Change-point detection in time-series data by relative density-ratio estimation

The objective of change-point detection is to discover abrupt property changes lying behind time-series data. In this paper, we present a novel statistical change-point detection algorithm based on non-parametric divergence estimation between time-series samples from two retrospective segments. Our...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Neural networks Ročník 43; s. 72 - 83
Hlavní autori: Liu, Song, Yamada, Makoto, Collier, Nigel, Sugiyama, Masashi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Kidlington Elsevier Ltd 01.07.2013
Elsevier
Predmet:
ISSN:0893-6080, 1879-2782, 1879-2782
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The objective of change-point detection is to discover abrupt property changes lying behind time-series data. In this paper, we present a novel statistical change-point detection algorithm based on non-parametric divergence estimation between time-series samples from two retrospective segments. Our method uses the relative Pearson divergence as a divergence measure, and it is accurately and efficiently estimated by a method of direct density-ratio estimation. Through experiments on artificial and real-world datasets including human-activity sensing, speech, and Twitter messages, we demonstrate the usefulness of the proposed method.
AbstractList The objective of change-point detection is to discover abrupt property changes lying behind time-series data. In this paper, we present a novel statistical change-point detection algorithm based on non-parametric divergence estimation between time-series samples from two retrospective segments. Our method uses the relative Pearson divergence as a divergence measure, and it is accurately and efficiently estimated by a method of direct density-ratio estimation. Through experiments on artificial and real-world datasets including human-activity sensing, speech, and Twitter messages, we demonstrate the usefulness of the proposed method.
The objective of change-point detection is to discover abrupt property changes lying behind time-series data. In this paper, we present a novel statistical change-point detection algorithm based on non-parametric divergence estimation between time-series samples from two retrospective segments. Our method uses the relative Pearson divergence as a divergence measure, and it is accurately and efficiently estimated by a method of direct density-ratio estimation. Through experiments on artificial and real-world datasets including human-activity sensing, speech, and Twitter messages, we demonstrate the usefulness of the proposed method.The objective of change-point detection is to discover abrupt property changes lying behind time-series data. In this paper, we present a novel statistical change-point detection algorithm based on non-parametric divergence estimation between time-series samples from two retrospective segments. Our method uses the relative Pearson divergence as a divergence measure, and it is accurately and efficiently estimated by a method of direct density-ratio estimation. Through experiments on artificial and real-world datasets including human-activity sensing, speech, and Twitter messages, we demonstrate the usefulness of the proposed method.
Author Sugiyama, Masashi
Collier, Nigel
Yamada, Makoto
Liu, Song
Author_xml – sequence: 1
  givenname: Song
  surname: Liu
  fullname: Liu, Song
  email: song@sg.cs.titech.ac.jp
  organization: Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
– sequence: 2
  givenname: Makoto
  surname: Yamada
  fullname: Yamada, Makoto
  email: yamada.makoto@lab.ntt.co.jp
  organization: NTT Communication Science Laboratories, 2-4, Hikaridai, Seika-cho, Kyoto 619-0237, Japan
– sequence: 3
  givenname: Nigel
  surname: Collier
  fullname: Collier, Nigel
  email: collier@nii.ac.jp
  organization: National Institute of Informatics (NII), 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
– sequence: 4
  givenname: Masashi
  surname: Sugiyama
  fullname: Sugiyama, Masashi
  email: sugi@cs.titech.ac.jp
  organization: Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27312067$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23500502$$D View this record in MEDLINE/PubMed
BookMark eNqFkk2LFDEQhoOsuLOr_0CkL4KXHitJdzrxIMjgFyzsRc-hOl2tGXrSY5JZmH9v2plF8OBAhVTCU1XhfXPDrsIciLGXHNYcuHq7XQc6BMprAVyugZcQT9iK687UotPiiq1AG1kr0HDNblLaAoDSjXzGroVsAVoQK3a_-YnhB9X72YdcDZTJZT-Hyocq-x3ViaKnVA2YseqPVaQJs3-gQobk87GO5ThXlAq8ZOE5ezrilOjFeb9l3z99_Lb5Ut_df_66-XBXu6bVueZonNKDMgJFWbxFORhstO5QGd1pJDOqct2XlzoBCGOn-96IvjF9g9DKW_bm1Hcf51-HMt_ufHI0TRhoPiTLVcdbzrWEy2jRQoOQ0lxGZdOJ1iizoK_O6KHf0WD3sSgQj_ZR2gK8PgOYHE5jxOB8-st1kgtQXeHenTgX55Qijdb5_EfLHNFPloNd_LZbe_LbLn5b4CWWIc0_xY_9L5S9P5VRsejBU7TJeQqOBh_LB7DD7P_f4DfKtsR9
CitedBy_id crossref_primary_10_1016_j_cobme_2019_01_001
crossref_primary_10_1109_ACCESS_2021_3064603
crossref_primary_10_1109_TKDE_2023_3347356
crossref_primary_10_1145_3511918
crossref_primary_10_1016_j_eswa_2022_118260
crossref_primary_10_3233_JIFS_169959
crossref_primary_10_1109_JBHI_2020_2999607
crossref_primary_10_1016_j_ecolind_2017_07_036
crossref_primary_10_1061_AJRUA6_RUENG_1625
crossref_primary_10_1109_JSEN_2024_3462493
crossref_primary_10_1007_s42421_023_00084_9
crossref_primary_10_1109_ACCESS_2022_3155255
crossref_primary_10_1080_07350015_2024_2362269
crossref_primary_10_1109_TNNLS_2020_3027426
crossref_primary_10_1109_TSP_2021_3087031
crossref_primary_10_1109_TBME_2015_2463283
crossref_primary_10_3390_w13213124
crossref_primary_10_1016_j_trf_2017_11_021
crossref_primary_10_1016_j_engappai_2023_106466
crossref_primary_10_1016_j_aei_2024_102859
crossref_primary_10_1016_j_ifacsc_2021_100170
crossref_primary_10_1109_TCDS_2020_3023196
crossref_primary_10_1007_s41060_020_00223_3
crossref_primary_10_1145_3678569
crossref_primary_10_1007_s10661_020_08629_z
crossref_primary_10_1109_TSG_2016_2555906
crossref_primary_10_1016_j_apenergy_2018_03_007
crossref_primary_10_1155_2022_9242773
crossref_primary_10_1016_j_dsp_2024_104854
crossref_primary_10_1016_j_engappai_2023_107323
crossref_primary_10_1109_TPAMI_2018_2823766
crossref_primary_10_1007_s10489_022_04231_7
crossref_primary_10_1145_3406243
crossref_primary_10_1145_3411832
crossref_primary_10_1109_TCAD_2018_2846641
crossref_primary_10_1007_s12553_018_0260_4
crossref_primary_10_3233_AIC_190625
crossref_primary_10_1007_s13369_021_05384_2
crossref_primary_10_1016_j_ifacol_2023_10_728
crossref_primary_10_3390_stats7020028
crossref_primary_10_1016_j_engappai_2023_106480
crossref_primary_10_3390_inventions4030042
crossref_primary_10_1007_s10115_016_0987_z
crossref_primary_10_1016_j_tust_2018_07_013
crossref_primary_10_1016_j_ifacol_2020_12_100
crossref_primary_10_1016_j_patcog_2017_11_009
crossref_primary_10_1007_s41060_023_00463_z
crossref_primary_10_3390_sym17040515
crossref_primary_10_1088_1742_6596_1513_1_012018
crossref_primary_10_1109_JIOT_2024_3409386
crossref_primary_10_1016_j_ymssp_2024_111173
crossref_primary_10_1109_TKDE_2019_2961097
crossref_primary_10_1162_NECO_a_00492
crossref_primary_10_4028_www_scientific_net_AMM_536_537_499
crossref_primary_10_1016_j_buildenv_2017_05_005
crossref_primary_10_1016_j_engappai_2024_108217
crossref_primary_10_1109_TII_2025_3567380
crossref_primary_10_1080_24725854_2020_1786195
crossref_primary_10_1080_07474946_2019_1686886
crossref_primary_10_1109_TSP_2020_2990597
crossref_primary_10_1016_j_ins_2018_10_047
crossref_primary_10_3389_frobt_2022_903450
crossref_primary_10_1162_neco_a_01092
crossref_primary_10_1007_s40974_016_0011_1
crossref_primary_10_1109_TII_2020_3009985
crossref_primary_10_1155_2019_5314520
crossref_primary_10_1063_5_0226455
crossref_primary_10_1109_ACCESS_2022_3162399
crossref_primary_10_1152_jn_00684_2017
crossref_primary_10_1080_02626667_2019_1686507
crossref_primary_10_1080_23311916_2024_2340191
crossref_primary_10_1007_s42979_024_02712_9
crossref_primary_10_1016_j_conengprac_2023_105457
crossref_primary_10_1016_j_jocs_2021_101385
crossref_primary_10_1016_j_enbuild_2017_09_052
crossref_primary_10_3390_sym12040599
crossref_primary_10_1016_j_eswa_2015_07_003
crossref_primary_10_1016_j_eswa_2025_126798
crossref_primary_10_1007_s10618_023_00974_0
crossref_primary_10_20965_jrm_2020_p0113
crossref_primary_10_1109_TNNLS_2020_3027364
crossref_primary_10_1162_NECO_a_00589
crossref_primary_10_1016_j_ifacol_2018_09_070
crossref_primary_10_1016_j_pmcj_2016_06_015
crossref_primary_10_1109_ACCESS_2024_3455318
crossref_primary_10_1016_j_neuroimage_2022_119052
crossref_primary_10_1016_j_ress_2023_109490
crossref_primary_10_1016_j_ymssp_2020_106987
crossref_primary_10_1155_2021_6659371
crossref_primary_10_1109_LSP_2019_2957645
crossref_primary_10_1109_TITS_2024_3392959
crossref_primary_10_1587_transinf_E97_D_1822
crossref_primary_10_3390_e21121134
crossref_primary_10_1002_mma_5394
crossref_primary_10_1016_j_patcog_2022_109022
crossref_primary_10_1007_s11390_020_9349_0
crossref_primary_10_1109_JPROC_2017_2787688
crossref_primary_10_1002_asmb_2357
crossref_primary_10_1162_NECO_a_00835
crossref_primary_10_3390_e21050531
crossref_primary_10_1145_3183346
crossref_primary_10_3390_s21092946
crossref_primary_10_1109_TNNLS_2015_2512714
crossref_primary_10_1007_s00500_016_2351_3
crossref_primary_10_1016_j_eswa_2025_128863
crossref_primary_10_1109_TITS_2020_2971214
crossref_primary_10_1016_j_dsp_2022_103462
crossref_primary_10_1016_j_jmsy_2018_07_007
crossref_primary_10_1016_j_trb_2018_03_017
crossref_primary_10_3390_electronics9010181
crossref_primary_10_1147_JRD_2017_2768678
crossref_primary_10_2196_21418
crossref_primary_10_1007_s10994_023_06510_x
crossref_primary_10_1109_TCAD_2015_2504875
crossref_primary_10_1109_TFUZZ_2019_2930022
crossref_primary_10_2196_publichealth_5789
crossref_primary_10_1007_s11042_024_19214_8
crossref_primary_10_1016_j_energy_2019_116366
crossref_primary_10_1109_TNNLS_2022_3151683
crossref_primary_10_1073_pnas_1813476116
crossref_primary_10_1007_s10489_021_02321_6
crossref_primary_10_3390_info12070274
crossref_primary_10_1016_j_conengprac_2015_05_010
crossref_primary_10_1038_s41598_022_17848_y
crossref_primary_10_1109_LRA_2017_2708126
crossref_primary_10_1007_s00521_018_3556_4
crossref_primary_10_1016_j_eswa_2021_115641
crossref_primary_10_1016_j_sigpro_2019_107299
crossref_primary_10_14254_1795_6889_2022_18_3_4
crossref_primary_10_1109_TII_2022_3173957
crossref_primary_10_1016_j_eswa_2024_123342
crossref_primary_10_1371_journal_pone_0290331
crossref_primary_10_1109_TWC_2020_2987990
crossref_primary_10_1002_qre_2233
crossref_primary_10_1016_j_comnet_2021_108125
crossref_primary_10_1016_j_arcontrol_2021_04_001
crossref_primary_10_1080_24725854_2021_1875520
crossref_primary_10_1093_bib_bbac506
crossref_primary_10_1371_journal_pone_0310194
crossref_primary_10_3390_ijgi8090407
crossref_primary_10_1016_j_ejor_2025_03_006
crossref_primary_10_1109_ACCESS_2022_3154103
crossref_primary_10_1145_3492327
crossref_primary_10_1007_s40860_018_0065_2
crossref_primary_10_1016_j_neucom_2015_11_138
crossref_primary_10_1145_3106369
crossref_primary_10_3389_fphy_2022_873848
crossref_primary_10_1002_acs_2879
crossref_primary_10_1016_j_ijepes_2020_106457
crossref_primary_10_1088_1742_6596_1740_1_012052
crossref_primary_10_1145_3530990
crossref_primary_10_1007_s10758_015_9254_8
crossref_primary_10_1016_j_patcog_2014_07_028
crossref_primary_10_1016_j_compbiomed_2025_109712
crossref_primary_10_1016_j_jclepro_2020_125367
crossref_primary_10_3390_s20010310
crossref_primary_10_3390_s17102219
crossref_primary_10_1080_07474946_2023_2272908
crossref_primary_10_1016_j_bdr_2017_02_001
crossref_primary_10_1109_JSYST_2018_2876461
crossref_primary_10_2166_nh_2021_180
crossref_primary_10_1007_s10707_020_00395_x
crossref_primary_10_1109_TCCN_2020_3018157
crossref_primary_10_3390_math7050474
crossref_primary_10_1007_s41060_025_00841_9
crossref_primary_10_1016_j_neunet_2023_11_013
crossref_primary_10_1109_JSTARS_2015_2428306
crossref_primary_10_1109_ACCESS_2020_3021508
crossref_primary_10_1109_ACCESS_2023_3318318
crossref_primary_10_1145_3508020
crossref_primary_10_3390_technologies12070096
crossref_primary_10_1016_j_ymssp_2018_11_051
crossref_primary_10_1016_j_jprocont_2017_09_004
crossref_primary_10_1109_TKDE_2015_2426693
crossref_primary_10_1109_TNNLS_2023_3294846
crossref_primary_10_1109_MC_2016_338
crossref_primary_10_1007_s11760_016_0997_z
crossref_primary_10_1109_JBHI_2019_2937116
crossref_primary_10_3389_fphys_2017_01112
crossref_primary_10_1016_j_isprsjprs_2016_10_011
crossref_primary_10_1007_s00521_020_05091_3
crossref_primary_10_1109_TCYB_2017_2647965
crossref_primary_10_1016_j_jss_2024_112184
crossref_primary_10_1002_widm_70016
crossref_primary_10_1016_j_cosrev_2020_100301
crossref_primary_10_1109_TNNLS_2020_3006738
crossref_primary_10_1016_j_jbi_2016_07_020
crossref_primary_10_1016_j_cageo_2022_105040
crossref_primary_10_1007_s10044_025_01507_9
crossref_primary_10_1186_1471_2202_14_101
crossref_primary_10_1007_s10115_019_01366_x
crossref_primary_10_1109_ACCESS_2019_2939201
crossref_primary_10_1145_3431503
crossref_primary_10_1016_j_knosys_2020_105792
crossref_primary_10_1109_TKDE_2024_3492339
crossref_primary_10_1016_j_cor_2024_106960
crossref_primary_10_1109_TKDE_2018_2850347
crossref_primary_10_1109_TSMC_2017_2682502
crossref_primary_10_3390_s22249626
crossref_primary_10_1093_nsr_nwab228
crossref_primary_10_1109_TNNLS_2016_2619909
crossref_primary_10_1007_s41060_025_00716_z
crossref_primary_10_3390_rs13234785
Cites_doi 10.1109/TKDE.2006.1599387
10.1016/j.neunet.2009.07.007
10.1007/BF00994018
10.1162/089976601750264965
10.1162/NECO_a_00442
10.1111/j.2517-6161.1966.tb00626.x
10.1016/S1631-073X(03)00215-2
10.1175/JAM2493.1
10.1109/ICDM.2007.78
10.1080/14786440009463897
10.1002/sam.10124
10.1145/1553374.1553418
10.1145/1273496.1273507
10.1007/s10115-010-0283-2
10.1081/SAC-120017494
10.1007/s10463-011-0343-8
10.1145/347090.347160
10.1214/aoms/1177729694
10.1109/TSP.2005.851098
10.1109/9.481608
10.1007/s10994-011-5266-3
10.1007/s10994-012-5323-6
10.1609/aaai.v25i1.7905
10.1016/j.neunet.2011.04.003
10.1007/s10463-008-0197-x
10.1145/1772690.1772777
10.1109/TIT.2010.2068870
10.1109/ISIT.2007.4557517
10.1371/journal.pone.0020060
10.1145/312129.312190
10.1016/j.neunet.2010.10.005
10.1016/S0169-7161(88)07022-1
10.1214/aos/1176344136
10.1109/TIT.2011.2163380
ContentType Journal Article
Copyright 2013 Elsevier Ltd
2014 INIST-CNRS
Copyright © 2013 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2013 Elsevier Ltd
– notice: 2014 INIST-CNRS
– notice: Copyright © 2013 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.neunet.2013.01.012
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList MEDLINE
Neurosciences Abstracts
Computer and Information Systems Abstracts

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Mathematics
Applied Sciences
Statistics
EISSN 1879-2782
EndPage 83
ExternalDocumentID 23500502
27312067
10_1016_j_neunet_2013_01_012
S0893608013000270
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYFN
ABAOU
ABBOA
ABCQJ
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADRHT
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AGCQF
AGRNS
BNPGV
IQODW
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c458t-1a9c68d692a292a15a3d9a4887a69878ae9f6a15b235c20a0f78bb92b49b4a053
ISICitedReferencesCount 318
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000319237700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0893-6080
1879-2782
IngestDate Sun Sep 28 08:05:45 EDT 2025
Sun Sep 28 08:33:24 EDT 2025
Mon Sep 29 04:54:59 EDT 2025
Thu Apr 03 07:00:53 EDT 2025
Mon Jul 21 09:15:26 EDT 2025
Sat Nov 29 02:39:43 EST 2025
Tue Nov 18 22:01:01 EST 2025
Fri Feb 23 02:28:35 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Change-point detection
Kernel methods
Time-series data
Distribution comparison
Relative density-ratio estimation
Statistical analysis
Divergence
Event detection
Time series
Non parametric estimation
Social network
Change point
Kernel method
Lying
Human activity
Probability density function
Web site
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
Copyright © 2013 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c458t-1a9c68d692a292a15a3d9a4887a69878ae9f6a15b235c20a0f78bb92b49b4a053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23500502
PQID 1347259699
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_1671511830
proquest_miscellaneous_1500802339
proquest_miscellaneous_1347259699
pubmed_primary_23500502
pascalfrancis_primary_27312067
crossref_citationtrail_10_1016_j_neunet_2013_01_012
crossref_primary_10_1016_j_neunet_2013_01_012
elsevier_sciencedirect_doi_10_1016_j_neunet_2013_01_012
PublicationCentury 2000
PublicationDate 2013-07-01
PublicationDateYYYYMMDD 2013-07-01
PublicationDate_xml – month: 07
  year: 2013
  text: 2013-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2013
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Csörgö, Horváth (br000045) 1988
Ide, T., & Tsuda, K. (2007). Change-point detection using Krylov subspace learning. In
Moskvina, Zhigljavsky (br000155) 2003; 32
Moskvina, V., & Zhigljavsky, A. (2003a). Application of singular-spectrum analysis to change-point detection in time series. School of Mathematics, Cardiff University.
Kanamori, Suzuki, Sugiyama (br000115) 2012; 58
Pearson (br000175) 1900; 50
(pp. 181–189).
Kawahara, Sugiyama (br000130) 2012; 5
Keziou (br000140) 2003; 336
Schölkopf, Smola (br000205) 2002
Henkel (br000090) 1976
[stat.ML].
Vapnik (br000250) 1998
Guralnik, V., & Srivastava, J. (1999). Event detection from time series data. In
Nguyen, X., Wainwright, M.J., & Jordan, M.I. (2007). Nonparametric estimation of the likelihood ratio and divergence functionals. In
Cortes, Vapnik (br000035) 1995; 20
Takeuchi, Yamanishi (br000245) 2006; 18
(pp. 320–324).
Sugiyama, Suzuki, Itoh, Kanamori, Kimura (br000220) 2011; 24
Sakaki, T., Okazaki, M., & Matsuo, Y. (2010). Earthquake shakes Twitter users: real-time event detection by social sensors. In
Sugiyama, Yamada, von Bünau, Suzuki, Kanamori, Kawanabe (br000240) 2011; 24
Wang, Wu, Ji, Wang, Liang (br000255) 2011; 6
(in press).
Schwarz (br000210) 1978; 6
Yamada, M., Suzuki, T., Kanamori, T., Hachiya, H., & Sugiyama, M. (2013). Relative density-ratio estimation for robust distribution comparison.
(pp. 549–554). Aug. 7–11.
(pp. 559–564).
.
(pp. 2016–2020).
(pp. 345–352).
(pp. 81–88).
Sugiyama, Kawanabe, Chui (br000215) 2010; 23
Hido, Tsuboi, Kashima, Sugiyama, Kanamori (br000095) 2011; 26
Bickel, S., Brückner, M., & Scheffer, T. (2007). Discriminative learning for differing training and test distributions. In
Yamanishi, K., Takeuchi, J., Williams, G., & Milne, P. (2000). On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms. In
Basseville, Nikiforov (br000015) 1993
Ali, Silvey (br000010) 1966; 28
Kanamori, Hido, Sugiyama (br000110) 2009; 10
Sugiyama, Suzuki, Nakajima, Kashima, von Buenau, Kawanabe (br000235) 2008; 60
Reeves, Chen, Wang, Lund, Lu (br000185) 2007; 46
Bellman (br000020) 1961
Kanamori, Suzuki, Sugiyama (br000120) 2012; 86
Kawahara, Y., Yairi, T., & Machida, K. (2007). Change-point detection in time-series data based on subspace identification. In
Rockafellar (br000190) 1970
Csiszár (br000040) 1967; 2
Kanamori, T., Suzuki, T., & Sugiyama, M. (2013). Computational complexity of kernel-based density-ratio estimation: a condition number analysis.
(pp. 515–520).
Garnett, R., Osborne, M.A., & Roberts, S.J. (2009). Sequential Bayesian prediction in the presence of changepoints. In
(pp. 851–860).
Petrović, S., Osborne, M., & Lavrenko, V. (2010). Streaming first story detection with application to Twitter. In
Gustafsson (br000080) 2000
Harchaoui, Bach, Moulines (br000085) 2009; 21
Sugiyama, Suzuki, Kanamori (br000225) 2012
Sugiyama, Suzuki, Kanamori (br000230) 2012; 64
Schölkopf, Platt, Shawe-Taylor, Smola, Williamson (br000200) 2001; 13
(pp. 33–42).
Brodsky, Darkhovsky (br000030) 1993
Adams, R. P., & MacKay, D. J. C. (2007). Bayesian online changepoint detection. Technical Report.
Kullback, Leibler (br000145) 1951; 22
Gretton, Smola, Huang, Schmittfull, Borgwardt, Schölkopf (br000065) 2009
Itoh, N., & Kurths, J. (2010). Change-point detection of climate time series by nonparametric method. In
Gustafsson (br000075) 1996; 41
Desobry, Davy, Doncarli (br000050) 2005; 53
Yamada, M., & Sugiyama, M. (2011). Direct density-ratio estimation with dimensionality reduction via hetero-distributional subspace analysis. In
Efron, Tibshirani (br000055) 1993
Nguyen, Wainwright, Jordan (br000165) 2010; 56
Paquet (br000170) 2007; 1995
Sugiyama (10.1016/j.neunet.2013.01.012_br000220) 2011; 24
10.1016/j.neunet.2013.01.012_br000005
Schölkopf (10.1016/j.neunet.2013.01.012_br000205) 2002
10.1016/j.neunet.2013.01.012_br000125
Csiszár (10.1016/j.neunet.2013.01.012_br000040) 1967; 2
Kanamori (10.1016/j.neunet.2013.01.012_br000115) 2012; 58
Bellman (10.1016/j.neunet.2013.01.012_br000020) 1961
Harchaoui (10.1016/j.neunet.2013.01.012_br000085) 2009; 21
10.1016/j.neunet.2013.01.012_br000160
Gretton (10.1016/j.neunet.2013.01.012_br000065) 2009
Rockafellar (10.1016/j.neunet.2013.01.012_br000190) 1970
Kanamori (10.1016/j.neunet.2013.01.012_br000110) 2009; 10
Sugiyama (10.1016/j.neunet.2013.01.012_br000230) 2012; 64
Basseville (10.1016/j.neunet.2013.01.012_br000015) 1993
Gustafsson (10.1016/j.neunet.2013.01.012_br000075) 1996; 41
10.1016/j.neunet.2013.01.012_br000270
Henkel (10.1016/j.neunet.2013.01.012_br000090) 1976
Wang (10.1016/j.neunet.2013.01.012_br000255) 2011; 6
10.1016/j.neunet.2013.01.012_br000070
Paquet (10.1016/j.neunet.2013.01.012_br000170) 2007; 1995
10.1016/j.neunet.2013.01.012_br000195
10.1016/j.neunet.2013.01.012_br000150
10.1016/j.neunet.2013.01.012_br000105
Hido (10.1016/j.neunet.2013.01.012_br000095) 2011; 26
Kanamori (10.1016/j.neunet.2013.01.012_br000120) 2012; 86
Csörgö (10.1016/j.neunet.2013.01.012_br000045) 1988
Efron (10.1016/j.neunet.2013.01.012_br000055) 1993
Sugiyama (10.1016/j.neunet.2013.01.012_br000235) 2008; 60
Desobry (10.1016/j.neunet.2013.01.012_br000050) 2005; 53
10.1016/j.neunet.2013.01.012_br000060
10.1016/j.neunet.2013.01.012_br000180
Ali (10.1016/j.neunet.2013.01.012_br000010) 1966; 28
Sugiyama (10.1016/j.neunet.2013.01.012_br000240) 2011; 24
Takeuchi (10.1016/j.neunet.2013.01.012_br000245) 2006; 18
10.1016/j.neunet.2013.01.012_br000260
10.1016/j.neunet.2013.01.012_br000025
Sugiyama (10.1016/j.neunet.2013.01.012_br000215) 2010; 23
10.1016/j.neunet.2013.01.012_br000100
10.1016/j.neunet.2013.01.012_br000265
Moskvina (10.1016/j.neunet.2013.01.012_br000155) 2003; 32
Gustafsson (10.1016/j.neunet.2013.01.012_br000080) 2000
Pearson (10.1016/j.neunet.2013.01.012_br000175) 1900; 50
Reeves (10.1016/j.neunet.2013.01.012_br000185) 2007; 46
Brodsky (10.1016/j.neunet.2013.01.012_br000030) 1993
Schwarz (10.1016/j.neunet.2013.01.012_br000210) 1978; 6
Kullback (10.1016/j.neunet.2013.01.012_br000145) 1951; 22
Schölkopf (10.1016/j.neunet.2013.01.012_br000200) 2001; 13
Cortes (10.1016/j.neunet.2013.01.012_br000035) 1995; 20
Kawahara (10.1016/j.neunet.2013.01.012_br000130) 2012; 5
Nguyen (10.1016/j.neunet.2013.01.012_br000165) 2010; 56
Keziou (10.1016/j.neunet.2013.01.012_br000140) 2003; 336
10.1016/j.neunet.2013.01.012_br000135
Sugiyama (10.1016/j.neunet.2013.01.012_br000225) 2012
Vapnik (10.1016/j.neunet.2013.01.012_br000250) 1998
References_xml – volume: 21
  start-page: 609
  year: 2009
  end-page: 616
  ident: br000085
  article-title: Kernel change-point analysis
  publication-title: Advances in Neural Information Processing Systems
– volume: 26
  start-page: 309
  year: 2011
  end-page: 336
  ident: br000095
  article-title: Statistical outlier detection using direct density ratio estimation
  publication-title: Knowledge and Information Systems
– reference: Kanamori, T., Suzuki, T., & Sugiyama, M. (2013). Computational complexity of kernel-based density-ratio estimation: a condition number analysis.
– volume: 28
  start-page: 131
  year: 1966
  end-page: 142
  ident: br000010
  article-title: A general class of coefficients of divergence of one distribution from another
  publication-title: Journal of the Royal Statistical Society, Series B
– volume: 6
  start-page: 461
  year: 1978
  end-page: 464
  ident: br000210
  article-title: Estimating the dimension of a model
  publication-title: The Annals of Statistics
– volume: 1995
  start-page: 1
  year: 2007
  end-page: 20
  ident: br000170
  article-title: Empirical Bayesian change point detection
  publication-title: Graphical Models
– volume: 41
  start-page: 66
  year: 1996
  end-page: 78
  ident: br000075
  article-title: The marginalized likelihood ratio test for detecting abrupt changes
  publication-title: IEEE Transactions on Automatic Control
– year: 1961
  ident: br000020
  article-title: Adaptive control processes: a guided tour
– start-page: 131
  year: 2009
  end-page: 160
  ident: br000065
  article-title: Covariate shift by kernel mean matching
  publication-title: Dataset shift in machine learning
– volume: 2
  start-page: 229
  year: 1967
  end-page: 318
  ident: br000040
  article-title: Information-type measures of difference of probability distributions and indirect observation
  publication-title: Studia Scientiarum Mathematicarum Hungarica
– reference: Yamada, M., Suzuki, T., Kanamori, T., Hachiya, H., & Sugiyama, M. (2013). Relative density-ratio estimation for robust distribution comparison.
– reference: (pp. 559–564).
– volume: 58
  start-page: 708
  year: 2012
  end-page: 720
  ident: br000115
  article-title: -divergence estimation and two-sample homogeneity test under semiparametric density-ratio models
  publication-title: IEEE Transactions on Information Theory
– year: 2012
  ident: br000225
  article-title: Density ratio estimation in machine learning
– reference: (pp. 345–352).
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: br000035
  article-title: Support-vector networks
  publication-title: Machine Learning
– volume: 5
  start-page: 114
  year: 2012
  end-page: 127
  ident: br000130
  article-title: Sequential change-point detection based on direct density-ratio estimation
  publication-title: Statistical Analysis and Data Mining
– volume: 50
  start-page: 157
  year: 1900
  end-page: 175
  ident: br000175
  article-title: On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling
  publication-title: Philosophical Magazine
– reference: (pp. 2016–2020).
– volume: 13
  start-page: 1443
  year: 2001
  end-page: 1471
  ident: br000200
  article-title: Estimating the support of a high-dimensional distribution
  publication-title: Neural Computation
– volume: 64
  start-page: 1009
  year: 2012
  end-page: 1044
  ident: br000230
  article-title: Density ratio matching under the Bregman divergence: a unified framework of density ratio estimation
  publication-title: Annals of the Institute of Statistical Mathematics
– reference: Adams, R. P., & MacKay, D. J. C. (2007). Bayesian online changepoint detection. Technical Report.
– volume: 46
  start-page: 900
  year: 2007
  end-page: 915
  ident: br000185
  article-title: A review and comparison of changepoint detection techniques for climate data
  publication-title: Journal of Applied Meteorology and Climatology
– volume: 23
  start-page: 44
  year: 2010
  end-page: 59
  ident: br000215
  article-title: Dimensionality reduction for density ratio estimation in high-dimensional spaces
  publication-title: Neural Networks
– volume: 86
  start-page: 335
  year: 2012
  end-page: 367
  ident: br000120
  article-title: Statistical analysis of kernel-based least-squares density-ratio estimation
  publication-title: Machine Learning
– volume: 24
  start-page: 183
  year: 2011
  end-page: 198
  ident: br000240
  article-title: Direct density-ratio estimation with dimensionality reduction via least-squares hetero-distributional subspace search
  publication-title: Neural Networks
– reference: Nguyen, X., Wainwright, M.J., & Jordan, M.I. (2007). Nonparametric estimation of the likelihood ratio and divergence functionals. In
– volume: 32
  start-page: 319
  year: 2003
  end-page: 352
  ident: br000155
  article-title: An algorithm based on singular spectrum analysis for change-point detection
  publication-title: Communications in Statistics: Simulation and Computation
– reference: (pp. 81–88).
– volume: 24
  start-page: 735
  year: 2011
  end-page: 751
  ident: br000220
  article-title: Least-squares two-sample test
  publication-title: Neural Networks
– volume: 336
  start-page: 857
  year: 2003
  end-page: 862
  ident: br000140
  article-title: Dual representation of
  publication-title: Comptes Rendus Mathematique
– reference: Moskvina, V., & Zhigljavsky, A. (2003a). Application of singular-spectrum analysis to change-point detection in time series. School of Mathematics, Cardiff University.
– reference: Itoh, N., & Kurths, J. (2010). Change-point detection of climate time series by nonparametric method. In
– year: 1993
  ident: br000015
  article-title: Detection of abrupt changes: theory and application
– reference: Yamada, M., & Sugiyama, M. (2011). Direct density-ratio estimation with dimensionality reduction via hetero-distributional subspace analysis. In
– reference: (in press).
– volume: 60
  start-page: 699
  year: 2008
  end-page: 746
  ident: br000235
  article-title: Direct importance estimation for covariate shift adaptation
  publication-title: Annals of the Institute of Statistical Mathematics
– reference: Garnett, R., Osborne, M.A., & Roberts, S.J. (2009). Sequential Bayesian prediction in the presence of changepoints. In
– reference: Petrović, S., Osborne, M., & Lavrenko, V. (2010). Streaming first story detection with application to Twitter. In
– volume: 22
  start-page: 79
  year: 1951
  end-page: 86
  ident: br000145
  article-title: On information and sufficiency
  publication-title: Annals of Mathematical Statistics
– reference: Guralnik, V., & Srivastava, J. (1999). Event detection from time series data. In
– reference: Ide, T., & Tsuda, K. (2007). Change-point detection using Krylov subspace learning. In
– year: 1970
  ident: br000190
  article-title: Convex analysis
– reference: (pp. 851–860).
– year: 1993
  ident: br000055
  article-title: An introduction to the bootstrap
– year: 2002
  ident: br000205
  article-title: Learning with kernels support vector machines, regularization, optimization, and beyond
– year: 1998
  ident: br000250
  article-title: Statistical learning theory
– year: 2000
  ident: br000080
  article-title: Adaptive filtering and change detection
– volume: 56
  start-page: 5847
  year: 2010
  end-page: 5861
  ident: br000165
  article-title: Estimating divergence functionals and the likelihood ratio by convex risk minimization
  publication-title: IEEE Transactions on Information Theory
– volume: 10
  start-page: 1391
  year: 2009
  end-page: 1445
  ident: br000110
  article-title: A least-squares approach to direct importance estimation
  publication-title: Journal of Machine Learning Research
– start-page: 403
  year: 1988
  end-page: 425
  ident: br000045
  article-title: 20 nonparametric methods for changepoint problems
  publication-title: Handbook of statistics, vol. 7
– reference: (pp. 515–520).
– reference: Sakaki, T., Okazaki, M., & Matsuo, Y. (2010). Earthquake shakes Twitter users: real-time event detection by social sensors. In
– reference: (pp. 181–189).
– volume: 6
  start-page: e20060
  year: 2011
  ident: br000255
  article-title: Non-parametric change-point method for differential gene expression detection
  publication-title: PLoS ONE
– reference:  [stat.ML].
– reference: Yamanishi, K., Takeuchi, J., Williams, G., & Milne, P. (2000). On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms. In
– reference: (pp. 549–554). Aug. 7–11.
– year: 1993
  ident: br000030
  article-title: Nonparametric methods in change-point problems
– reference: (pp. 33–42).
– reference: .
– reference: Bickel, S., Brückner, M., & Scheffer, T. (2007). Discriminative learning for differing training and test distributions. In
– volume: 53
  start-page: 2961
  year: 2005
  end-page: 2974
  ident: br000050
  article-title: An online kernel change detection algorithm
  publication-title: IEEE Transactions on Signal Processing
– reference: (pp. 320–324).
– volume: 18
  start-page: 482
  year: 2006
  end-page: 492
  ident: br000245
  article-title: A unifying framework for detecting outliers and change points from non-stationary time series data
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– year: 1976
  ident: br000090
  article-title: Tests of significance
– reference: Kawahara, Y., Yairi, T., & Machida, K. (2007). Change-point detection in time-series data based on subspace identification. In
– year: 1961
  ident: 10.1016/j.neunet.2013.01.012_br000020
– volume: 18
  start-page: 482
  issue: 4
  year: 2006
  ident: 10.1016/j.neunet.2013.01.012_br000245
  article-title: A unifying framework for detecting outliers and change points from non-stationary time series data
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2006.1599387
– volume: 23
  start-page: 44
  issue: 1
  year: 2010
  ident: 10.1016/j.neunet.2013.01.012_br000215
  article-title: Dimensionality reduction for density ratio estimation in high-dimensional spaces
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2009.07.007
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10.1016/j.neunet.2013.01.012_br000035
  article-title: Support-vector networks
  publication-title: Machine Learning
  doi: 10.1007/BF00994018
– ident: 10.1016/j.neunet.2013.01.012_br000105
– year: 2012
  ident: 10.1016/j.neunet.2013.01.012_br000225
– year: 1976
  ident: 10.1016/j.neunet.2013.01.012_br000090
– year: 1970
  ident: 10.1016/j.neunet.2013.01.012_br000190
– volume: 13
  start-page: 1443
  issue: 7
  year: 2001
  ident: 10.1016/j.neunet.2013.01.012_br000200
  article-title: Estimating the support of a high-dimensional distribution
  publication-title: Neural Computation
  doi: 10.1162/089976601750264965
– ident: 10.1016/j.neunet.2013.01.012_br000265
  doi: 10.1162/NECO_a_00442
– volume: 28
  start-page: 131
  issue: 1
  year: 1966
  ident: 10.1016/j.neunet.2013.01.012_br000010
  article-title: A general class of coefficients of divergence of one distribution from another
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/j.2517-6161.1966.tb00626.x
– year: 1993
  ident: 10.1016/j.neunet.2013.01.012_br000015
– year: 2002
  ident: 10.1016/j.neunet.2013.01.012_br000205
– volume: 336
  start-page: 857
  issue: 10
  year: 2003
  ident: 10.1016/j.neunet.2013.01.012_br000140
  article-title: Dual representation of ϕ-divergences and applications
  publication-title: Comptes Rendus Mathematique
  doi: 10.1016/S1631-073X(03)00215-2
– volume: 46
  start-page: 900
  issue: 6
  year: 2007
  ident: 10.1016/j.neunet.2013.01.012_br000185
  article-title: A review and comparison of changepoint detection techniques for climate data
  publication-title: Journal of Applied Meteorology and Climatology
  doi: 10.1175/JAM2493.1
– volume: 1995
  start-page: 1
  year: 2007
  ident: 10.1016/j.neunet.2013.01.012_br000170
  article-title: Empirical Bayesian change point detection
  publication-title: Graphical Models
– ident: 10.1016/j.neunet.2013.01.012_br000135
  doi: 10.1109/ICDM.2007.78
– volume: 50
  start-page: 157
  year: 1900
  ident: 10.1016/j.neunet.2013.01.012_br000175
  article-title: On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling
  publication-title: Philosophical Magazine
  doi: 10.1080/14786440009463897
– volume: 5
  start-page: 114
  issue: 2
  year: 2012
  ident: 10.1016/j.neunet.2013.01.012_br000130
  article-title: Sequential change-point detection based on direct density-ratio estimation
  publication-title: Statistical Analysis and Data Mining
  doi: 10.1002/sam.10124
– volume: 21
  start-page: 609
  year: 2009
  ident: 10.1016/j.neunet.2013.01.012_br000085
  article-title: Kernel change-point analysis
  publication-title: Advances in Neural Information Processing Systems
– ident: 10.1016/j.neunet.2013.01.012_br000100
– ident: 10.1016/j.neunet.2013.01.012_br000005
– ident: 10.1016/j.neunet.2013.01.012_br000060
  doi: 10.1145/1553374.1553418
– ident: 10.1016/j.neunet.2013.01.012_br000025
  doi: 10.1145/1273496.1273507
– volume: 26
  start-page: 309
  issue: 2
  year: 2011
  ident: 10.1016/j.neunet.2013.01.012_br000095
  article-title: Statistical outlier detection using direct density ratio estimation
  publication-title: Knowledge and Information Systems
  doi: 10.1007/s10115-010-0283-2
– ident: 10.1016/j.neunet.2013.01.012_br000150
  doi: 10.1081/SAC-120017494
– volume: 64
  start-page: 1009
  year: 2012
  ident: 10.1016/j.neunet.2013.01.012_br000230
  article-title: Density ratio matching under the Bregman divergence: a unified framework of density ratio estimation
  publication-title: Annals of the Institute of Statistical Mathematics
  doi: 10.1007/s10463-011-0343-8
– ident: 10.1016/j.neunet.2013.01.012_br000270
  doi: 10.1145/347090.347160
– volume: 22
  start-page: 79
  issue: 1
  year: 1951
  ident: 10.1016/j.neunet.2013.01.012_br000145
  article-title: On information and sufficiency
  publication-title: Annals of Mathematical Statistics
  doi: 10.1214/aoms/1177729694
– volume: 2
  start-page: 229
  year: 1967
  ident: 10.1016/j.neunet.2013.01.012_br000040
  article-title: Information-type measures of difference of probability distributions and indirect observation
  publication-title: Studia Scientiarum Mathematicarum Hungarica
– volume: 53
  start-page: 2961
  issue: 8
  year: 2005
  ident: 10.1016/j.neunet.2013.01.012_br000050
  article-title: An online kernel change detection algorithm
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2005.851098
– volume: 41
  start-page: 66
  issue: 1
  year: 1996
  ident: 10.1016/j.neunet.2013.01.012_br000075
  article-title: The marginalized likelihood ratio test for detecting abrupt changes
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/9.481608
– volume: 86
  start-page: 335
  issue: 3
  year: 2012
  ident: 10.1016/j.neunet.2013.01.012_br000120
  article-title: Statistical analysis of kernel-based least-squares density-ratio estimation
  publication-title: Machine Learning
  doi: 10.1007/s10994-011-5266-3
– ident: 10.1016/j.neunet.2013.01.012_br000125
  doi: 10.1007/s10994-012-5323-6
– year: 1993
  ident: 10.1016/j.neunet.2013.01.012_br000055
– ident: 10.1016/j.neunet.2013.01.012_br000180
– ident: 10.1016/j.neunet.2013.01.012_br000260
  doi: 10.1609/aaai.v25i1.7905
– volume: 24
  start-page: 735
  issue: 7
  year: 2011
  ident: 10.1016/j.neunet.2013.01.012_br000220
  article-title: Least-squares two-sample test
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2011.04.003
– volume: 10
  start-page: 1391
  year: 2009
  ident: 10.1016/j.neunet.2013.01.012_br000110
  article-title: A least-squares approach to direct importance estimation
  publication-title: Journal of Machine Learning Research
– volume: 60
  start-page: 699
  issue: 4
  year: 2008
  ident: 10.1016/j.neunet.2013.01.012_br000235
  article-title: Direct importance estimation for covariate shift adaptation
  publication-title: Annals of the Institute of Statistical Mathematics
  doi: 10.1007/s10463-008-0197-x
– ident: 10.1016/j.neunet.2013.01.012_br000195
  doi: 10.1145/1772690.1772777
– volume: 56
  start-page: 5847
  issue: 11
  year: 2010
  ident: 10.1016/j.neunet.2013.01.012_br000165
  article-title: Estimating divergence functionals and the likelihood ratio by convex risk minimization
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.2010.2068870
– ident: 10.1016/j.neunet.2013.01.012_br000160
  doi: 10.1109/ISIT.2007.4557517
– volume: 32
  start-page: 319
  issue: 2
  year: 2003
  ident: 10.1016/j.neunet.2013.01.012_br000155
  article-title: An algorithm based on singular spectrum analysis for change-point detection
  publication-title: Communications in Statistics: Simulation and Computation
  doi: 10.1081/SAC-120017494
– volume: 6
  start-page: e20060
  issue: 5
  year: 2011
  ident: 10.1016/j.neunet.2013.01.012_br000255
  article-title: Non-parametric change-point method for differential gene expression detection
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0020060
– ident: 10.1016/j.neunet.2013.01.012_br000070
  doi: 10.1145/312129.312190
– year: 2000
  ident: 10.1016/j.neunet.2013.01.012_br000080
– volume: 24
  start-page: 183
  issue: 2
  year: 2011
  ident: 10.1016/j.neunet.2013.01.012_br000240
  article-title: Direct density-ratio estimation with dimensionality reduction via least-squares hetero-distributional subspace search
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2010.10.005
– start-page: 131
  year: 2009
  ident: 10.1016/j.neunet.2013.01.012_br000065
  article-title: Covariate shift by kernel mean matching
– year: 1998
  ident: 10.1016/j.neunet.2013.01.012_br000250
– year: 1993
  ident: 10.1016/j.neunet.2013.01.012_br000030
– start-page: 403
  year: 1988
  ident: 10.1016/j.neunet.2013.01.012_br000045
  article-title: 20 nonparametric methods for changepoint problems
  doi: 10.1016/S0169-7161(88)07022-1
– volume: 6
  start-page: 461
  issue: 2
  year: 1978
  ident: 10.1016/j.neunet.2013.01.012_br000210
  article-title: Estimating the dimension of a model
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1176344136
– volume: 58
  start-page: 708
  issue: 2
  year: 2012
  ident: 10.1016/j.neunet.2013.01.012_br000115
  article-title: f-divergence estimation and two-sample homogeneity test under semiparametric density-ratio models
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.2011.2163380
SSID ssj0006843
Score 2.577496
Snippet The objective of change-point detection is to discover abrupt property changes lying behind time-series data. In this paper, we present a novel statistical...
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 72
SubjectTerms Algorithms
Applied sciences
Change-point detection
Computer science; control theory; systems
Data processing. List processing. Character string processing
Distribution comparison
Divergence
Exact sciences and technology
Gene Expression Profiling - methods
Humans
Inference from stochastic processes; time series analysis
Kernel methods
Mathematics
Memory organisation. Data processing
Messages
Models, Statistical
Neural networks
Probability and statistics
Relative density-ratio estimation
Retrospective Studies
Samples
Sciences and techniques of general use
Segments
Software
Specific Gravity
Speech
Statistical analysis
Statistics
Time Factors
Time-series data
Title Change-point detection in time-series data by relative density-ratio estimation
URI https://dx.doi.org/10.1016/j.neunet.2013.01.012
https://www.ncbi.nlm.nih.gov/pubmed/23500502
https://www.proquest.com/docview/1347259699
https://www.proquest.com/docview/1500802339
https://www.proquest.com/docview/1671511830
Volume 43
WOSCitedRecordID wos000319237700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfYxsMQ4mN8lY8qSLxVQUns-OOxgjGKRovEKvUtshNHamFJtbTT-O85x3GaAlvhAamNKstu3N7Pd2fnd3cIvckIl4wq7hOlcp9wImFJ5dTPRJqHFFRinGZ1sQk2HvPZTHxpKEFVXU6AFQW_uhLL_ypqaANhm9DZfxB3-6XQAJ9B6HAFscP1rwRv4wX8ZTkvVoNMr3Ta8hnn59o3c9DVwDBDjetpY1kuTfRUYegZfo2Igcm9cb4R2sLleKqTdBSWOt56418n4xPQgtNWg4Aifz-0kUDfylXZPueYnJ6OLPNiPG-4tPX46cnIjLEjKlPeqXsYYQpDsO5hhIuS6SoxgX0a2GpNTuMS3FGZtnKPM774j2rdnjAs3hZ6DT_REPJwnWy1YWBvZdH-xbq1nEPw00KTq34PHUQsFqABD4aj49mn1m5TbjmWbsYu0LJmA_5-5-scmbtLWcHyym1dlOs3LrUDc_YA3Wt2Ht7QIuYhuqWLI3S_2YV4jY6voMkV-nBtR-jO5za5L3Q4NBsUm9_7EZp04ea1cPPmhdeBm2fg5qkfnoObtwU3bwO3x2j64fjs3Ue_KdLhpyTmKz-UIqU8oyKSEbzDWOJMSDALTFLBGZda5BSaVYTjNApkkDOulIgUEYpIMAFP0H5RFvoZ8rDkIVGRznXGCKGBIgrTPFcRT7HOadxD2P3jSdpksDeFVL4njqq4SKycEiOnJAjhFfWQ345a2gwuO_ozJ8yk8UKtd5kAGneM7G_Jvr2dg14PvXZgSECLm0dzstDlukpMQHcUCyrEDX3iOjAe45v6UBaaMwMc9NBTi7bNLHBssj1Fz3dN8wU63Kztl2h_dbHWr9Dt9BKwddFHe2zG-83i-Qmctd6B
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Change-point+detection+in+time-series+data+by+relative+density-ratio+estimation&rft.jtitle=Neural+networks&rft.au=SONG+LIU&rft.au=YAMADA%2C+Makoto&rft.au=COLLIER%2C+Nigel&rft.au=SUGIYAMA%2C+Masashi&rft.date=2013-07-01&rft.pub=Elsevier&rft.issn=0893-6080&rft.volume=43&rft.spage=72&rft.epage=83&rft_id=info:doi/10.1016%2Fj.neunet.2013.01.012&rft.externalDBID=n%2Fa&rft.externalDocID=27312067
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon