Sparse sums of squares on finite abelian groups and improved semidefinite lifts

Let G be a finite abelian group. This paper is concerned with nonnegative functions on G that are sparse with respect to the Fourier basis. We establish combinatorial conditions on subsets S and T of Fourier basis elements under which nonnegative functions with Fourier support S are sums of squares...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming Jg. 160; H. 1-2; S. 149 - 191
Hauptverfasser: Fawzi, Hamza, Saunderson, James, Parrilo, Pablo A.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2016
Springer Nature B.V
Schlagworte:
ISSN:0025-5610, 1436-4646
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Let G be a finite abelian group. This paper is concerned with nonnegative functions on G that are sparse with respect to the Fourier basis. We establish combinatorial conditions on subsets S and T of Fourier basis elements under which nonnegative functions with Fourier support S are sums of squares of functions with Fourier support T . Our combinatorial condition involves constructing a chordal cover of a graph related to G and S (the Cayley graph Cay ( G ^ , S ) ) with maximal cliques related to T . Our result relies on two main ingredients: the decomposition of sparse positive semidefinite matrices with a chordal sparsity pattern, as well as a simple but key observation exploiting the structure of the Fourier basis elements of G (the characters of G ). We apply our general result to two examples. First, in the case where G = Z 2 n , by constructing a particular chordal cover of the half-cube graph, we prove that any nonnegative quadratic form in n binary variables is a sum of squares of functions of degree at most n / 2 , establishing a conjecture of Laurent. Second, we consider nonnegative functions of degree d on Z N (when d divides N ). By constructing a particular chordal cover of the d th power of the N -cycle, we prove that any such function is a sum of squares of functions with at most 3 d log ( N / d ) nonzero Fourier coefficients. Dually this shows that a certain cyclic polytope in R 2 d with N vertices can be expressed as a projection of a section of the cone of positive semidefinite matrices of size 3 d log ( N / d ) . Putting N = d 2 gives a family of polytopes in R 2 d with linear programming extension complexity Ω ( d 2 ) and semidefinite programming extension complexity O ( d log ( d ) ) . To the best of our knowledge, this is the first explicit family of polytopes ( P d ) in increasing dimensions where xc PSD ( P d ) = o ( xc LP ( P d ) ) , where xc PSD and xc LP are respectively the SDP and LP extension complexity.
AbstractList (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) Let G be a finite abelian group. This paper is concerned with nonnegative functions on G that are sparse with respect to the Fourier basis. We establish combinatorial conditions on subsets ... and ... of Fourier basis elements under which nonnegative functions with Fourier support ... are sums of squares of functions with Fourier support ... Our combinatorial condition involves constructing a chordal cover of a graph related to G and ... (the Cayley graph ...) with maximal cliques related to ... Our result relies on two main ingredients: the decomposition of sparse positive semidefinite matrices with a chordal sparsity pattern, as well as a simple but key observation exploiting the structure of the Fourier basis elements of G (the characters of G). We apply our general result to two examples. First, in the case where ..., by constructing a particular chordal cover of the half-cube graph, we prove that any nonnegative quadratic form in n binary variables is a sum of squares of functions of degree at most ..., establishing a conjecture of Laurent. Second, we consider nonnegative functions of degree d on ... (when d divides N). By constructing a particular chordal cover of the dth power of the N-cycle, we prove that any such function is a sum of squares of functions with at most ... nonzero Fourier coefficients. Dually this shows that a certain cyclic polytope in ... with N vertices can be expressed as a projection of a section of the cone of positive semidefinite matrices of size ... Putting ... gives a family of polytopes in ... with linear programming extension complexity ... and semidefinite programming extension complexity ... To the best of our knowledge, this is the first explicit family of polytopes ... in increasing dimensions where ..., where ... and ... are respectively the SDP and LP extension complexity.
Let G be a finite abelian group. This paper is concerned with nonnegative functions on G that are sparse with respect to the Fourier basis. We establish combinatorial conditions on subsets S and T of Fourier basis elements under which nonnegative functions with Fourier support S are sums of squares of functions with Fourier support T . Our combinatorial condition involves constructing a chordal cover of a graph related to G and S (the Cayley graph Cay ( G ^ , S ) ) with maximal cliques related to T . Our result relies on two main ingredients: the decomposition of sparse positive semidefinite matrices with a chordal sparsity pattern, as well as a simple but key observation exploiting the structure of the Fourier basis elements of G (the characters of G ). We apply our general result to two examples. First, in the case where G = Z 2 n , by constructing a particular chordal cover of the half-cube graph, we prove that any nonnegative quadratic form in n binary variables is a sum of squares of functions of degree at most n / 2 , establishing a conjecture of Laurent. Second, we consider nonnegative functions of degree d on Z N (when d divides N ). By constructing a particular chordal cover of the d th power of the N -cycle, we prove that any such function is a sum of squares of functions with at most 3 d log ( N / d ) nonzero Fourier coefficients. Dually this shows that a certain cyclic polytope in R 2 d with N vertices can be expressed as a projection of a section of the cone of positive semidefinite matrices of size 3 d log ( N / d ) . Putting N = d 2 gives a family of polytopes in R 2 d with linear programming extension complexity Ω ( d 2 ) and semidefinite programming extension complexity O ( d log ( d ) ) . To the best of our knowledge, this is the first explicit family of polytopes ( P d ) in increasing dimensions where xc PSD ( P d ) = o ( xc LP ( P d ) ) , where xc PSD and xc LP are respectively the SDP and LP extension complexity.
Author Fawzi, Hamza
Parrilo, Pablo A.
Saunderson, James
Author_xml – sequence: 1
  givenname: Hamza
  surname: Fawzi
  fullname: Fawzi, Hamza
  email: hfawzi@mit.edu
  organization: Laboratory for Information and Decision Systems, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology
– sequence: 2
  givenname: James
  surname: Saunderson
  fullname: Saunderson, James
  organization: Department of Electrical Engineering, University of Washington
– sequence: 3
  givenname: Pablo A.
  surname: Parrilo
  fullname: Parrilo, Pablo A.
  organization: Laboratory for Information and Decision Systems, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology
BookMark eNp9kMFq3DAQhkVIIZu0D5CbIJde3Ixk2ZKPZWnSwkIObc9C1o4WLba80diF5umjZfdQAs1p5vB9Mz__NbtMU0LGbgV8EQD6ngQI0BWIpoJO6-rlgq2EqttKtaq9ZCsA2VRNK-CKXRPtAUDUxqzY08-Dy4SclpH4FDg9Ly5jWRMPMcUZuetxiC7xXZ6WA3GXtjyOhzz9wS0nHOMWz-AQw0wf2YfgBsJP53nDfj98-7X-Xm2eHn-sv24qrxozV1JAEwyqgBKVQ2gwaKO17HunhPHeC-jA17IPrUM0XdebHhXUNaJ0rfP1Dft8uluSPC9Isx0jeRwGl3BayApT_gghDRT07g26n5acSrpCSQ1adbIplD5RPk9EGYP1cXZznNKcXRysAHss2p6KtqVoeyzavhRTvDEPOY4u_33XkSeHCpt2mP_J9F_pFRqqk2Y
CODEN MHPGA4
CitedBy_id crossref_primary_10_1016_j_acha_2024_101686
crossref_primary_10_1007_s10878_017_0169_2
crossref_primary_10_1137_16M105544X
crossref_primary_10_1007_s10107_020_01558_2
crossref_primary_10_1088_1742_5468_ac9cc8
crossref_primary_10_1080_10556788_2023_2250522
crossref_primary_10_1287_moor_2016_0797
crossref_primary_10_1007_s10107_021_01745_9
crossref_primary_10_1007_s10898_025_01523_3
crossref_primary_10_1287_moor_2024_0483
crossref_primary_10_1145_3626106
crossref_primary_10_1137_20M1324417
crossref_primary_10_1287_moor_2016_0813
crossref_primary_10_1007_s10107_024_02131_x
crossref_primary_10_1137_21M1458338
crossref_primary_10_1007_s10107_024_02147_3
crossref_primary_10_1137_22M1511394
Cites_doi 10.1287/moor.28.4.871.20508
10.1016/0024-3795(88)90240-6
10.1007/s10107-015-0922-1
10.1137/S1052623400366802
10.1016/0022-0000(91)90024-Y
10.1007/BF02612711
10.1016/j.disc.2012.09.015
10.1017/CBO9780511626265
10.1016/0024-3795(84)90207-6
10.1287/moor.1120.0575
10.1137/140966265
10.1002/9781118165621
10.1137/1.9781611972290
10.1007/978-3-642-20807-2_23
10.1007/978-1-4757-3216-0_17
10.1007/s00454-015-9682-1
10.1007/978-1-4613-8431-1
10.1090/pspum/007/0152944
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2016
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2016
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L.0
L6V
L7M
L~C
L~D
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10107-015-0977-z
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Professional Standard
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)
Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central (subscription)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Computer Science
EISSN 1436-4646
EndPage 191
ExternalDocumentID 4208498101
10_1007_s10107_015_0977_z
Genre Feature
GrantInformation_xml – fundername: Air Force Office of Scientific Research
  grantid: FA9550-11-1-0305
  funderid: http://dx.doi.org/10.13039/100000181
– fundername: Air Force Office of Scientific Research
  grantid: FA9550-12-1-0287
  funderid: http://dx.doi.org/10.13039/100000181
GroupedDBID --K
--Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1B1
1N0
1OL
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XPP
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L.0
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
PUEGO
Q9U
ID FETCH-LOGICAL-c458t-2105f8e4fe2e4ae05ef78772bba418ccc1090c32bf6aee899b8be4033ee2a6ac3
IEDL.DBID RSV
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000385191700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0025-5610
IngestDate Thu Sep 04 17:37:19 EDT 2025
Thu Sep 25 00:44:53 EDT 2025
Sat Nov 29 03:33:59 EST 2025
Tue Nov 18 22:34:14 EST 2025
Fri Feb 21 02:32:36 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords 52B12
90C22
52B55
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c458t-2105f8e4fe2e4ae05ef78772bba418ccc1090c32bf6aee899b8be4033ee2a6ac3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://hdl.handle.net/1721.1/104800
PQID 1827074925
PQPubID 25307
PageCount 43
ParticipantIDs proquest_miscellaneous_1845811280
proquest_journals_1827074925
crossref_citationtrail_10_1007_s10107_015_0977_z
crossref_primary_10_1007_s10107_015_0977_z
springer_journals_10_1007_s10107_015_0977_z
PublicationCentury 2000
PublicationDate 2016-11-01
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming
PublicationTitleAbbrev Math. Program
PublicationYear 2016
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Dumitrescu (CR6) 2007
Fawzi, Gouveia, Parrilo, Robinson, Thomas (CR7) 2015; 153
Ziegler (CR23) 1995
CR4
Griewank, Toint (CR14) 1984; 28
CR3
CR5
CR19
CR18
Rudin (CR20) 1990
Laurent (CR17) 2003; 28
CR9
CR15
Gouveia, Parrilo, Thomas (CR13) 2013; 38
Fiorini, Kaibel, Pashkovich, Theis (CR8) 2013; 313
CR11
Fawzi, Saunderson, Parrilo (CR10) 2015; 25
Grone, Johnson, Sá, Wolkowicz (CR12) 1984; 58
Terras (CR21) 1999
Yannakakis (CR22) 1991; 43
Barvinok (CR2) 2002
Lasserre (CR16) 2001; 11
Agler, Helton, McCullough, Rodman (CR1) 1988; 107
M Yannakakis (977_CR22) 1991; 43
B Dumitrescu (977_CR6) 2007
S Fiorini (977_CR8) 2013; 313
R Grone (977_CR12) 1984; 58
977_CR3
H Fawzi (977_CR7) 2015; 153
977_CR4
977_CR5
H Fawzi (977_CR10) 2015; 25
977_CR18
A Terras (977_CR21) 1999
GM Ziegler (977_CR23) 1995
977_CR19
977_CR9
A Griewank (977_CR14) 1984; 28
J Agler (977_CR1) 1988; 107
977_CR15
W Rudin (977_CR20) 1990
JB Lasserre (977_CR16) 2001; 11
M Laurent (977_CR17) 2003; 28
J Gouveia (977_CR13) 2013; 38
A Barvinok (977_CR2) 2002
977_CR11
References_xml – volume: 28
  start-page: 871
  issue: 4
  year: 2003
  end-page: 883
  ident: CR17
  article-title: Lower bound for the number of iterations in semidefinite hierarchies for the cut polytope
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.28.4.871.20508
– volume: 107
  start-page: 101
  year: 1988
  end-page: 149
  ident: CR1
  article-title: Positive semidefinite matrices with a given sparsity pattern
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(88)90240-6
– year: 2007
  ident: CR6
  publication-title: Positive Trigonometric Polynomials and Signal Processing Applications
– volume: 153
  start-page: 133
  issue: 1
  year: 2015
  end-page: 177
  ident: CR7
  article-title: Positive semidefinite rank
  publication-title: Math. Program.
  doi: 10.1007/s10107-015-0922-1
– ident: CR19
– ident: CR18
– volume: 11
  start-page: 796
  issue: 3
  year: 2001
  end-page: 817
  ident: CR16
  article-title: Global optimization with polynomials and the problem of moments
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623400366802
– volume: 43
  start-page: 441
  issue: 3
  year: 1991
  end-page: 466
  ident: CR22
  article-title: Expressing combinatorial optimization problems by linear programs
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/0022-0000(91)90024-Y
– volume: 28
  start-page: 25
  issue: 1
  year: 1984
  end-page: 49
  ident: CR14
  article-title: On the existence of convex decompositions of partially separable functions
  publication-title: Math. Program.
  doi: 10.1007/BF02612711
– year: 1995
  ident: CR23
  publication-title: Lectures on Polytopes
– ident: CR3
– ident: CR4
– volume: 313
  start-page: 67
  issue: 1
  year: 2013
  end-page: 83
  ident: CR8
  article-title: Combinatorial bounds on nonnegative rank and extended formulations
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2012.09.015
– ident: CR15
– year: 2002
  ident: CR2
  publication-title: A Course in Convexity
– year: 1999
  ident: CR21
  publication-title: Fourier Analysis on Finite Groups and Applications
  doi: 10.1017/CBO9780511626265
– volume: 58
  start-page: 109
  year: 1984
  end-page: 124
  ident: CR12
  article-title: Positive definite completions of partial hermitian matrices
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(84)90207-6
– ident: CR11
– ident: CR9
– volume: 38
  start-page: 248
  issue: 2
  year: 2013
  end-page: 264
  ident: CR13
  article-title: Lifts of convex sets and cone factorizations
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.1120.0575
– volume: 25
  start-page: 2212
  issue: 4
  year: 2015
  end-page: 2243
  ident: CR10
  article-title: Equivariant semidefinite lifts and sum-of-squares hierarchies
  publication-title: SIAM J. Optim.
  doi: 10.1137/140966265
– ident: CR5
– year: 1990
  ident: CR20
  publication-title: Fourier Analysis on Groups
  doi: 10.1002/9781118165621
– ident: 977_CR4
– volume: 58
  start-page: 109
  year: 1984
  ident: 977_CR12
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(84)90207-6
– volume: 25
  start-page: 2212
  issue: 4
  year: 2015
  ident: 977_CR10
  publication-title: SIAM J. Optim.
  doi: 10.1137/140966265
– ident: 977_CR5
  doi: 10.1137/1.9781611972290
– volume: 107
  start-page: 101
  year: 1988
  ident: 977_CR1
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(88)90240-6
– ident: 977_CR9
– ident: 977_CR19
– volume-title: Fourier Analysis on Groups
  year: 1990
  ident: 977_CR20
  doi: 10.1002/9781118165621
– volume: 153
  start-page: 133
  issue: 1
  year: 2015
  ident: 977_CR7
  publication-title: Math. Program.
  doi: 10.1007/s10107-015-0922-1
– volume-title: Fourier Analysis on Finite Groups and Applications
  year: 1999
  ident: 977_CR21
  doi: 10.1017/CBO9780511626265
– volume: 43
  start-page: 441
  issue: 3
  year: 1991
  ident: 977_CR22
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/0022-0000(91)90024-Y
– volume: 28
  start-page: 25
  issue: 1
  year: 1984
  ident: 977_CR14
  publication-title: Math. Program.
  doi: 10.1007/BF02612711
– ident: 977_CR15
  doi: 10.1007/978-3-642-20807-2_23
– ident: 977_CR18
  doi: 10.1007/978-1-4757-3216-0_17
– ident: 977_CR3
  doi: 10.1007/s00454-015-9682-1
– volume-title: Lectures on Polytopes
  year: 1995
  ident: 977_CR23
  doi: 10.1007/978-1-4613-8431-1
– volume: 28
  start-page: 871
  issue: 4
  year: 2003
  ident: 977_CR17
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.28.4.871.20508
– volume: 313
  start-page: 67
  issue: 1
  year: 2013
  ident: 977_CR8
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2012.09.015
– volume: 11
  start-page: 796
  issue: 3
  year: 2001
  ident: 977_CR16
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623400366802
– volume-title: A Course in Convexity
  year: 2002
  ident: 977_CR2
– volume: 38
  start-page: 248
  issue: 2
  year: 2013
  ident: 977_CR13
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.1120.0575
– volume-title: Positive Trigonometric Polynomials and Signal Processing Applications
  year: 2007
  ident: 977_CR6
– ident: 977_CR11
  doi: 10.1090/pspum/007/0152944
SSID ssj0001388
Score 2.382753
Snippet Let G be a finite abelian group. This paper is concerned with nonnegative functions on G that are sparse with respect to the Fourier basis. We establish...
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) Let G be a finite abelian group. This paper is concerned with nonnegative functions...
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).Let G be a finite abelian group. This paper is concerned with nonnegative functions...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 149
SubjectTerms Boolean
Calculus of Variations and Optimal Control; Optimization
Combinatorics
Complexity
Computer engineering
Computer science
Construction
Decision support systems
Decomposition
Electrical engineering
Fourier analysis
Full Length Paper
Functions (mathematics)
Graphs
Laboratories
Linear programming
Mathematical analysis
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematical programming
Mathematics
Mathematics and Statistics
Mathematics of Computing
Numerical Analysis
Optimization
Polytopes
Semidefinite programming
Studies
Theoretical
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61tIdygJa2YoEiI_XUymoSO4n3hCpUxAWKRCtxi_yYSJFosot3OfDrGSfOLq0Elx6j-BFlPJ5v3gCfrSOdQqTIp1IKTvLWcY1O81IYq2xdOmGHZhPlxYW6vp5eRoObj2GV453YX9Sus8FG_o1wcEnibprlx7M5D12jgnc1ttB4Ca8I2aQhpOs8u1zdxKlQamzZGnDC6NUcUufSPugy5wlBIH7_t1xag81__KO92Dnd_t8PfgtbEXCy78MJeQcvsN2B7bGZA4u8vQObjyoT0tP5qpyrfw8_r2ak_yKjVT3raubny5C2xLqW1U0ArUwbDPYS1ieJeKZbx5reXIGOefzTOIwDb5p64T_A79Mfv07OeOzEwK3M1YKTXpjXCmWNGUqNSY41MXqZGaNlqqy1IbzTiszUhUYkFc4ogzIRAjHThbbiI2y0XYu7wGgC6kIU6IyTxgavndFpoiyJRZPLYgLJSIfKxjLloVvGTbUusBxIVxHpqkC66n4CX1ZTZkONjucGH4zkqiK7-mpNqwkcrV4TowXviW6xW4Yx9CsInapkAl_HQ_Foiac23Ht-w314QxisGNIbD2BjcbvET_Da3i0af3vYn-cHqGL8oQ
  priority: 102
  providerName: ProQuest
Title Sparse sums of squares on finite abelian groups and improved semidefinite lifts
URI https://link.springer.com/article/10.1007/s10107-015-0977-z
https://www.proquest.com/docview/1827074925
https://www.proquest.com/docview/1845811280
Volume 160
WOSCitedRecordID wos000385191700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: 7WY
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: M0C
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: P5Z
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: K7-
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: M7S
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (subscription)
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: BENPR
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: M2P
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6ax6E9pG3a0k3TRYWeEgS2JdvaYxsSCiXbJdu8ejF6jMGQepNoN4f8-o689mYTkkJ7GRAe2Wb0mG80mhmAz9aRTSFi5AMpBSd967hGp3kujFW2zJ2w82IT-XCozs4GozaO23e33TuXZLNTLwW7xc01yZRHBFr47QqskbZToV7D0fhksf3GQqmuTmsAB50r87FX3FdGdwjzgVO00TUHL__rL1_BRgst2Zf5XHgNz7DehBdLCQepdbjI0urfwI_xJZm1yGgyejYpmb-ahWgkNqlZWQUsyrTBcAzCmtgPz3TtWNWcQqBjHn9XDlvGi6qc-rdwfLD_c-8bbwsscCtTNeVk7qWlQlliglJjlGJJ6zdPjNEyVtbacGvTisSUmUYky8wogzISAjHRmbbiHazWkxrfA6MOqDORoTNOGhuccUbHkbKk7Uwqsx5EnaQL22YfD0UwLoq7vMlBcgVJrgiSK257sLPocjlPvfE35u1u-Ip2FfqCbKecINIgSXvwafGY1k9wiugaJ7PAQ6Ig0KmiHux2Q7r0iqc-uPVP3B_gOSGtbB7EuA2r0-sZfoR1ezOt_HUfVvLT8z6sfd0fjo6o9T3nRA-jvUCTUaD5mOgo_dVvJvsfufzzwA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQ9UCigLhQwElxAFknsJN4DQgioWrVdKlGk3oIfEylSSbbNLoj-KH4j4yTeLUj01gPHKH7I9ud5eF4Az60jnULEyMdSCk781nGNTvNcGKtsmTth-2IT-WSijo_HhyvwK8TCeLfKQBM7Qu0a69_IX5McnBO7Gyfp2-kp91WjvHU1lNDoYbGHP3-Qyta-2f1A5_siSbY_Hr3f4UNVAW5lqmacdJy0VChLTFBqjFIsCbR5YoyWsbLWeldFKxJTZhqR1BGjDMpICMREZ9oKGvcaXJc-s5h3FUwOF5Q_FkqFErFeLglW1D5UL-6cPFMekcjFz__kg0vh9i97bMfmttf_tw26A7cHgZq962_AXVjBegPWQ7EKNtCuDVi7kHmRvg4W6Wrbe_Dp85T0e2S0ipY1JWtP5z4sizU1KysvlDNt0L8HsS4IpmW6dqzqnmPQsRa_VQ6HhidVOWvvw5crWfIDWK2bGjeBUQfUmcjQGSeN9VZJo-NIWWL7JpXZCKJw7oUd0rD7aiAnxTKBtIdKQVApPFSK8xG8XHSZ9jlILmu8FeBRDOSoLZbYGMGzxW8iJN46pGts5r4NbQVJ3yoawasAwgtD_GvCh5dP-BRu7hwd7Bf7u5O9R3CL5M2sD-XcgtXZ2Rwfww37fVa1Z0-6u8Tg61Vj8zeBxlwO
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VghAcyqtVlxYwEieQ1WzsJN4jol0VAUulAuot8mMsRWqzS53tob-ecR7bBQES4hh57EQzduYbzwvglXVkU4gx8omUgpO-dVyj07wQxirrCyds12yimM3U2dnkpO9zGoZo98El2eU0xCpNdXOwcP5gLfFt3IZMZjwhAMOvb8FtGePoo7l--m31Kx4LpYaerREoDG7N3y3xs2K6QZu_OEhbvTN98N9f_BC2esjJ3nZ75BFsYP0Y7q8VIqSnT6vqreEJfD5dkLmLjDZpYHPPwvdlzFJi85r5KmJUpg3G6xHW5oQEpmvHqvZ2Ah0LeFE57AnPK9-Ebfg6Pfry7pj3jRe4lZlqOJmBmVcoPaYoNSYZejrXRWqMlmNlrY3RnFakxucakSw2owzKRAjEVOfaih3YrOc17gKjCahzkaMzThobnXRGk6QsaUGTyXwEycD10vZVyWNzjPPypp5y5FxJnCsj58rrEbxeTVl0JTn-Rrw_iLLsT2coyaYqCDpN0mwEL1fDdK6is0TXOF9GGmIFgVGVjODNIN61Jf70wqf_RP0C7p4cTsuP72cf9uAegbG8y3Pch83mconP4I69aqpw-bzd1z8AWND4TQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+sums+of+squares+on+finite+abelian+groups+and+improved+semidefinite+lifts&rft.jtitle=Mathematical+programming&rft.au=Fawzi%2C+Hamza&rft.au=Saunderson%2C+James&rft.au=Parrilo%2C+Pablo+A&rft.date=2016-11-01&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=160&rft.issue=1-2&rft.spage=149&rft.epage=191&rft_id=info:doi/10.1007%2Fs10107-015-0977-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon