Sparse sums of squares on finite abelian groups and improved semidefinite lifts
Let G be a finite abelian group. This paper is concerned with nonnegative functions on G that are sparse with respect to the Fourier basis. We establish combinatorial conditions on subsets S and T of Fourier basis elements under which nonnegative functions with Fourier support S are sums of squares...
Uloženo v:
| Vydáno v: | Mathematical programming Ročník 160; číslo 1-2; s. 149 - 191 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2016
Springer Nature B.V |
| Témata: | |
| ISSN: | 0025-5610, 1436-4646 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Let
G
be a finite abelian group. This paper is concerned with nonnegative functions on
G
that are
sparse
with respect to the Fourier basis. We establish combinatorial conditions on subsets
S
and
T
of Fourier basis elements under which nonnegative functions with Fourier support
S
are sums of squares of functions with Fourier support
T
. Our combinatorial condition involves constructing a chordal cover of a graph related to
G
and
S
(the Cayley graph
Cay
(
G
^
,
S
)
) with maximal cliques related to
T
. Our result relies on two main ingredients: the decomposition of sparse positive semidefinite matrices with a chordal sparsity pattern, as well as a simple but key observation exploiting the structure of the Fourier basis elements of
G
(the characters of
G
). We apply our general result to two examples. First, in the case where
G
=
Z
2
n
, by constructing a particular chordal cover of the half-cube graph, we prove that any nonnegative quadratic form in
n
binary variables is a sum of squares of functions of degree at most
n
/
2
, establishing a conjecture of Laurent. Second, we consider nonnegative functions of degree
d
on
Z
N
(when
d
divides
N
). By constructing a particular chordal cover of the
d
th power of the
N
-cycle, we prove that any such function is a sum of squares of functions with at most
3
d
log
(
N
/
d
)
nonzero Fourier coefficients. Dually this shows that a certain cyclic polytope in
R
2
d
with
N
vertices can be expressed as a projection of a section of the cone of positive semidefinite matrices of size
3
d
log
(
N
/
d
)
. Putting
N
=
d
2
gives a family of polytopes in
R
2
d
with linear programming extension complexity
Ω
(
d
2
)
and semidefinite programming extension complexity
O
(
d
log
(
d
)
)
. To the best of our knowledge, this is the first explicit family of polytopes
(
P
d
)
in increasing dimensions where
xc
PSD
(
P
d
)
=
o
(
xc
LP
(
P
d
)
)
, where
xc
PSD
and
xc
LP
are respectively the SDP and LP extension complexity. |
|---|---|
| AbstractList | (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) Let G be a finite abelian group. This paper is concerned with nonnegative functions on G that are sparse with respect to the Fourier basis. We establish combinatorial conditions on subsets ... and ... of Fourier basis elements under which nonnegative functions with Fourier support ... are sums of squares of functions with Fourier support ... Our combinatorial condition involves constructing a chordal cover of a graph related to G and ... (the Cayley graph ...) with maximal cliques related to ... Our result relies on two main ingredients: the decomposition of sparse positive semidefinite matrices with a chordal sparsity pattern, as well as a simple but key observation exploiting the structure of the Fourier basis elements of G (the characters of G). We apply our general result to two examples. First, in the case where ..., by constructing a particular chordal cover of the half-cube graph, we prove that any nonnegative quadratic form in n binary variables is a sum of squares of functions of degree at most ..., establishing a conjecture of Laurent. Second, we consider nonnegative functions of degree d on ... (when d divides N). By constructing a particular chordal cover of the dth power of the N-cycle, we prove that any such function is a sum of squares of functions with at most ... nonzero Fourier coefficients. Dually this shows that a certain cyclic polytope in ... with N vertices can be expressed as a projection of a section of the cone of positive semidefinite matrices of size ... Putting ... gives a family of polytopes in ... with linear programming extension complexity ... and semidefinite programming extension complexity ... To the best of our knowledge, this is the first explicit family of polytopes ... in increasing dimensions where ..., where ... and ... are respectively the SDP and LP extension complexity. Let G be a finite abelian group. This paper is concerned with nonnegative functions on G that are sparse with respect to the Fourier basis. We establish combinatorial conditions on subsets S and T of Fourier basis elements under which nonnegative functions with Fourier support S are sums of squares of functions with Fourier support T . Our combinatorial condition involves constructing a chordal cover of a graph related to G and S (the Cayley graph Cay ( G ^ , S ) ) with maximal cliques related to T . Our result relies on two main ingredients: the decomposition of sparse positive semidefinite matrices with a chordal sparsity pattern, as well as a simple but key observation exploiting the structure of the Fourier basis elements of G (the characters of G ). We apply our general result to two examples. First, in the case where G = Z 2 n , by constructing a particular chordal cover of the half-cube graph, we prove that any nonnegative quadratic form in n binary variables is a sum of squares of functions of degree at most n / 2 , establishing a conjecture of Laurent. Second, we consider nonnegative functions of degree d on Z N (when d divides N ). By constructing a particular chordal cover of the d th power of the N -cycle, we prove that any such function is a sum of squares of functions with at most 3 d log ( N / d ) nonzero Fourier coefficients. Dually this shows that a certain cyclic polytope in R 2 d with N vertices can be expressed as a projection of a section of the cone of positive semidefinite matrices of size 3 d log ( N / d ) . Putting N = d 2 gives a family of polytopes in R 2 d with linear programming extension complexity Ω ( d 2 ) and semidefinite programming extension complexity O ( d log ( d ) ) . To the best of our knowledge, this is the first explicit family of polytopes ( P d ) in increasing dimensions where xc PSD ( P d ) = o ( xc LP ( P d ) ) , where xc PSD and xc LP are respectively the SDP and LP extension complexity. |
| Author | Fawzi, Hamza Parrilo, Pablo A. Saunderson, James |
| Author_xml | – sequence: 1 givenname: Hamza surname: Fawzi fullname: Fawzi, Hamza email: hfawzi@mit.edu organization: Laboratory for Information and Decision Systems, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology – sequence: 2 givenname: James surname: Saunderson fullname: Saunderson, James organization: Department of Electrical Engineering, University of Washington – sequence: 3 givenname: Pablo A. surname: Parrilo fullname: Parrilo, Pablo A. organization: Laboratory for Information and Decision Systems, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology |
| BookMark | eNp9kMFq3DAQhkVIIZu0D5CbIJde3Ixk2ZKPZWnSwkIObc9C1o4WLba80diF5umjZfdQAs1p5vB9Mz__NbtMU0LGbgV8EQD6ngQI0BWIpoJO6-rlgq2EqttKtaq9ZCsA2VRNK-CKXRPtAUDUxqzY08-Dy4SclpH4FDg9Ly5jWRMPMcUZuetxiC7xXZ6WA3GXtjyOhzz9wS0nHOMWz-AQw0wf2YfgBsJP53nDfj98-7X-Xm2eHn-sv24qrxozV1JAEwyqgBKVQ2gwaKO17HunhPHeC-jA17IPrUM0XdebHhXUNaJ0rfP1Dft8uluSPC9Isx0jeRwGl3BayApT_gghDRT07g26n5acSrpCSQ1adbIplD5RPk9EGYP1cXZznNKcXRysAHss2p6KtqVoeyzavhRTvDEPOY4u_33XkSeHCpt2mP_J9F_pFRqqk2Y |
| CODEN | MHPGA4 |
| CitedBy_id | crossref_primary_10_1016_j_acha_2024_101686 crossref_primary_10_1007_s10878_017_0169_2 crossref_primary_10_1137_16M105544X crossref_primary_10_1007_s10107_020_01558_2 crossref_primary_10_1088_1742_5468_ac9cc8 crossref_primary_10_1080_10556788_2023_2250522 crossref_primary_10_1287_moor_2016_0797 crossref_primary_10_1007_s10107_021_01745_9 crossref_primary_10_1007_s10898_025_01523_3 crossref_primary_10_1287_moor_2024_0483 crossref_primary_10_1145_3626106 crossref_primary_10_1137_20M1324417 crossref_primary_10_1287_moor_2016_0813 crossref_primary_10_1007_s10107_024_02131_x crossref_primary_10_1137_21M1458338 crossref_primary_10_1007_s10107_024_02147_3 crossref_primary_10_1137_22M1511394 |
| Cites_doi | 10.1287/moor.28.4.871.20508 10.1016/0024-3795(88)90240-6 10.1007/s10107-015-0922-1 10.1137/S1052623400366802 10.1016/0022-0000(91)90024-Y 10.1007/BF02612711 10.1016/j.disc.2012.09.015 10.1017/CBO9780511626265 10.1016/0024-3795(84)90207-6 10.1287/moor.1120.0575 10.1137/140966265 10.1002/9781118165621 10.1137/1.9781611972290 10.1007/978-3-642-20807-2_23 10.1007/978-1-4757-3216-0_17 10.1007/s00454-015-9682-1 10.1007/978-1-4613-8431-1 10.1090/pspum/007/0152944 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2016 |
| Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2016 |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L.0 L6V L7M L~C L~D M0C M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1007/s10107-015-0977-z |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ABI/INFORM Professional Standard ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business (UW System Shared) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Professional Standard ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics Computer Science |
| EISSN | 1436-4646 |
| EndPage | 191 |
| ExternalDocumentID | 4208498101 10_1007_s10107_015_0977_z |
| Genre | Feature |
| GrantInformation_xml | – fundername: Air Force Office of Scientific Research grantid: FA9550-11-1-0305 funderid: http://dx.doi.org/10.13039/100000181 – fundername: Air Force Office of Scientific Research grantid: FA9550-12-1-0287 funderid: http://dx.doi.org/10.13039/100000181 |
| GroupedDBID | --K --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1B1 1N0 1OL 1SB 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 88I 8AO 8FE 8FG 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBA EBLON EBR EBS EBU ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAS LLZTM M0C M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQ- NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RPZ RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XPP YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZL0 ZMTXR ZWQNP ~02 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADXHL AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L.0 L7M L~C L~D PKEHL PQEST PQUKI PRINS PUEGO Q9U |
| ID | FETCH-LOGICAL-c458t-2105f8e4fe2e4ae05ef78772bba418ccc1090c32bf6aee899b8be4033ee2a6ac3 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000385191700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0025-5610 |
| IngestDate | Thu Sep 04 17:37:19 EDT 2025 Thu Sep 25 00:44:53 EDT 2025 Sat Nov 29 03:33:59 EST 2025 Tue Nov 18 22:34:14 EST 2025 Fri Feb 21 02:32:36 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1-2 |
| Keywords | 52B12 90C22 52B55 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c458t-2105f8e4fe2e4ae05ef78772bba418ccc1090c32bf6aee899b8be4033ee2a6ac3 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | http://hdl.handle.net/1721.1/104800 |
| PQID | 1827074925 |
| PQPubID | 25307 |
| PageCount | 43 |
| ParticipantIDs | proquest_miscellaneous_1845811280 proquest_journals_1827074925 crossref_citationtrail_10_1007_s10107_015_0977_z crossref_primary_10_1007_s10107_015_0977_z springer_journals_10_1007_s10107_015_0977_z |
| PublicationCentury | 2000 |
| PublicationDate | 2016-11-01 |
| PublicationDateYYYYMMDD | 2016-11-01 |
| PublicationDate_xml | – month: 11 year: 2016 text: 2016-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | A Publication of the Mathematical Optimization Society |
| PublicationTitle | Mathematical programming |
| PublicationTitleAbbrev | Math. Program |
| PublicationYear | 2016 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Dumitrescu (CR6) 2007 Fawzi, Gouveia, Parrilo, Robinson, Thomas (CR7) 2015; 153 Ziegler (CR23) 1995 CR4 Griewank, Toint (CR14) 1984; 28 CR3 CR5 CR19 CR18 Rudin (CR20) 1990 Laurent (CR17) 2003; 28 CR9 CR15 Gouveia, Parrilo, Thomas (CR13) 2013; 38 Fiorini, Kaibel, Pashkovich, Theis (CR8) 2013; 313 CR11 Fawzi, Saunderson, Parrilo (CR10) 2015; 25 Grone, Johnson, Sá, Wolkowicz (CR12) 1984; 58 Terras (CR21) 1999 Yannakakis (CR22) 1991; 43 Barvinok (CR2) 2002 Lasserre (CR16) 2001; 11 Agler, Helton, McCullough, Rodman (CR1) 1988; 107 M Yannakakis (977_CR22) 1991; 43 B Dumitrescu (977_CR6) 2007 S Fiorini (977_CR8) 2013; 313 R Grone (977_CR12) 1984; 58 977_CR3 H Fawzi (977_CR7) 2015; 153 977_CR4 977_CR5 H Fawzi (977_CR10) 2015; 25 977_CR18 A Terras (977_CR21) 1999 GM Ziegler (977_CR23) 1995 977_CR19 977_CR9 A Griewank (977_CR14) 1984; 28 J Agler (977_CR1) 1988; 107 977_CR15 W Rudin (977_CR20) 1990 JB Lasserre (977_CR16) 2001; 11 M Laurent (977_CR17) 2003; 28 J Gouveia (977_CR13) 2013; 38 A Barvinok (977_CR2) 2002 977_CR11 |
| References_xml | – volume: 28 start-page: 871 issue: 4 year: 2003 end-page: 883 ident: CR17 article-title: Lower bound for the number of iterations in semidefinite hierarchies for the cut polytope publication-title: Math. Oper. Res. doi: 10.1287/moor.28.4.871.20508 – volume: 107 start-page: 101 year: 1988 end-page: 149 ident: CR1 article-title: Positive semidefinite matrices with a given sparsity pattern publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(88)90240-6 – year: 2007 ident: CR6 publication-title: Positive Trigonometric Polynomials and Signal Processing Applications – volume: 153 start-page: 133 issue: 1 year: 2015 end-page: 177 ident: CR7 article-title: Positive semidefinite rank publication-title: Math. Program. doi: 10.1007/s10107-015-0922-1 – ident: CR19 – ident: CR18 – volume: 11 start-page: 796 issue: 3 year: 2001 end-page: 817 ident: CR16 article-title: Global optimization with polynomials and the problem of moments publication-title: SIAM J. Optim. doi: 10.1137/S1052623400366802 – volume: 43 start-page: 441 issue: 3 year: 1991 end-page: 466 ident: CR22 article-title: Expressing combinatorial optimization problems by linear programs publication-title: J. Comput. Syst. Sci. doi: 10.1016/0022-0000(91)90024-Y – volume: 28 start-page: 25 issue: 1 year: 1984 end-page: 49 ident: CR14 article-title: On the existence of convex decompositions of partially separable functions publication-title: Math. Program. doi: 10.1007/BF02612711 – year: 1995 ident: CR23 publication-title: Lectures on Polytopes – ident: CR3 – ident: CR4 – volume: 313 start-page: 67 issue: 1 year: 2013 end-page: 83 ident: CR8 article-title: Combinatorial bounds on nonnegative rank and extended formulations publication-title: Discrete Math. doi: 10.1016/j.disc.2012.09.015 – ident: CR15 – year: 2002 ident: CR2 publication-title: A Course in Convexity – year: 1999 ident: CR21 publication-title: Fourier Analysis on Finite Groups and Applications doi: 10.1017/CBO9780511626265 – volume: 58 start-page: 109 year: 1984 end-page: 124 ident: CR12 article-title: Positive definite completions of partial hermitian matrices publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(84)90207-6 – ident: CR11 – ident: CR9 – volume: 38 start-page: 248 issue: 2 year: 2013 end-page: 264 ident: CR13 article-title: Lifts of convex sets and cone factorizations publication-title: Math. Oper. Res. doi: 10.1287/moor.1120.0575 – volume: 25 start-page: 2212 issue: 4 year: 2015 end-page: 2243 ident: CR10 article-title: Equivariant semidefinite lifts and sum-of-squares hierarchies publication-title: SIAM J. Optim. doi: 10.1137/140966265 – ident: CR5 – year: 1990 ident: CR20 publication-title: Fourier Analysis on Groups doi: 10.1002/9781118165621 – ident: 977_CR4 – volume: 58 start-page: 109 year: 1984 ident: 977_CR12 publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(84)90207-6 – volume: 25 start-page: 2212 issue: 4 year: 2015 ident: 977_CR10 publication-title: SIAM J. Optim. doi: 10.1137/140966265 – ident: 977_CR5 doi: 10.1137/1.9781611972290 – volume: 107 start-page: 101 year: 1988 ident: 977_CR1 publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(88)90240-6 – ident: 977_CR9 – ident: 977_CR19 – volume-title: Fourier Analysis on Groups year: 1990 ident: 977_CR20 doi: 10.1002/9781118165621 – volume: 153 start-page: 133 issue: 1 year: 2015 ident: 977_CR7 publication-title: Math. Program. doi: 10.1007/s10107-015-0922-1 – volume-title: Fourier Analysis on Finite Groups and Applications year: 1999 ident: 977_CR21 doi: 10.1017/CBO9780511626265 – volume: 43 start-page: 441 issue: 3 year: 1991 ident: 977_CR22 publication-title: J. Comput. Syst. Sci. doi: 10.1016/0022-0000(91)90024-Y – volume: 28 start-page: 25 issue: 1 year: 1984 ident: 977_CR14 publication-title: Math. Program. doi: 10.1007/BF02612711 – ident: 977_CR15 doi: 10.1007/978-3-642-20807-2_23 – ident: 977_CR18 doi: 10.1007/978-1-4757-3216-0_17 – ident: 977_CR3 doi: 10.1007/s00454-015-9682-1 – volume-title: Lectures on Polytopes year: 1995 ident: 977_CR23 doi: 10.1007/978-1-4613-8431-1 – volume: 28 start-page: 871 issue: 4 year: 2003 ident: 977_CR17 publication-title: Math. Oper. Res. doi: 10.1287/moor.28.4.871.20508 – volume: 313 start-page: 67 issue: 1 year: 2013 ident: 977_CR8 publication-title: Discrete Math. doi: 10.1016/j.disc.2012.09.015 – volume: 11 start-page: 796 issue: 3 year: 2001 ident: 977_CR16 publication-title: SIAM J. Optim. doi: 10.1137/S1052623400366802 – volume-title: A Course in Convexity year: 2002 ident: 977_CR2 – volume: 38 start-page: 248 issue: 2 year: 2013 ident: 977_CR13 publication-title: Math. Oper. Res. doi: 10.1287/moor.1120.0575 – volume-title: Positive Trigonometric Polynomials and Signal Processing Applications year: 2007 ident: 977_CR6 – ident: 977_CR11 doi: 10.1090/pspum/007/0152944 |
| SSID | ssj0001388 |
| Score | 2.382753 |
| Snippet | Let
G
be a finite abelian group. This paper is concerned with nonnegative functions on
G
that are
sparse
with respect to the Fourier basis. We establish... (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) Let G be a finite abelian group. This paper is concerned with nonnegative functions... (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).Let G be a finite abelian group. This paper is concerned with nonnegative functions... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 149 |
| SubjectTerms | Boolean Calculus of Variations and Optimal Control; Optimization Combinatorics Complexity Computer engineering Computer science Construction Decision support systems Decomposition Electrical engineering Fourier analysis Full Length Paper Functions (mathematics) Graphs Laboratories Linear programming Mathematical analysis Mathematical and Computational Physics Mathematical Methods in Physics Mathematical programming Mathematics Mathematics and Statistics Mathematics of Computing Numerical Analysis Optimization Polytopes Semidefinite programming Studies Theoretical |
| SummonAdditionalLinks | – databaseName: SpringerLink dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4VyoEeoLSgLtDKSJyKLHmTOHaOVQXiUlrxErfIdsZSJMgC3uXAr2ecTZYFUSQ4Rhk70XjG_sbzAtjNjMlzZVMujPQ8M9ZyovS8UtIORYHaSt82m1BHR_riovjX5XGHPtq9d0m2O_VcstuwDZOUXBBo4fcL8JFOOx37NRyfnM-232Gqdd-nNYKD3pX50hRPD6NHhPnMKdqeNQer7_rLz7DSQUv2ayoLa_ABmy_waa7gID39mVVpDV_h78k1mbXISBgDG3kWbiYxG4mNGubriEWZsRivQVib-xGYaSpWt7cQWLGAV3WFHeFl7cdhHc4O9k9_H_KuwQJ3mdRjTuae9BozjwlmBoVET_qrEmtNNtTOuRi16dLE-twgkmVmtcVMpCliYnLj0g1YbEYNfgNWVWRHJU6gL9LMK1M4RcBSSayUT1CoAYie06Xrqo_HJhiX5WPd5Mi5kjhXRs6V9wP4ORtyPS298Rrxdr98ZaeFoSTbSRFEKhI5gJ3Za9Kf6BQxDY4mkYZYQaBTiwHs9Us6N8X_Prj5JuotWCaklU-TGLdhcXw7we-w5O7Gdbj90QrwAzCd7Qc priority: 102 providerName: Springer Nature |
| Title | Sparse sums of squares on finite abelian groups and improved semidefinite lifts |
| URI | https://link.springer.com/article/10.1007/s10107-015-0977-z https://www.proquest.com/docview/1827074925 https://www.proquest.com/docview/1845811280 |
| Volume | 160 |
| WOSCitedRecordID | wos000385191700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: M0C dateStart: 20011001 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: P5Z dateStart: 20011001 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: K7- dateStart: 20011001 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: M7S dateStart: 20011001 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest ABI/INFORM Collection customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: 7WY dateStart: 20011001 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: BENPR dateStart: 20011001 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: M2P dateStart: 20011001 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1436-4646 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RlgMcKBQQC2VlJE4gC-fh2DkhqFohoV1WXR6FS2Q7YylSSbbNLof-esbZZLcg0QuXkaxM7Cjjsb_xeGYAXqbGZJmyCRdGep4aazlxel4qaSORo7bSd8Um1HSqz87yWX_g1vbXKoc1sVuoy8aFM_I3hIMVbXd5LN8uLnioGhW8q30JjR3YI2QThStdk3i2WYmjROuhZGvACYNXcx06F3WXLiUXBIH41Z_70hZs_uUf7badk_3__eD7cK8HnOzdeoY8gFtYH8D-UMyB9bp9AHevZSak1mSTzrV9CJ_mC7J_kVGvLWs8ay9WIWyJNTXzVQCtzFgM5yWsCxJpmalLVnXHFViyFn9WJfaM55Vfto_gy8nx56MPvK_EwF0q9ZKTXSi9xtRjjKlBIdGToqvYWpNG2jkXrne6JLY-M4hkwlltMRVJghibzLjkMezWTY1PgJUlGVyxE-jzJPXK5E4RAlUSS-VjFGoEYpBD4fo05aFaxnmxTbAcRFeQ6IoguuJqBK82ryzWOTpuYj4cxFX06toWW1mN4MXmMSla8J6YGptV4KFfQehUixG8HibFtS7-NeDTmwd8BncIg2Xr8MZD2F1ervA53Ha_llV7OYYd9e37GPbeH09np9T6qDjRiTgadzM9UDUnOpM_iJ7Ov_4Gl_QEmQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQ9UCigLhQwElxAFlnHiZ0DQgioWrVdKlGk3oLtjKVIJdk2uyD6o_iNjPPYLUj01gPHKI6t2J_H33heAM-lMWmqbMwjk3gujbWcWnpeqMSOowy1TXxbbEJNJvr4ODtcgV9DLExwqxxkYiuoi9qFO_LXxIMVHXeZSN5OT3moGhWsq0MJjQ4We_jzB6lszZvdD7S-L4TY_nj0fof3VQW4k4mecdJxEq9RehQoDUYJegKtEtYaOdbOueCq6GJhfWoQSR2x2qKM4hhRmNS4mPq9BtdlyCwWXAXF4ULyj2OthxKxgZcMVtQuVG_cOnkmPCLKxc__PAeX5PYve2x7zG2v_28TdAdu94Savet2wF1YwWoD1odiFayXXRuwdiHzIj0dLNLVNvfg0-cp6ffI6C8aVnvWnM5DWBarK-bLQMqZsRjug1gbBNMwUxWsbK9jsGANfisL7BuelH7W3IcvV_LLD2C1qivcBFYUpFAKF6HPYumVyZwihq0SLJQXGKkRRMO6565Pwx6qgZzkywTSASo5QSUPUMnPR_By8cm0y0FyWeOtAR55L46afImNETxbvCZBEqxDpsJ6HtrQVBD71tEIXg0gvNDFvwZ8ePmAT-HmztHBfr6_O9l7BLeIb6ZdKOcWrM7O5vgYbrjvs7I5e9LuJQZfrxqbvwEERVyQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB_0FNEHP09u9dQIPinhsm3SpI-iLoq6HpzKvZUknUDh7K6X7j3cX--k2-6tooL4WDpNy2TS_H6ZL4Bn0tqi0C7nwqrApXWOk2TgtVZuKko0ToW-2YSez83xcXk49DmNY7T76JJc5zSkKk1td7Csw8FW4tu0D5lUXBCA4eeX4YpMcfSJrh993fyKp7kxY8_WBBRGt-bvhvh5Y7pAm784SPt9Z3brv7_4NtwcICd7ubaRO3AJ27twY6sQIV193FRvjffg09GS6C4yMtLIFoHF76uUpcQWLQtNwqjMOkzHI6zPCYnMtjVr-tMJrFnEb02Ng-BJE7q4C19mbz6_esuHxgvcS2U6TjRQBYMyYIbSolAYaF3rzDkrp8Z7n6I5fZ65UFhEYmzOOJQizxEzW1if34eddtHiHrC6Jn6VeYGhzGXQtvSaAKdWWOuQodATEKPWKz9UJU_NMU6qi3rKSXMVaa5KmqvOJ_B888hyXZLjb8L741RWw-qMFXEqTdCpzNQEnm5u07pKzhLb4mKVZEgVBEaNmMCLcXq3hvjTCx_8k_QTuHb4elZ9eDd__xCuExgr1nmO-7DTna7wEVz1Z10TTx_3dv0DJbP4zw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+sums+of+squares+on+finite+abelian+groups+and+improved+semidefinite+lifts&rft.jtitle=Mathematical+programming&rft.au=Fawzi%2C+Hamza&rft.au=Saunderson%2C+James&rft.au=Parrilo%2C+Pablo+A&rft.date=2016-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=160&rft.issue=1-2&rft.spage=149&rft_id=info:doi/10.1007%2Fs10107-015-0977-z&rft.externalDocID=4208498101 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon |