crossref_primary_10_1038_s41598_023_46606_x
crossref_primary_10_1038_s41598_023_45532_2
crossref_primary_10_3390_horticulturae11060671
crossref_primary_10_1109_TDSC_2022_3184594
crossref_primary_10_1016_j_jelectrocard_2025_154083
crossref_primary_10_1016_j_patcog_2024_111171
crossref_primary_10_1016_j_cmpb_2022_106815
crossref_primary_10_1016_j_cropro_2024_107006
crossref_primary_10_1016_j_jbi_2021_103981
crossref_primary_10_1016_j_jelectrocard_2021_06_006
crossref_primary_10_1109_ACCESS_2021_3104627
crossref_primary_10_1109_ACCESS_2023_3339827
crossref_primary_10_32604_cmc_2024_047541
crossref_primary_10_1002_mp_17689
crossref_primary_10_1016_j_enganabound_2023_12_024
crossref_primary_10_1080_17434440_2025_2514764
crossref_primary_10_1088_1674_4527_adccf5
crossref_primary_10_1109_TPWRD_2023_3248102
crossref_primary_10_3390_electronics12234805
crossref_primary_10_1371_journal_pone_0319859
crossref_primary_10_1109_JSTARS_2025_3591795
crossref_primary_10_3390_su14063275
crossref_primary_10_1007_s11042_021_11638_w
crossref_primary_10_1088_1742_6596_1601_5_052021
crossref_primary_10_1109_JSTARS_2024_3447649
crossref_primary_10_1007_s12204_025_2818_4
crossref_primary_10_1007_s12149_023_01866_5
crossref_primary_10_1109_TPAMI_2025_3560033
crossref_primary_10_1093_ehjdh_ztaf101
crossref_primary_10_1145_3418355
crossref_primary_10_1016_j_compbiomed_2022_105617
crossref_primary_10_1016_j_mtcomm_2022_104228
crossref_primary_10_1016_j_knosys_2022_109571
crossref_primary_10_1016_j_rechem_2025_102446
crossref_primary_10_1109_TMI_2022_3147690
crossref_primary_10_1109_TII_2022_3228197
crossref_primary_10_1016_j_engfailanal_2025_109292
crossref_primary_10_1186_s13640_024_00620_9
crossref_primary_10_1002_cyto_a_24349
crossref_primary_10_3389_fnins_2020_629630
crossref_primary_10_1016_j_bone_2024_117330
crossref_primary_10_3390_jcm10153198
crossref_primary_10_1071_WF22220
crossref_primary_10_1016_j_mri_2024_05_008
crossref_primary_10_1111_cas_70089
crossref_primary_10_1016_j_jpi_2024_100390
crossref_primary_10_1002_int_23022
crossref_primary_10_1038_s41598_025_88958_6
crossref_primary_10_1016_j_compbiomed_2024_108001
crossref_primary_10_1109_JBHI_2022_3179014
crossref_primary_10_3233_JIFS_223584
crossref_primary_10_3389_fpsyg_2021_723325
crossref_primary_10_1016_j_compbiomed_2021_104479
crossref_primary_10_1002_pro_4555
crossref_primary_10_1016_j_atech_2025_101408
crossref_primary_10_3788_LOP242337
crossref_primary_10_3390_bioengineering9070288
crossref_primary_10_1016_j_displa_2024_102874
crossref_primary_10_1145_3507918
crossref_primary_10_1016_j_ijadhadh_2024_103784
crossref_primary_10_1016_j_bone_2021_115943
crossref_primary_10_1007_s11263_022_01746_x
crossref_primary_10_1371_journal_pone_0329205
crossref_primary_10_1016_j_media_2022_102507
crossref_primary_10_1002_cjp2_355
crossref_primary_10_1016_j_bspc_2023_105897
crossref_primary_10_3390_electronics12102339
crossref_primary_10_1007_s42979_021_00795_2
crossref_primary_10_1109_TIFS_2024_3424291
crossref_primary_10_1088_1741_2552_ac40a0
crossref_primary_10_1016_j_ces_2022_118161
crossref_primary_10_1016_j_saa_2025_126482
crossref_primary_10_1007_s10278_024_01134_6
crossref_primary_10_1049_ipr2_70194
crossref_primary_10_1007_s00603_025_04905_x
crossref_primary_10_1016_j_aca_2025_344113
crossref_primary_10_1016_j_rser_2025_115809
crossref_primary_10_3390_app112411587
crossref_primary_10_1088_1742_6596_2184_1_012054
crossref_primary_10_1161_CIRCHEARTFAILURE_123_011368
crossref_primary_10_1016_j_jdent_2023_104582
crossref_primary_10_1109_TIM_2023_3324362
crossref_primary_10_1007_s10115_022_01756_8
crossref_primary_10_1016_j_jdent_2023_104581
crossref_primary_10_1088_2057_1976_ae0482
crossref_primary_10_3389_frai_2022_1025148
crossref_primary_10_1007_s10489_024_05582_z
crossref_primary_10_1016_j_bspc_2024_107029
crossref_primary_10_1016_j_compbiomed_2024_108029
crossref_primary_10_1088_1361_6501_adee32
crossref_primary_10_1155_2021_5513679
crossref_primary_10_1016_j_jksuci_2022_09_013
crossref_primary_10_1186_s40658_022_00510_x
crossref_primary_10_1007_s11623_025_2081_8
crossref_primary_10_3390_s22166229
crossref_primary_10_3390_s21155113
crossref_primary_10_1063_5_0188862
crossref_primary_10_1016_j_eswa_2025_127787
crossref_primary_10_1016_j_bspc_2024_107031
crossref_primary_10_1016_j_clinimag_2025_110492
crossref_primary_10_1016_j_mlwa_2025_100653
crossref_primary_10_1016_j_procs_2023_01_165
crossref_primary_10_3390_app12199435
crossref_primary_10_3390_jimaging9100199
crossref_primary_10_1016_j_jhazmat_2024_136558
crossref_primary_10_1117_1_JRS_18_042610
crossref_primary_10_3389_fonc_2022_842759
crossref_primary_10_3390_ani15182669
crossref_primary_10_1016_j_microc_2024_110551
crossref_primary_10_1121_10_0034360
crossref_primary_10_3748_wjg_v31_i21_107601
crossref_primary_10_1007_s00330_023_09704_y
crossref_primary_10_1016_j_engappai_2025_111209
crossref_primary_10_1016_j_inffus_2025_103306
crossref_primary_10_3390_electronics13132456
crossref_primary_10_1007_s10278_023_00846_5
crossref_primary_10_1109_ACCESS_2025_3587227
crossref_primary_10_1016_j_eng_2025_08_005
crossref_primary_10_3390_s24196168
crossref_primary_10_1002_mp_15002
crossref_primary_10_1109_TIP_2020_2975712
crossref_primary_10_3390_s23177431
crossref_primary_10_1007_s41870_023_01248_0
crossref_primary_10_1109_TIM_2025_3576957
crossref_primary_10_7554_eLife_95273_4
crossref_primary_10_1002_srin_202300421
crossref_primary_10_1016_j_bspc_2021_103087
crossref_primary_10_3389_fpls_2023_1224884
crossref_primary_10_1016_j_atech_2023_100316
crossref_primary_10_1186_s12915_025_02273_0
crossref_primary_10_1093_comjnl_bxaf024
crossref_primary_10_3390_s25154610
crossref_primary_10_1016_j_jmbbm_2021_104761
crossref_primary_10_1017_S1759078721000830
crossref_primary_10_3389_fbioe_2024_1327207
crossref_primary_10_1038_s41524_020_00376_6
crossref_primary_10_1109_JSTARS_2025_3593557
crossref_primary_10_1016_j_jnlest_2025_100322
crossref_primary_10_1016_j_compbiomed_2022_105680
crossref_primary_10_1038_s41524_023_00984_y
crossref_primary_10_1016_j_ins_2025_122209
crossref_primary_10_1016_j_ins_2022_10_013
crossref_primary_10_1109_TSTE_2025_3534589
crossref_primary_10_1007_s11548_021_02381_6
crossref_primary_10_1007_s00277_025_06254_9
crossref_primary_10_1109_JSEN_2023_3335449
crossref_primary_10_3390_agronomy13092339
crossref_primary_10_3390_app13095659
crossref_primary_10_1145_3656048
crossref_primary_10_3390_s21165381
crossref_primary_10_1016_j_bspc_2024_107014
crossref_primary_10_3390_bioengineering12040421
crossref_primary_10_1007_s40747_024_01678_8
crossref_primary_10_1007_s11263_022_01657_x
crossref_primary_10_1016_j_patcog_2021_107935
crossref_primary_10_1016_j_engappai_2025_110372
crossref_primary_10_1109_ACCESS_2025_3581931
crossref_primary_10_3389_fmed_2022_846024
crossref_primary_10_1007_s00521_021_05983_y
crossref_primary_10_3390_diagnostics13030441
crossref_primary_10_1177_20552076251319667
crossref_primary_10_1002_acm2_14380
crossref_primary_10_1007_s10489_021_02951_w
crossref_primary_10_1109_TPAMI_2023_3234291
crossref_primary_10_1109_ACCESS_2022_3145911
crossref_primary_10_3390_diagnostics12020548
crossref_primary_10_1007_s13246_021_01083_2
crossref_primary_10_1016_j_engappai_2023_106963
crossref_primary_10_1016_j_eswa_2025_129514
crossref_primary_10_1109_JSTARS_2024_3524382
crossref_primary_10_1016_j_labinv_2025_104182
crossref_primary_10_1109_TIM_2025_3593555
crossref_primary_10_3390_bioengineering10121421
crossref_primary_10_1109_ACCESS_2025_3539122
crossref_primary_10_1109_TIP_2022_3184255
crossref_primary_10_1002_mrm_29593
crossref_primary_10_3390_s25010170
crossref_primary_10_3390_rs15030614
crossref_primary_10_3390_s24165404
crossref_primary_10_1002_aisy_202300105
crossref_primary_10_1080_23789689_2023_2233759
crossref_primary_10_1109_ACCESS_2023_3236315
crossref_primary_10_1145_3711846
crossref_primary_10_1186_s12859_022_04824_6
crossref_primary_10_3390_info14100541
crossref_primary_10_1016_j_ejrad_2024_111392
crossref_primary_10_1016_j_neunet_2021_05_012
crossref_primary_10_1109_TIFS_2023_3289000
crossref_primary_10_1016_j_engappai_2025_110787
crossref_primary_10_1016_j_eswa_2025_128661
crossref_primary_10_1016_j_neunet_2025_107666
crossref_primary_10_1111_jog_15788
crossref_primary_10_3390_s23094543
crossref_primary_10_1109_ACCESS_2020_3032756
crossref_primary_10_1016_j_neuroimage_2023_120164
crossref_primary_10_1109_TIP_2023_3246793
crossref_primary_10_32604_cmes_2021_015807
crossref_primary_10_3390_math11184011
crossref_primary_10_1016_j_compag_2021_106230
crossref_primary_10_1109_JIOT_2025_3541844
crossref_primary_10_3389_fnins_2025_1576931
crossref_primary_10_1109_TIM_2025_3600723
crossref_primary_10_1186_s13244_024_01817_2
crossref_primary_10_1007_s10278_023_00957_z
crossref_primary_10_1007_s11604_025_01780_y
crossref_primary_10_3389_fnins_2024_1245791
crossref_primary_10_1109_TCDS_2022_3141591
crossref_primary_10_1016_j_engappai_2023_107824
crossref_primary_10_1016_j_ejrad_2024_111389
crossref_primary_10_1007_s10278_023_00802_3
crossref_primary_10_1088_1361_6560_ad3889
crossref_primary_10_1016_j_aca_2021_338822
crossref_primary_10_3390_jimaging8100285
crossref_primary_10_1038_s41467_024_55262_2
crossref_primary_10_1109_JSEN_2024_3482291
crossref_primary_10_1007_s12094_023_03366_4
crossref_primary_10_1097_JS9_0000000000001241
crossref_primary_10_1016_j_inffus_2025_103387
crossref_primary_10_1016_j_ajem_2025_01_041
crossref_primary_10_1109_TGRS_2023_3276853
crossref_primary_10_1016_j_jid_2021_09_029
crossref_primary_10_3390_bioengineering10050555
crossref_primary_10_1007_s10994_023_06312_1
crossref_primary_10_1016_j_rineng_2024_103414
crossref_primary_10_3390_diagnostics13020217
crossref_primary_10_3390_a18010008
crossref_primary_10_1007_s42979_024_02671_1
crossref_primary_10_1016_j_engappai_2025_111651
crossref_primary_10_1007_s11042_025_20797_z
crossref_primary_10_3390_bioengineering10121435
crossref_primary_10_3390_s25154656
crossref_primary_10_1007_s10278_021_00478_7
crossref_primary_10_1148_radiol_2020200334
crossref_primary_10_3390_bioengineering10091070
crossref_primary_10_1016_j_eswa_2025_128687
crossref_primary_10_1016_j_ijepes_2025_110700
crossref_primary_10_1126_sciadv_adq7342
crossref_primary_10_3390_app14083346
crossref_primary_10_1016_j_neucom_2022_04_018
crossref_primary_10_1016_j_bspc_2025_108201
crossref_primary_10_1111_mice_13078
crossref_primary_10_1016_j_eswa_2025_128216
crossref_primary_10_1016_j_compag_2023_107709
crossref_primary_10_1109_TMI_2020_2993291
crossref_primary_10_1016_j_jag_2022_102988
crossref_primary_10_1038_s41592_022_01606_z
crossref_primary_10_1016_j_jns_2025_123563
crossref_primary_10_1016_j_bspc_2023_104963
crossref_primary_10_1016_j_mineng_2023_108433
crossref_primary_10_3390_electronics13030635
crossref_primary_10_3390_plants11233327
crossref_primary_10_3390_s21206826
crossref_primary_10_1038_s41597_024_02960_7
crossref_primary_10_1021_acs_analchem_5c00584
crossref_primary_10_1007_s40747_022_00764_z
crossref_primary_10_1016_j_cjca_2024_07_003
crossref_primary_10_1109_ACCESS_2022_3184693
crossref_primary_10_1109_ACCESS_2024_3525067
crossref_primary_10_3390_s25061751
crossref_primary_10_1007_s11042_020_08943_1
crossref_primary_10_3390_rs15205075
crossref_primary_10_1016_j_eswa_2024_124701
crossref_primary_10_3390_agriculture14030353
crossref_primary_10_1109_LGRS_2023_3335473
crossref_primary_10_1111_mice_12632
crossref_primary_10_1016_j_foodchem_2023_136169
crossref_primary_10_1016_j_talanta_2025_128652
crossref_primary_10_1016_j_neunet_2024_106418
crossref_primary_10_1007_s00330_024_11028_4
crossref_primary_10_1016_j_microc_2024_112323
crossref_primary_10_1055_a_2562_2163
crossref_primary_10_1016_j_measurement_2022_112273
crossref_primary_10_3390_agriculture12122141
crossref_primary_10_1109_TIFS_2020_3036800
crossref_primary_10_1007_s00107_022_01815_5
crossref_primary_10_1016_j_csbj_2024_08_005
crossref_primary_10_1016_j_foodchem_2025_143150
crossref_primary_10_1016_j_comtox_2024_100311
crossref_primary_10_3390_s24010150
crossref_primary_10_1016_j_engstruct_2024_118515
crossref_primary_10_1109_TGRS_2024_3424680
crossref_primary_10_3390_app13095717
crossref_primary_10_3390_en18051282
crossref_primary_10_1109_TCSVT_2025_3543622
crossref_primary_10_3390_app15137526
crossref_primary_10_3390_app15094804
crossref_primary_10_3390_biomedicines12081878
crossref_primary_10_1109_ACCESS_2021_3095368
crossref_primary_10_1111_his_15018
crossref_primary_10_1109_TIM_2025_3546389
crossref_primary_10_1097_SLA_0000000000006826
crossref_primary_10_3389_fnut_2022_1026730
crossref_primary_10_1007_s10462_024_10952_7
crossref_primary_10_1016_j_compbiomed_2025_110321
crossref_primary_10_1111_tpj_16188
crossref_primary_10_3390_agriculture13071349
crossref_primary_10_1016_j_knosys_2023_110358
crossref_primary_10_1177_08465371221145023
crossref_primary_10_1186_s40708_024_00230_1
crossref_primary_10_3390_app14073011
crossref_primary_10_1038_s42003_021_01697_y
crossref_primary_10_3390_brainsci14010010
crossref_primary_10_1007_s10044_024_01391_9
crossref_primary_10_1016_j_mineng_2023_108523
crossref_primary_10_1016_j_patrec_2021_03_012
crossref_primary_10_1016_j_engstruct_2024_118529
crossref_primary_10_1177_14759217241241976
crossref_primary_10_3390_ani14182640
crossref_primary_10_1145_3766071
crossref_primary_10_3390_jmse12091641
crossref_primary_10_1007_s10994_023_06369_y
crossref_primary_10_3390_pharmaceutics17091119
crossref_primary_10_1007_s11661_024_07633_z
crossref_primary_10_3390_app15137544
crossref_primary_10_3390_app10238660
crossref_primary_10_3390_e24111597
crossref_primary_10_1016_j_neucom_2024_128969
crossref_primary_10_3389_fninf_2024_1496143
crossref_primary_10_3389_frai_2025_1561281
crossref_primary_10_1177_16878132241289258
crossref_primary_10_1088_2632_2153_acd2a5
crossref_primary_10_3390_cancers15123189
crossref_primary_10_3390_jimaging10080176
crossref_primary_10_1016_j_engappai_2024_108288
crossref_primary_10_3390_jcm11237103
crossref_primary_10_3390_jimaging8020038
crossref_primary_10_1007_s10845_025_02623_3
crossref_primary_10_3390_a18060358
crossref_primary_10_1016_j_compag_2023_108552
crossref_primary_10_1038_s41598_021_90285_5
crossref_primary_10_1016_j_ijepes_2023_109576
crossref_primary_10_1109_ACCESS_2023_3263489
crossref_primary_10_1007_s11042_024_20233_8
crossref_primary_10_1016_j_rse_2024_114107
crossref_primary_10_1007_s11128_023_03898_2
crossref_primary_10_1016_j_microc_2024_112352
crossref_primary_10_1016_j_neucom_2023_03_050
crossref_primary_10_1016_j_ultras_2024_107251
crossref_primary_10_3390_agriculture12091339
crossref_primary_10_3390_electronics13152940
crossref_primary_10_1371_journal_pone_0295073
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125428
crossref_primary_10_3390_cancers15184497
crossref_primary_10_1007_s00330_025_11373_y
crossref_primary_10_1002_anie_202506744
crossref_primary_10_1007_s41870_023_01635_7
crossref_primary_10_1038_s41746_022_00648_z
crossref_primary_10_1146_annurev_phyto_121823_081033
crossref_primary_10_3390_diagnostics12112765
crossref_primary_10_1007_s10994_022_06237_1
crossref_primary_10_1109_ACCESS_2025_3601151
crossref_primary_10_1016_j_oret_2022_08_018
crossref_primary_10_1088_2632_2153_ad9079
crossref_primary_10_3390_app12031695
crossref_primary_10_1109_TPAMI_2023_3303397
crossref_primary_10_1007_s00330_022_08752_0
crossref_primary_10_1016_j_media_2020_101873
crossref_primary_10_1016_j_compbiomed_2025_109785
crossref_primary_10_1088_1361_6501_ada4c8
crossref_primary_10_1115_1_4069381
crossref_primary_10_3390_diagnostics15070865
crossref_primary_10_1016_j_compag_2025_110177
crossref_primary_10_1088_1742_6596_2425_1_012010
crossref_primary_10_32604_cmes_2022_020623
crossref_primary_10_1109_JSTARS_2023_3322344
crossref_primary_10_1002_cem_3388
crossref_primary_10_1080_13658816_2023_2191256
crossref_primary_10_3389_fonc_2021_585942
crossref_primary_10_1016_j_bspc_2022_103828
crossref_primary_10_1016_j_array_2025_100386
crossref_primary_10_1016_j_ijhydene_2025_02_240
crossref_primary_10_1038_s41467_024_51465_9
crossref_primary_10_1038_s41598_024_62513_1
crossref_primary_10_1016_j_jvoice_2022_07_007
crossref_primary_10_1186_s13321_024_00909_x
crossref_primary_10_1186_s12903_024_03928_0
crossref_primary_10_3390_app12157592
crossref_primary_10_3390_app13126894
crossref_primary_10_1016_j_bspc_2020_102388
crossref_primary_10_1016_j_eswa_2022_116540
crossref_primary_10_1007_s10845_023_02317_8
crossref_primary_10_3390_computers12030058
crossref_primary_10_1016_j_patcog_2021_108316
crossref_primary_10_1016_j_talanta_2025_127743
crossref_primary_10_1177_02841851211058934
crossref_primary_10_3390_diagnostics15111407
crossref_primary_10_1016_j_compbiomed_2023_107300
crossref_primary_10_1016_j_jmsy_2021_01_017
crossref_primary_10_1155_2020_8848874
crossref_primary_10_1007_s10044_024_01401_w
crossref_primary_10_1016_j_eswa_2023_122268
crossref_primary_10_1016_j_ebiom_2025_105560
crossref_primary_10_1177_17562848231215579
crossref_primary_10_1016_j_ymssp_2023_110584
crossref_primary_10_3390_aerospace9090520
crossref_primary_10_1016_j_xcrm_2025_102207
crossref_primary_10_2478_acss_2023_0007
crossref_primary_10_3390_electronics13030594
crossref_primary_10_3390_healthcare10010166
crossref_primary_10_3390_s25051435
crossref_primary_10_2478_acss_2023_0005
crossref_primary_10_1097_JS9_0000000000002184
crossref_primary_10_3390_math12070958
crossref_primary_10_1109_TMI_2024_3459910
crossref_primary_10_3390_diagnostics15070845
crossref_primary_10_1016_j_patcog_2022_108604
crossref_primary_10_1016_j_scib_2023_09_039
crossref_primary_10_1016_j_compag_2023_107660
crossref_primary_10_1007_s00371_022_02755_0
crossref_primary_10_1016_j_envsci_2024_103885
crossref_primary_10_1007_s10994_024_06529_8
crossref_primary_10_3390_app14209283
crossref_primary_10_1016_j_neuropsychologia_2020_107506
crossref_primary_10_1016_j_indcrop_2024_119544
crossref_primary_10_1109_ACCESS_2024_3439523
crossref_primary_10_1016_j_ymeth_2025_07_004
crossref_primary_10_1109_JSTARS_2023_3308032
crossref_primary_10_3390_e24070974
crossref_primary_10_1145_3643639
crossref_primary_10_1002_smll_202207802
crossref_primary_10_3788_CJL250583
crossref_primary_10_1093_bjrai_ubaf013
crossref_primary_10_1007_s11704_024_40533_4
crossref_primary_10_1007_s00138_023_01473_4
crossref_primary_10_1016_j_cmpb_2024_108361
crossref_primary_10_3390_rs17091554
crossref_primary_10_1109_ACCESS_2024_3406215
crossref_primary_10_3390_horticulturae11070840
crossref_primary_10_1007_s10278_024_01121_x
crossref_primary_10_1007_s00330_025_11721_y
crossref_primary_10_3390_app142210413
crossref_primary_10_1007_s11548_025_03441_x
crossref_primary_10_1016_j_compbiomed_2023_107323
crossref_primary_10_1038_s41551_019_0487_z
crossref_primary_10_1117_1_JBO_27_6_060901
crossref_primary_10_1038_s41598_021_95969_6
crossref_primary_10_1093_bioadv_vbad166
crossref_primary_10_1093_ehjdh_ztaf034
crossref_primary_10_3389_fneur_2022_963968
crossref_primary_10_1002_ana_26435
crossref_primary_10_1016_j_ejca_2022_08_033
crossref_primary_10_1186_s13075_021_02634_4
crossref_primary_10_1016_j_eswa_2024_124775
crossref_primary_10_1093_ehjdh_ztaf025
crossref_primary_10_3389_fneur_2024_1409962
crossref_primary_10_1007_s10921_024_01121_5
crossref_primary_10_1017_eds_2025_13
crossref_primary_10_1016_j_jclinepi_2021_11_001
crossref_primary_10_1007_s42803_023_00077_8
crossref_primary_10_1145_3728637
crossref_primary_10_1016_j_patrec_2024_03_025
crossref_primary_10_3390_ai5020024
crossref_primary_10_1016_j_jneumeth_2024_110318
crossref_primary_10_3390_rs17091540
crossref_primary_10_1111_cura_12492
crossref_primary_10_1016_j_sandf_2025_101575
crossref_primary_10_1016_j_imu_2024_101559
crossref_primary_10_1371_journal_pone_0249593
crossref_primary_10_1007_s11517_023_02946_4
crossref_primary_10_3389_fphar_2020_572372
crossref_primary_10_1088_1748_9326_ad1bde
crossref_primary_10_1109_TMM_2023_3266066
crossref_primary_10_1109_TNSRE_2022_3225948
crossref_primary_10_3390_make6040111
crossref_primary_10_1002_jbmr_4292
crossref_primary_10_1016_j_saa_2025_126815
crossref_primary_10_1016_j_compbiomed_2022_106182
crossref_primary_10_1088_1361_6560_ad9ce3
crossref_primary_10_1016_j_aiopen_2025_02_001
crossref_primary_10_1117_1_JRS_18_034517
crossref_primary_10_1007_JHEP11_2024_007
crossref_primary_10_1016_j_engappai_2025_110805
crossref_primary_10_1016_j_nicl_2020_102522
crossref_primary_10_1007_s00530_023_01231_6
crossref_primary_10_1016_j_neunet_2022_04_029
crossref_primary_10_1371_journal_pone_0321753
crossref_primary_10_3390_app14052158
crossref_primary_10_1007_s13246_024_01432_x
crossref_primary_10_1016_j_engappai_2023_106191
crossref_primary_10_1080_08164622_2023_2197578
crossref_primary_10_1016_j_ejrad_2021_110041
crossref_primary_10_1016_j_actatropica_2025_107621
crossref_primary_10_1016_j_ymssp_2025_112925
crossref_primary_10_1007_s00256_025_04917_2
crossref_primary_10_1038_s41377_023_01309_w
crossref_primary_10_3390_app15010379
crossref_primary_10_1016_j_preteyeres_2024_101305
crossref_primary_10_1016_j_rsase_2024_101412
crossref_primary_10_1016_j_neucom_2025_130797
crossref_primary_10_1148_radiol_230255
crossref_primary_10_1177_17562848231155023
crossref_primary_10_3390_app13031252
crossref_primary_10_1016_j_ascom_2020_100390
crossref_primary_10_1093_ehjdh_ztaf008
crossref_primary_10_1007_s00784_024_06049_8
crossref_primary_10_1016_j_compmedimag_2023_102220
crossref_primary_10_3390_cancers15133376
crossref_primary_10_1155_2020_8828855
crossref_primary_10_1016_j_cie_2024_110220
crossref_primary_10_1016_j_engappai_2022_105800
crossref_primary_10_1038_s41598_024_59248_4
crossref_primary_10_1038_s41598_025_94052_8
crossref_primary_10_1136_bmjhci_2023_100942
crossref_primary_10_32604_cmc_2023_038362
crossref_primary_10_3390_nu17020362
crossref_primary_10_3389_fonc_2023_1169922
crossref_primary_10_1109_JSEN_2023_3316392
crossref_primary_10_3390_ijms26157134
crossref_primary_10_1007_s12652_021_02998_0
crossref_primary_10_1016_j_arth_2023_02_053
crossref_primary_10_1016_j_brainres_2024_148876
crossref_primary_10_1007_s00405_024_08676_z
crossref_primary_10_1109_TPWRS_2023_3326137
crossref_primary_10_34133_plantphenomics_0022
crossref_primary_10_1088_1741_4326_ac31d8
crossref_primary_10_1111_anec_12839
crossref_primary_10_1007_s10278_024_01263_y
crossref_primary_10_1007_s12145_025_02008_3
crossref_primary_10_1055_a_2451_3071
crossref_primary_10_1007_s00521_022_08097_1
crossref_primary_10_1109_ACCESS_2025_3592239
crossref_primary_10_1016_j_atech_2025_101348
crossref_primary_10_1016_j_isprsjprs_2023_09_009
crossref_primary_10_1109_LGRS_2023_3262407
crossref_primary_10_1007_s10489_022_04156_1
crossref_primary_10_1016_j_displa_2025_103142
crossref_primary_10_1080_01431161_2024_2307325
crossref_primary_10_1109_TGRS_2022_3230378
crossref_primary_10_1097_ICU_0000000000000678
crossref_primary_10_1016_j_neuroscience_2024_11_030
crossref_primary_10_1109_TIFS_2020_2988168
crossref_primary_10_3390_fire7080286
crossref_primary_10_3390_s23031489
crossref_primary_10_1016_j_neucom_2025_131620
crossref_primary_10_3390_diagnostics14060629
crossref_primary_10_3390_horticulturae11060600
crossref_primary_10_1038_s42003_024_07109_1
crossref_primary_10_1155_2022_1473977
crossref_primary_10_1007_s10796_025_10634_x
crossref_primary_10_1038_s41598_021_95240_y
crossref_primary_10_1145_3494961
crossref_primary_10_1007_s11517_023_02804_3
crossref_primary_10_1016_j_compag_2020_105883
crossref_primary_10_1016_j_neucom_2025_130770
crossref_primary_10_1002_uog_27577
crossref_primary_10_3389_fcomp_2025_1566513
crossref_primary_10_1109_JBHI_2022_3186933
crossref_primary_10_1016_j_ajo_2021_09_015
crossref_primary_10_1038_s41698_024_00695_7
crossref_primary_10_1186_s12891_022_05565_6
crossref_primary_10_1007_s00330_023_10258_2
crossref_primary_10_1109_JSEN_2025_3531698
crossref_primary_10_1109_TKDE_2022_3185233
crossref_primary_10_3390_pharmaceutics15010119
crossref_primary_10_1016_j_jmapro_2021_12_030
crossref_primary_10_1016_j_knosys_2024_112015
crossref_primary_10_1016_j_compbiomed_2023_107371
crossref_primary_10_1016_j_measurement_2025_117153
crossref_primary_10_1186_s12943_025_02369_9
crossref_primary_10_1016_j_heliyon_2023_e18773
crossref_primary_10_3390_electronics11244218
crossref_primary_10_3390_cancers14194704
crossref_primary_10_3390_jcm12185960
crossref_primary_10_1007_s13042_023_01774_0
crossref_primary_10_1016_j_patcog_2023_109842
crossref_primary_10_1007_s10796_022_10330_0
crossref_primary_10_1016_j_compbiomed_2024_108525
crossref_primary_10_1155_2022_5603992
crossref_primary_10_1016_j_saa_2024_125242
crossref_primary_10_1109_TMI_2022_3205554
crossref_primary_10_1007_s11042_021_11464_0
crossref_primary_10_1109_TVT_2022_3228127
crossref_primary_10_1253_circj_CJ_25_0098
crossref_primary_10_1016_j_ultramic_2021_113249
crossref_primary_10_1155_stc_8462004
crossref_primary_10_1007_s10845_025_02671_9
crossref_primary_10_1016_j_neunet_2024_106837
crossref_primary_10_1007_s10207_025_00987_4
crossref_primary_10_1016_j_compag_2024_109751
crossref_primary_10_1109_TIFS_2024_3380248
crossref_primary_10_2196_25165
crossref_primary_10_1002_widm_1474
crossref_primary_10_3390_electronics14183698
crossref_primary_10_1007_s10278_023_00850_9
crossref_primary_10_1080_01431161_2023_2255353
crossref_primary_10_1109_ACCESS_2024_3391130
crossref_primary_10_1007_s12530_025_09656_2
crossref_primary_10_1089_ten_tea_2023_0206
crossref_primary_10_1007_s00259_025_07450_5
crossref_primary_10_1093_eurheartj_ehae619
crossref_primary_10_1016_j_echo_2025_08_008
crossref_primary_10_1016_j_jfca_2022_104964
crossref_primary_10_1016_j_eswa_2024_125208
crossref_primary_10_1007_s12350_022_02920_x
crossref_primary_10_1109_ACCESS_2023_3320042
crossref_primary_10_1016_j_ynirp_2025_100259
crossref_primary_10_1038_s42003_023_04608_5
crossref_primary_10_5194_acp_23_9071_2023
crossref_primary_10_1007_s42979_021_00924_x
crossref_primary_10_1038_s41467_025_62346_0
crossref_primary_10_3390_app15010343
crossref_primary_10_1021_acsphotonics_5c01710
crossref_primary_10_3389_fpls_2022_1031748
crossref_primary_10_1007_s00432_024_05986_x
crossref_primary_10_3748_wjg_v31_i19_104897
crossref_primary_10_1038_s41598_020_68611_0
crossref_primary_10_1016_j_imu_2024_101572
crossref_primary_10_1007_s11633_022_1385_5
crossref_primary_10_1186_s12880_021_00551_1
crossref_primary_10_3390_jcm10194431
crossref_primary_10_3389_fonc_2023_1136922
crossref_primary_10_1155_2022_8884669
crossref_primary_10_1016_j_asoc_2023_111094
crossref_primary_10_3390_children11111401
crossref_primary_10_1109_JBHI_2023_3313785
crossref_primary_10_32604_cmc_2021_019305
crossref_primary_10_3390_s22228760
crossref_primary_10_3390_drones8110691
crossref_primary_10_1093_jamia_ocae280
crossref_primary_10_1146_annurev_cancerbio_062822_010523
crossref_primary_10_1002_jmv_29036
crossref_primary_10_1016_j_jvcir_2021_103414
crossref_primary_10_1109_TNSRE_2025_3546519
crossref_primary_10_1145_3708516
crossref_primary_10_1016_j_neucom_2025_129996
crossref_primary_10_3390_diagnostics13132309
crossref_primary_10_1038_s41598_025_05410_5
crossref_primary_10_3389_fmed_2025_1644456
crossref_primary_10_3390_s24134410
crossref_primary_10_1017_S0022377822000940
crossref_primary_10_3390_app10144716
crossref_primary_10_1109_TPAMI_2024_3429387
crossref_primary_10_1016_j_compag_2022_107500
crossref_primary_10_1007_s11069_021_04838_y
crossref_primary_10_3390_s23208573
crossref_primary_10_1038_s41428_021_00531_w
crossref_primary_10_1109_ACCESS_2024_3412608
crossref_primary_10_1016_j_jfoodeng_2025_112515
crossref_primary_10_1093_bib_bbab001
crossref_primary_10_3390_fishes7050219
crossref_primary_10_1016_j_ijmedinf_2024_105689
crossref_primary_10_1007_s42979_025_04034_w
crossref_primary_10_3390_mi15040491
crossref_primary_10_1016_j_imu_2025_101658
crossref_primary_10_3390_cancers15154002
crossref_primary_10_1016_j_isprsjprs_2025_06_006
crossref_primary_10_1016_j_jmapro_2025_01_023
crossref_primary_10_1016_j_gsf_2023_101770
crossref_primary_10_1016_j_compmedimag_2024_102469
crossref_primary_10_3389_fdgth_2025_1484231
crossref_primary_10_1016_j_jksuci_2023_101555
crossref_primary_10_4274_dir_2024_242854
crossref_primary_10_1038_s41598_025_86527_5
crossref_primary_10_1007_s11517_024_03138_4
crossref_primary_10_1007_s40123_023_00680_6
crossref_primary_10_1186_s12916_022_02350_z
crossref_primary_10_1016_j_autcon_2024_105680
crossref_primary_10_1002_mp_17385
crossref_primary_10_1007_s43995_024_00094_w
crossref_primary_10_1038_s41598_021_02774_2
crossref_primary_10_1007_s11042_024_20502_6
crossref_primary_10_1016_j_image_2023_117027
crossref_primary_10_1038_s41598_025_89735_1
crossref_primary_10_3390_rs16010165
crossref_primary_10_1016_j_measurement_2022_111417
crossref_primary_10_7554_eLife_95273
crossref_primary_10_1016_j_gie_2023_11_059
crossref_primary_10_3390_app14093621
crossref_primary_10_1145_3625227
crossref_primary_10_3233_CBM_230444
crossref_primary_10_3390_technologies12090151
crossref_primary_10_1016_j_postharvbio_2022_112154
crossref_primary_10_1109_TPAMI_2023_3282631
crossref_primary_10_2478_jaiscr_2024_0007
crossref_primary_10_1016_j_microc_2023_109337
crossref_primary_10_3390_biology12030369
crossref_primary_10_3348_kjr_2023_0940
crossref_primary_10_1038_s42256_022_00536_x
crossref_primary_10_1097_TP_0000000000004876
crossref_primary_10_1002_adfm_202420045
crossref_primary_10_1063_5_0268702
crossref_primary_10_1007_s44163_024_00196_3
crossref_primary_10_1016_j_patcog_2022_109212
crossref_primary_10_1007_s11042_021_11866_0
crossref_primary_10_1016_j_ijpvp_2023_105112
crossref_primary_10_1093_gigascience_giae093
crossref_primary_10_1109_ACCESS_2025_3596221
crossref_primary_10_3389_fmars_2025_1581794
crossref_primary_10_1016_j_crad_2025_107023
crossref_primary_10_1063_5_0194391
crossref_primary_10_3390_agronomy15010042
crossref_primary_10_1109_ACCESS_2023_3282309
crossref_primary_10_1007_s10120_020_01077_1
crossref_primary_10_2196_49949
crossref_primary_10_1109_TNNLS_2022_3190671
crossref_primary_10_1016_j_media_2021_102125
crossref_primary_10_3389_fdata_2024_1366415
crossref_primary_10_1038_s43856_024_00722_5
crossref_primary_10_1091_mbc_E20_03_0187
crossref_primary_10_1117_1_JMI_10_4_044503
crossref_primary_10_1038_s41598_021_83188_y
crossref_primary_10_1109_TCSVT_2023_3268997
crossref_primary_10_1007_s10115_022_01690_9
crossref_primary_10_1016_j_health_2023_100206
crossref_primary_10_1007_s12145_023_01162_w
crossref_primary_10_1016_j_cmpb_2022_106935
crossref_primary_10_1007_s41348_023_00826_5
crossref_primary_10_1016_j_engappai_2023_106442
crossref_primary_10_1016_j_measurement_2024_114663
crossref_primary_10_1016_j_jacep_2024_01_022
crossref_primary_10_1007_s11633_023_1445_5
crossref_primary_10_1109_JBHI_2023_3292312
crossref_primary_10_1007_s00371_024_03431_1
crossref_primary_10_1109_TIP_2023_3335830
crossref_primary_10_1007_s10278_025_01581_9
crossref_primary_10_1109_TITS_2024_3390576
crossref_primary_10_3390_batteries10030099
crossref_primary_10_1007_s00259_025_07090_9
crossref_primary_10_1007_s12652_021_03599_7
crossref_primary_10_1038_s41598_021_95561_y
crossref_primary_10_1016_j_snb_2023_133865
crossref_primary_10_1109_TCSVT_2024_3510735
crossref_primary_10_3389_fcell_2021_652848
crossref_primary_10_1016_j_csbj_2022_11_062
crossref_primary_10_1007_s11886_022_01655_y
crossref_primary_10_3390_electronics13132541
crossref_primary_10_1109_TITS_2024_3411117
crossref_primary_10_1007_s42154_023_00220_9
crossref_primary_10_3390_app13074272
crossref_primary_10_1016_j_cbpa_2021_102111
crossref_primary_10_1080_00365521_2022_2163185
crossref_primary_10_3390_foods11233800
crossref_primary_10_1007_s11517_022_02551_x
crossref_primary_10_1016_j_spinee_2022_01_004
crossref_primary_10_1016_j_wneu_2025_123669
crossref_primary_10_1016_j_mineng_2021_107126
crossref_primary_10_1016_j_jhydrol_2024_131867
crossref_primary_10_1016_j_sysarc_2024_103105
crossref_primary_10_1109_TNNLS_2024_3382937
crossref_primary_10_1016_j_jfca_2025_108123
crossref_primary_10_1167_tvst_14_5_18
crossref_primary_10_3390_app15116286
crossref_primary_10_1016_j_compbiolchem_2025_108645
crossref_primary_10_1016_j_mimet_2023_106739
crossref_primary_10_1109_TCPMT_2023_3249193
crossref_primary_10_17116_klinderma202322031287
crossref_primary_10_1109_ACCESS_2020_3028770
crossref_primary_10_1016_j_eplepsyres_2021_106815
crossref_primary_10_1371_journal_pcbi_1013435
crossref_primary_10_1016_j_envsoft_2025_106571
crossref_primary_10_1016_j_triboint_2023_109015
crossref_primary_10_1016_j_ins_2023_03_020
crossref_primary_10_1681_ASN_0000000514
crossref_primary_10_1007_s11676_022_01457_6
crossref_primary_10_1038_s41598_025_05009_w
crossref_primary_10_1007_s44327_025_00109_8
crossref_primary_10_1016_j_ejro_2024_100594
crossref_primary_10_3390_s24123783
crossref_primary_10_1016_j_aei_2023_101963
crossref_primary_10_3390_sym16040451
crossref_primary_10_3390_metabo12121264
crossref_primary_10_1109_ACCESS_2024_3425910
crossref_primary_10_3390_rs15225425
crossref_primary_10_1016_j_jmapro_2024_06_074
crossref_primary_10_32604_cmc_2024_058586
crossref_primary_10_1111_ipd_13282
crossref_primary_10_3847_1538_4357_adabc7
crossref_primary_10_1016_j_cirp_2024_04_014
crossref_primary_10_1016_j_compag_2024_109478
crossref_primary_10_1016_j_fuel_2024_131145
crossref_primary_10_1016_j_cmpb_2022_106906
crossref_primary_10_1371_journal_pone_0304847
crossref_primary_10_1016_j_biosystemseng_2025_104243
crossref_primary_10_3390_app14114654
crossref_primary_10_3390_s25164954
crossref_primary_10_3389_fendo_2023_1224191
crossref_primary_10_1109_ACCESS_2020_2986476
crossref_primary_10_3390_diagnostics14182009
crossref_primary_10_3390_app15063232
crossref_primary_10_1038_s41540_023_00293_6
crossref_primary_10_1007_s00500_023_09417_w
crossref_primary_10_1016_j_nhres_2024_11_004
crossref_primary_10_1038_s41598_025_86593_9
crossref_primary_10_1093_biomethods_bpae080
crossref_primary_10_1111_jdv_20347
crossref_primary_10_4103_wjtcm_wjtcm_104_24
crossref_primary_10_1016_j_jmatprotec_2025_118752
crossref_primary_10_1007_s11547_023_01744_0
crossref_primary_10_1007_s00146_022_01591_z
crossref_primary_10_1016_j_foodcont_2025_111460
crossref_primary_10_1136_bmjopen_2022_063411
crossref_primary_10_1038_s41746_025_01454_z
crossref_primary_10_3390_app13031901
crossref_primary_10_1002_ima_22810
crossref_primary_10_1016_j_bspc_2024_107146
crossref_primary_10_1007_s10489_025_06719_4
crossref_primary_10_1007_s00521_023_08452_w
crossref_primary_10_3389_fcell_2024_1484329
crossref_primary_10_1109_JSEN_2024_3430009
crossref_primary_10_1186_s12880_024_01202_x
crossref_primary_10_4035_jsfwr_60_25
crossref_primary_10_1038_s41598_023_35846_6
crossref_primary_10_3390_app14156461
crossref_primary_10_1109_TIP_2022_3197931
crossref_primary_10_3390_brainsci15060576
crossref_primary_10_1109_ACCESS_2023_3309925
crossref_primary_10_3389_fsufs_2024_1366387
crossref_primary_10_1007_s00530_024_01619_y
crossref_primary_10_1109_JSTARS_2025_3591493
crossref_primary_10_1002_ird3_113
crossref_primary_10_1093_cercor_bhac462
crossref_primary_10_48084_etasr_11372
crossref_primary_10_1093_ced_llad107
crossref_primary_10_3389_fpubh_2022_964385
crossref_primary_10_1007_s11042_025_20743_z
crossref_primary_10_1016_j_compag_2022_107580
crossref_primary_10_1016_j_cageo_2022_105227
crossref_primary_10_1145_3670685
crossref_primary_10_3390_app15094770
crossref_primary_10_1109_TCSVT_2023_3271275
crossref_primary_10_1016_j_actaastro_2025_07_017
crossref_primary_10_1016_j_srs_2024_100189
crossref_primary_10_1109_JBHI_2022_3172705
crossref_primary_10_1016_j_procs_2024_06_390
crossref_primary_10_1186_s43020_025_00177_6
crossref_primary_10_3390_rs14143240
crossref_primary_10_1016_j_optlaseng_2024_108058
crossref_primary_10_1088_1748_0221_19_12_C12005
crossref_primary_10_1088_1361_6560_adc9f8
crossref_primary_10_3390_electronics11213599
crossref_primary_10_3390_biom10111534
crossref_primary_10_3390_s23094409
crossref_primary_10_1148_ryai_220160
crossref_primary_10_1109_TIP_2021_3127851
crossref_primary_10_3390_jtaer20030191
crossref_primary_10_5194_jsss_14_119_2025
crossref_primary_10_1097_IAE_0000000000003884
crossref_primary_10_1259_dmfr_20200513
crossref_primary_10_3390_bioengineering11050484
crossref_primary_10_1038_s41597_024_03944_3
crossref_primary_10_1109_TNNLS_2025_3556019
crossref_primary_10_3389_fnins_2022_695888
crossref_primary_10_1109_TIP_2023_3238642
crossref_primary_10_1016_j_ultrasmedbio_2025_07_024
crossref_primary_10_1007_s11694_025_03351_1
crossref_primary_10_1088_1361_6501_ad78f1
crossref_primary_10_1109_ACCESS_2024_3460788
crossref_primary_10_1007_s10618_022_00823_6
crossref_primary_10_1007_s11045_024_00890_6
crossref_primary_10_1007_s11103_024_01491_4
crossref_primary_10_1016_j_compbiomed_2025_110274
crossref_primary_10_1016_j_saa_2023_122686
crossref_primary_10_1016_j_imavis_2025_105738
crossref_primary_10_1038_s41598_025_95580_z
crossref_primary_10_1002_mp_17774
crossref_primary_10_1016_j_engappai_2025_111590
crossref_primary_10_1016_j_rcim_2022_102393
crossref_primary_10_3389_fpls_2022_910878
crossref_primary_10_1155_2022_4509394
crossref_primary_10_3390_app10051681
crossref_primary_10_1016_j_cja_2025_103647
crossref_primary_10_1017_wsc_2024_63
crossref_primary_10_1038_s42003_024_06371_7
crossref_primary_10_7717_peerj_cs_1400
crossref_primary_10_1186_s12880_025_01844_5
crossref_primary_10_3390_app15147856
crossref_primary_10_3390_app15126931
crossref_primary_10_1007_s00414_025_03558_3
crossref_primary_10_1088_2631_8695_adf59b
crossref_primary_10_1109_TIM_2022_3148739
crossref_primary_10_1016_j_patcog_2024_110336
crossref_primary_10_1016_j_patcog_2025_111942
crossref_primary_10_1016_j_engstruct_2025_120581
crossref_primary_10_3390_s22176595
crossref_primary_10_3390_math13091376
crossref_primary_10_1016_j_csbj_2024_12_033
crossref_primary_10_1038_s41746_024_01226_1
crossref_primary_10_1109_ACCESS_2020_3044858
crossref_primary_10_1016_j_engappai_2024_108078
crossref_primary_10_1007_s10994_024_06672_2
crossref_primary_10_1063_5_0277279
crossref_primary_10_1080_01431161_2025_2491817
crossref_primary_10_1111_aos_16660
crossref_primary_10_3390_math11071694
crossref_primary_10_1002_advs_202405789
crossref_primary_10_1007_s00192_021_05064_7
crossref_primary_10_1109_ACCESS_2024_3397329
crossref_primary_10_1007_s11760_024_03053_z
crossref_primary_10_1016_j_compbiomed_2022_105339
crossref_primary_10_1109_ACCESS_2025_3543759
crossref_primary_10_1109_TFUZZ_2024_3485212
crossref_primary_10_1016_j_engappai_2025_111520
crossref_primary_10_1016_j_neucom_2024_127942
crossref_primary_10_1038_s41422_024_00989_2
crossref_primary_10_3847_1538_4357_adbb66
crossref_primary_10_1186_s13023_021_01979_y
crossref_primary_10_1109_ACCESS_2025_3553548
crossref_primary_10_1007_s00784_022_04724_2
crossref_primary_10_3389_fnagi_2022_871706
crossref_primary_10_1109_TMM_2023_3248170
crossref_primary_10_1016_j_saa_2024_123889
crossref_primary_10_1088_1361_6501_ad1811
crossref_primary_10_1016_j_engappai_2025_110677
crossref_primary_10_1016_j_ipm_2022_103225
crossref_primary_10_1051_epjconf_202429502008
crossref_primary_10_1016_j_neunet_2025_107776
crossref_primary_10_3389_fonc_2025_1539537
crossref_primary_10_1016_j_compag_2022_107534
crossref_primary_10_1016_j_inffus_2020_11_005
crossref_primary_10_1016_j_compag_2021_106367
crossref_primary_10_1093_biomethods_bpae063
crossref_primary_10_1016_j_jbi_2025_104811
crossref_primary_10_1016_j_knosys_2022_109287
crossref_primary_10_1016_j_artmed_2023_102737
crossref_primary_10_1016_j_cmpb_2023_107688
crossref_primary_10_1016_j_autcon_2025_106376
crossref_primary_10_1148_ryai_210315
crossref_primary_10_1016_j_jobe_2024_110678
crossref_primary_10_1080_10589759_2025_2554915
crossref_primary_10_1038_s41598_025_88301_z
crossref_primary_10_1088_1742_6596_1992_4_042024
crossref_primary_10_1016_j_compbiomed_2023_106974
crossref_primary_10_1016_j_nic_2020_06_002
crossref_primary_10_1109_ACCESS_2022_3176965
crossref_primary_10_1016_j_ijleo_2021_167100
crossref_primary_10_1001_jamanetworkopen_2023_15174
crossref_primary_10_1007_s42979_021_00841_z
crossref_primary_10_1016_j_eswa_2025_126383
crossref_primary_10_1016_j_jqsrt_2025_109533
crossref_primary_10_1007_s00521_022_07400_4
crossref_primary_10_1177_14727978241296369
crossref_primary_10_1109_TMC_2024_3381952
crossref_primary_10_3390_agriculture12122046
crossref_primary_10_1016_j_patter_2025_101340
crossref_primary_10_1016_j_euf_2021_07_004
crossref_primary_10_1016_j_dcmed_2025_05_005
crossref_primary_10_1109_ACCESS_2021_3075272
crossref_primary_10_1038_s41598_024_69848_9
crossref_primary_10_1109_TIM_2024_3485394
crossref_primary_10_1016_j_engfailanal_2025_109551
crossref_primary_10_1109_JSEN_2024_3485216
crossref_primary_10_1016_j_epsr_2025_111860
crossref_primary_10_1002_mp_15549
crossref_primary_10_1016_j_buildenv_2025_112814
crossref_primary_10_3390_agriculture13051023
crossref_primary_10_1016_j_compag_2025_110354
crossref_primary_10_1016_j_engappai_2025_111544
crossref_primary_10_1007_s10845_022_02001_3
crossref_primary_10_1371_journal_pdig_0000282
crossref_primary_10_1016_j_jneumeth_2025_110363
crossref_primary_10_3390_medicina61081497
crossref_primary_10_1016_j_eswa_2023_121346
crossref_primary_10_1016_j_ndteint_2025_103487
crossref_primary_10_1016_j_artmed_2022_102453
crossref_primary_10_1109_ACCESS_2025_3557929
crossref_primary_10_1109_JSEN_2025_3581211
crossref_primary_10_1088_1402_4896_ad3e37
crossref_primary_10_1177_14613484251352179
crossref_primary_10_1007_s11432_021_3457_7
crossref_primary_10_1016_j_compbiomed_2025_110222
crossref_primary_10_1145_3631130
crossref_primary_10_3390_rs14184635
crossref_primary_10_1016_j_visres_2021_09_004
crossref_primary_10_1038_s41598_020_79653_9
crossref_primary_10_1109_TII_2022_3222396
crossref_primary_10_1088_1361_6560_ad111d
crossref_primary_10_3390_jmse13020199
crossref_primary_10_1007_s11604_023_01527_7
crossref_primary_10_1016_j_chemolab_2021_104336
crossref_primary_10_1007_s00330_022_08927_9
crossref_primary_10_1016_j_nuclcard_2024_101889
crossref_primary_10_3390_app13095608
crossref_primary_10_1016_j_ultrasmedbio_2023_08_003
crossref_primary_10_1016_j_bspc_2024_106334
crossref_primary_10_1038_s41433_023_02885_2
crossref_primary_10_1002_cem_70067
crossref_primary_10_1007_s10278_023_00838_5
crossref_primary_10_1016_j_neucom_2024_127974
crossref_primary_10_1088_1361_6501_ade271
crossref_primary_10_1007_s10916_025_02245_5
crossref_primary_10_1109_JBHI_2024_3519600
crossref_primary_10_3390_app10155040
crossref_primary_10_1007_s10462_025_11159_0
crossref_primary_10_1186_s13023_022_02304_x
crossref_primary_10_1111_tops_12737
crossref_primary_10_3389_fphys_2025_1558001
crossref_primary_10_1109_TGRS_2025_3565579
crossref_primary_10_1016_j_bspc_2023_105197
crossref_primary_10_1001_jamaophthalmol_2020_5900
crossref_primary_10_3390_chemosensors12070140
crossref_primary_10_1038_s41698_024_00632_8
crossref_primary_10_3389_fdgth_2022_929508
crossref_primary_10_32604_cmc_2023_042313
crossref_primary_10_1038_s42003_025_08453_6
crossref_primary_10_3390_info16010053
crossref_primary_10_1007_s00417_021_05427_2
crossref_primary_10_1049_ipr2_12616
crossref_primary_10_1038_s41467_020_17971_2
crossref_primary_10_1016_j_imavis_2024_105384
crossref_primary_10_1016_j_rse_2024_114202
crossref_primary_10_1371_journal_pone_0264219
crossref_primary_10_3389_frai_2020_564878
crossref_primary_10_3390_s25165038
crossref_primary_10_1007_s00330_022_09330_0
crossref_primary_10_1088_1361_6560_ac73d4
crossref_primary_10_1016_j_chemolab_2021_104354
crossref_primary_10_1016_j_engappai_2025_111619
crossref_primary_10_1109_JIOT_2024_3403174
crossref_primary_10_1088_1361_6501_adc3b5
crossref_primary_10_1016_j_bspc_2024_106796
crossref_primary_10_1145_3563691
crossref_primary_10_1001_jamacardio_2025_0498
crossref_primary_10_1016_j_radonc_2024_110368
crossref_primary_10_3390_agriculture13071461
crossref_primary_10_1007_s43684_025_00092_2
crossref_primary_10_1186_s13007_024_01191_6
crossref_primary_10_1007_s10278_025_01653_w
crossref_primary_10_1016_j_neunet_2024_106510
crossref_primary_10_1038_s41598_025_13452_y
crossref_primary_10_1145_3677380
crossref_primary_10_1109_JBHI_2021_3094578
crossref_primary_10_1007_s10916_020_01627_1
crossref_primary_10_3390_app11209556
crossref_primary_10_1016_j_foodcont_2025_111411
crossref_primary_10_1109_JSEN_2021_3062442
crossref_primary_10_1016_j_dsp_2025_105562
crossref_primary_10_1186_s13244_022_01250_3
crossref_primary_10_1155_2023_5146543
crossref_primary_10_1109_TNSRE_2023_3324343
crossref_primary_10_1007_s10489_025_06366_9
crossref_primary_10_1259_bjr_20210539
crossref_primary_10_1016_j_cageo_2021_104922
crossref_primary_10_1109_ACCESS_2025_3562908
crossref_primary_10_1109_ACCESS_2023_3343465
crossref_primary_10_1007_s10994_024_06602_2
crossref_primary_10_32604_cmc_2023_044994
crossref_primary_10_1002_cai2_136
crossref_primary_10_1016_j_asr_2024_07_038
crossref_primary_10_1007_s10489_022_03351_4
crossref_primary_10_3390_app11104573
crossref_primary_10_1038_s41467_020_15027_z
crossref_primary_10_1016_j_siny_2024_101561
crossref_primary_10_1055_s_0045_1805184
crossref_primary_10_1016_j_patrec_2021_10_027
crossref_primary_10_1177_20552076241269536
crossref_primary_10_3390_app11199313
crossref_primary_10_1109_ACCESS_2023_3329581
crossref_primary_10_1016_j_asoc_2025_113472
crossref_primary_10_1002_srin_202200284
crossref_primary_10_1186_s12880_023_01023_4
crossref_primary_10_3390_agriculture14101710
crossref_primary_10_1007_s40747_025_01855_3
crossref_primary_10_1093_bib_bbaf373
crossref_primary_10_3390_rs14133087
crossref_primary_10_1063_5_0260424
crossref_primary_10_1109_JSEN_2025_3530076
crossref_primary_10_3389_frai_2023_1278118
crossref_primary_10_1103_PhysRevResearch_3_033278
crossref_primary_10_1109_TIFS_2024_3441945
crossref_primary_10_1111_jon_13043
crossref_primary_10_1038_s41598_022_11990_3
crossref_primary_10_1016_j_neo_2023_100889
crossref_primary_10_3390_f13010001
crossref_primary_10_1109_JBHI_2021_3119519
crossref_primary_10_1007_s10845_023_02207_z
crossref_primary_10_5194_we_24_81_2024
crossref_primary_10_1016_j_patter_2025_101286
crossref_primary_10_1186_s12859_021_04471_3
crossref_primary_10_1016_j_radi_2023_09_012
crossref_primary_10_48084_etasr_10888
crossref_primary_10_3390_app15137605
crossref_primary_10_1186_s13014_024_02519_1
crossref_primary_10_1108_IJICC_08_2024_0383
crossref_primary_10_1002_smll_202411833
crossref_primary_10_1007_s11831_023_09987_w
crossref_primary_10_1002_ceat_202200356
crossref_primary_10_3390_jcm13247499
crossref_primary_10_1016_j_isprsjprs_2025_02_020
crossref_primary_10_1016_j_ajo_2025_04_006
crossref_primary_10_1039_D4AY02221A
crossref_primary_10_1371_journal_pdig_0000784
crossref_primary_10_1109_LGRS_2023_3271649
crossref_primary_10_1186_s13550_021_00751_4
crossref_primary_10_1007_s42979_024_03351_w
crossref_primary_10_1111_jop_13227
crossref_primary_10_1038_s41598_022_05169_z
crossref_primary_10_1038_s41746_023_00880_1
crossref_primary_10_3390_info16070570
crossref_primary_10_1016_j_eswa_2024_124645
crossref_primary_10_1016_j_jtice_2023_105318
crossref_primary_10_1117_1_JMI_9_4_044501
crossref_primary_10_1007_s11604_021_01106_8
crossref_primary_10_3389_fimmu_2023_1214425
crossref_primary_10_1371_journal_pone_0316919
crossref_primary_10_3390_rs17040705
crossref_primary_10_1109_ACCESS_2020_3003810
crossref_primary_10_1007_s00500_024_09778_w
crossref_primary_10_1016_j_ins_2024_120383
crossref_primary_10_1021_acssensors_4c02272
crossref_primary_10_1186_s12880_025_01684_3
crossref_primary_10_1016_j_compmedimag_2021_101926
crossref_primary_10_3390_app12031353
crossref_primary_10_1016_j_engappai_2025_110727
crossref_primary_10_1016_j_neucom_2025_131325
crossref_primary_10_1177_17298806251326420
crossref_primary_10_1002_jbio_202100274
crossref_primary_10_1177_00220345241235606
crossref_primary_10_36548_jscp_2025_2_004
crossref_primary_10_1016_S1872_2067_23_64467_5
crossref_primary_10_3389_fonc_2022_905955
crossref_primary_10_3847_1538_4357_ac4399
crossref_primary_10_3390_math12060806
crossref_primary_10_1259_bjr_20220778
crossref_primary_10_1109_TAI_2025_3526137
crossref_primary_10_7566_JPSJ_94_031007
crossref_primary_10_3389_ffgc_2023_1136969
crossref_primary_10_1109_TGRS_2023_3236500
crossref_primary_10_1109_TMM_2022_3167805
crossref_primary_10_1007_s10586_025_05344_7
crossref_primary_10_1080_08839514_2025_2514324
crossref_primary_10_1007_s10462_025_11194_x
crossref_primary_10_1038_s43856_025_00732_x
crossref_primary_10_1016_j_optlastec_2025_113690
crossref_primary_10_1109_TIP_2021_3089943
crossref_primary_10_1016_j_ijar_2024_109206
crossref_primary_10_3390_machines11010099
crossref_primary_10_3390_s25092738
crossref_primary_10_1002_advs_202503059
crossref_primary_10_1016_j_eswa_2024_124659
crossref_primary_10_1109_ACCESS_2021_3110200
crossref_primary_10_1073_pnas_2202713119
crossref_primary_10_3390_diagnostics14212346
crossref_primary_10_3389_fonc_2021_709137
crossref_primary_10_1016_j_foodchem_2023_138082
crossref_primary_10_1186_s12859_021_04293_3
crossref_primary_10_1007_s00415_024_12810_6
crossref_primary_10_1109_TGRS_2021_3113655
crossref_primary_10_1007_s00521_024_10401_0
crossref_primary_10_1007_s10489_024_05640_6
crossref_primary_10_1017_exp_2022_3
crossref_primary_10_1515_itit_2022_0004
crossref_primary_10_3233_THC_236007
crossref_primary_10_1002_art_42650
crossref_primary_10_1016_j_patcog_2022_108753
crossref_primary_10_3233_JAD_230705
crossref_primary_10_1061_AJRUA6_RUENG_1575
crossref_primary_10_1109_ACCESS_2020_2980742
crossref_primary_10_1111_mice_12578
crossref_primary_10_1016_j_meddos_2025_07_006
crossref_primary_10_1007_s00138_024_01512_8
crossref_primary_10_1007_s40815_022_01392_y
crossref_primary_10_1109_JIOT_2021_3051080
crossref_primary_10_1016_j_knosys_2025_113711
crossref_primary_10_1016_j_neuri_2022_100069
crossref_primary_10_1007_s10462_022_10223_3
crossref_primary_10_1038_s41598_025_94876_4
crossref_primary_10_1186_s13244_024_01639_2
crossref_primary_10_1186_s42400_024_00330_9
crossref_primary_10_32604_cmc_2023_041419
crossref_primary_10_1083_jcb_202311073
crossref_primary_10_1016_j_patcog_2023_109991
crossref_primary_10_3390_biology11010033
crossref_primary_10_3390_s24248043
crossref_primary_10_1016_j_ajpath_2025_06_006
crossref_primary_10_1038_s41598_022_10150_x
crossref_primary_10_1039_D5FB00118H
crossref_primary_10_1109_TIM_2025_3603655
crossref_primary_10_3390_rs15123065
crossref_primary_10_1016_j_sciaf_2023_e01649
crossref_primary_10_1016_j_measurement_2024_114717
crossref_primary_10_1016_j_compeleceng_2022_108314
crossref_primary_10_1016_j_ijmedinf_2023_105007
crossref_primary_10_1061_JAEIED_AEENG_1635
crossref_primary_10_1115_1_4065276
crossref_primary_10_1007_s00530_025_01820_7
crossref_primary_10_1016_j_clon_2021_12_002
crossref_primary_10_1109_ACCESS_2024_3423701
crossref_primary_10_1155_2021_6637936
crossref_primary_10_1016_j_jclepro_2022_130943
crossref_primary_10_1093_mnras_stab1677
crossref_primary_10_1109_ACCESS_2022_3146334
crossref_primary_10_3390_diagnostics12010069
crossref_primary_10_3390_s21217352
crossref_primary_10_3390_reports5020020
crossref_primary_10_3389_fendo_2025_1634875
crossref_primary_10_1016_j_bdr_2024_100451
crossref_primary_10_1088_1555_6611_acf709
crossref_primary_10_1016_j_knosys_2021_107568
crossref_primary_10_3390_bioengineering12070728
crossref_primary_10_1080_17452759_2025_2523550
crossref_primary_10_1016_j_ocemod_2025_102622
crossref_primary_10_1063_5_0156044
crossref_primary_10_1007_s10278_025_01394_w
crossref_primary_10_3389_fcell_2023_1197239
crossref_primary_10_1016_j_asoc_2024_112258
crossref_primary_10_3389_fonc_2022_890659
crossref_primary_10_1109_TGRS_2022_3208333
crossref_primary_10_1155_2022_9483834
crossref_primary_10_1016_j_compbiomed_2023_107005
crossref_primary_10_1109_JBHI_2023_3271858
crossref_primary_10_1109_ACCESS_2025_3569575
crossref_primary_10_1007_s00330_020_07024_z
crossref_primary_10_1016_j_displa_2022_102339
crossref_primary_10_1364_AO_423333
crossref_primary_10_1016_j_ajpath_2024_12_018
crossref_primary_10_1038_s41598_025_11985_w
crossref_primary_10_1038_s41598_025_95002_0
crossref_primary_10_3390_life13091870
crossref_primary_10_1109_ACCESS_2022_3207765
crossref_primary_10_1016_j_currproblcancer_2024_101150
crossref_primary_10_3390_rs14184669
crossref_primary_10_1016_j_ultrasmedbio_2022_12_016
crossref_primary_10_1038_s41467_021_25503_9
crossref_primary_10_1136_bjo_2022_321833
crossref_primary_10_1080_19475705_2025_2502593
crossref_primary_10_3390_informatics9010006
crossref_primary_10_1016_j_isci_2024_111131
crossref_primary_10_1109_LGRS_2022_3228967
crossref_primary_10_1186_s12938_023_01193_w
crossref_primary_10_3389_frai_2022_903875
crossref_primary_10_1016_j_joca_2020_12_018
crossref_primary_10_1038_s41598_024_80675_w
crossref_primary_10_1002_aisy_202200352
crossref_primary_10_1038_s41467_021_21896_9
crossref_primary_10_1080_10298436_2023_2295906
crossref_primary_10_3390_bioengineering10080971
crossref_primary_10_1016_j_foodchem_2024_139078
crossref_primary_10_3390_electronics12194019
crossref_primary_10_1007_s42461_024_01169_x
crossref_primary_10_1016_j_psep_2025_107402
crossref_primary_10_1186_s40538_024_00681_y
crossref_primary_10_1109_TMM_2022_3233307
crossref_primary_10_3390_ani13101713
crossref_primary_10_1016_j_patrec_2025_04_035
crossref_primary_10_1038_s41598_023_45368_w
crossref_primary_10_32604_cmes_2021_017679
crossref_primary_10_3390_app132011273
crossref_primary_10_34133_plantphenomics_0125
crossref_primary_10_3390_bioengineering10080978
crossref_primary_10_1016_j_ijhydene_2024_04_283
crossref_primary_10_2183_pjab_101_023
crossref_primary_10_3390_jmse11030625
crossref_primary_10_1145_3583690
crossref_primary_10_1109_ACCESS_2021_3056088
crossref_primary_10_1016_j_array_2025_100442
crossref_primary_10_1016_j_infrared_2025_105777
crossref_primary_10_1016_j_compbiomed_2024_108643
crossref_primary_10_1002_hbm_26581
crossref_primary_10_1007_s11926_023_01114_9
crossref_primary_10_1109_JBHI_2023_3331944
crossref_primary_10_1007_s12021_024_09694_2
crossref_primary_10_1093_neuonc_noac280
crossref_primary_10_17780_ksujes_1614945
crossref_primary_10_1109_TMI_2022_3142048
crossref_primary_10_1007_s00414_020_02489_5
crossref_primary_10_3389_fnins_2023_1269100
crossref_primary_10_1021_acs_jpclett_4c03650
crossref_primary_10_1016_j_ecoinf_2021_101253
crossref_primary_10_1186_s40537_025_01265_9
crossref_primary_10_1017_S0263574725102038
crossref_primary_10_1007_s10499_024_01737_4
crossref_primary_10_3390_app14010008
crossref_primary_10_1007_s00234_024_03298_y
crossref_primary_10_3390_agriculture15141530
crossref_primary_10_1111_iej_14273
crossref_primary_10_1016_j_cviu_2023_103663
crossref_primary_10_1016_j_neuroimage_2025_121077
crossref_primary_10_3389_fonc_2021_802205
crossref_primary_10_1109_JSTARS_2022_3206901
crossref_primary_10_3390_app15116302
crossref_primary_10_3390_cancers17101620
crossref_primary_10_3390_jmse12101839
crossref_primary_10_1002_advs_202204723
crossref_primary_10_2196_74402
crossref_primary_10_1109_TIM_2023_3282664
crossref_primary_10_1186_s12859_022_04762_3
crossref_primary_10_1007_s10384_025_01205_3
crossref_primary_10_1002_int_22458
crossref_primary_10_1016_j_chemosphere_2021_132324
crossref_primary_10_3389_fphy_2022_1007861
crossref_primary_10_1016_j_displa_2021_102008
crossref_primary_10_1109_JSTARS_2024_3447356
crossref_primary_10_1145_3737445
crossref_primary_10_1016_j_jfca_2024_106144
crossref_primary_10_1016_j_compag_2024_109868
crossref_primary_10_1080_0144929X_2024_2431055
crossref_primary_10_3390_s20174852
crossref_primary_10_1016_j_engappai_2023_106368
crossref_primary_10_1016_j_ebiom_2021_103522
crossref_primary_10_1161_CIRCULATIONAHA_124_069047
crossref_primary_10_1088_2057_1976_ad7bc0
crossref_primary_10_3390_rs15041151
crossref_primary_10_1088_1475_7516_2023_11_075
crossref_primary_10_1007_s00330_025_11980_9
crossref_primary_10_1520_SSMS20230035
crossref_primary_10_1002_path_6373
crossref_primary_10_3390_agronomy14122796
crossref_primary_10_1186_s12886_023_03079_w
crossref_primary_10_1016_j_engappai_2024_107982
crossref_primary_10_1109_JSTARS_2024_3378348
crossref_primary_10_1155_2022_4316507
crossref_primary_10_3390_jmse11020320
crossref_primary_10_1016_j_microc_2025_113256
crossref_primary_10_1007_s42452_024_06070_2
crossref_primary_10_1038_s41524_023_01172_8
crossref_primary_10_1007_s13349_025_00908_y
crossref_primary_10_1109_JSTARS_2024_3403882
crossref_primary_10_1148_ryai_2021200165
crossref_primary_10_59681_2175_4411_v16_iEspecial_2024_1302
crossref_primary_10_3390_electronics13234645
crossref_primary_10_1007_s11263_025_02548_7
crossref_primary_10_1016_j_compbiomed_2024_109520
crossref_primary_10_1080_19392699_2025_2453058
crossref_primary_10_1007_s10044_025_01429_6
crossref_primary_10_1016_j_procs_2025_07_170
crossref_primary_10_1080_10447318_2025_2539458
crossref_primary_10_1016_j_compbiomed_2022_105812
crossref_primary_10_1016_j_ecoinf_2025_103338
crossref_primary_10_3389_fonc_2025_1601929
crossref_primary_10_1007_s11760_025_04394_z
crossref_primary_10_1186_s40537_025_01293_5
crossref_primary_10_1016_j_knosys_2025_113885
crossref_primary_10_1109_TIFS_2024_3361216
crossref_primary_10_1186_s12957_025_03819_w
crossref_primary_10_1002_jmri_29245
crossref_primary_10_1016_j_istruc_2024_106276
crossref_primary_10_3390_drones8040140
crossref_primary_10_1016_j_artmed_2021_102059
crossref_primary_10_1038_s44172_023_00105_z
crossref_primary_10_1038_s42256_021_00399_8
crossref_primary_10_3390_jmmp7010017
crossref_primary_10_1109_LGRS_2020_3018186
crossref_primary_10_1016_j_compmedimag_2024_102371
crossref_primary_10_1038_s41598_021_96031_1
crossref_primary_10_1145_3763230
crossref_primary_10_2196_58776
crossref_primary_10_1038_s41598_022_14440_2
crossref_primary_10_1016_j_compbiomed_2024_109535
crossref_primary_10_1186_s13007_024_01188_1
crossref_primary_10_1109_ACCESS_2025_3565638
crossref_primary_10_1016_j_engappai_2023_107679
crossref_primary_10_1109_ACCESS_2024_3460830
crossref_primary_10_1016_j_scitotenv_2022_158496
crossref_primary_10_3390_mi12121504
crossref_primary_10_3390_agronomy12081846
crossref_primary_10_1007_s00202_023_01808_4
crossref_primary_10_1080_01431161_2023_2285739
crossref_primary_10_1016_j_bonr_2022_101632
crossref_primary_10_1109_TMI_2023_3312988
crossref_primary_10_1007_s11042_024_20414_5
crossref_primary_10_1016_j_jelectrocard_2024_03_005
crossref_primary_10_1016_j_eswa_2025_128814
crossref_primary_10_1016_j_aca_2022_340772
crossref_primary_10_1016_j_epsr_2023_109701
crossref_primary_10_1109_JSEN_2023_3246133
crossref_primary_10_3390_jpm12020143
crossref_primary_10_1016_j_knosys_2022_108427
crossref_primary_10_1371_journal_pone_0269016
crossref_primary_10_1371_journal_pone_0306703
crossref_primary_10_1088_2631_8695_adcd3c
crossref_primary_10_1111_pbi_70208
crossref_primary_10_1016_j_radonc_2020_09_014
crossref_primary_10_26508_lsa_202503319
crossref_primary_10_1111_myc_13540
crossref_primary_10_3390_s20174898
crossref_primary_10_1109_TGRS_2024_3477749
crossref_primary_10_3390_rs17111856
crossref_primary_10_1155_2021_5853128
crossref_primary_10_1109_ACCESS_2024_3471948
crossref_primary_10_3390_ani14050755
crossref_primary_10_1155_2022_8447453
crossref_primary_10_23919_AISE_2005_000007
crossref_primary_10_1145_3623399
crossref_primary_10_1515_itit_2025_0007
crossref_primary_10_1093_plphys_kiaf132
crossref_primary_10_1109_ACCESS_2020_2989898
crossref_primary_10_1038_s41598_025_05568_y
crossref_primary_10_1109_TIP_2022_3227503
crossref_primary_10_3389_fninf_2022_872035
crossref_primary_10_1016_j_ejmp_2021_02_006
crossref_primary_10_1109_TAI_2022_3227142
crossref_primary_10_3390_s21030891
crossref_primary_10_1016_j_jdent_2023_104701
crossref_primary_10_3390_a17060238
crossref_primary_10_1002_acm2_14547
crossref_primary_10_1109_ACCESS_2024_3505608
crossref_primary_10_1016_j_scs_2025_106671
crossref_primary_10_1093_bib_bbab569
crossref_primary_10_1103_PhysRevResearch_6_033279
crossref_primary_10_1109_ACCESS_2021_3110239
crossref_primary_10_3390_agronomy14091934
crossref_primary_10_1016_j_ajo_2021_02_004
crossref_primary_10_3389_frwa_2022_934709
crossref_primary_10_1016_j_neubiorev_2025_106201
crossref_primary_10_1016_j_asoc_2022_109656
crossref_primary_10_1109_JBHI_2023_3337661
crossref_primary_10_1007_s13246_023_01262_3
crossref_primary_10_1364_OME_558459
crossref_primary_10_1016_j_bspc_2025_108020
crossref_primary_10_3390_electronics14030442
crossref_primary_10_1109_TITS_2025_3547879
crossref_primary_10_3390_electronics12143066
crossref_primary_10_2196_72649
crossref_primary_10_1016_j_compbiomed_2025_111063
crossref_primary_10_1109_JSTARS_2022_3188493
crossref_primary_10_1007_s13534_025_00495_3
crossref_primary_10_3390_a17060227
crossref_primary_10_3390_diseases10030056
crossref_primary_10_1016_j_compbiomed_2022_105852
crossref_primary_10_3389_fcomp_2025_1576958
crossref_primary_10_3390_s25154820
crossref_primary_10_1007_s10489_021_02628_4
crossref_primary_10_1016_j_cmpb_2025_108830
crossref_primary_10_1007_s10618_023_00915_x
crossref_primary_10_1007_s11548_023_02989_w
crossref_primary_10_1016_j_eswa_2023_121644
crossref_primary_10_1136_jnnp_2022_330230
crossref_primary_10_3390_ani13132078
crossref_primary_10_1155_2021_6652897
crossref_primary_10_1002_aisy_202400986
crossref_primary_10_1016_j_powtec_2020_08_088
crossref_primary_10_1259_bjr_20220835
crossref_primary_10_3389_fcell_2024_1447067
crossref_primary_10_3389_fonc_2022_950185
crossref_primary_10_1016_j_inffus_2021_11_008
crossref_primary_10_1016_j_medengphy_2024_104117
crossref_primary_10_1097_RLI_0000000000001114
crossref_primary_10_1109_JSEN_2025_3552768
crossref_primary_10_1148_radiol_232635
crossref_primary_10_3390_diagnostics11091554
crossref_primary_10_3390_jpm11111213
crossref_primary_10_1016_j_foodchem_2023_136309
crossref_primary_10_1109_JBHI_2023_3311021
crossref_primary_10_1038_s41545_024_00367_w
crossref_primary_10_3390_biology11121727
crossref_primary_10_1016_j_autcon_2024_105369
crossref_primary_10_1177_23969873231183206
crossref_primary_10_1080_17517575_2022_2098537
crossref_primary_10_1111_mice_13224
crossref_primary_10_1038_s41598_022_05727_5
crossref_primary_10_1186_s40644_023_00524_3
crossref_primary_10_1016_j_pnucene_2025_105605
crossref_primary_10_1186_s13244_024_01610_1
crossref_primary_10_1016_j_measurement_2025_118176
crossref_primary_10_1016_j_measurement_2025_119025
crossref_primary_10_1080_00405000_2024_2392893
crossref_primary_10_1016_j_inffus_2024_102800
crossref_primary_10_1038_s41598_024_54251_1
crossref_primary_10_1016_j_conbuildmat_2025_142779
crossref_primary_10_1371_journal_pone_0260622
crossref_primary_10_1016_j_engappai_2025_112348
crossref_primary_10_1016_j_jmb_2023_168045
crossref_primary_10_1016_j_medengphy_2025_104405
crossref_primary_10_3390_diagnostics11091562
crossref_primary_10_4103_tjo_tjo_8_22
crossref_primary_10_1038_s41598_023_47866_3
crossref_primary_10_1088_1741_2552_ac64c4
crossref_primary_10_1109_ACCESS_2023_3274851
crossref_primary_10_1007_s13218_024_00835_y
crossref_primary_10_5194_amt_15_1829_2022
crossref_primary_10_1016_j_bspc_2023_105646
crossref_primary_10_1016_j_asoc_2021_107184
crossref_primary_10_1016_j_ijmedinf_2024_105341
crossref_primary_10_1093_gji_ggaf303
crossref_primary_10_3390_agronomy14020333
crossref_primary_10_1007_s10489_024_05509_8
crossref_primary_10_3389_fcell_2021_765654
crossref_primary_10_1016_j_inffus_2024_102814
crossref_primary_10_1109_TGRS_2023_3264232
crossref_primary_10_3390_app132112032
crossref_primary_10_1109_TIP_2020_2983560
crossref_primary_10_1109_ACCESS_2023_3305455
crossref_primary_10_3390_agronomy15051088
crossref_primary_10_1016_j_knosys_2022_109386
crossref_primary_10_1016_j_foodcont_2025_111581
crossref_primary_10_1016_j_jag_2025_104571
crossref_primary_10_1542_peds_2020_034546
crossref_primary_10_3390_electronics12143039
crossref_primary_10_1177_02783649251351658
crossref_primary_10_3390_met11040549
crossref_primary_10_3390_a16090435
crossref_primary_10_1167_tvst_14_8_38
crossref_primary_10_3390_min11121354
crossref_primary_10_3390_s23135811
crossref_primary_10_3390_diagnostics12123216
crossref_primary_10_1016_S1470_2045_20_30535_0
crossref_primary_10_1007_s10994_022_06261_1
crossref_primary_10_3390_rs14205250
crossref_primary_10_1016_j_ejrad_2022_110527
crossref_primary_10_3847_1538_3881_ace0ff
crossref_primary_10_1007_s40194_025_01952_4
crossref_primary_10_3390_app15094652
crossref_primary_10_1016_j_ecolmodel_2021_109555
crossref_primary_10_1103_PhysRevResearch_4_033094
crossref_primary_10_1016_j_ijleo_2022_169986
crossref_primary_10_1016_j_labinv_2023_100225
crossref_primary_10_1002_mp_15208
crossref_primary_10_1007_s11063_023_11180_w
crossref_primary_10_1016_j_neunet_2025_107857
crossref_primary_10_1016_j_csbj_2025_04_002
crossref_primary_10_1016_j_arr_2023_102144
crossref_primary_10_1002_JPER_21_0492
crossref_primary_10_3390_ai2030020
crossref_primary_10_1109_TGRS_2023_3264653
crossref_primary_10_1016_j_eswa_2024_125067
crossref_primary_10_1145_3421725
crossref_primary_10_1016_j_is_2023_102317
crossref_primary_10_1016_j_asmr_2024_100940
crossref_primary_10_1109_TASLP_2024_3463491
crossref_primary_10_1038_s41598_025_85372_w
crossref_primary_10_1016_j_bspc_2024_106399
crossref_primary_10_1117_1_JBO_30_5_055001
crossref_primary_10_1016_j_bspc_2024_107248
crossref_primary_10_1016_j_eswa_2023_122507
crossref_primary_10_3788_LOP242530
crossref_primary_10_1007_s00530_025_01685_w
crossref_primary_10_1007_s41062_024_01627_x
crossref_primary_10_3390_app11167541
crossref_primary_10_3390_diagnostics13101793
crossref_primary_10_1088_1748_0221_19_05_P05050
crossref_primary_10_1109_ACCESS_2022_3208115
crossref_primary_10_1016_j_ibneur_2022_10_014
crossref_primary_10_3390_brainsci15080886
crossref_primary_10_1038_s41746_025_01693_0
crossref_primary_10_1109_JSEN_2024_3441237
crossref_primary_10_1051_0004_6361_202449929
crossref_primary_10_14358_PERS_24_00060R2
crossref_primary_10_1016_j_bbe_2022_02_009
crossref_primary_10_1088_2631_8695_adc8ff
crossref_primary_10_1016_j_patcog_2024_110485
crossref_primary_10_1055_s_0043_1776428
crossref_primary_10_1038_s41598_024_67879_w
crossref_primary_10_1038_s42256_023_00634_4
crossref_primary_10_1371_journal_pone_0293967
crossref_primary_10_3389_fonc_2020_598721
crossref_primary_10_1016_j_solener_2025_113672
crossref_primary_10_1183_16000617_0055_2023
crossref_primary_10_12677_acm_2025_1572158
crossref_primary_10_1001_jamaoncol_2024_5356
crossref_primary_10_1016_j_engappai_2025_110131
crossref_primary_10_1016_j_talanta_2025_128006
crossref_primary_10_1007_s11042_022_12373_6
crossref_primary_10_3390_e24030313
crossref_primary_10_1109_TIE_2021_3094452
crossref_primary_10_1177_1468087420974148
crossref_primary_10_1016_j_eswa_2023_120330
crossref_primary_10_1038_s44304_024_00047_2
crossref_primary_10_1080_00207543_2025_2513574
crossref_primary_10_12688_wellcomeopenres_17164_2
crossref_primary_10_1259_bjr_20211066
crossref_primary_10_3389_fmed_2022_1036974
crossref_primary_10_1088_1741_2552_addd4a
crossref_primary_10_2514_1_I011514
crossref_primary_10_1016_j_neucom_2024_127806
crossref_primary_10_1016_j_compind_2021_103585
crossref_primary_10_1007_s10489_023_04656_8
crossref_primary_10_1016_j_clinph_2021_09_018
crossref_primary_10_1016_j_bspc_2025_108436
crossref_primary_10_1016_j_media_2025_103663
crossref_primary_10_2196_24973
crossref_primary_10_3389_fnins_2021_630747
crossref_primary_10_1007_s42803_023_00070_1
crossref_primary_10_1016_j_dld_2023_07_005
crossref_primary_10_1016_j_ecoinf_2023_102288
crossref_primary_10_3389_fpls_2022_758818
crossref_primary_10_1088_1361_6501_ac6d48
crossref_primary_10_1186_s42234_022_00103_0
crossref_primary_10_1038_s41598_024_76807_x
crossref_primary_10_1016_j_xops_2025_100847
crossref_primary_10_1109_JSTARS_2024_3465231
crossref_primary_10_3390_jcm13030807
crossref_primary_10_1109_ACCESS_2023_3325034
crossref_primary_10_3390_diagnostics12102333
crossref_primary_10_1016_j_artmed_2024_102946
crossref_primary_10_3390_app14188122
crossref_primary_10_3390_s22093494
crossref_primary_10_1016_j_cmpb_2022_107058
crossref_primary_10_1109_TIM_2023_3334350
crossref_primary_10_1177_00220345251316514
crossref_primary_10_1183_20734735_0056_2024
crossref_primary_10_1007_s10585_023_10235_5
crossref_primary_10_1109_TCSVT_2021_3133859
crossref_primary_10_1007_s10618_023_00933_9
crossref_primary_10_1148_ryai_210221
crossref_primary_10_1007_s41324_023_00535_z
crossref_primary_10_3389_fmed_2025_1584378
crossref_primary_10_1007_s11431_021_1848_7
crossref_primary_10_1016_j_bspc_2022_103549
crossref_primary_10_1148_ryai_230296
crossref_primary_10_1016_j_aap_2024_107636
crossref_primary_10_1177_00220345221089858
crossref_primary_10_3390_electronics14101965
crossref_primary_10_1016_j_jestch_2024_101940
crossref_primary_10_3390_app13158747
crossref_primary_10_1515_hf_2020_0079
crossref_primary_10_1038_s41598_022_18535_8
crossref_primary_10_1016_j_compag_2021_106483
crossref_primary_10_1016_j_jhepr_2025_101592
crossref_primary_10_1177_17531934221127092
crossref_primary_10_1016_j_artint_2023_103897
crossref_primary_10_17586_2226_1494_2025_25_4_694_702
crossref_primary_10_1007_s11263_024_02282_6
crossref_primary_10_1016_j_displa_2023_102397
crossref_primary_10_3390_agronomy12071638
crossref_primary_10_1186_s12943_024_02189_3
crossref_primary_10_1177_20584601241288509
crossref_primary_10_1186_s40494_021_00562_9
crossref_primary_10_1097_OI9_0000000000000283
crossref_primary_10_1016_j_jneumeth_2021_109421
crossref_primary_10_1097_IAE_0000000000003714
crossref_primary_10_1007_s10044_024_01404_7
crossref_primary_10_1007_s40747_024_01610_0
crossref_primary_10_1016_j_etran_2023_100281
crossref_primary_10_1155_2021_6695518
crossref_primary_10_3390_app14177462
crossref_primary_10_3390_app13095472
crossref_primary_10_1001_jamaophthalmol_2025_1513
crossref_primary_10_1007_s00521_022_07280_8
crossref_primary_10_1007_s42979_022_01032_0
crossref_primary_10_1016_j_inffus_2025_103136
crossref_primary_10_1016_j_compositesa_2024_108512
crossref_primary_10_1038_s41598_025_95853_7
crossref_primary_10_1097_RLU_0000000000005898
crossref_primary_10_1021_acs_jcim_5c00366
crossref_primary_10_1108_IJWIS_10_2023_0192
crossref_primary_10_1016_j_patcog_2023_110146
crossref_primary_10_1021_acs_jcim_5c01693
crossref_primary_10_3390_s22093471
crossref_primary_10_1007_s13246_020_00934_8
crossref_primary_10_3390_agriculture14122244
crossref_primary_10_1038_s41467_023_40890_x
crossref_primary_10_1016_j_neucom_2024_127837
crossref_primary_10_1016_j_wneu_2024_01_076
crossref_primary_10_1016_j_acags_2025_100257
crossref_primary_10_1109_JSTARS_2025_3556096
crossref_primary_10_1007_s00330_025_11682_2
crossref_primary_10_1038_s44271_024_00119_z
crossref_primary_10_1038_s41598_025_87953_1
crossref_primary_10_1038_s41598_025_98434_w
crossref_primary_10_1038_s41467_022_35704_5
crossref_primary_10_1016_j_artmed_2022_102332
crossref_primary_10_1016_j_neunet_2023_09_028
crossref_primary_10_1007_s11063_024_11682_1
crossref_primary_10_1021_jacs_3c07513
crossref_primary_10_1097_ICO_0000000000002830
crossref_primary_10_1016_j_bas_2023_102738
crossref_primary_10_1109_TIP_2023_3277389
crossref_primary_10_1109_JSTARS_2024_3387744
crossref_primary_10_3390_diagnostics13091594
crossref_primary_10_1109_TIM_2025_3551952
crossref_primary_10_3390_ijerph182010798
crossref_primary_10_1016_j_chbah_2023_100021
crossref_primary_10_1049_cit2_12074
crossref_primary_10_1016_j_acra_2025_05_031
crossref_primary_10_1016_j_ijcard_2025_133203
crossref_primary_10_1016_j_ijleo_2021_167441
crossref_primary_10_1002_ima_70178
crossref_primary_10_1038_s43856_022_00166_9
crossref_primary_10_1016_j_apacoust_2022_108965
crossref_primary_10_1109_JRFID_2022_3209237
crossref_primary_10_3390_biomedicines10050941
crossref_primary_10_3390_s22155868
crossref_primary_10_1007_s11053_023_10298_x
crossref_primary_10_1038_s41598_022_08571_9
crossref_primary_10_1051_0004_6361_202142952
crossref_primary_10_1186_s40537_022_00650_y
crossref_primary_10_1109_ACCESS_2021_3139129
crossref_primary_10_1109_JBHI_2023_3306460
crossref_primary_10_1109_ACCESS_2024_3514197
crossref_primary_10_1148_radiol_222441
crossref_primary_10_1038_s42256_021_00338_7
crossref_primary_10_1016_j_radonc_2025_110995
crossref_primary_10_1029_2021GL094407
crossref_primary_10_1007_s10462_023_10692_0
crossref_primary_10_1007_s11263_025_02552_x
crossref_primary_10_3389_fpls_2022_1023515
crossref_primary_10_1016_j_engappai_2025_110633
crossref_primary_10_1007_s10845_023_02302_1
crossref_primary_10_1109_ACCESS_2022_3187185
crossref_primary_10_3390_biom11060815
crossref_primary_10_1016_j_eswa_2023_122494
crossref_primary_10_1038_s44325_025_00064_8
crossref_primary_10_1016_j_cmpb_2023_107804
crossref_primary_10_1007_s11042_023_17483_3
crossref_primary_10_3390_s21134486
crossref_primary_10_1016_j_acra_2025_05_001
crossref_primary_10_1080_15230406_2023_2172081
crossref_primary_10_3390_ani14152189
crossref_primary_10_1016_j_engappai_2023_105936
crossref_primary_10_1016_j_compag_2022_107171
crossref_primary_10_1109_TMM_2023_3349075
crossref_primary_10_1007_s00371_025_04117_y
crossref_primary_10_1002_ps_7959
crossref_primary_10_1007_s12204_021_2393_2
crossref_primary_10_1016_j_eswa_2023_120288
crossref_primary_10_3389_fdgth_2021_637944
crossref_primary_10_1016_j_eswa_2025_128364
crossref_primary_10_3390_math10193592
crossref_primary_10_1016_j_energy_2024_133774
crossref_primary_10_1038_s41598_025_09833_y
crossref_primary_10_1109_TNNLS_2024_3511575
crossref_primary_10_1145_3746229
crossref_primary_10_3390_diagnostics15182300
crossref_primary_10_1007_s11042_024_18106_1
crossref_primary_10_1016_j_jksuci_2020_11_029
crossref_primary_10_1016_j_tust_2023_105107
crossref_primary_10_1016_j_compag_2022_107163
crossref_primary_10_1109_TITS_2025_3535498
crossref_primary_10_1109_TMI_2023_3283517
crossref_primary_10_1016_j_measurement_2025_118657
crossref_primary_10_1109_ACCESS_2022_3157330
crossref_primary_10_3390_agriculture14122324
crossref_primary_10_1016_j_ejrad_2022_110592
crossref_primary_10_1109_TPAMI_2024_3355461
crossref_primary_10_1016_j_ecoinf_2023_102237
crossref_primary_10_1016_j_ymssp_2024_111948
crossref_primary_10_3847_2041_8213_ad8dd4
crossref_primary_10_1136_bmjophth_2024_001794
crossref_primary_10_1007_s10994_022_06204_w
crossref_primary_10_1016_j_engappai_2024_108046
crossref_primary_10_1109_TPAMI_2024_3396809
crossref_primary_10_1109_JBHI_2021_3060997
crossref_primary_10_1136_jnis_2023_021154
crossref_primary_10_1109_ACCESS_2025_3567488
crossref_primary_10_1016_j_compag_2024_108610
crossref_primary_10_1007_s10032_024_00483_w
crossref_primary_10_1039_D5CC01291K
crossref_primary_10_1371_journal_pntd_0011118
crossref_primary_10_3390_ijerph20021268
crossref_primary_10_1093_jncics_pkaf037
crossref_primary_10_1145_3701762
crossref_primary_10_1038_s41416_022_02092_y
crossref_primary_10_1016_j_cropro_2024_106715
crossref_primary_10_1007_s10278_025_01589_1
crossref_primary_10_1016_j_ijar_2021_06_003
crossref_primary_10_1007_s10845_022_02053_5
crossref_primary_10_3390_rs13091704
crossref_primary_10_3847_1538_4357_ad3b95
crossref_primary_10_1007_s00521_022_07428_6
crossref_primary_10_1109_TCSVT_2025_3558939
crossref_primary_10_1109_TETCI_2024_3444603
crossref_primary_10_1117_1_JEI_34_2_023016
crossref_primary_10_1002_jcsm_13144
crossref_primary_10_1109_JBHI_2024_3495975
crossref_primary_10_3389_fpls_2025_1571228
crossref_primary_10_1155_2022_5072666
crossref_primary_10_1038_s41433_024_03388_4
crossref_primary_10_1016_j_jia_2024_12_017
crossref_primary_10_1109_ACCESS_2023_3330465
crossref_primary_10_1017_hpl_2023_85
crossref_primary_10_3389_fclim_2022_1058677
crossref_primary_10_1038_s42003_021_02716_8
crossref_primary_10_3390_agriculture15151639
crossref_primary_10_1073_pnas_2406675122
crossref_primary_10_1016_j_procs_2022_09_532
crossref_primary_10_1155_2021_5792975
crossref_primary_10_1007_s10462_021_10088_y
crossref_primary_10_1016_j_crad_2023_05_010
crossref_primary_10_1136_rmdopen_2024_004628
crossref_primary_10_3847_1538_3881_ade3cb
crossref_primary_10_1007_s10044_025_01499_6
crossref_primary_10_1186_s12891_021_04260_2
crossref_primary_10_1016_j_ejrad_2025_112377
crossref_primary_10_1016_j_neunet_2024_106224
crossref_primary_10_1109_TVCG_2022_3184247
crossref_primary_10_3390_app14177873
crossref_primary_10_1109_TMM_2025_3557677
crossref_primary_10_1109_ACCESS_2024_3442926
crossref_primary_10_1007_s12559_022_10076_6
crossref_primary_10_1177_03611981241264275
crossref_primary_10_1016_j_ajoint_2025_100167
crossref_primary_10_1109_TIM_2023_3280511
crossref_primary_10_3390_mi13040501
crossref_primary_10_1002_jmri_29637
crossref_primary_10_1016_j_inffus_2023_102094
crossref_primary_10_3390_info13040160
crossref_primary_10_1007_s00247_022_05368_w
crossref_primary_10_3389_fnmol_2021_796070
crossref_primary_10_1109_TIFS_2023_3249566
crossref_primary_10_1109_JSTARS_2024_3447086
crossref_primary_10_1016_j_bspc_2021_103319
crossref_primary_10_3390_pr10071285
crossref_primary_10_5194_hess_26_795_2022
crossref_primary_10_1038_s41598_023_27671_8
crossref_primary_10_3233_THC_220141
crossref_primary_10_1145_3761818
crossref_primary_10_3390_fractalfract8100551
crossref_primary_10_1038_s41598_021_02179_1
crossref_primary_10_1016_j_compag_2021_106410
crossref_primary_10_1016_j_heliyon_2023_e20467
crossref_primary_10_1038_s41598_024_83347_x
crossref_primary_10_3390_math9233137
crossref_primary_10_1016_j_jmapro_2022_06_034
crossref_primary_10_1158_1078_0432_CCR_20_3596
crossref_primary_10_1186_s12859_022_04767_y
crossref_primary_10_1016_j_commatsci_2024_112863
crossref_primary_10_1145_3617597
crossref_primary_10_3389_fpls_2021_763479
crossref_primary_10_3389_frai_2024_1310518
crossref_primary_10_1007_s40747_024_01445_9
crossref_primary_10_1093_pnasnexus_pgaf137
crossref_primary_10_1007_s13349_022_00660_7
crossref_primary_10_1186_s13018_025_05830_z
crossref_primary_10_1109_TGRS_2023_3258488
crossref_primary_10_1007_s00414_020_02497_5
crossref_primary_10_1038_s41576_022_00532_2
crossref_primary_10_3390_healthcare11030410
crossref_primary_10_1109_ACCESS_2024_3387702
crossref_primary_10_1016_j_ces_2022_117991
crossref_primary_10_1016_j_jhepr_2024_101209
crossref_primary_10_3390_s25082398
crossref_primary_10_1007_s42979_022_01464_8
crossref_primary_10_1038_s41598_023_36024_4
crossref_primary_10_3390_ijerph20032377
crossref_primary_10_1007_s10278_022_00711_x
crossref_primary_10_1038_s41598_025_09846_7
crossref_primary_10_1109_TGRS_2024_3436814
crossref_primary_10_1016_j_indcrop_2025_121515
crossref_primary_10_1093_dmfr_twae029
crossref_primary_10_1007_s00138_024_01537_z
crossref_primary_10_1109_JSTARS_2025_3574229
crossref_primary_10_1088_1741_2552_ac697d
crossref_primary_10_3390_math10244765
crossref_primary_10_1007_s00247_025_06376_2
crossref_primary_10_1136_bmjopen_2024_086896
crossref_primary_10_3389_fpls_2023_1150748
crossref_primary_10_1109_ACCESS_2021_3069211
crossref_primary_10_3390_s22186993
crossref_primary_10_1016_j_asoc_2025_113786
crossref_primary_10_1038_s41598_024_76308_x
crossref_primary_10_1109_TIM_2024_3476708
crossref_primary_10_1007_s40194_025_02125_z
crossref_primary_10_1016_j_compbiomed_2025_110989
crossref_primary_10_1109_ACCESS_2024_3521330
crossref_primary_10_1109_JBHI_2023_3326467
crossref_primary_10_3389_fonc_2025_1608963
crossref_primary_10_1007_s10489_022_03788_7
crossref_primary_10_1007_s00330_023_09568_2
crossref_primary_10_1016_j_jmsy_2023_03_005
crossref_primary_10_1109_TAI_2022_3153754
crossref_primary_10_1007_s13167_025_00412_9
crossref_primary_10_1002_ange_202506744
crossref_primary_10_1186_s12859_024_05758_x
crossref_primary_10_1016_j_jpurol_2021_10_009
crossref_primary_10_1002_bkcs_70056
crossref_primary_10_1007_s10489_022_03490_8
crossref_primary_10_3389_fbioe_2022_952198
crossref_primary_10_3390_electronics12244892
crossref_primary_10_1016_j_eclinm_2025_103118
crossref_primary_10_1038_s41598_024_75884_2
crossref_primary_10_1016_j_patcog_2023_109659
crossref_primary_10_1109_ACCESS_2023_3241013
crossref_primary_10_3389_fcvm_2022_1016032
crossref_primary_10_1016_j_knosys_2023_111066
crossref_primary_10_3390_diagnostics13081371
crossref_primary_10_1038_s41598_023_47546_2
crossref_primary_10_1053_j_ro_2025_06_003
crossref_primary_10_1007_s11255_022_03165_w
crossref_primary_10_1038_s44222_025_00363_w
crossref_primary_10_1016_j_acra_2025_07_013
crossref_primary_10_1016_j_saa_2025_126611
crossref_primary_10_1080_02713683_2024_2375401
crossref_primary_10_1007_s10694_022_01275_6
crossref_primary_10_1088_1742_6596_2891_10_102029
crossref_primary_10_1016_j_compag_2025_110823
crossref_primary_10_1161_JAHA_124_036882
crossref_primary_10_1007_s00530_025_01889_0
crossref_primary_10_1002_mp_14711
crossref_primary_10_1111_ppa_13684
crossref_primary_10_1177_00405175231192057
crossref_primary_10_3390_f16050783
crossref_primary_10_1038_s41598_025_04807_6
crossref_primary_10_1145_3705301
crossref_primary_10_1038_s41598_025_97718_5
crossref_primary_10_1016_j_neucom_2025_129577
crossref_primary_10_1016_j_neucom_2025_129572
crossref_primary_10_1136_bmjopen_2024_095342
crossref_primary_10_1177_10944281251323248
crossref_primary_10_1007_s00586_025_09179_z
crossref_primary_10_1016_j_compind_2025_104305
crossref_primary_10_1109_TIFS_2023_3307908
crossref_primary_10_1016_j_chaos_2020_110153
crossref_primary_10_1109_JSTARS_2025_3595197
crossref_primary_10_1515_bmt_2021_0272
crossref_primary_10_1016_j_hroo_2025_01_008
crossref_primary_10_1109_ACCESS_2019_2963055
crossref_primary_10_1016_j_knosys_2025_113814
crossref_primary_10_1016_j_patcog_2021_108102
crossref_primary_10_1038_s41467_023_36383_6
crossref_primary_10_1371_journal_pone_0322854
crossref_primary_10_1080_09500340_2023_2248634
crossref_primary_10_1109_TIM_2021_3109722
crossref_primary_10_1080_13658816_2025_2530060
crossref_primary_10_3390_agriculture12060863
crossref_primary_10_1088_2632_2153_adcff6
crossref_primary_10_1371_journal_pone_0329482
crossref_primary_10_1109_ACCESS_2022_3144035
crossref_primary_10_1007_s10384_025_01163_w
crossref_primary_10_1186_s13059_023_03134_1
crossref_primary_10_1177_30504554251314334
crossref_primary_10_3390_f13030366
crossref_primary_10_1007_s40996_023_01193_9
crossref_primary_10_3390_rs13081506
crossref_primary_10_1109_TSMC_2021_3103842
crossref_primary_10_3390_buildings15030505
crossref_primary_10_1109_JBHI_2024_3507532
crossref_primary_10_3390_buildings13123113
crossref_primary_10_3390_pr13041006
crossref_primary_10_1109_TIP_2020_2987161
crossref_primary_10_1007_s11280_023_01150_6
crossref_primary_10_1007_s00500_025_10653_5
crossref_primary_10_1016_j_cmpb_2022_106651
crossref_primary_10_1007_s13755_021_00169_1
crossref_primary_10_1002_ece3_71648
crossref_primary_10_1016_j_addma_2025_104952
crossref_primary_10_1080_0886022X_2025_2528106
crossref_primary_10_3390_f14071292
crossref_primary_10_1093_bib_bbae559
crossref_primary_10_1109_TIP_2024_3512354
crossref_primary_10_3390_rs16173210
crossref_primary_10_1007_s11063_023_11328_8
crossref_primary_10_1155_hbe2_9977058
crossref_primary_10_1371_journal_pdig_0000830
crossref_primary_10_3390_s24113596
crossref_primary_10_1038_s41598_025_87588_2
crossref_primary_10_1038_s41598_025_12670_8
crossref_primary_10_1371_journal_pdig_0000816
crossref_primary_10_1016_j_chemolab_2022_104520
crossref_primary_10_1002_mp_16067
crossref_primary_10_1016_j_addma_2021_101965
crossref_primary_10_1038_s41598_025_04344_2
crossref_primary_10_1029_2020EA001423
crossref_primary_10_1016_j_jobe_2025_112002
crossref_primary_10_1016_j_jclepro_2025_145547
crossref_primary_10_1002_arch_70060
crossref_primary_10_1109_JSTARS_2025_3569743
crossref_primary_10_1016_j_procs_2024_09_255
crossref_primary_10_1016_j_eswa_2023_120706
crossref_primary_10_1007_s11282_024_00741_x
crossref_primary_10_1016_j_jmsy_2025_06_004
crossref_primary_10_3389_fpubh_2023_1239231
crossref_primary_10_1109_ACCESS_2025_3547433
crossref_primary_10_1109_JSTQE_2020_3038845
crossref_primary_10_3389_fonc_2025_1542265
crossref_primary_10_1007_s12149_024_01925_5
crossref_primary_10_1016_j_media_2022_102687
crossref_primary_10_1109_ACCESS_2024_3454966
crossref_primary_10_1016_j_cag_2021_09_002
crossref_primary_10_1061_JCCEE5_CPENG_5857
crossref_primary_10_1016_j_patrec_2021_06_021
crossref_primary_10_1007_s10694_022_01231_4
crossref_primary_10_1109_JSEN_2023_3317426
crossref_primary_10_1007_s00521_025_11375_3
crossref_primary_10_1073_pnas_2303060120
crossref_primary_10_1038_s41467_021_25975_9
crossref_primary_10_1371_journal_pone_0320219
crossref_primary_10_3390_jcm10020254
crossref_primary_10_1016_j_ijpharm_2024_123873
crossref_primary_10_1016_j_engappai_2024_108890
crossref_primary_10_1007_s12193_020_00332_0
crossref_primary_10_1016_j_knosys_2023_111092
crossref_primary_10_1016_j_mtcomm_2023_106896
crossref_primary_10_1186_s13244_025_02014_5
crossref_primary_10_1016_j_spinee_2023_09_019
crossref_primary_10_1016_j_ins_2021_12_020
crossref_primary_10_1109_JBHI_2025_3574688
crossref_primary_10_3390_app132111953
crossref_primary_10_3390_s25134002
crossref_primary_10_1007_s00417_022_05741_3
crossref_primary_10_1007_s11042_024_20288_7
crossref_primary_10_3390_rs14163883
crossref_primary_10_3390_jmse8100770
crossref_primary_10_1016_j_cmpb_2022_106624
crossref_primary_10_1093_cercor_bhae065
crossref_primary_10_1109_TCSVT_2025_3543408
crossref_primary_10_1016_j_inffus_2024_102303
crossref_primary_10_1109_TIV_2022_3216734
crossref_primary_10_1016_j_engappai_2024_109724
crossref_primary_10_1063_5_0229577
crossref_primary_10_1007_s00449_024_03110_4
crossref_primary_10_1016_j_rcim_2022_102513
crossref_primary_10_3390_app11115139
crossref_primary_10_1109_TMI_2022_3166129
crossref_primary_10_1016_j_optlaseng_2025_108857
crossref_primary_10_1007_s12539_025_00721_7
crossref_primary_10_1007_s10346_024_02323_8
Cites_doi 10.1109/CVPR.2014.222
10.1109/CVPR.2016.494
10.1007/978-3-642-33712-3_25
10.1007/978-3-319-46493-0_42
10.1109/CVPR.2016.90
10.1109/CVPR.2015.7298935
10.1109/CVPR.2016.319
10.1038/nature16961
10.1109/TPAMI.2013.50
10.1109/ICCV.2015.9
10.1109/CVPR.2015.7298754
10.18653/v1/D16-1203
10.1109/CVPR.2015.7298668
10.1109/WACV.2016.7477688
10.1109/CVPR.2009.5206848
10.1007/978-3-319-10602-1_48
10.1109/CVPR.2016.308
10.1145/2647868.2654889
10.1109/ICCV.2015.279
10.18653/v1/D16-1092
10.1007/s11263-016-0911-8
10.1109/CVPR.2015.7298872
10.1109/ICCV.2019.00268
10.1007/978-3-319-10590-1_53
10.1007/978-3-319-24702-1_11
10.1007/978-3-319-46466-4_8
10.1007/978-3-319-46493-0_33
10.1109/CVPR.2015.7298965
10.1109/CVPR.2015.7298877
10.1109/CVPR.2017.475
10.1109/CVPR.2014.81
10.1109/CVPR.2015.7298932
10.18653/v1/N16-3020
10.1007/978-3-030-01261-8_32
10.1109/CVPR.2015.7298780
10.1109/ICCV.2013.8
10.1109/CVPR.2017.354
10.1109/ICCV.2017.321
10.1109/CVPR.2017.121
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
COPYRIGHT 2020 Springer
International Journal of Computer Vision is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: COPYRIGHT 2020 Springer
– notice: International Journal of Computer Vision is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
ISR
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PYYUZ
Q9U
DOI 10.1007/s11263-019-01228-7
DatabaseName CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Complete
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database (ProQuest)
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Databases
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ABI/INFORM China
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)


Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1573-1405
EndPage 359
ExternalDocumentID A614152459
10_1007_s11263_019_01228_7
GrantInformation_xml – fundername: Alfred P. Sloan Foundation
  funderid: http://dx.doi.org/10.13039/100000879
– fundername: Google
  funderid: http://dx.doi.org/10.13039/100006785
– fundername: Defense Advanced Research Projects Agency
  funderid: http://dx.doi.org/10.13039/100000185
– fundername: Virginia Polytechnic Institute and State University
  funderid: http://dx.doi.org/10.13039/100007263
– fundername: Army Research Office
  funderid: http://dx.doi.org/10.13039/100000183
– fundername: Paul G. Allen Family Foundation
  funderid: http://dx.doi.org/10.13039/100000952
– fundername: Amazon Web Services
  funderid: http://dx.doi.org/10.13039/100008536
– fundername: Office of Naval Research
  funderid: http://dx.doi.org/10.13039/100000006
– fundername: Nvidia
  funderid: http://dx.doi.org/10.13039/100007065
– fundername: National Science Foundation
  funderid: http://dx.doi.org/10.13039/100000001
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29J
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EAS
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ICD
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c458t-3da4a8f9ec5dd728cf9d4d7a33c63c272818f62f178b4abfddc1d90cc2416eda3
IEDL.DBID M0C
ISICitedReferencesCount 17542
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000511807100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-5691
IngestDate Wed Nov 05 01:13:58 EST 2025
Sat Nov 29 10:19:00 EST 2025
Wed Nov 26 09:20:46 EST 2025
Tue Nov 18 20:59:26 EST 2025
Sat Nov 29 06:42:27 EST 2025
Fri Feb 21 02:35:18 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Transparency
Explanations
Interpretability
Visualizations
Grad-CAM
Visual explanations
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c458t-3da4a8f9ec5dd728cf9d4d7a33c63c272818f62f178b4abfddc1d90cc2416eda3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2352397845
PQPubID 1456341
PageCount 24
ParticipantIDs proquest_journals_2352397845
gale_infotracacademiconefile_A614152459
gale_incontextgauss_ISR_A614152459
crossref_primary_10_1007_s11263_019_01228_7
crossref_citationtrail_10_1007_s11263_019_01228_7
springer_journals_10_1007_s11263_019_01228_7
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle International journal of computer vision
PublicationTitleAbbrev Int J Comput Vis
PublicationYear 2020
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Das, A., Agrawal, H., Zitnick, C. L., Parikh, D., & Batra, D. (2016). Human attention in visual question answering: Do humans and deep networks look at the same regions? In EMNLP.
SilverDHuangAMaddisonCJGuezASifreLVan Den DriesscheGSchrittwieserJAntonoglouIPanneershelvamVLanctotMMastering the game of go with deep neural networks and tree searchNature2016529758748448910.1038/nature16961
Selvaraju, R. R., Lee, S., Shen, Y., Jin, H., Ghosh, S., Heck, L., Batra, D., & Parikh, D. (2019) Taking a hint: Leveraging explanations to make vision and language models more grounded. In Proceedings of the international conference on computer vision (ICCV).
Goodfellow, I. J., Shlens, J., & Szegedy, C. (2015). Explaining and harnessing adversarial examples. stat.
BengioYCourvilleAVincentPRepresentation learning: A review and new perspectivesIEEE Transactions on Pattern Analysis and Machine Intelligence20133581798182810.1109/TPAMI.2013.50
Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., & Torralba, A. (2017). Places: A 10 million image database for scene recognition. IEEE transactions on pattern analysis and machine intelligence.
Gan, C., Wang, N., Yang, Y., Yeung, D.-Y., & Hauptmann, A. G. (2015). Devnet: A deep event network for multimedia event detection and evidence recounting. In CVPR.
Johnson, J., Karpathy, A., & Fei-Fei, L. (2016). DenseCap: Fully convolutional localization networks for dense captioning. In CVPR.
Lu, J., Lin, X., Batra, D., & Parikh, D. (2015). Deeper LSTM and normalized CNN visual question answering model. https://github.com/VT-vision-lab/VQA_LSTM_CNN.
Chen, X., Fang, H., Lin, T.-Y., Vedantam, R., Gupta, S., Dollár, P., & Zitnick, C. L. (2015). Microsoft COCO captions: Data collection and evaluation server. arXiv preprint arXiv:1504.00325.
Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). “Why should i trust you?” Explaining the predictions of any classifier. In SIGKDD.
Dosovitskiy, A., & Brox, T. (2015). Inverting convolutional networks with convolutional networks. In CVPR.
Gordon, D., Kembhavi, A., Rastegari, M., Redmon, J., Fox, D., & Farhadi, A. (2017). Iqa: Visual question answering in interactive environments. arXiv preprint arXiv:1712.03316.
Johns, E., Mac Aodha, O., & Brostow, G. J. (2015). Becoming the expert—interactive multi-class machine teaching. In CVPR.
Agrawal, H., Mathialagan, C. S., Goyal, Y., Chavali, N., Banik, P., Mohapatra, A., Osman, A., & Batra, D. (2015). CloudCV: Large scale distributed computer vision as a cloud service. In Mobile cloud visual media computing (pp. 265–290). Springer.
Oquab, M., Bottou, L., Laptev, I., & Sivic, J. (2015). Is object localization for free?—weakly-supervised learning with convolutional neural networks. In CVPR.
Cinbis, R. G., Verbeek, J., & Schmid, C. (2016). Weakly supervised object localization with multi-fold multiple instance learning. IEEE transactions on pattern analysis and machine intelligence.
Lu, J., Yang, J., Batra, D., & Parikh, D. (2016). Hierarchical question-image co-attention for visual question answering. In NIPS.
Agrawal, A., Batra, D., & Parikh, D. (2016). Analyzing the behavior of visual question answering models. In EMNLP.
Lin, M., Chen, Q., & Yan, S. (2014a). Network in network. In ICLR.
Das, A., Kottur, S., Moura, J. M., Lee, S., & Batra, D. (2017b). Learning cooperative visual dialog agents with deep reinforcement learning. In Proceedings of the IEEE international conference on computer vision (ICCV).
Zhang, J., Lin, Z., Brandt, J., Shen, X., & Sclaroff, S. (2016). Top-down neural attention by excitation backprop. In ECCV.
Lipton, Z. C. (2016). The mythos of model interpretability. arXiv preprint arXiv:1606.03490v3.
Das, A., Datta, S., Gkioxari, G., Lee, S., Parikh, D., & Batra, D. (2018). Embodied question answering. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR).
Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. In ICLR.
Mahendran, A., & Vedaldi, A. (2016a). Salient deconvolutional networks. In European conference on computer vision.
Vinyals, O., Toshev, A., Bengio, S., & Erhan, D. (2015). Show and tell: A neural image caption generator. In CVPR.
Bazzani, L., Bergamo, A., Anguelov, D., Torresani, L. (2016). Self-taught object localization with deep networks. In WACV.
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In CVPR.
Malinowski, M., Rohrbach, M., & Fritz, M. (2015). Ask your neurons: A neural-based approach to answering questions about images. In ICCV.
Vondrick, C., Khosla, A., Malisiewicz, T., & Torralba, A. (2013). HOGgles: Visualizing object detection features. ICCV.
Simonyan, K., Vedaldi, A., & Zisserman, A. (2013). Deep inside convolutional networks: Visualising image classification models and saliency maps. CoRR. arXiv:1312.6034
Antol, S., Agrawal, A., Lu, J., Mitchell, M., Batra, D., Lawrence Zitnick, C., & Parikh, D. (2015). VQA: Visual question answering. In ICCV.
Selvaraju, R. R., Chattopadhyay, P., Elhoseiny, M., Sharma, T., Batra, D., Parikh, D., & Lee, S. (2018). Choose your neuron: Incorporating domain knowledge through neuron-importance. In Proceedings of the European conference on computer vision (ECCV) (pp. 526–541).
Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., & Zisserman, A. (2009). The PASCAL visual object classes challenge 2007 (VOC2007) results. http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html.
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2818–2826).
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). ImageNet: A large-scale hierarchical image database. In CVPR.
Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., & Darrell, T. (2014). Caffe: Convolutional architecture for fast feature embedding. In ACM MM.
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, C. L. (2014b). Microsoft coco: Common objects in context. In ECCV.
Oquab, M., Bottou, L., Laptev, I., & Sivic, J. (2014). Learning and transferring mid-level image representations using convolutional neural networks. In CVPR.
Selvaraju, R. R., Das, A., Vedantam, R., Cogswell, M., Parikh, D., & Batra, D. (2016). Grad-CAM: Why did you say that? Visual explanations from deep networks via gradient-based localization. CoRR. arXiv:1610.02391
Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., & Torralba, A. (2016). Learning deep features for discriminative localization. In CVPR.
Mahendran, A., & Vedaldi, A. (2016b). Visualizing deep convolutional neural networks using natural pre-images. International Journal of Computer Vision, 1–23.
JacksonPIntroduction to expert systems19983Boston, MAAddison-Wesley Longman Publishing Co., Inc,0634.68086
Zhou, B., Khosla, A., Lapedriza, À., Oliva, A., & Torralba, A. (2014). Object detectors emerge in deep scene cnns. CoRR. arXiv:1412.6856
Kolesnikov, A., & Lampert, C. H. (2016). Seed, expand and constrain: Three principles for weakly-supervised image segmentation. In ECCV.
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In NIPS.
de Vries, H., Strub, F., Chandar, S., Pietquin, O., Larochelle, H., & Courville, A. C. (2017). Guesswhat?! visual object discovery through multi-modal dialogue. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR).
Erhan, D., Bengio, Y., Courville, A., & Vincent, P. (2009). Visualizing higher-layer features of a deep network. University of Montreal, 1341.
Das, A., Kottur, S., Gupta, K., Singh, A., Yadav, D., Moura, J. M., Parikh, D., & Batra, D. (2017a). Visual dialog. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR).
Fang, H., Gupta, S., Iandola, F., Srivastava, R. K., Deng, L., Dollár, P., Gao, J., He, X., Mitchell, M., Platt, J. C., et al. (2015). From captions to visual concepts and back. In CVPR.
Hoiem, D., Chodpathumwan, Y., & Dai, Q. (2012). Diagnosing error in object detectors. In ECCV.
Bau, D., Zhou, B., Khosla, A., Oliva, A., & Torralba, A. (2017). Network dissection: Quantifying interpretability of deep visual representations. In computer vision and pattern recognition.
Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR.
Karpathy, A., & Fei-Fei, L. (2015). Deep visual-semantic alignments for generating image descriptions. In CVPR.
Gao, H., Mao, J., Zhou, J., Huang, Z., Wang, L., & Xu, W. (2015). Are you talking to a machine? In NIPS: Dataset and methods for multilingual image question answering.
Pinheiro, P. O., & Collobert, R. (2015). From image-level to pixel-level labeling with convolutional networks. In CVPR.
Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In ECCV.
Ren, M., Kiros, R., & Zemel, R. (2015). Exploring models and data for image question answering. In NIPS.
Karpathy, A. (2014). What I learned from competing against a ConvNet on ImageNet. http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/.
Springenberg, J. T., Dosovitskiy, A., Brox, T., & Riedmiller, M. A. (2014). Striving for simplicity: The all convolutional net. CoRR. arXiv:1412.6806
Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In CVPR.
D Silver (1228_CR51) 2016; 529
Y Bengio (1228_CR6) 2013; 35
1228_CR53
1228_CR52
1228_CR11
1228_CR55
1228_CR10
1228_CR54
1228_CR50
1228_CR17
1228_CR16
1228_CR19
1228_CR18
1228_CR13
1228_CR57
1228_CR12
1228_CR56
1228_CR15
1228_CR59
1228_CR14
1228_CR58
1228_CR3
1228_CR4
1228_CR5
1228_CR1
1228_CR2
1228_CR42
1228_CR41
1228_CR44
1228_CR43
1228_CR7
1228_CR8
1228_CR9
1228_CR40
1228_CR49
1228_CR46
1228_CR45
1228_CR48
1228_CR47
1228_CR31
1228_CR30
1228_CR33
1228_CR32
1228_CR39
1228_CR38
1228_CR35
P Jackson (1228_CR26) 1998
1228_CR34
1228_CR37
1228_CR36
1228_CR20
1228_CR22
1228_CR21
1228_CR60
1228_CR62
1228_CR61
1228_CR28
1228_CR27
1228_CR29
1228_CR24
1228_CR23
1228_CR25
References_xml – reference: Das, A., Datta, S., Gkioxari, G., Lee, S., Parikh, D., & Batra, D. (2018). Embodied question answering. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR).
– reference: Springenberg, J. T., Dosovitskiy, A., Brox, T., & Riedmiller, M. A. (2014). Striving for simplicity: The all convolutional net. CoRR. arXiv:1412.6806
– reference: Oquab, M., Bottou, L., Laptev, I., & Sivic, J. (2014). Learning and transferring mid-level image representations using convolutional neural networks. In CVPR.
– reference: Das, A., Kottur, S., Moura, J. M., Lee, S., & Batra, D. (2017b). Learning cooperative visual dialog agents with deep reinforcement learning. In Proceedings of the IEEE international conference on computer vision (ICCV).
– reference: Gao, H., Mao, J., Zhou, J., Huang, Z., Wang, L., & Xu, W. (2015). Are you talking to a machine? In NIPS: Dataset and methods for multilingual image question answering.
– reference: Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. In ICLR.
– reference: Agrawal, H., Mathialagan, C. S., Goyal, Y., Chavali, N., Banik, P., Mohapatra, A., Osman, A., & Batra, D. (2015). CloudCV: Large scale distributed computer vision as a cloud service. In Mobile cloud visual media computing (pp. 265–290). Springer.
– reference: Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., & Torralba, A. (2017). Places: A 10 million image database for scene recognition. IEEE transactions on pattern analysis and machine intelligence.
– reference: Zhang, J., Lin, Z., Brandt, J., Shen, X., & Sclaroff, S. (2016). Top-down neural attention by excitation backprop. In ECCV.
– reference: Cinbis, R. G., Verbeek, J., & Schmid, C. (2016). Weakly supervised object localization with multi-fold multiple instance learning. IEEE transactions on pattern analysis and machine intelligence.
– reference: Simonyan, K., Vedaldi, A., & Zisserman, A. (2013). Deep inside convolutional networks: Visualising image classification models and saliency maps. CoRR. arXiv:1312.6034
– reference: Zhou, B., Khosla, A., Lapedriza, À., Oliva, A., & Torralba, A. (2014). Object detectors emerge in deep scene cnns. CoRR. arXiv:1412.6856
– reference: Hoiem, D., Chodpathumwan, Y., & Dai, Q. (2012). Diagnosing error in object detectors. In ECCV.
– reference: Goodfellow, I. J., Shlens, J., & Szegedy, C. (2015). Explaining and harnessing adversarial examples. stat.
– reference: Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). ImageNet: A large-scale hierarchical image database. In CVPR.
– reference: Lu, J., Lin, X., Batra, D., & Parikh, D. (2015). Deeper LSTM and normalized CNN visual question answering model. https://github.com/VT-vision-lab/VQA_LSTM_CNN.
– reference: Johns, E., Mac Aodha, O., & Brostow, G. J. (2015). Becoming the expert—interactive multi-class machine teaching. In CVPR.
– reference: Lu, J., Yang, J., Batra, D., & Parikh, D. (2016). Hierarchical question-image co-attention for visual question answering. In NIPS.
– reference: Bau, D., Zhou, B., Khosla, A., Oliva, A., & Torralba, A. (2017). Network dissection: Quantifying interpretability of deep visual representations. In computer vision and pattern recognition.
– reference: Kolesnikov, A., & Lampert, C. H. (2016). Seed, expand and constrain: Three principles for weakly-supervised image segmentation. In ECCV.
– reference: BengioYCourvilleAVincentPRepresentation learning: A review and new perspectivesIEEE Transactions on Pattern Analysis and Machine Intelligence20133581798182810.1109/TPAMI.2013.50
– reference: SilverDHuangAMaddisonCJGuezASifreLVan Den DriesscheGSchrittwieserJAntonoglouIPanneershelvamVLanctotMMastering the game of go with deep neural networks and tree searchNature2016529758748448910.1038/nature16961
– reference: Vondrick, C., Khosla, A., Malisiewicz, T., & Torralba, A. (2013). HOGgles: Visualizing object detection features. ICCV.
– reference: Lipton, Z. C. (2016). The mythos of model interpretability. arXiv preprint arXiv:1606.03490v3.
– reference: Bazzani, L., Bergamo, A., Anguelov, D., Torresani, L. (2016). Self-taught object localization with deep networks. In WACV.
– reference: Lin, M., Chen, Q., & Yan, S. (2014a). Network in network. In ICLR.
– reference: Vinyals, O., Toshev, A., Bengio, S., & Erhan, D. (2015). Show and tell: A neural image caption generator. In CVPR.
– reference: Gordon, D., Kembhavi, A., Rastegari, M., Redmon, J., Fox, D., & Farhadi, A. (2017). Iqa: Visual question answering in interactive environments. arXiv preprint arXiv:1712.03316.
– reference: Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In CVPR.
– reference: Dosovitskiy, A., & Brox, T. (2015). Inverting convolutional networks with convolutional networks. In CVPR.
– reference: Oquab, M., Bottou, L., Laptev, I., & Sivic, J. (2015). Is object localization for free?—weakly-supervised learning with convolutional neural networks. In CVPR.
– reference: Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR.
– reference: Das, A., Agrawal, H., Zitnick, C. L., Parikh, D., & Batra, D. (2016). Human attention in visual question answering: Do humans and deep networks look at the same regions? In EMNLP.
– reference: Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., & Darrell, T. (2014). Caffe: Convolutional architecture for fast feature embedding. In ACM MM.
– reference: Karpathy, A. (2014). What I learned from competing against a ConvNet on ImageNet. http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/.
– reference: Das, A., Kottur, S., Gupta, K., Singh, A., Yadav, D., Moura, J. M., Parikh, D., & Batra, D. (2017a). Visual dialog. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR).
– reference: Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, C. L. (2014b). Microsoft coco: Common objects in context. In ECCV.
– reference: Agrawal, A., Batra, D., & Parikh, D. (2016). Analyzing the behavior of visual question answering models. In EMNLP.
– reference: Malinowski, M., Rohrbach, M., & Fritz, M. (2015). Ask your neurons: A neural-based approach to answering questions about images. In ICCV.
– reference: Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2818–2826).
– reference: Antol, S., Agrawal, A., Lu, J., Mitchell, M., Batra, D., Lawrence Zitnick, C., & Parikh, D. (2015). VQA: Visual question answering. In ICCV.
– reference: Karpathy, A., & Fei-Fei, L. (2015). Deep visual-semantic alignments for generating image descriptions. In CVPR.
– reference: Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In NIPS.
– reference: JacksonPIntroduction to expert systems19983Boston, MAAddison-Wesley Longman Publishing Co., Inc,0634.68086
– reference: Gan, C., Wang, N., Yang, Y., Yeung, D.-Y., & Hauptmann, A. G. (2015). Devnet: A deep event network for multimedia event detection and evidence recounting. In CVPR.
– reference: Chen, X., Fang, H., Lin, T.-Y., Vedantam, R., Gupta, S., Dollár, P., & Zitnick, C. L. (2015). Microsoft COCO captions: Data collection and evaluation server. arXiv preprint arXiv:1504.00325.
– reference: Pinheiro, P. O., & Collobert, R. (2015). From image-level to pixel-level labeling with convolutional networks. In CVPR.
– reference: Selvaraju, R. R., Chattopadhyay, P., Elhoseiny, M., Sharma, T., Batra, D., Parikh, D., & Lee, S. (2018). Choose your neuron: Incorporating domain knowledge through neuron-importance. In Proceedings of the European conference on computer vision (ECCV) (pp. 526–541).
– reference: Mahendran, A., & Vedaldi, A. (2016a). Salient deconvolutional networks. In European conference on computer vision.
– reference: Fang, H., Gupta, S., Iandola, F., Srivastava, R. K., Deng, L., Dollár, P., Gao, J., He, X., Mitchell, M., Platt, J. C., et al. (2015). From captions to visual concepts and back. In CVPR.
– reference: Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., & Torralba, A. (2016). Learning deep features for discriminative localization. In CVPR.
– reference: Mahendran, A., & Vedaldi, A. (2016b). Visualizing deep convolutional neural networks using natural pre-images. International Journal of Computer Vision, 1–23.
– reference: He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In CVPR.
– reference: de Vries, H., Strub, F., Chandar, S., Pietquin, O., Larochelle, H., & Courville, A. C. (2017). Guesswhat?! visual object discovery through multi-modal dialogue. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR).
– reference: Selvaraju, R. R., Lee, S., Shen, Y., Jin, H., Ghosh, S., Heck, L., Batra, D., & Parikh, D. (2019) Taking a hint: Leveraging explanations to make vision and language models more grounded. In Proceedings of the international conference on computer vision (ICCV).
– reference: Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., & Zisserman, A. (2009). The PASCAL visual object classes challenge 2007 (VOC2007) results. http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html.
– reference: Johnson, J., Karpathy, A., & Fei-Fei, L. (2016). DenseCap: Fully convolutional localization networks for dense captioning. In CVPR.
– reference: Selvaraju, R. R., Das, A., Vedantam, R., Cogswell, M., Parikh, D., & Batra, D. (2016). Grad-CAM: Why did you say that? Visual explanations from deep networks via gradient-based localization. CoRR. arXiv:1610.02391
– reference: Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In ECCV.
– reference: Ren, M., Kiros, R., & Zemel, R. (2015). Exploring models and data for image question answering. In NIPS.
– reference: Erhan, D., Bengio, Y., Courville, A., & Vincent, P. (2009). Visualizing higher-layer features of a deep network. University of Montreal, 1341.
– reference: Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). “Why should i trust you?” Explaining the predictions of any classifier. In SIGKDD.
– ident: 1228_CR39
– ident: 1228_CR16
– ident: 1228_CR43
  doi: 10.1109/CVPR.2014.222
– ident: 1228_CR29
  doi: 10.1109/CVPR.2016.494
– ident: 1228_CR54
– ident: 1228_CR25
  doi: 10.1007/978-3-642-33712-3_25
– ident: 1228_CR32
  doi: 10.1007/978-3-319-46493-0_42
– ident: 1228_CR24
  doi: 10.1109/CVPR.2016.90
– ident: 1228_CR56
  doi: 10.1109/CVPR.2015.7298935
– ident: 1228_CR61
  doi: 10.1109/CVPR.2016.319
– volume: 529
  start-page: 484
  issue: 7587
  year: 2016
  ident: 1228_CR51
  publication-title: Nature
  doi: 10.1038/nature16961
– volume: 35
  start-page: 1798
  issue: 8
  year: 2013
  ident: 1228_CR6
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2013.50
– ident: 1228_CR42
  doi: 10.1109/ICCV.2015.9
– ident: 1228_CR8
– ident: 1228_CR22
– ident: 1228_CR60
– ident: 1228_CR18
  doi: 10.1109/CVPR.2015.7298754
– ident: 1228_CR49
– ident: 1228_CR15
– ident: 1228_CR1
  doi: 10.18653/v1/D16-1203
– ident: 1228_CR44
  doi: 10.1109/CVPR.2015.7298668
– ident: 1228_CR36
– ident: 1228_CR53
– ident: 1228_CR5
  doi: 10.1109/WACV.2016.7477688
– ident: 1228_CR14
  doi: 10.1109/CVPR.2009.5206848
– ident: 1228_CR46
– ident: 1228_CR35
  doi: 10.1007/978-3-319-10602-1_48
– ident: 1228_CR55
  doi: 10.1109/CVPR.2016.308
– ident: 1228_CR27
  doi: 10.1145/2647868.2654889
– ident: 1228_CR3
  doi: 10.1109/ICCV.2015.279
– ident: 1228_CR9
  doi: 10.18653/v1/D16-1092
– ident: 1228_CR20
– ident: 1228_CR41
  doi: 10.1007/s11263-016-0911-8
– ident: 1228_CR10
– ident: 1228_CR19
  doi: 10.1109/CVPR.2015.7298872
– ident: 1228_CR50
  doi: 10.1109/ICCV.2019.00268
– ident: 1228_CR58
  doi: 10.1007/978-3-319-10590-1_53
– ident: 1228_CR33
– ident: 1228_CR52
– ident: 1228_CR2
  doi: 10.1007/978-3-319-24702-1_11
– ident: 1228_CR40
  doi: 10.1007/978-3-319-46466-4_8
– ident: 1228_CR59
  doi: 10.1007/978-3-319-46493-0_33
– ident: 1228_CR37
  doi: 10.1109/CVPR.2015.7298965
– volume-title: Introduction to expert systems
  year: 1998
  ident: 1228_CR26
– ident: 1228_CR28
  doi: 10.1109/CVPR.2015.7298877
– ident: 1228_CR13
  doi: 10.1109/CVPR.2017.475
– ident: 1228_CR62
– ident: 1228_CR21
  doi: 10.1109/CVPR.2014.81
– ident: 1228_CR38
– ident: 1228_CR17
– ident: 1228_CR31
  doi: 10.1109/CVPR.2015.7298932
– ident: 1228_CR47
  doi: 10.18653/v1/N16-3020
– ident: 1228_CR48
  doi: 10.1007/978-3-030-01261-8_32
– ident: 1228_CR34
– ident: 1228_CR45
  doi: 10.1109/CVPR.2015.7298780
– ident: 1228_CR30
– ident: 1228_CR57
  doi: 10.1109/ICCV.2013.8
– ident: 1228_CR4
  doi: 10.1109/CVPR.2017.354
– ident: 1228_CR7
– ident: 1228_CR12
  doi: 10.1109/ICCV.2017.321
– ident: 1228_CR23
– ident: 1228_CR11
  doi: 10.1109/CVPR.2017.121
SSID ssj0002823
Score 2.7443838
Snippet We propose a technique for producing ‘visual explanations’ for decisions from a large class of Convolutional Neural Network (CNN)-based models, making them...
We propose a technique for producing 'visual explanations' for decisions from a large class of Convolutional Neural Network (CNN)-based models, making them...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 336
SubjectTerms Artificial Intelligence
Artificial neural networks
Computer Imaging
Computer Science
Computer vision
Decisions
Failure modes
Image classification
Image Processing and Computer Vision
Localization
Machine learning
Machine vision
Mapping
Mobile computing
Neural networks
Pattern Recognition
Pattern Recognition and Graphics
Predictions
Questions
Vision
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB61tIdeoE91ecmqKnGgljaOk9jcFgptJbpC0CJulmM71UpoQetdfj8zicOKviS4OmPHGT9mHM_3DcBHnxHJntO88S7nMuQV140NXEs1LK326MO37PrH1XisLi70SQKFxT7avb-SbHfqJdgtE3TnSKCbTAjFq6fwDM2dooQNp2fnd_svHiK6BPJ4MCpKnSWozN_buGeOft-U_7gdbY3O0drjuvsSVpOTyUbdrHgFT8L0Nawlh5Ol5RyxqM_p0Je9gZMvM-v5wej7HjufxAW2QlF6tvtnGBmhUdjnEK7ZuIsfj-xmYhlVImAl30ej6NkxGcgE8HwLP48Ofxx85SnrAneyUHOeeyutanRwhfeVUK7RXvrK4oiWuRMV0Uc1pWiyStXS1o33LvN66Bz6AmXwNn8HK9OraXgPrC4I-YqjHayQpVW1J7b1emgL14KoBpD1yjcuUZJTZoxLsyRTJi0a1KJptWiqAeze1bnuCDn-K_2BxtQQ08WUQml-2UWM5tvZqRmhY4LOiyz0AHaSUHOFr3c2IRPwI4gc657kZj83TFrr0Qj0YdGrU7IYwKd-Liwf_7tz6w8T34AXgg77bcj4JqzMZ4uwBc_dzXwSZ9vtGrgFOmP9Sw
  priority: 102
  providerName: Springer Nature
Title Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization
URI https://link.springer.com/article/10.1007/s11263-019-01228-7
https://www.proquest.com/docview/2352397845
Volume 128
WOSCitedRecordID wos000511807100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1573-1405
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002823
  issn: 0920-5691
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xjQdeNj61bqOyEBIPYNE4H473grqyAWKrqg7G4MVybAdVQm3XtPv7uUucVQOxF14sxbEdR2f7zvb9fgfw0kVEsmcVL52NeeJjyVVpPFdJ3suMcmjD1-z6p3I4zC8v1SgcuFXBrbJdE-uF2s0snZG_FWgpoO7Mk_Td_IpT1Ci6XQ0hNDZgiywbcuk76w1uVmLcTjSh5HGLlGYqCqCZBjoXCbrBJAhPJETO5S3F9Ofy_Nc9aa1-Tnb-t-MPYTsYnqzfjJRHcM9PH8NOMEJZmOIVZrVxHtq8JzD6sDCOD_pnh-xiUq2wFfLcM805YsUIocLeez9nw8anvGLXE8OoEoEt-REqSsdOSWkG0OdT-Hpy_GXwkYdIDNwmab7ksTOJyUvlbeqcFLktlUucNCjlLLZCEqVUmYkyknmRmKJ0zkZO9axF-yDzzsTPYHM6m_pdYEVKaFgcAd6IJDN54YiBveiZ1NbAqg5ErRi0DTTlFC3jl14TLJPoNIpO16LTsgOvb-rMG5KOO0u_IOlqYr-YknvNT7OqKv3pfKz7aKygQZOkqgOvQqFyhp-3JqAV8CeIMOtWyYNW7jrM_0qvhd6BN-3IWb_-d-f27m5tHx4I2vDXbuMHsLlcrPxzuG-vl5Nq0YUN-e17F7aOjoejMT59lrxbzwhMR-kPTMfnF78Bo1IM2w
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFL0aA4m9MD61wgALgXgAi8ZxYhsJobIxVrWrJtjQ3oxjO6gSakvTDvGn-I34Js6qgdjbHnhNHOfr-N5r-55zAZ66BEX2rKKlsynlPhVUlcZTxWU3N8qFGL5W1x-K0UienKjDNfjVcmEwrbK1ibWhdlOLa-SvWIgUgu-UPHs7-06xahTurrYlNBpYDPzPH2HKVr3p74b_-4yxvfdHO_s0VhWglmdyQVNnuJGl8jZzTjBpS-W4EyY8cZ5aJlAeqcxZmQhZcFOUztnEqa61wdfl3pk09HsFrvJUChxXA0HPLH-YvjSl68OULMtVEkk6DVUvYbhjipShhDFJxTlH-Kc7-GtftnZ3e5v_24e6CTdiYE16zUi4BWt-chs2Y5BNogmrwqG2jkV77A4cfpgbR3d6B6_J53G1DL1gZqJp1kkrggwcsuv9jIyanPmKnI4NwYuQTErfhUDAkSEGBZHUeheOL-VV78H6ZDrxW0CKDNm-AeHeMJ4bWThUmC-6JrM1cawDSfvbtY0y7FgN5JteCUgjVHSAiq6hokUHXpxdM2tESC5s_QTRpFHdY4LpQ1_Nsqp0_9NH3QvBWAjYeKY68Dw2Kqfh9tZENkZ4CRQEO9dyu8WZjvat0iuQdeBli9TV6X8_3P2Le3sM1_ePDoZ62B8NHsAGw8WNOkV-G9YX86V_CNfs6WJczR_VI4_Al8tG8G-olGdP
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tC0JcWJ6isICFQBzA2sZ5GgmhsqVQbakqXlpxMY7toEqoLXW7iL_Gr2MmcbZaEHvbA9fEduLks2dsz_cNwEMbkciekbyyJuaJi3MuK-24TIpupqVFH75W1x_l43FxeCgnW_Cr5cJQWGU7J9YTtZ0b2iPfE-gpoO0sknSvCmERk_7gxeI7pwxSdNLaptNoIHLgfv7A5Zt_Puzjv34kxODVh_03PGQY4CZJixWPrU50UUlnUmtzUZhK2sTmGt8-i43ISSqpykQV5UWZ6LKy1kRWdo1Bu5c5q2Ns9xycz3GNSeGEk_TzsRXApUyTxh6XZ2kmo0DYaWh7kaDTU6IPRUIUPD9hFP80DX-d0damb7DzP3-0K3A5ONys14yQq7DlZtdgJzjfLExtHi-1-S3aa9dh8nqpLd_vvX3GPk39GluhiEXd7J96Rswc1nduwcZNLL1nR1PNqBKRTPlLdBAsG5GzEMiuN-DjmXT1JmzP5jN3C1iZEgsYke-0SDJdlJaU58uuTk1NKOtA1EJAmSDPTllCvqmNsDTBRiFsVA0blXfgyXGdRSNOcmrpB4QsRaofM4LCV732Xg3fv1M9dNLQkUtS2YHHoVA1x8cbHVga2AkSCjtRcrfFnArznlcbwHXgaYvaze1_v9zt01u7DxcRuGo0HB_cgUuC9jzqyPld2F4t1-4uXDBHq6lf3qsHIYMvZw3g3_SmcHM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Grad-CAM%3A+Visual+Explanations+from+Deep+Networks+via+Gradient-Based+Localization&rft.jtitle=International+journal+of+computer+vision&rft.au=Selvaraju%2C+Ramprasaath+R&rft.au=Cogswell%2C+Michael&rft.au=Das+Abhishek&rft.au=Vedantam+Ramakrishna&rft.date=2020-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-5691&rft.eissn=1573-1405&rft.volume=128&rft.issue=2&rft.spage=336&rft.epage=359&rft_id=info:doi/10.1007%2Fs11263-019-01228-7&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5691&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5691&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5691&client=summon