Comparison of three machine learning algorithms for classification of B‐cell neoplasms using clinical flow cytometry data

Multiparameter flow cytometry data is visually inspected by expert personnel as part of standard clinical disease diagnosis practice. This is a demanding and costly process, and recent research has demonstrated that it is possible to utilize artificial intelligence (AI) algorithms to assist in the i...

Full description

Saved in:
Bibliographic Details
Published in:Cytometry. Part B, Clinical cytometry Vol. 106; no. 4; pp. 282 - 293
Main Authors: Dinalankara, Wikum, Ng, David P., Marchionni, Luigi, Simonson, Paul D.
Format: Journal Article
Language:English
Published: Hoboken, USA John Wiley & Sons, Inc 01.07.2024
Wiley Subscription Services, Inc
Subjects:
ISSN:1552-4949, 1552-4957, 1552-4957
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Multiparameter flow cytometry data is visually inspected by expert personnel as part of standard clinical disease diagnosis practice. This is a demanding and costly process, and recent research has demonstrated that it is possible to utilize artificial intelligence (AI) algorithms to assist in the interpretive process. Here we report our examination of three previously published machine learning methods for classification of flow cytometry data and apply these to a B‐cell neoplasm dataset to obtain predicted disease subtypes. Each of the examined methods classifies samples according to specific disease categories using ungated flow cytometry data. We compare and contrast the three algorithms with respect to their architectures, and we report the multiclass classification accuracies and relative required computation times. Despite different architectures, two of the methods, flowCat and EnsembleCNN, had similarly good accuracies with relatively fast computational times. We note a speed advantage for EnsembleCNN, particularly in the case of addition of training data and retraining of the classifier.
AbstractList Multiparameter flow cytometry data is visually inspected by expert personnel as part of standard clinical disease diagnosis practice. This is a demanding and costly process, and recent research has demonstrated that it is possible to utilize artificial intelligence (AI) algorithms to assist in the interpretive process. Here we report our examination of three previously published machine learning methods for classification of flow cytometry data and apply these to a B-cell neoplasm dataset to obtain predicted disease subtypes. Each of the examined methods classifies samples according to specific disease categories using ungated flow cytometry data. We compare and contrast the three algorithms with respect to their architectures, and we report the multiclass classification accuracies and relative required computation times. Despite different architectures, two of the methods, flowCat and EnsembleCNN, had similarly good accuracies with relatively fast computational times. We note a speed advantage for EnsembleCNN, particularly in the case of addition of training data and retraining of the classifier.
Multiparameter flow cytometry data is visually inspected by expert personnel as part of standard clinical disease diagnosis practice. This is a demanding and costly process, and recent research has demonstrated that it is possible to utilize artificial intelligence (AI) algorithms to assist in the interpretive process. Here we report our examination of three previously published machine learning methods for classification of flow cytometry data and apply these to a B-cell neoplasm dataset to obtain predicted disease subtypes. Each of the examined methods classifies samples according to specific disease categories using ungated flow cytometry data. We compare and contrast the three algorithms with respect to their architectures, and we report the multiclass classification accuracies and relative required computation times. Despite different architectures, two of the methods, flowCat and EnsembleCNN, had similarly good accuracies with relatively fast computational times. We note a speed advantage for EnsembleCNN, particularly in the case of addition of training data and retraining of the classifier.Multiparameter flow cytometry data is visually inspected by expert personnel as part of standard clinical disease diagnosis practice. This is a demanding and costly process, and recent research has demonstrated that it is possible to utilize artificial intelligence (AI) algorithms to assist in the interpretive process. Here we report our examination of three previously published machine learning methods for classification of flow cytometry data and apply these to a B-cell neoplasm dataset to obtain predicted disease subtypes. Each of the examined methods classifies samples according to specific disease categories using ungated flow cytometry data. We compare and contrast the three algorithms with respect to their architectures, and we report the multiclass classification accuracies and relative required computation times. Despite different architectures, two of the methods, flowCat and EnsembleCNN, had similarly good accuracies with relatively fast computational times. We note a speed advantage for EnsembleCNN, particularly in the case of addition of training data and retraining of the classifier.
Author Ng, David P.
Dinalankara, Wikum
Simonson, Paul D.
Marchionni, Luigi
AuthorAffiliation 1. Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
2. Department of Pathology, University of Utah, Salt Lake City, UT
AuthorAffiliation_xml – name: 2. Department of Pathology, University of Utah, Salt Lake City, UT
– name: 1. Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
Author_xml – sequence: 1
  givenname: Wikum
  surname: Dinalankara
  fullname: Dinalankara, Wikum
  organization: Weill Cornell Medicine
– sequence: 2
  givenname: David P.
  orcidid: 0000-0001-8604-2073
  surname: Ng
  fullname: Ng, David P.
  organization: University of Utah
– sequence: 3
  givenname: Luigi
  surname: Marchionni
  fullname: Marchionni, Luigi
  organization: Weill Cornell Medicine
– sequence: 4
  givenname: Paul D.
  surname: Simonson
  fullname: Simonson, Paul D.
  email: pds9003@med.cornell.edu
  organization: Weill Cornell Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38721890$$D View this record in MEDLINE/PubMed
BookMark eNp9kb1uFDEUhS0URH6go0aWaCjYxfaM56dCyYokSJHShILK8niudx157MX2EK1oeASekSeJJ5NEEAnkwpbud47O8T1Ee847QOg1JUtKCPugdskvuyVjtK6foQPKOVuULa_3Ht9lu48OY7wmpOBlVb9A-0VTM9q05AD9WPlhK4OJ3mGvcdoEADxItTEOsAUZnHFrLO3aB5M2Q8TaB6ysjNFoo2Qys-7k989fCqzFDvw2TzM4xkmprHGZs1hbf4OnrAOksMO9TPIleq6ljfDq_j5CX04_Xa3OFxeXZ59XxxcLVfKmXgA0uYLmfdt2lezzqbpSQ6FZ2bRdp-umgq7XJWNStapmQDm0sqIMeAmE6uIIfZx9t2M3QK_ApSCt2AYzyLATXhrx98SZjVj774JS1lQFp9nh3b1D8N9GiEkMJk59Ze47RlEQXrQNIZRl9O0T9NqPweV-mWo4y1U4z9SbPyM9ZnlYTAbYDKjgYwyghTLp7rtzQmMFJWLavph-VHTibvtZ9P6J6MH3H3g54zfGwu6_rFh9vbo8mWW3aYDHdw
CitedBy_id crossref_primary_10_1016_j_compbiomed_2025_110394
crossref_primary_10_1038_s41467_025_61279_y
crossref_primary_10_1016_j_compbiomed_2025_110194
crossref_primary_10_1109_TCBBIO_2025_3562597
Cites_doi 10.1002/cyto.a.23883
10.1038/nmeth.2365
10.1109/TNNLS.2021.3084827
10.1016/j.ebiom.2018.10.042
10.1186/s13059-019-1917-7
10.1093/bioinformatics/btu677
10.1002/cyto.a.23852
10.1093/bioinformatics/bts082
10.1038/s41596-021-00550-0
10.1093/ajcp/aqaa166
10.1002/cyto.a.21007
10.1016/j.patter.2021.100351
10.1002/cyto.a.22433
10.1002/cyto.a.22837
10.1093/bioinformatics/bts300
10.1093/ajcp/aqab076
10.3390/cancers14102537
10.1016/j.hoc.2013.01.004
10.1002/cyto.a.21148
10.1093/ajcp/aqab166
10.1002/cyto.a.23904
10.1017/CBO9780511528446.003
10.1016/j.compbiomed.2013.06.004
10.1016/j.neunet.2012.09.018
10.21105/joss.00861
10.1002/cyto.a.24360
10.1093/bioinformatics/btw191
10.1002/cyto.a.24159
10.1002/cyto.a.22625
10.1002/cyto.a.20823
10.1002/cyto.a.23030
10.1109/5.58325
10.1093/bioinformatics/bty082
10.1002/cyto.a.24501
ContentType Journal Article
Copyright 2024 International Clinical Cytometry Society.
2024 International Clinical Cytometry Society
Copyright_xml – notice: 2024 International Clinical Cytometry Society.
– notice: 2024 International Clinical Cytometry Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7T5
8FD
FR3
H94
P64
7X8
5PM
DOI 10.1002/cyto.b.22177
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Immunology Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE
MEDLINE - Academic

AIDS and Cancer Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1552-4957
EndPage 293
ExternalDocumentID PMC11286351
38721890
10_1002_cyto_b_22177
CYTOB22177
Genre article
Journal Article
Comparative Study
GrantInformation_xml – fundername: National Institutes of Health
  funderid: U54CA273956; R01CA200859
– fundername: Department of Pathology and Laboratory Medicine at Weill Cornell Medicine, Cornell University
– fundername: NCI NIH HHS
  grantid: U54 CA273956
– fundername: NIH HHS
  grantid: R01CA200859
– fundername: NIH HHS
  grantid: U54CA273956
– fundername: NCI NIH HHS
  grantid: R01 CA200859
GroupedDBID -~X
.GA
.Y3
05W
0R~
10A
1L6
1OC
24P
31~
33P
3WU
4.4
4ZD
50Y
51W
51X
52N
52O
52P
52S
52T
52W
52X
53G
5GY
5VS
702
7PT
8-1
8-4
8-5
8UM
930
A03
AAEVG
AAHQN
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADZMN
AEIGN
AEIMD
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
BAWUL
BFHJK
BRXPI
BY8
CS3
D-F
DCZOG
DIK
DR2
DRFUL
DRSTM
E3Z
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
G-S
GNP
GODZA
HBH
HF~
HGLYW
HHY
HHZ
IX1
KQQ
LATKE
LAW
LEEKS
LH4
LOXES
LP6
LP7
LUTES
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
O9-
OIG
OK1
P2P
P2W
P4D
QB0
QRW
RNS
ROL
RWI
RX1
SUPJJ
SV3
UB1
V2E
W99
WIH
WIN
WJL
WQJ
WRC
XG1
XV2
ZZTAW
AAYXX
AGHNM
AGYGG
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7T5
8FD
FR3
H94
P64
7X8
5PM
ID FETCH-LOGICAL-c4587-ee8949f5d99b6adada6b4fe3f2489bbf786ebdf422ac9c72e15e9a612e54e01f3
IEDL.DBID WIN
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001219616100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1552-4949
1552-4957
IngestDate Tue Nov 04 02:04:48 EST 2025
Thu Oct 02 10:51:26 EDT 2025
Fri Jul 25 12:09:06 EDT 2025
Thu Jul 03 03:55:15 EDT 2025
Sat Nov 29 03:26:14 EST 2025
Tue Nov 18 21:39:54 EST 2025
Wed Jan 22 17:17:31 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords B‐cell neoplasms
deep learning
flow cytometry
machine learning
Language English
License 2024 International Clinical Cytometry Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4587-ee8949f5d99b6adada6b4fe3f2489bbf786ebdf422ac9c72e15e9a612e54e01f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8604-2073
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/11286351
PMID 38721890
PQID 3085294955
PQPubID 2030116
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11286351
proquest_miscellaneous_3053980012
proquest_journals_3085294955
pubmed_primary_38721890
crossref_citationtrail_10_1002_cyto_b_22177
crossref_primary_10_1002_cyto_b_22177
wiley_primary_10_1002_cyto_b_22177_CYTOB22177
PublicationCentury 2000
PublicationDate July 2024
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: July 2024
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Hoboken
PublicationTitle Cytometry. Part B, Clinical cytometry
PublicationTitleAlternate Cytometry B Clin Cytom
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2012; 81
1990; 78
2019; 95
2021; 2
2013; 27
2013; 43
2015; 31
2016; 32
2011; 79
2011; 12
2014; 85
1995; 1
2022; 157
97
2022; 101
2010; 77A
2021; 16
2013; 37
2018; 3
2021; 99
2020; 97
2019; 20
2013; 10
2021; 156
2015; 87
2022; 14
2017
2016
2012; 28
2021; 155
2022; 33
2018; 34
2018; 37
2016; 89
1988
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
Abadi M. (e_1_2_8_2_1) 2016
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
Ho T. K. (e_1_2_8_14_1) 1995
Lundberg S.M. (e_1_2_8_20_1) 2017
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
Pedregosa F. (e_1_2_8_28_1) 2011; 12
e_1_2_8_30_1
References_xml – volume: 34
  start-page: 2245
  year: 2018
  end-page: 2253
  article-title: flowLearn: Fast and precise identification and quality checking of cell populations in flow cytometry
  publication-title: Bioinformatics
– volume: 78
  start-page: 1464
  year: 1990
  end-page: 1480
  article-title: The self‐organizing map
  publication-title: Proc. IEEE
– volume: 89
  start-page: 1084
  year: 2016
  end-page: 1096
  article-title: Comparison of clustering methods for high‐dimensional single‐cell flow and mass cytometry data
  publication-title: Cytometry. Part A
– start-page: 265
  year: 2016
  end-page: 283
– volume: 10
  start-page: 228
  year: 2013
  end-page: 238
  article-title: Critical assessment of automated flow cytometry data analysis techniques
  publication-title: Nature Methods
– volume: 14
  year: 2022
  article-title: Artificial intelligence enhances diagnostic flow cytometry workflow in the detection of minimal residual disease of chronic lymphocytic leukemia
  publication-title: Cancers
– volume: 37
  start-page: 52
  year: 2013
  end-page: 65
  article-title: Essentials of the self‐organizing map. Neural Netw
  publication-title: Twenty‐fifth Anniversay Commemorative Issue
– volume: 33
  start-page: 6999
  year: 2022
  end-page: 7019
  article-title: A survey of convolutional neural networks: Analysis, applications, and prospects
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 31
  year: 1988
  end-page: 40
– volume: 28
  start-page: 1009
  year: 2012
  end-page: 1016
  article-title: Early immunologic correlates of HIV protection can be identified from computational analysis of complex multivariate T‐cell flow cytometry assays
  publication-title: Bioinformatics
– volume: 3
  start-page: 861
  year: 2018
  article-title: UMAP: Uniform manifold approximation and projection
  publication-title: J. Open Source Softw.
– volume: 16
  start-page: 3775
  year: 2021
  end-page: 3801
  article-title: Analyzing high‐dimensional cytometry data using FlowSOM
  publication-title: Nat. Protoc.
– start-page: 4768
  year: 2017
  end-page: 4777
  article-title: A unified approach to interpreting model predictions
– volume: 97
  start-page: 107
  year: 2020
  end-page: 112
  article-title: Improving the rigor and reproducibility of flow cytometry‐based clinical research and trials through automated data analysis
  publication-title: Cytometry. Part A: the Journal of the International Society for Analytical Cytology
– volume: 81
  start-page: 25
  year: 2012
  end-page: 34
  article-title: Detection and monitoring of normal and leukemic cell populations with hierarchical clustering of flow cytometry data
  publication-title: Cytometry. Part A: the Journal of the International Society for Analytical Cytology
– volume: 28
  start-page: 2052
  year: 2012
  end-page: 2058
  article-title: flowPeaks: a fast unsupervised clustering for flow cytometry data via K‐means and density peak finding
  publication-title: Bioinforma. Oxf. Engl.
– volume: 20
  start-page: 297
  year: 2019
  article-title: A comparison framework and guideline of clustering methods for mass cytometry data
  publication-title: Genome Biology
– volume: 27
  start-page: 251
  year: 2013
  end-page: 265
  article-title: MBL versus CLL: how important is the distinction?
  publication-title: Hematol. Oncol. Clin. North Am.
– volume: 156
  start-page: 1092
  year: 2021
  end-page: 1102
  article-title: De Novo identification and visualization of important cell populations for classic Hodgkin lymphoma using flow cytometry and machine learning
  publication-title: Am. J. Clin. Pathol.
– volume: 79
  start-page: 6
  year: 2011
  end-page: 13
  article-title: Rapid cell population identification in flow cytometry data
  publication-title: Cytom Part J. Int. Soc. Anal. Cytol.
– volume: 87
  start-page: 636
  year: 2015
  end-page: 645
  article-title: FlowSOM: Using self‐organizing maps for visualization and interpretation of cytometry data
  publication-title: Cytometry, Part A
– volume: 97
  publication-title: Cytometry A
– volume: 85
  start-page: 277
  year: 2014
  end-page: 286
  article-title: High‐throughput flow cytometry data normalization for clinical trials
  publication-title: Cytometry. Part A
– volume: 157
  start-page: 443
  year: 2022
  end-page: 450
  article-title: Potential for process improvement of clinical flow cytometry by incorporating real‐time automated screening of data to expedite addition of antibody panels
  publication-title: American Journal of Clinical Pathology
– volume: 89
  start-page: 461
  year: 2016
  end-page: 471
  article-title: flowClean: Automated identification and removal of fluorescence anomalies in flow cytometry data
  publication-title: Cytometry. Part A
– volume: 97
  start-page: 268
  year: 2020
  end-page: 278
  article-title: CytoNorm: A normalization algorithm for cytometry data
  publication-title: Cytometry. Part A
– volume: 32
  start-page: 2473
  year: 2016
  end-page: 2480
  article-title: flowAI: Automatic and interactive anomaly discerning tools for flow cytometry data
  publication-title: Bioinformatics
– volume: 95
  start-page: 966
  year: 2019
  end-page: 975
  article-title: Automated flow cytometric MRD assessment in childhood acute B‐ lymphoblastic leukemia using supervised machine learning
  publication-title: Cytometry. Part A: the Journal of the International Society for Analytical Cytology
– volume: 31
  start-page: 606
  year: 2015
  end-page: 607
  article-title: flowDensity: Reproducing manual gating of flow cytometry data by automated density‐based cell population identification
  publication-title: Bioinformatics
– volume: 43
  start-page: 1192
  year: 2013
  end-page: 1195
  article-title: Discrimination of malignant neutrophils of chronic myelogenous leukemia from normal neutrophils by support vector machine
  publication-title: Computers in Biology and Medicine
– volume: 101
  start-page: 325
  year: 2022
  end-page: 338
  article-title: PeacoQC: Peak‐based selection of high quality cytometry data
  publication-title: Cytometry. Part A
– volume: 77A
  start-page: 121
  year: 2010
  end-page: 131
  article-title: Per‐channel basis normalization methods for flow cytometry data
  publication-title: Cytometry. Part A
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  article-title: Scikit‐learn: Machine learning in python
  publication-title: J. Mach. Learn. Res.
– volume: 1
  start-page: 278
  year: 1995
  end-page: 282
– volume: 99
  start-page: 814
  year: 2021
  end-page: 824
  article-title: Computational flow cytometry as a diagnostic tool in suspected‐myelodysplastic syndromes
  publication-title: Cytometry. Part A
– volume: 37
  start-page: 91
  year: 2018
  end-page: 100
  article-title: Clinically validated machine learning algorithm for detecting residual diseases with multicolor flow cytometry analysis in acute myeloid leukemia and myelodysplastic syndrome
  publication-title: eBioMedicine
– volume: 155
  start-page: 597
  year: 2021
  end-page: 605
  article-title: Augmented human intelligence and automated diagnosis in flow cytometry for hematologic malignancies
  publication-title: Am. J. Clin. Pathol.
– volume: 2
  year: 2021
  article-title: Knowledge transfer to enhance the performance of deep learning models for automated classification of B cell neoplasms
  publication-title: Patterns
– ident: e_1_2_8_6_1
  doi: 10.1002/cyto.a.23883
– ident: e_1_2_8_4_1
  doi: 10.1038/nmeth.2365
– ident: e_1_2_8_18_1
  doi: 10.1109/TNNLS.2021.3084827
– ident: e_1_2_8_15_1
  doi: 10.1016/j.ebiom.2018.10.042
– ident: e_1_2_8_19_1
  doi: 10.1186/s13059-019-1917-7
– ident: e_1_2_8_22_1
  doi: 10.1093/bioinformatics/btu677
– ident: e_1_2_8_30_1
  doi: 10.1002/cyto.a.23852
– ident: e_1_2_8_3_1
  doi: 10.1093/bioinformatics/bts082
– ident: e_1_2_8_29_1
  doi: 10.1038/s41596-021-00550-0
– volume: 12
  start-page: 2825
  year: 2011
  ident: e_1_2_8_28_1
  article-title: Scikit‐learn: Machine learning in python
  publication-title: J. Mach. Learn. Res.
– ident: e_1_2_8_26_1
  doi: 10.1093/ajcp/aqaa166
– ident: e_1_2_8_5_1
  doi: 10.1002/cyto.a.21007
– ident: e_1_2_8_23_1
  doi: 10.1016/j.patter.2021.100351
– ident: e_1_2_8_9_1
  doi: 10.1002/cyto.a.22433
– ident: e_1_2_8_11_1
  doi: 10.1002/cyto.a.22837
– ident: e_1_2_8_12_1
  doi: 10.1093/bioinformatics/bts300
– ident: e_1_2_8_35_1
  doi: 10.1093/ajcp/aqab076
– ident: e_1_2_8_31_1
  doi: 10.3390/cancers14102537
– ident: e_1_2_8_32_1
  doi: 10.1016/j.hoc.2013.01.004
– ident: e_1_2_8_10_1
  doi: 10.1002/cyto.a.21148
– ident: e_1_2_8_34_1
  doi: 10.1093/ajcp/aqab166
– ident: e_1_2_8_36_1
  doi: 10.1002/cyto.a.23904
– ident: e_1_2_8_33_1
  doi: 10.1017/CBO9780511528446.003
– ident: e_1_2_8_27_1
  doi: 10.1016/j.compbiomed.2013.06.004
– ident: e_1_2_8_17_1
  doi: 10.1016/j.neunet.2012.09.018
– ident: e_1_2_8_24_1
  doi: 10.21105/joss.00861
– start-page: 278
  volume-title: Proceedings of 3rd International Conference on Document Analysis and Recognition
  year: 1995
  ident: e_1_2_8_14_1
– ident: e_1_2_8_7_1
  doi: 10.1002/cyto.a.24360
– start-page: 4768
  volume-title: Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS’17
  year: 2017
  ident: e_1_2_8_20_1
– ident: e_1_2_8_25_1
  doi: 10.1093/bioinformatics/btw191
– ident: e_1_2_8_39_1
  doi: 10.1002/cyto.a.24159
– ident: e_1_2_8_37_1
  doi: 10.1002/cyto.a.22625
– ident: e_1_2_8_13_1
  doi: 10.1002/cyto.a.20823
– ident: e_1_2_8_38_1
  doi: 10.1002/cyto.a.23030
– ident: e_1_2_8_16_1
  doi: 10.1109/5.58325
– ident: e_1_2_8_21_1
  doi: 10.1093/bioinformatics/bty082
– start-page: 265
  volume-title: TensorFlow: a system for large‐scale machine learning, in: Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation, OSDI’16
  year: 2016
  ident: e_1_2_8_2_1
– ident: e_1_2_8_8_1
  doi: 10.1002/cyto.a.24501
SSID ssj0035467
Score 2.3763487
Snippet Multiparameter flow cytometry data is visually inspected by expert personnel as part of standard clinical disease diagnosis practice. This is a demanding and...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 282
SubjectTerms Accuracy
Algorithms
Artificial intelligence
B-Lymphocytes - classification
B-Lymphocytes - immunology
B-Lymphocytes - pathology
B‐cell neoplasms
Classification
deep learning
Flow cytometry
Flow Cytometry - methods
Humans
Immunophenotyping - methods
Learning algorithms
Lymphoma, B-Cell - classification
Lymphoma, B-Cell - diagnosis
Lymphoma, B-Cell - pathology
Machine Learning
Neoplasms
Title Comparison of three machine learning algorithms for classification of B‐cell neoplasms using clinical flow cytometry data
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcyto.b.22177
https://www.ncbi.nlm.nih.gov/pubmed/38721890
https://www.proquest.com/docview/3085294955
https://www.proquest.com/docview/3053980012
https://pubmed.ncbi.nlm.nih.gov/PMC11286351
Volume 106
WOSCitedRecordID wos001219616100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1552-4957
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035467
  issn: 1552-4949
  databaseCode: WIN
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1552-4957
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035467
  issn: 1552-4949
  databaseCode: DRFUL
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6CcREvXMZlgVEZCZ5QtiaxE_uRFSqQRkFog_IU2a7dVWqTqclAFS_8BH4jv4RjJw2rJpAQihRF8rFiH_vYn-3j7wA8zaSVMksnoWYJwwVKFIVKqhRf0vZTkcrUk-l8PMxGIz4ei_fthpu7C9PwQ3Qbbs4y_HjtDFyqav83aahe1eWe2osRU7vL5BH1dvnpzWg9ECeM-gCyjmQsdCQsrd87Zt8_n3lzRroAMy96S55HsX4aGt763wrchpstACUvmh5zBy6ZYhuuNSEpV9tw_W172H4Xvg26GIWktKTGVjdk4Z0vDWmjTUyJnE_L5aw-WVQE8S_RDo079yPf4i7fwc_vP9zxACmcs7qsUNA520_J-lImsfPyK3HlXJh6uSLOafUeHA9fHQ1eh22shlBThuOUMRw1bNlECJXKCT6potYkNqZcKGUznho1sTSOpRY6i03EjJAIrwyjph_Z5D5sFWVhdoCkNJOIU5TWOqM6iUUmEFNyKxjVzPZVAM_X7ZXrlsjcxdOY5w0Fc5y7Eucq95oN4FknfdoQePxBbnfd9HlrxlWeICCNsV6MBfCkS0YDdGqTqLYzJ8MSwR1sDOBB01O6HyUcF9hc9APgG32oE3Dk3pspxezEk3wjDuYIBqMAQt-J_lr4fPD56N2B_3z4j_KP4EaMOK3xQN6FrXp5Zh7DVf2lnlXLHlzOxrwHV15-GB4f9rx5_QJwKiyT
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6CjtsLl3ELDDASPKFsTWIn9iMrVEN0BaEOjafIdu2uUpugNgNVvPAT-I38Eo6dNKyaQEIoUhTJx45vx_5sH38H4FkmrZRZOg41SxguUKIoVFKl-JK2m4pUpp5M5-MgGw758bF43_g5dXdhan6IdsPNaYYfr52Cuw3pvd-soXpVlbtqN0ZQnV2ELYqpsg5svfrQPxqsB-OEUe9E1hGNhY6IpbF9xxT2zsbfnJXOQc3zFpNnkayfivo3_rsQN-F6g0LJy7rb3IILptiGy7VfytU2XDlsTtxvw7de66iQlJZU2PSGzL0FpiGNy4kJkbNJuZhWJ_MlQRBMtIPkzgbJN7uLt__z-w93RkAKZ7EulyjoLO4nZH0zk9hZ-ZW4fM5NtVgRZ7l6B476r0e9g7Bx2BBqynCwMoZjFVs2FkKlcoxPqqg1iY0pF0rZjKdGjS2NY6mFzmITMSMkYizDqOlGNrkLnaIszH0gKc0kghWltc6oTmKRCQSW3ApGNbNdFcCLdYPlumEzd041ZnnNwxznLse5yn3NBvC8lf5cs3j8QW5n3fZ5o8vLPEFUGmO5GAvgaRuMWuiqTWK1nToZlgjusGMA9-qu0v4o4bjK5qIbAN_oRK2AY_jeDCmmJ57pG8EwR0QYBRD6XvTXzOe9T6N3-_7zwT_KP4GrB6PDQT54M3z7EK7FCNxqk-Qd6FSLU_MILukv1XS5eNzo1y8_sy9X
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dbtMwFD6CDabd8DP-AgOMBFcoW5vYiX3JOioQpUxoQ9tVZDt2V6lNpjYbqrjhEXhGnoRjJw2rJpAQihRF8nFiH_vYn-Pj7wC8TKWVMk3yULOY4QKl2w2VVAnepO0kIpGJJ9P5MkiHQ358LA6aOKfuLEzND9H-cHOW4cdrZ-DmLLe7v1lD9aIqd9ROhKA6vQ7rlIkELXN9_3P_aLAcjGNGfRBZRzQWOiKWxvcd37B7Of_qrHQFal71mLyMZP1U1L_935W4A7caFEre1N3mLlwzxRbcrONSLrZg42Oz434PvvXaQIWktKTCpjdk6j0wDWlCToyInIzK2bg6nc4JgmCiHSR3Pki-2V2-vZ_ff7g9AlI4j3U5R0HncT8iy5OZxE7Kr8SVc2qq2YI4z9X7cNR_e9h7FzYBG0JNGQ5WxnBUsWW5ECqROV6JotbENqJcKGVTnhiVWxpFUgudRqbLjJCIsQyjptO18QNYK8rCPAKS0FQiWFFa65TqOBKpQGDJrWBUM9tRAbxeNlimGzZzF1RjktU8zFHmSpypzGs2gFet9FnN4vEHue1l22eNLc-zGFFphPViLIAXbTJaoVObRLWdOxkWC-6wYwAP667SfijmuMrmohMAX-lErYBj-F5NKcannukbwTBHRNgNIPS96K-Fz3onh5_2_OPjf5R_DhsH-_1s8H744QlsRojbao_kbVirZufmKdzQF9V4PnvWmNcvib0u0g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+three+machine+learning+algorithms+for+classification+of+B%E2%80%90cell+neoplasms+using+clinical+flow+cytometry+data&rft.jtitle=Cytometry.+Part+B%2C+Clinical+cytometry&rft.au=Dinalankara%2C+Wikum&rft.au=Ng%2C+David+P&rft.au=Marchionni%2C+Luigi&rft.au=Simonson%2C+Paul+D&rft.date=2024-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1552-4949&rft.eissn=1552-4957&rft.volume=106&rft.issue=4&rft.spage=282&rft.epage=293&rft_id=info:doi/10.1002%2Fcyto.b.22177&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-4949&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-4949&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-4949&client=summon