Norm Inflation for Nonlinear Schrödinger Equations in Fourier–Lebesgue and Modulation Spaces of Negative Regularity

We consider nonlinear Schrödinger equations in Fourier–Lebesgue and modulation spaces involving negative regularity. The equations are posed on the whole space, and involve a smooth power nonlinearity. We prove two types of norm inflation results. We first establish norm inflation results below the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Journal of fourier analysis and applications Ročník 26; číslo 6
Hlavní autoři: Bhimani, Divyang G., Carles, Rémi
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.12.2020
Springer
Springer Nature B.V
Springer Verlag
Témata:
ISSN:1069-5869, 1531-5851
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider nonlinear Schrödinger equations in Fourier–Lebesgue and modulation spaces involving negative regularity. The equations are posed on the whole space, and involve a smooth power nonlinearity. We prove two types of norm inflation results. We first establish norm inflation results below the expected critical regularities. We then prove norm inflation with infinite loss of regularity under less general assumptions. To do so, we recast the theory of multiphase weakly nonlinear geometric optics for nonlinear Schrödinger equations in a general abstract functional setting.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1069-5869
1531-5851
DOI:10.1007/s00041-020-09788-w