Collided ribosomes form a unique structural interface to induce Hel2‐driven quality control pathways

Ribosome stalling triggers quality control pathways targeting the mRNA (NGD: no‐go decay) and the nascent polypeptide (RQC: ribosome‐associated quality control). RQC requires Hel2‐dependent uS10 ubiquitination and the RQT complex in yeast. Here, we report that Hel2‐dependent uS10 ubiquitination and...

Full description

Saved in:
Bibliographic Details
Published in:The EMBO journal Vol. 38; no. 5
Main Authors: Ikeuchi, Ken, Tesina, Petr, Matsuo, Yoshitaka, Sugiyama, Takato, Cheng, Jingdong, Saeki, Yasushi, Tanaka, Keiji, Becker, Thomas, Beckmann, Roland, Inada, Toshifumi
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 01.03.2019
Springer Nature B.V
John Wiley and Sons Inc
Subjects:
ISSN:0261-4189, 1460-2075, 1460-2075
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Ribosome stalling triggers quality control pathways targeting the mRNA (NGD: no‐go decay) and the nascent polypeptide (RQC: ribosome‐associated quality control). RQC requires Hel2‐dependent uS10 ubiquitination and the RQT complex in yeast. Here, we report that Hel2‐dependent uS10 ubiquitination and Slh1/Rqt2 are crucial for RQC and NGD induction within a di‐ribosome (disome) unit, which consists of the leading stalled ribosome and the following colliding ribosome. Hel2 preferentially ubiquitinated a disome over a monosome on a quality control inducing reporter mRNA in an in vitro translation reaction. Cryo‐EM analysis of the disome unit revealed a distinct structural arrangement suitable for recognition and modification by Hel2. The absence of the RQT complex or uS10 ubiquitination resulted in the elimination of NGD within the disome unit. Instead, we observed Hel2‐mediated cleavages upstream of the disome, governed by initial Not4‐mediated monoubiquitination of eS7 and followed by Hel2‐mediated K63‐linked polyubiquitination. We propose that Hel2‐mediated ribosome ubiquitination is required both for canonical NGD (NGD RQC + ) and RQC coupled to the disome and that RQC‐uncoupled NGD outside the disome (NGD RQC − ) can occur in a Not4‐dependent manner. Synopsis Ribosome stalling triggers both ribosome‐associated quality control (RQC) of nascent polypeptides and no‐go decay (NGD) of mRNA. Structural and biochemical data show that collided ribosomes form a unique structural unit allowing the Hel2 ubiquitin ligase to operate in both pathways. Hel2‐mediated uS10 ubiquitination and Slh1/Rqt2 are crucial for RQC and NGD induction within a di‐ribosome (disome) unit. Cryo‐EM reveals a unique composite interface between the small subunits of the stalled leading and the following colliding ribosome, which can serve as stalling‐recognition pattern for Hel2. Hel2 preferentially ubiquitinates colliding ribosomes, where Hel2 ubiquitination targets on the respective small subunits congregate in close vicinity. Two distinct NGD branches act differentially on or near a disome unit, one coupled to and one uncoupled from RQC. RQC‐uncoupled NGD is characterized by Not4‐mediated mono‐ubiquitination followed by Hel2‐mediated polyubiquitination of ribosomal protein eS7, resulting in mRNA cleavage upstream of the disome unit. Graphical Abstract Yeast Hel2 ubiquitin ligase functions in both ribosome‐associated protein quality control and canonical mRNA no‐go decay pathways coupled to disome units.
AbstractList Ribosome stalling triggers quality control pathways targeting the mRNA (NGD: no‐go decay) and the nascent polypeptide (RQC: ribosome‐associated quality control). RQC requires Hel2‐dependent uS10 ubiquitination and the RQT complex in yeast. Here, we report that Hel2‐dependent uS10 ubiquitination and Slh1/Rqt2 are crucial for RQC and NGD induction within a di‐ribosome (disome) unit, which consists of the leading stalled ribosome and the following colliding ribosome. Hel2 preferentially ubiquitinated a disome over a monosome on a quality control inducing reporter mRNA in an in vitro translation reaction. Cryo‐EM analysis of the disome unit revealed a distinct structural arrangement suitable for recognition and modification by Hel2. The absence of the RQT complex or uS10 ubiquitination resulted in the elimination of NGD within the disome unit. Instead, we observed Hel2‐mediated cleavages upstream of the disome, governed by initial Not4‐mediated monoubiquitination of eS7 and followed by Hel2‐mediated K63‐linked polyubiquitination. We propose that Hel2‐mediated ribosome ubiquitination is required both for canonical NGD (NGDRQC +) and RQC coupled to the disome and that RQC‐uncoupled NGD outside the disome (NGDRQC −) can occur in a Not4‐dependent manner.
Ribosome stalling triggers quality control pathways targeting the mRNA (NGD: no‐go decay) and the nascent polypeptide (RQC: ribosome‐associated quality control). RQC requires Hel2‐dependent uS10 ubiquitination and the RQT complex in yeast. Here, we report that Hel2‐dependent uS10 ubiquitination and Slh1/Rqt2 are crucial for RQC and NGD induction within a di‐ribosome (disome) unit, which consists of the leading stalled ribosome and the following colliding ribosome. Hel2 preferentially ubiquitinated a disome over a monosome on a quality control inducing reporter mRNA in an in vitro translation reaction. Cryo‐EM analysis of the disome unit revealed a distinct structural arrangement suitable for recognition and modification by Hel2. The absence of the RQT complex or uS10 ubiquitination resulted in the elimination of NGD within the disome unit. Instead, we observed Hel2‐mediated cleavages upstream of the disome, governed by initial Not4‐mediated monoubiquitination of eS7 and followed by Hel2‐mediated K63‐linked polyubiquitination. We propose that Hel2‐mediated ribosome ubiquitination is required both for canonical NGD (NGD RQC + ) and RQC coupled to the disome and that RQC‐uncoupled NGD outside the disome (NGD RQC − ) can occur in a Not4‐dependent manner. Synopsis Ribosome stalling triggers both ribosome‐associated quality control (RQC) of nascent polypeptides and no‐go decay (NGD) of mRNA. Structural and biochemical data show that collided ribosomes form a unique structural unit allowing the Hel2 ubiquitin ligase to operate in both pathways. Hel2‐mediated uS10 ubiquitination and Slh1/Rqt2 are crucial for RQC and NGD induction within a di‐ribosome (disome) unit. Cryo‐EM reveals a unique composite interface between the small subunits of the stalled leading and the following colliding ribosome, which can serve as stalling‐recognition pattern for Hel2. Hel2 preferentially ubiquitinates colliding ribosomes, where Hel2 ubiquitination targets on the respective small subunits congregate in close vicinity. Two distinct NGD branches act differentially on or near a disome unit, one coupled to and one uncoupled from RQC. RQC‐uncoupled NGD is characterized by Not4‐mediated mono‐ubiquitination followed by Hel2‐mediated polyubiquitination of ribosomal protein eS7, resulting in mRNA cleavage upstream of the disome unit. Graphical Abstract Yeast Hel2 ubiquitin ligase functions in both ribosome‐associated protein quality control and canonical mRNA no‐go decay pathways coupled to disome units.
Ribosome stalling triggers quality control pathways targeting the mRNA (NGD: no‐go decay) and the nascent polypeptide (RQC: ribosome‐associated quality control). RQC requires Hel2‐dependent uS10 ubiquitination and the RQT complex in yeast. Here, we report that Hel2‐dependent uS10 ubiquitination and Slh1/Rqt2 are crucial for RQC and NGD induction within a di‐ribosome (disome) unit, which consists of the leading stalled ribosome and the following colliding ribosome. Hel2 preferentially ubiquitinated a disome over a monosome on a quality control inducing reporter mRNA in an in vitro translation reaction. Cryo‐EM analysis of the disome unit revealed a distinct structural arrangement suitable for recognition and modification by Hel2. The absence of the RQT complex or uS10 ubiquitination resulted in the elimination of NGD within the disome unit. Instead, we observed Hel2‐mediated cleavages upstream of the disome, governed by initial Not4‐mediated monoubiquitination of eS7 and followed by Hel2‐mediated K63‐linked polyubiquitination. We propose that Hel2‐mediated ribosome ubiquitination is required both for canonical NGD (NGDRQC+) and RQC coupled to the disome and that RQC‐uncoupled NGD outside the disome (NGDRQC−) can occur in a Not4‐dependent manner. Synopsis Ribosome stalling triggers both ribosome‐associated quality control (RQC) of nascent polypeptides and no‐go decay (NGD) of mRNA. Structural and biochemical data show that collided ribosomes form a unique structural unit allowing the Hel2 ubiquitin ligase to operate in both pathways. Hel2‐mediated uS10 ubiquitination and Slh1/Rqt2 are crucial for RQC and NGD induction within a di‐ribosome (disome) unit. Cryo‐EM reveals a unique composite interface between the small subunits of the stalled leading and the following colliding ribosome, which can serve as stalling‐recognition pattern for Hel2. Hel2 preferentially ubiquitinates colliding ribosomes, where Hel2 ubiquitination targets on the respective small subunits congregate in close vicinity. Two distinct NGD branches act differentially on or near a disome unit, one coupled to and one uncoupled from RQC. RQC‐uncoupled NGD is characterized by Not4‐mediated mono‐ubiquitination followed by Hel2‐mediated polyubiquitination of ribosomal protein eS7, resulting in mRNA cleavage upstream of the disome unit. Yeast Hel2 ubiquitin ligase functions in both ribosome‐associated protein quality control and canonical mRNA no‐go decay pathways coupled to disome units.
Ribosome stalling triggers quality control pathways targeting the mRNA (NGD: no-go decay) and the nascent polypeptide (RQC: ribosome-associated quality control). RQC requires Hel2-dependent uS10 ubiquitination and the RQT complex in yeast. Here, we report that Hel2-dependent uS10 ubiquitination and Slh1/Rqt2 are crucial for RQC and NGD induction within a di-ribosome (disome) unit, which consists of the leading stalled ribosome and the following colliding ribosome. Hel2 preferentially ubiquitinated a disome over a monosome on a quality control inducing reporter mRNA in an in vitro translation reaction. Cryo-EM analysis of the disome unit revealed a distinct structural arrangement suitable for recognition and modification by Hel2. The absence of the RQT complex or uS10 ubiquitination resulted in the elimination of NGD within the disome unit. Instead, we observed Hel2-mediated cleavages upstream of the disome, governed by initial Not4-mediated monoubiquitination of eS7 and followed by Hel2-mediated K63-linked polyubiquitination. We propose that Hel2-mediated ribosome ubiquitination is required both for canonical NGD (NGDRQC+) and RQC coupled to the disome and that RQC-uncoupled NGD outside the disome (NGDRQC-) can occur in a Not4-dependent manner.Ribosome stalling triggers quality control pathways targeting the mRNA (NGD: no-go decay) and the nascent polypeptide (RQC: ribosome-associated quality control). RQC requires Hel2-dependent uS10 ubiquitination and the RQT complex in yeast. Here, we report that Hel2-dependent uS10 ubiquitination and Slh1/Rqt2 are crucial for RQC and NGD induction within a di-ribosome (disome) unit, which consists of the leading stalled ribosome and the following colliding ribosome. Hel2 preferentially ubiquitinated a disome over a monosome on a quality control inducing reporter mRNA in an in vitro translation reaction. Cryo-EM analysis of the disome unit revealed a distinct structural arrangement suitable for recognition and modification by Hel2. The absence of the RQT complex or uS10 ubiquitination resulted in the elimination of NGD within the disome unit. Instead, we observed Hel2-mediated cleavages upstream of the disome, governed by initial Not4-mediated monoubiquitination of eS7 and followed by Hel2-mediated K63-linked polyubiquitination. We propose that Hel2-mediated ribosome ubiquitination is required both for canonical NGD (NGDRQC+) and RQC coupled to the disome and that RQC-uncoupled NGD outside the disome (NGDRQC-) can occur in a Not4-dependent manner.
Ribosome stalling triggers quality control pathways targeting the mRNA (NGD: no-go decay) and the nascent polypeptide (RQC: ribosome-associated quality control). RQC requires Hel2-dependent uS10 ubiquitination and the RQT complex in yeast. Here, we report that Hel2-dependent uS10 ubiquitination and Slh1/Rqt2 are crucial for RQC and NGD induction within a di-ribosome (disome) unit, which consists of the leading stalled ribosome and the following colliding ribosome. Hel2 preferentially ubiquitinated a disome over a monosome on a quality control inducing reporter mRNA in an translation reaction. Cryo-EM analysis of the disome unit revealed a distinct structural arrangement suitable for recognition and modification by Hel2. The absence of the RQT complex or uS10 ubiquitination resulted in the elimination of NGD within the disome unit. Instead, we observed Hel2-mediated cleavages upstream of the disome, governed by initial Not4-mediated monoubiquitination of eS7 and followed by Hel2-mediated K63-linked polyubiquitination. We propose that Hel2-mediated ribosome ubiquitination is required both for canonical NGD (NGD ) and RQC coupled to the disome and that RQC-uncoupled NGD outside the disome (NGD ) can occur in a Not4-dependent manner.
Ribosome stalling triggers quality control pathways targeting the mRNA (NGD: no‐go decay) and the nascent polypeptide (RQC: ribosome‐associated quality control). RQC requires Hel2‐dependent uS10 ubiquitination and the RQT complex in yeast. Here, we report that Hel2‐dependent uS10 ubiquitination and Slh1/Rqt2 are crucial for RQC and NGD induction within a di‐ribosome (disome) unit, which consists of the leading stalled ribosome and the following colliding ribosome. Hel2 preferentially ubiquitinated a disome over a monosome on a quality control inducing reporter mRNA in an in vitro translation reaction. Cryo‐EM analysis of the disome unit revealed a distinct structural arrangement suitable for recognition and modification by Hel2. The absence of the RQT complex or uS10 ubiquitination resulted in the elimination of NGD within the disome unit. Instead, we observed Hel2‐mediated cleavages upstream of the disome, governed by initial Not4‐mediated monoubiquitination of eS7 and followed by Hel2‐mediated K63‐linked polyubiquitination. We propose that Hel2‐mediated ribosome ubiquitination is required both for canonical NGD (NGDRQC+) and RQC coupled to the disome and that RQC‐uncoupled NGD outside the disome (NGDRQC−) can occur in a Not4‐dependent manner.
Author Inada, Toshifumi
Tanaka, Keiji
Beckmann, Roland
Ikeuchi, Ken
Cheng, Jingdong
Sugiyama, Takato
Becker, Thomas
Tesina, Petr
Saeki, Yasushi
Matsuo, Yoshitaka
AuthorAffiliation 1 Graduate School of Pharmaceutical Sciences Tohoku University Sendai Japan
2 Department of Biochemistry Gene Center and Center for Integrated Protein Science Munich University of Munich Munich Germany
3 Laboratory of Protein Metabolism Tokyo Metropolitan Institute of Medical Science Setagaya‐ku, Tokyo Japan
AuthorAffiliation_xml – name: 1 Graduate School of Pharmaceutical Sciences Tohoku University Sendai Japan
– name: 3 Laboratory of Protein Metabolism Tokyo Metropolitan Institute of Medical Science Setagaya‐ku, Tokyo Japan
– name: 2 Department of Biochemistry Gene Center and Center for Integrated Protein Science Munich University of Munich Munich Germany
Author_xml – sequence: 1
  givenname: Ken
  orcidid: 0000-0002-9578-7920
  surname: Ikeuchi
  fullname: Ikeuchi, Ken
  organization: Graduate School of Pharmaceutical Sciences, Tohoku University
– sequence: 2
  givenname: Petr
  orcidid: 0000-0002-5227-1799
  surname: Tesina
  fullname: Tesina, Petr
  organization: Department of Biochemistry, Gene Center and Center for Integrated Protein Science Munich, University of Munich
– sequence: 3
  givenname: Yoshitaka
  surname: Matsuo
  fullname: Matsuo, Yoshitaka
  organization: Graduate School of Pharmaceutical Sciences, Tohoku University
– sequence: 4
  givenname: Takato
  orcidid: 0000-0001-8364-7050
  surname: Sugiyama
  fullname: Sugiyama, Takato
  organization: Graduate School of Pharmaceutical Sciences, Tohoku University
– sequence: 5
  givenname: Jingdong
  surname: Cheng
  fullname: Cheng, Jingdong
  organization: Department of Biochemistry, Gene Center and Center for Integrated Protein Science Munich, University of Munich
– sequence: 6
  givenname: Yasushi
  orcidid: 0000-0002-9202-5453
  surname: Saeki
  fullname: Saeki, Yasushi
  organization: Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science
– sequence: 7
  givenname: Keiji
  surname: Tanaka
  fullname: Tanaka, Keiji
  organization: Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science
– sequence: 8
  givenname: Thomas
  orcidid: 0000-0001-8458-2738
  surname: Becker
  fullname: Becker, Thomas
  organization: Department of Biochemistry, Gene Center and Center for Integrated Protein Science Munich, University of Munich
– sequence: 9
  givenname: Roland
  orcidid: 0000-0003-4291-3898
  surname: Beckmann
  fullname: Beckmann, Roland
  email: beckmann@genzentrum.lmu.de
  organization: Department of Biochemistry, Gene Center and Center for Integrated Protein Science Munich, University of Munich
– sequence: 10
  givenname: Toshifumi
  orcidid: 0000-0002-2695-588X
  surname: Inada
  fullname: Inada, Toshifumi
  email: tinada@m.tohoku.ac.jp
  organization: Graduate School of Pharmaceutical Sciences, Tohoku University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30609991$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFuFCEYx4mpsdvq3ZOZxIuXqR8sA0xiTHRTrabGi54JA8yWDTNsgWmzNx-hj9Bn8VF8EqlbW9tEPQHh9_v4Pv57aGcMo0XoKYYD3JCGvLRDtzoggAUGIJw9QDNMGdQEeLODZkAYrikW7S7aS2kFAI3g-BHanQODtm3xDC0XwXtnrKmi60IKg01VH-JQqWoa3elkq5TjpPMUla_cmG3slbZVDuVgprI7sp78-HZhojuzY3U6Ke_yptJhzDH475drlU_O1SY9Rg975ZN9cr3uo6_vDr8sjurjz-8_LN4c15o2gtUMVNtTwF1njABDe8YtBeAwp7q1tCdUGUMN6xjvudKMC0ZA9EQD562yYr6PXm_rrqdusEbb0ofych3doOJGBuXk3ZvRnchlOJNs3jLcNKXAi-sCMZTxU5aDS9p6r0YbpiQJZhQDpYQV9Pk9dBWmOJbxCiVYy0ThCvXsz45uWvmdQQFgC-gYUoq2v0EwyF8xy6uY5W3MRWH3FO2yyu7q15Xz_xJfbcVz5-3mvw_Jw09vP97R8VZPxRyXNt5O_NcnfwKXGdFG
CitedBy_id crossref_primary_10_1016_j_celrep_2023_113359
crossref_primary_10_1073_pnas_2026362118
crossref_primary_10_1080_10409238_2021_1938507
crossref_primary_10_1111_nph_19520
crossref_primary_10_1038_s41598_020_60241_w
crossref_primary_10_7554_eLife_54023
crossref_primary_10_1007_s11103_021_01145_9
crossref_primary_10_1093_nar_gkz1201
crossref_primary_10_1126_science_aay6912
crossref_primary_10_1515_hsz_2019_0279
crossref_primary_10_7554_eLife_49117
crossref_primary_10_1016_j_tcb_2022_07_007
crossref_primary_10_1261_rna_079663_123
crossref_primary_10_1016_j_molcel_2023_10_012
crossref_primary_10_1038_s41586_019_1307_z
crossref_primary_10_1016_j_molcel_2024_10_011
crossref_primary_10_1016_j_tibs_2025_06_009
crossref_primary_10_1016_j_celrep_2025_115371
crossref_primary_10_1534_genetics_119_301807
crossref_primary_10_1016_j_bbrc_2020_04_104
crossref_primary_10_1038_s41467_023_38161_w
crossref_primary_10_3389_fgene_2018_00743
crossref_primary_10_1038_s41564_023_01443_6
crossref_primary_10_1002_bies_202000124
crossref_primary_10_1002_1873_3468_13885
crossref_primary_10_3389_fcell_2020_610689
crossref_primary_10_1038_s41586_021_04295_4
crossref_primary_10_1093_nar_gkaa1049
crossref_primary_10_15252_embj_2022112869
crossref_primary_10_1016_j_molcel_2021_02_022
crossref_primary_10_1016_j_semcdb_2023_03_009
crossref_primary_10_1038_s41598_021_92931_4
crossref_primary_10_1007_s12035_021_02564_x
crossref_primary_10_1038_s41586_022_04487_6
crossref_primary_10_1371_journal_pbio_3001767
crossref_primary_10_15252_embj_2019101633
crossref_primary_10_3390_cells8111384
crossref_primary_10_7554_eLife_61984
crossref_primary_10_1016_j_jmb_2025_169355
crossref_primary_10_1371_journal_pbio_3000396
crossref_primary_10_1016_j_jbc_2024_107290
crossref_primary_10_1038_s41467_025_56346_3
crossref_primary_10_1111_febs_17217
crossref_primary_10_1242_jcs_260388
crossref_primary_10_1016_j_molcel_2024_10_029
crossref_primary_10_1038_s41594_019_0202_5
crossref_primary_10_1042_BCJ20200303
crossref_primary_10_1088_1751_8121_aceec8
crossref_primary_10_1038_s41467_019_13991_9
crossref_primary_10_1016_j_molcel_2021_04_018
crossref_primary_10_1038_s44318_025_00523_z
crossref_primary_10_1093_nar_gkab834
crossref_primary_10_1016_j_jgg_2025_04_010
crossref_primary_10_1016_j_molcel_2020_11_033
crossref_primary_10_1016_j_jmb_2024_168496
crossref_primary_10_1038_s41467_022_31127_4
crossref_primary_10_1002_1873_3468_14638
crossref_primary_10_1126_science_adq8587
crossref_primary_10_1038_s41467_025_57360_1
crossref_primary_10_1093_nar_gkad338
crossref_primary_10_1038_s41594_019_0331_x
crossref_primary_10_1016_j_tibs_2021_03_008
crossref_primary_10_1111_nyas_14745
crossref_primary_10_1002_bies_202100269
crossref_primary_10_7554_eLife_66904
crossref_primary_10_1016_j_cell_2025_01_005
crossref_primary_10_1371_journal_pbio_3002887
crossref_primary_10_15252_embj_2019103365
crossref_primary_10_15252_embj_2021109256
crossref_primary_10_1016_j_molcel_2022_03_038
crossref_primary_10_15252_embj_2020106449
crossref_primary_10_1016_j_molcel_2021_01_029
crossref_primary_10_1186_s13059_023_02871_7
crossref_primary_10_1016_j_molcel_2020_06_010
crossref_primary_10_1007_s12268_023_1929_4
crossref_primary_10_1261_rna_080399_125
crossref_primary_10_1002_cbic_202300264
crossref_primary_10_3390_biomedicines11030659
crossref_primary_10_1038_s44318_025_00568_0
crossref_primary_10_1093_nar_gkae399
crossref_primary_10_1038_s41467_022_34097_9
crossref_primary_10_1042_BST20253024
crossref_primary_10_1016_j_semcdb_2021_12_009
crossref_primary_10_1038_s44318_023_00010_3
crossref_primary_10_1093_nar_gkaa757
crossref_primary_10_1093_nar_gkaa758
crossref_primary_10_1038_s41467_022_35684_6
crossref_primary_10_1080_10409238_2021_2006599
crossref_primary_10_1186_s12967_021_02948_6
crossref_primary_10_1016_j_bbrc_2023_02_012
crossref_primary_10_1073_pnas_2005301117
crossref_primary_10_1242_jcs_251983
crossref_primary_10_1093_nargab_lqaf045
crossref_primary_10_15252_embj_2023114378
crossref_primary_10_1038_s41467_022_35608_4
crossref_primary_10_1038_s41586_022_04416_7
crossref_primary_10_1146_annurev_biochem_013118_110729
crossref_primary_10_1038_s41598_023_50811_z
crossref_primary_10_1042_BST20253034
crossref_primary_10_1038_s41594_020_0393_9
crossref_primary_10_1002_1873_3468_13792
crossref_primary_10_1007_s00294_020_01111_w
crossref_primary_10_1016_j_str_2023_12_015
crossref_primary_10_1016_j_molcel_2020_06_006
crossref_primary_10_1073_pnas_2022756118
crossref_primary_10_7554_eLife_52611
crossref_primary_10_1038_s41594_023_01196_0
crossref_primary_10_26508_lsa_202302300
crossref_primary_10_1002_wrna_1809
crossref_primary_10_1007_s00018_020_03685_7
crossref_primary_10_1074_jbc_REV119_006513
crossref_primary_10_1016_j_molcel_2022_01_009
crossref_primary_10_1261_rna_078964_121
crossref_primary_10_1016_j_molcel_2020_01_007
crossref_primary_10_1038_s41467_024_45525_3
crossref_primary_10_3390_ijms23116174
crossref_primary_10_1126_science_adh1411
crossref_primary_10_1016_j_celrep_2024_115050
crossref_primary_10_3390_cells14131032
crossref_primary_10_1371_journal_pgen_1009813
crossref_primary_10_1093_nar_gkae137
crossref_primary_10_1038_s41467_024_49796_8
crossref_primary_10_7554_eLife_58828
crossref_primary_10_3389_fmolb_2022_1089825
crossref_primary_10_1038_s41467_024_54411_x
crossref_primary_10_1038_s41586_024_07508_8
crossref_primary_10_3390_ijms21031151
crossref_primary_10_1038_s42003_025_07569_z
crossref_primary_10_1038_s41477_021_00867_4
crossref_primary_10_1016_j_molcel_2022_01_019
crossref_primary_10_1002_wrna_1658
crossref_primary_10_1016_j_cell_2022_12_025
crossref_primary_10_1016_j_cub_2019_12_060
crossref_primary_10_1016_j_molcel_2021_05_018
crossref_primary_10_1016_j_molcel_2024_01_015
crossref_primary_10_1038_s41467_019_13579_3
crossref_primary_10_1016_j_celrep_2024_114098
crossref_primary_10_1016_j_molcel_2020_01_011
crossref_primary_10_1073_pnas_2415807122
crossref_primary_10_1038_s41467_023_38173_6
crossref_primary_10_1093_nar_gkad299
crossref_primary_10_3233_HAB_240001
crossref_primary_10_1016_j_sbi_2020_06_011
crossref_primary_10_1038_s41586_019_1561_0
crossref_primary_10_1016_j_molcel_2022_08_018
crossref_primary_10_3390_ijms222111653
crossref_primary_10_1261_rna_079633_123
crossref_primary_10_1371_journal_pone_0272058
crossref_primary_10_7554_eLife_76038
crossref_primary_10_1186_s13059_020_02256_0
crossref_primary_10_3390_biom13020317
crossref_primary_10_1038_s41580_021_00417_y
crossref_primary_10_1038_s41598_020_76239_3
crossref_primary_10_1002_wrna_1827
crossref_primary_10_1128_jvi_01093_22
crossref_primary_10_1042_BST20253066
crossref_primary_10_1016_j_molcel_2023_01_020
crossref_primary_10_1038_s41589_023_01513_0
crossref_primary_10_1016_j_tcb_2020_01_008
crossref_primary_10_1038_s41594_019_0230_1
crossref_primary_10_1038_s41467_023_43946_0
crossref_primary_10_1093_nar_gkab121
crossref_primary_10_1261_rna_079683_123
crossref_primary_10_7554_eLife_59974
crossref_primary_10_1093_nar_gkaf049
crossref_primary_10_1038_s41594_020_0482_9
crossref_primary_10_1016_j_molcel_2024_05_018
crossref_primary_10_1016_j_cell_2024_03_024
crossref_primary_10_1093_nar_gkac1172
crossref_primary_10_3390_ijms222413204
crossref_primary_10_1038_s41467_023_36230_8
crossref_primary_10_1093_nar_gkab005
crossref_primary_10_3389_fcell_2023_1153624
crossref_primary_10_1016_j_cell_2024_05_018
crossref_primary_10_1126_science_aax2957
crossref_primary_10_7554_eLife_60038
crossref_primary_10_1042_BST20220584
crossref_primary_10_1016_j_tibs_2021_09_001
crossref_primary_10_1038_s41589_023_01521_0
crossref_primary_10_1016_j_jbc_2021_100586
crossref_primary_10_1093_nar_gkad272
crossref_primary_10_1083_jcb_202001108
crossref_primary_10_1093_nar_gkz763
crossref_primary_10_1016_j_molcel_2020_07_007
crossref_primary_10_1371_journal_pgen_1010577
crossref_primary_10_1038_s41467_024_51284_y
crossref_primary_10_1371_journal_pone_0227841
crossref_primary_10_1038_s41594_019_0222_1
crossref_primary_10_1093_nar_gkae365
crossref_primary_10_1093_nar_gkae087
crossref_primary_10_1111_febs_16781
Cites_doi 10.1038/nature10829
10.1038/nature04530
10.1073/pnas.1009598107
10.1371/journal.pgen.1005197
10.1016/j.cell.2012.10.044
10.1126/science.1194294
10.1038/embor.2010.169
10.1126/science.aaf7520
10.1002/yea.1142
10.1016/j.molcel.2016.12.026
10.1126/science.1259724
10.1016/j.molcel.2016.11.039
10.1038/ncb3358
10.1016/j.jsb.2015.11.003
10.1017/S1355838202026018
10.1016/j.cell.2006.02.038
10.7554/eLife.09684
10.1038/s41467-017-00188-1
10.1083/jcb.102.5.1543
10.1038/nsmb.1922
10.1073/pnas.1109088108
10.1016/j.molcel.2018.08.037
10.1016/j.molcel.2014.07.006
10.1016/j.molcel.2017.08.019
10.1073/pnas.1221724110
10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U
10.1016/S0092-8674(01)00541-4
10.1038/ncomms16056
10.1126/science.1067272
10.1002/pro.3235
10.1261/rna.049080.114
10.1107/S1399004714021683
10.1016/j.gene.2011.09.033
10.1038/nature09371
10.1038/nsmb.1963
10.1261/rna.060897.117
10.1038/s41594-018-0042-8
10.1038/srep28234
10.1038/embor.2009.200
10.1016/j.cell.2016.05.070
10.1016/j.molcel.2012.03.013
10.1016/j.str.2014.06.003
10.1038/nmeth.4193
10.1038/nsmb1148
10.1042/BJ20061138
10.1111/j.1365-2958.2011.07957.x
10.1016/j.molcel.2015.01.029
10.7554/eLife.18722
10.1016/j.molcel.2010.10.009
10.1002/jcc.20084
10.1038/nsmb.2301
ContentType Journal Article
Copyright The Author(s) 2019
2019 The Authors
2019 The Authors.
2019 EMBO
Copyright_xml – notice: The Author(s) 2019
– notice: 2019 The Authors
– notice: 2019 The Authors.
– notice: 2019 EMBO
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
DOI 10.15252/embj.2018100276
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
MEDLINE
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
DocumentTitleAlternate Ken Ikeuchi et al
EISSN 1460-2075
EndPage n/a
ExternalDocumentID PMC6396155
30609991
10_15252_embj_2018100276
EMBJ2018100276
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Takeda Foundation
– fundername: German Research Council
  grantid: FOR1805; BE1814/15‐1
– fundername: Graduate School of Quantitative Biosciences Munich (QBM)
– fundername: MEXT|Japan Society for the Promotion of Science
  grantid: 26116003
  funderid: 10.13039/501100001691
– fundername: Center for Integrated Protein Science Munich (CiPS‐M)
– fundername: MEXT|Japan Society for the Promotion of Science
  funderid: 26116003
– fundername: German Research Council
  funderid: FOR1805; BE1814/15‐1
– fundername: MEXT|Japan Society for the Promotion of Science
  grantid: 26116003
GroupedDBID ---
-DZ
-Q-
-~X
0R~
123
1OC
29G
2WC
33P
36B
39C
53G
5VS
70F
8R4
8R5
A8Z
AAESR
AAEVG
AAHBH
AAIHA
AAJSJ
AAMMB
AANLZ
AAONW
AASGY
AASML
AAXRX
AAYCA
AAZKR
ABCUV
ABLJU
ABZEH
ACAHQ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AENEX
AEUYR
AFBPY
AFFNX
AFGKR
AFRAH
AFWVQ
AFZJQ
AGXDD
AHMBA
AIAGR
AIDQK
AIDYY
AIURR
AJAOE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
AUFTA
AZBYB
AZFZN
AZVAB
BAWUL
BDRZF
BENPR
BFHJK
BMNLL
BMXJE
BRXPI
BTFSW
C6C
CS3
DCZOG
DIK
DPXWK
DRFUL
DRSTM
DU5
E3Z
EBD
EBLON
EBS
EJD
EMB
EMOBN
F5P
G-S
GROUPED_DOAJ
GX1
HH5
HK~
HYE
KQ8
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
MY~
NAO
O8X
O9-
OK1
P2P
P2W
Q2X
R.K
RHI
RNS
ROL
RPM
SV3
TN5
TR2
WBKPD
WH7
WIH
WIK
WIN
WOHZO
WXSBR
YSK
ZCA
ZZTAW
~KM
24P
AAHHS
ABJNI
ACCFJ
AEEZP
AEQDE
AFPWT
AIWBW
AJBDE
ALIPV
RHF
WYJ
.55
3O-
4.4
7X7
88E
8AO
8C1
8CJ
8FE
8FH
8FI
8FJ
8G5
AANHP
AAYXX
ABUWG
ACBWZ
ACKIV
ACRPL
ACYXJ
ADNMO
AEUYN
AFFHD
AFKRA
AGQPQ
AI.
ASPBG
AVWKF
AZQEC
BBNVY
BHPHI
BKSAR
BPHCQ
BVXVI
C1A
CAG
CCPQU
CITATION
COF
D1J
DWQXO
FA8
FEDTE
FYUFA
GNUQQ
GODZA
GUQSH
H13
HCIFZ
HMCUK
HVGLF
H~9
LH4
LK8
LW6
M1P
M2O
M7P
PCBAR
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNI
RZO
UKHRP
VH1
WOQ
X7M
XSW
Y6R
YYP
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
8FD
C1K
ESTFP
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c4586-60a9f401bbdd80d4f67e4007034c9e4f24add4d6b67f7ac6786208f2c0779ae83
IEDL.DBID WIN
ISSN 0261-4189
1460-2075
IngestDate Tue Sep 30 16:37:26 EDT 2025
Sun Sep 28 00:34:40 EDT 2025
Mon Oct 06 17:21:29 EDT 2025
Thu Apr 03 07:10:06 EDT 2025
Tue Nov 18 21:49:16 EST 2025
Sat Nov 29 03:03:06 EST 2025
Wed Jan 22 16:46:39 EST 2025
Sat Nov 29 01:24:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords no‐go mRNA decay
ribosome quality control
RQT complex
ubiquitination
ribosome collision
Language English
License 2019 The Authors.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4586-60a9f401bbdd80d4f67e4007034c9e4f24add4d6b67f7ac6786208f2c0779ae83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
See also: LL Yan & HS Zaher (March 2019)
These authors contributed equally to this work
ORCID 0000-0002-9202-5453
0000-0003-4291-3898
0000-0002-2695-588X
0000-0002-5227-1799
0000-0001-8458-2738
0000-0001-8364-7050
0000-0002-9578-7920
PMID 30609991
PQID 2186968044
PQPubID 35985
PageCount 21
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6396155
proquest_miscellaneous_2164104426
proquest_journals_2186968044
pubmed_primary_30609991
crossref_primary_10_15252_embj_2018100276
crossref_citationtrail_10_15252_embj_2018100276
wiley_primary_10_15252_embj_2018100276_EMBJ2018100276
springer_journals_10_15252_embj_2018100276
PublicationCentury 2000
PublicationDate 1 March 2019
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 1 March 2019
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: New York
– name: Hoboken
PublicationTitle The EMBO journal
PublicationTitleAbbrev EMBO J
PublicationTitleAlternate EMBO J
PublicationYear 2019
Publisher Nature Publishing Group UK
Springer Nature B.V
John Wiley and Sons Inc
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: John Wiley and Sons Inc
References 2015; 57
2004; 21
2012; 83
2010; 11
2012; 482
2017; 8
2015; 4
2015; 71
2010; 107
2015; 347
2006; 13
2010; 17
2002; 295
2004; 25
2010; 467
2017; 65
2015; 11
2017; 68
2002; 8
2017; 23
2016; 166
2012; 19
2016; 18
2001; 107
2018; 27
2010; 40
2014; 22
2018; 25
2006; 399
2012; 151
2012; 492
2016; 5
2016; 6
2011; 108
1986; 102
2009; 10
2017; 14
2015; 21
2010; 330
2016; 354
2006; 440
2013; 110
2018; 72
2016; 193
2012; 46
2014; 55
1998; 14
2006; 124
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
30770343 - EMBO J. 2019 Mar 1;38(5)
References_xml – volume: 65
  start-page: 743
  year: 2017
  end-page: 750
  article-title: Initiation of quality control during poly(A) translation requires site‐specific ribosome ubiquitination
  publication-title: Mol Cell
– volume: 110
  start-page: 5046
  year: 2013
  end-page: 5051
  article-title: Cdc48‐associated complex bound to 60S particles is required for the clearance of aberrant translation products
  publication-title: Proc Natl Acad Sci USA
– volume: 68
  start-page: 361
  year: 2017
  end-page: 373
  article-title: Ribosome collision is critical for quality control during no‐go decay
  publication-title: Mol Cell
– volume: 295
  start-page: 2262
  year: 2002
  end-page: 2264
  article-title: Exosome‐mediated recognition and degradation of mRNAs lacking a termination codon
  publication-title: Science
– volume: 25
  start-page: 1605
  year: 2004
  end-page: 1612
  article-title: UCSF Chimera–a visualization system for exploratory research and analysis
  publication-title: J Comput Chem
– volume: 330
  start-page: 1203
  year: 2010
  end-page: 1209
  article-title: Crystal structure of the eukaryotic ribosome
  publication-title: Science
– volume: 8
  start-page: 948
  year: 2002
  end-page: 958
  article-title: One‐step affinity purification of the yeast ribosome and its associated proteins and mRNAs
  publication-title: RNA
– volume: 6
  start-page: 28234
  year: 2016
  article-title: Ribosome‐associated Asc1/RACK1 is required for endonucleolytic cleavage induced by stalled ribosome at the 3′ end of nonstop mRNA
  publication-title: Sci Rep
– volume: 107
  start-page: 361
  year: 2001
  end-page: 372
  article-title: Architecture of the protein‐conducting channel associated with the translating 80S ribosome
  publication-title: Cell
– volume: 8
  start-page: 159
  year: 2017
  article-title: Ubiquitination of stalled ribosome triggers ribosome‐associated quality control
  publication-title: Nature Commun
– volume: 46
  start-page: 518
  year: 2012
  end-page: 529
  article-title: Dom34:hbs1 plays a general role in quality‐control systems by dissociation of a stalled ribosome at the 3′ end of aberrant mRNA
  publication-title: Mol Cell
– volume: 65
  start-page: 751
  year: 2017
  end-page: 760
  article-title: ZNF598 and RACK1 regulate mammalian ribosome‐associated quality control function by mediating regulatory 40S ribosomal ubiquitylation
  publication-title: Mol Cell
– volume: 4
  start-page: e09684
  year: 2015
  article-title: Mechanisms of ribosome stalling by SecM at multiple elongation steps
  publication-title: Elife
– volume: 21
  start-page: 947
  year: 2004
  end-page: 962
  article-title: A versatile toolbox for PCR‐based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes
  publication-title: Yeast
– volume: 8
  start-page: 16056
  year: 2017
  article-title: The E3 ubiquitin ligase and RNA‐binding protein ZNF598 orchestrates ribosome quality control of premature polyadenylated mRNAs
  publication-title: Nat Commun
– volume: 19
  start-page: 594
  year: 2012
  end-page: 601
  article-title: Translation drives mRNA quality control
  publication-title: Nat Struct Mol Biol
– volume: 40
  start-page: 548
  year: 2010
  end-page: 557
  article-title: Ubiquitin binding to A20 ZnF4 is required for modulation of NF‐kappaB signaling
  publication-title: Mol Cell
– volume: 440
  start-page: 561
  year: 2006
  end-page: 564
  article-title: Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation
  publication-title: Nature
– volume: 467
  start-page: 470
  year: 2010
  end-page: 473
  article-title: Role of a ribosome‐associated E3 ubiquitin ligase in protein quality control
  publication-title: Nature
– volume: 5
  start-page: e18722
  year: 2016
  article-title: Accelerated cryo‐EM structure determination with parallelisation using GPUs in RELION‐2
  publication-title: Elife
– volume: 13
  start-page: 915
  year: 2006
  end-page: 920
  article-title: Mms2‐Ubc13 covalently bound to ubiquitin reveals the structural basis of linkage‐specific polyubiquitin chain formation
  publication-title: Nat Struct Mol Biol
– volume: 14
  start-page: 953
  year: 1998
  end-page: 961
  article-title: Additional modules for versatile and economical PCR‐based gene deletion and modification in Saccharomyces cerevisiae
  publication-title: Yeast
– volume: 14
  start-page: 331
  year: 2017
  end-page: 332
  article-title: MotionCor2: anisotropic correction of beam‐induced motion for improved cryo‐electron microscopy
  publication-title: Nat Methods
– volume: 71
  start-page: 136
  year: 2015
  end-page: 153
  article-title: Tools for macromolecular model building and refinement into electron cryo‐microscopy reconstructions
  publication-title: Acta Crystallogr D Biol Crystallogr
– volume: 17
  start-page: 1446
  year: 2010
  end-page: 1452
  article-title: Dissection of Dom34‐Hbs1 reveals independent functions in two RNA quality control pathways
  publication-title: Nat Struct Mol Biol
– volume: 11
  start-page: 956
  year: 2010
  end-page: 961
  article-title: Receptor for activated C kinase 1 stimulates nascent polypeptide‐dependent translation arrest
  publication-title: EMBO Rep
– volume: 22
  start-page: 1210
  year: 2014
  end-page: 1218
  article-title: Structures of yeast 80S ribosome‐tRNA complexes in the rotated and nonrotated conformations
  publication-title: Structure
– volume: 108
  start-page: 20520
  year: 2011
  end-page: 20525
  article-title: Specific recognition of linear ubiquitin chains by the Npl4 zinc finger (NZF) domain of the HOIL‐1L subunit of the linear ubiquitin chain assembly complex
  publication-title: Proc Natl Acad Sci USA
– volume: 55
  start-page: 880
  year: 2014
  end-page: 890
  article-title: Reconstitution of a minimal ribosome‐associated ubiquitination pathway with purified factors
  publication-title: Mol Cell
– volume: 492
  start-page: 42
  year: 2012
  end-page: 53
  article-title: The Ccr4–not complex
  publication-title: Gene
– volume: 166
  start-page: 679
  year: 2016
  end-page: 690
  article-title: Adjacent codons act in concert to modulate translation efficiency in yeast
  publication-title: Cell
– volume: 27
  start-page: 14
  year: 2018
  end-page: 25
  article-title: UCSF ChimeraX: meeting modern challenges in visualization and analysis
  publication-title: Protein Sci
– volume: 17
  start-page: 1233
  year: 2010
  end-page: 1240
  article-title: Structure of the Dom34‐Hbs1 complex and implications for no‐go decay
  publication-title: Nat Struct Mol Biol
– volume: 347
  start-page: 75
  year: 2015
  end-page: 78
  article-title: Protein synthesis. Rqc2p and 60S ribosomal subunits mediate mRNA‐independent elongation of nascent chains
  publication-title: Science
– volume: 102
  start-page: 1543
  year: 1986
  end-page: 1550
  article-title: Secretory protein translocation in a yeast cell‐free system can occur posttranslationally and requires ATP hydrolysis
  publication-title: J Cell Biol
– volume: 11
  start-page: e1005197
  year: 2015
  article-title: Inhibiting K63 polyubiquitination abolishes no‐go type stalled translation surveillance in
  publication-title: PLoS Genet
– volume: 193
  start-page: 1
  year: 2016
  end-page: 12
  article-title: Gctf: real‐time CTF determination and correction
  publication-title: J Struct Biol
– volume: 83
  start-page: 640
  year: 2012
  end-page: 653
  article-title: Presence of Not5 and ubiquitinated Rps7A in polysome fractions depends upon the Not4 E3 ligase
  publication-title: Mol Microbiol
– volume: 151
  start-page: 1042
  year: 2012
  end-page: 1054
  article-title: A ribosome‐bound quality control complex triggers degradation of nascent peptides and signals translation stress
  publication-title: Cell
– volume: 354
  start-page: 1431
  year: 2016
  end-page: 1433
  article-title: The cryo‐EM structure of a ribosome‐Ski2‐Ski3‐Ski8 helicase complex
  publication-title: Science
– volume: 21
  start-page: 935
  year: 2015
  end-page: 945
  article-title: Asc1, homolog of human RACK1, prevents frameshifting in yeast by ribosomes stalled at CGA codon repeats
  publication-title: RNA
– volume: 57
  start-page: 389
  year: 2015
  end-page: 390
  article-title: Ribosome rescue and protein quality control in concert
  publication-title: Mol Cell
– volume: 399
  start-page: 361
  year: 2006
  end-page: 372
  article-title: Ubiquitin‐binding domains
  publication-title: Biochem J
– volume: 18
  start-page: 579
  year: 2016
  end-page: 586
  article-title: The increasing complexity of the ubiquitin code
  publication-title: Nat Cell Biol
– volume: 23
  start-page: 798
  year: 2017
  end-page: 810
  article-title: Asc1, Hel2, and Slh1 couple translation arrest to nascent chain degradation
  publication-title: RNA
– volume: 482
  start-page: 501
  year: 2012
  end-page: 506
  article-title: Structural basis of highly conserved ribosome recycling in eukaryotes and archaea
  publication-title: Nature
– volume: 107
  start-page: 17575
  year: 2010
  end-page: 17579
  article-title: Structural basis for mRNA surveillance by archaeal Pelota and GTP‐bound EF1alpha complex
  publication-title: Proc Natl Acad Sci USA
– volume: 10
  start-page: 1265
  year: 2009
  end-page: 1271
  article-title: Upf1 stimulates degradation of the product derived from aberrant messenger RNA containing a specific nonsense mutation by the proteasome
  publication-title: EMBO Rep
– volume: 124
  start-page: 1197
  year: 2006
  end-page: 1208
  article-title: The ubiquitin binding domain ZnF UBP recognizes the C‐terminal diglycine motif of unanchored ubiquitin
  publication-title: Cell
– volume: 25
  start-page: 302
  year: 2018
  end-page: 310
  article-title: Ribothrypsis, a novel process of canonical mRNA decay, mediates ribosome‐phased mRNA endonucleolysis
  publication-title: Nat Struct Mol Biol
– volume: 72
  start-page: 469
  year: 2018
  end-page: 481
  article-title: ZNF598 is a quality control sensor of collided ribosomes
  publication-title: Mol Cell
– ident: e_1_2_9_2_1
  doi: 10.1038/nature10829
– ident: e_1_2_9_12_1
  doi: 10.1038/nature04530
– ident: e_1_2_9_28_1
  doi: 10.1073/pnas.1009598107
– ident: e_1_2_9_36_1
  doi: 10.1371/journal.pgen.1005197
– ident: e_1_2_9_7_1
  doi: 10.1016/j.cell.2012.10.044
– ident: e_1_2_9_5_1
  doi: 10.1126/science.1194294
– ident: e_1_2_9_30_1
  doi: 10.1038/embor.2010.169
– ident: e_1_2_9_38_1
  doi: 10.1126/science.aaf7520
– ident: e_1_2_9_24_1
  doi: 10.1002/yea.1142
– ident: e_1_2_9_44_1
  doi: 10.1016/j.molcel.2016.12.026
– ident: e_1_2_9_40_1
  doi: 10.1126/science.1259724
– ident: e_1_2_9_25_1
  doi: 10.1016/j.molcel.2016.11.039
– ident: e_1_2_9_49_1
  doi: 10.1038/ncb3358
– ident: e_1_2_9_51_1
  doi: 10.1016/j.jsb.2015.11.003
– ident: e_1_2_9_21_1
  doi: 10.1017/S1355838202026018
– ident: e_1_2_9_35_1
  doi: 10.1016/j.cell.2006.02.038
– ident: e_1_2_9_50_1
  doi: 10.7554/eLife.09684
– ident: e_1_2_9_32_1
  doi: 10.1038/s41467-017-00188-1
– ident: e_1_2_9_47_1
  doi: 10.1083/jcb.102.5.1543
– ident: e_1_2_9_9_1
  doi: 10.1038/nsmb.1922
– ident: e_1_2_9_37_1
  doi: 10.1073/pnas.1109088108
– ident: e_1_2_9_26_1
  doi: 10.1016/j.molcel.2018.08.037
– ident: e_1_2_9_39_1
  doi: 10.1016/j.molcel.2014.07.006
– ident: e_1_2_9_42_1
  doi: 10.1016/j.molcel.2017.08.019
– ident: e_1_2_9_11_1
  doi: 10.1073/pnas.1221724110
– ident: e_1_2_9_31_1
  doi: 10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U
– ident: e_1_2_9_3_1
  doi: 10.1016/S0092-8674(01)00541-4
– ident: e_1_2_9_16_1
  doi: 10.1038/ncomms16056
– ident: e_1_2_9_19_1
  doi: 10.1126/science.1067272
– ident: e_1_2_9_17_1
  doi: 10.1002/pro.3235
– ident: e_1_2_9_48_1
  doi: 10.1261/rna.049080.114
– ident: e_1_2_9_8_1
  doi: 10.1107/S1399004714021683
– ident: e_1_2_9_10_1
  doi: 10.1016/j.gene.2011.09.033
– ident: e_1_2_9_4_1
  doi: 10.1038/nature09371
– ident: e_1_2_9_14_1
  doi: 10.1038/nsmb.1963
– ident: e_1_2_9_43_1
  doi: 10.1261/rna.060897.117
– ident: e_1_2_9_22_1
  doi: 10.1038/s41594-018-0042-8
– ident: e_1_2_9_23_1
  doi: 10.1038/srep28234
– ident: e_1_2_9_29_1
  doi: 10.1038/embor.2009.200
– ident: e_1_2_9_15_1
  doi: 10.1016/j.cell.2016.05.070
– ident: e_1_2_9_46_1
  doi: 10.1016/j.molcel.2012.03.013
– ident: e_1_2_9_45_1
  doi: 10.1016/j.str.2014.06.003
– ident: e_1_2_9_52_1
  doi: 10.1038/nmeth.4193
– ident: e_1_2_9_13_1
  doi: 10.1038/nsmb1148
– ident: e_1_2_9_20_1
  doi: 10.1042/BJ20061138
– ident: e_1_2_9_33_1
  doi: 10.1111/j.1365-2958.2011.07957.x
– ident: e_1_2_9_18_1
  doi: 10.1016/j.molcel.2015.01.029
– ident: e_1_2_9_27_1
  doi: 10.7554/eLife.18722
– ident: e_1_2_9_6_1
  doi: 10.1016/j.molcel.2010.10.009
– ident: e_1_2_9_34_1
  doi: 10.1002/jcc.20084
– ident: e_1_2_9_41_1
  doi: 10.1038/nsmb.2301
– reference: 30770343 - EMBO J. 2019 Mar 1;38(5):
SSID ssj0005871
Score 2.6577163
Snippet Ribosome stalling triggers quality control pathways targeting the mRNA (NGD: no‐go decay) and the nascent polypeptide (RQC: ribosome‐associated quality...
Ribosome stalling triggers quality control pathways targeting the mRNA (NGD: no-go decay) and the nascent polypeptide (RQC: ribosome-associated quality...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Cryoelectron Microscopy
Decay
EMBO31
EMBO32
EMBO40
mRNA
mRNA turnover
no‐go mRNA decay
Pattern recognition
Polypeptides
Protein Biosynthesis
Proteins
Quality control
Ribosomal Proteins - genetics
Ribosomal Proteins - metabolism
ribosome collision
ribosome quality control
Ribosomes
Ribosomes - metabolism
Ribosomes - ultrastructure
RNA Stability
RNA, Messenger - genetics
RNA, Messenger - metabolism
RQT complex
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Stalling
Ubiquitin
Ubiquitin - metabolism
Ubiquitin-protein ligase
Ubiquitin-Protein Ligases - genetics
Ubiquitin-Protein Ligases - metabolism
Ubiquitination
Upstream
Yeast
Title Collided ribosomes form a unique structural interface to induce Hel2‐driven quality control pathways
URI https://link.springer.com/article/10.15252/embj.2018100276
https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.2018100276
https://www.ncbi.nlm.nih.gov/pubmed/30609991
https://www.proquest.com/docview/2186968044
https://www.proquest.com/docview/2164104426
https://pubmed.ncbi.nlm.nih.gov/PMC6396155
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1460-2075
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0005871
  issn: 0261-4189
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1460-2075
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005871
  issn: 0261-4189
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB5BAZULP4VCoKyMxAWkqE7WiZ0jlK4AlT0gKvYWxbFdFtEEbVrQ3ngEHoFn4VF4Emacn2WpAAlxiqw4P7bH4xnP-PsAHhg0wXlmeEgpUKFwJgkVilWIWpKPlY51VPqRPpDTqZrNsp_PwrT4EMOGG80Mr69pghe66Rl7CDXUHut3lJulCEVUEup2JCIiMXjzfLrK8lDe5_LbLCJSWReppFfs_vKC9ZXpjLl5NmtyCJ2uG7Z-ZZpc_R9tugZXOruUPW4F6Tqcs9UWXGqZKpdbsLnXE8PdgCPabJgba9hiruumPrYNI9OXFezUw8GyFpSWAD0YwVEsXFFadlJjwaAkMVzq4u-fv5gFaVrWHutcsi5p_ttXIkn-VCybm3A42X-99yzs-BrCUiQqDVNeZA79Na2NUdwIl0pLtOt8LMrMChcLVKbCpDqVThYlLpNpzJWLSy5lVlg13oaNqq7sbWCWvGWlHaoXvCaZSnhkXWSkU4IiowHs9mOVlx2YOXFqvM_JqaHOzKkr81VXBvBweOJDC-Txh7o7_fDn3ZRuck_elSouRAD3h9vY9RRhKSpbn1KdVKB_i1ZPALdaaRk-hr6Zt8YDkGtyNFQgoO_1O9X8rQf8RiuSwscBPOolbvVbv29D4iXtr43N918-ebEq3vnH5-7CZSxkbXreDmygoNl7cLH8eDJvFiM4L2dqBBeevpocHoz8FP0BbQg46g
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB6VAioXfkqBlAJG4gJSVG_WsZ0jrFq1sF1xKKK3KIltWEQTtGmp9tZH4BF4lj4KT8KM87NaKkBCnCLLzo_t8fgbz-QbgGcGIThPDA8pBCoUzsShRrEKUUvyoc6jfFD4mR6ryUQfHSVvV2DU_QvT8EP0B260Mry-pgVOB9Jdyh6iDbXH-ScKztJEI6rkFbgqEG9Q_ob3-5NFnIf2Vpc_aBEDnbS-SnrG9i9PWN6bLgHOy3GTvfN0Gdr6vWn31n_p1W242UJT9rKRpTuwYst1uN4kq5yvw9qoyw13Fz7QecPUWMNm07yqq2NbM0K_LGOnnhGWNby0xOnBiJFi5rLCspMKCwaFieFuF_04_2ZmpGxZ82fnnLVx8xffKU_yWTavN-Dd7s7haC9sUzaEhYi1DCXPEocmW54bo7kRTipLmdf5UBSJFS4SqE-FkblUTmUF7pQy4tpFBVcqyawe3oPVsirtA2CWDGadO9QweI0THfOBdQOjnBbkHA1gu5ustGj5zCmtxueU7BoazJSGMl0MZQDP-zu-NFwef2i71c1_2q7qOvX5u6TmQgTwtK_GoScnS1ba6pTaSIEmLgKfAO434tK_DM0zD8gDUEuC1Dcgru_lmnL60XN-I5AkD3IALzqRW3zW7_sQe1H7a2fTnYNXrxfFzX-87wms7R0ejNPx_uTNQ7iBFUkTrbcFqyh09hFcK76eTOvZY79CfwK5JTqA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3bbtQwEB2VLZS-cCm3QAEj8UKlqN6sEzuPsO2Ky7KqEJX6FiWxDVvRpNq0oH3jE_oJfAuf0i_pjHNZLRUgIZ4iJ87F9ng845mcA_BcownOY819SoHyhdWhr1CsfNSSfKCyIOvnbqTHcjJRBwfx3goM239hanyIbsONZobT1zTBzbG2LWUPwYaao-yQkrMUwYjK6AqsCuKS6cHqzofR_niR6aGc3-W2WkRfxU20kp6y_cszllenSybn5czJLny6bNy61Wl087-06xbcaIxT9rKWptuwYooNuFbTVc434PqwZYe7A59ox2GqjWazaVZW5ZGpGNm_LGWnDhOW1ci0hOrBCJNiZtPcsJMSCxrFieF6F5x_P9MzUres_rdzzprM-Z8_iCn5Wzqv7sL-aPfj8LXfkDb4uQhV5Ec8jS06bVmmteJa2Ega4l7nA5HHRthAoEYVOsoiaWWa41oZBVzZIOdSxqlRg3vQK8rCPABmyGVWmUUdg8cwViHvG9vX0ipB4VEPttvBSvIG0ZyINb4k5NlQZybUlcmiKz140d1xXKN5_KHuZjv-STOvq8QxeEWKC-HBs-4ydj2FWdLClKdUJxLo5KLp48H9Wly6l6GD5kxyD-SSIHUVCO17-Uox_exQv9GUpBiyB1utyC0-6_dtCJ2o_bWxye77V28XxYf_eN9TWNvbGSXjN5N3j2Adz8d1ut4m9FDmzGO4mn89mVazJ80UvQDl7zsp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Collided+ribosomes+form+a+unique+structural+interface+to+induce+Hel2%E2%80%90driven+quality+control%C2%A0pathways&rft.jtitle=The+EMBO+journal&rft.au=Ikeuchi%2C+Ken&rft.au=Tesina%2C+Petr&rft.au=Matsuo%2C+Yoshitaka&rft.au=Sugiyama%2C+Takato&rft.date=2019-03-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=0261-4189&rft.eissn=1460-2075&rft.volume=38&rft.issue=5&rft_id=info:doi/10.15252%2Fembj.2018100276&rft_id=info%3Apmid%2F30609991&rft.externalDocID=PMC6396155
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon