Collided ribosomes form a unique structural interface to induce Hel2‐driven quality control pathways
Ribosome stalling triggers quality control pathways targeting the mRNA (NGD: no‐go decay) and the nascent polypeptide (RQC: ribosome‐associated quality control). RQC requires Hel2‐dependent uS10 ubiquitination and the RQT complex in yeast. Here, we report that Hel2‐dependent uS10 ubiquitination and...
Uloženo v:
| Vydáno v: | The EMBO journal Ročník 38; číslo 5 |
|---|---|
| Hlavní autoři: | , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
01.03.2019
Springer Nature B.V John Wiley and Sons Inc |
| Témata: | |
| ISSN: | 0261-4189, 1460-2075, 1460-2075 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Ribosome stalling triggers quality control pathways targeting the mRNA (NGD: no‐go decay) and the nascent polypeptide (RQC: ribosome‐associated quality control). RQC requires Hel2‐dependent uS10 ubiquitination and the RQT complex in yeast. Here, we report that Hel2‐dependent uS10 ubiquitination and Slh1/Rqt2 are crucial for RQC and NGD induction within a di‐ribosome (disome) unit, which consists of the leading stalled ribosome and the following colliding ribosome. Hel2 preferentially ubiquitinated a disome over a monosome on a quality control inducing reporter mRNA in an
in vitro
translation reaction. Cryo‐EM analysis of the disome unit revealed a distinct structural arrangement suitable for recognition and modification by Hel2. The absence of the RQT complex or uS10 ubiquitination resulted in the elimination of NGD within the disome unit. Instead, we observed Hel2‐mediated cleavages upstream of the disome, governed by initial Not4‐mediated monoubiquitination of eS7 and followed by Hel2‐mediated K63‐linked polyubiquitination. We propose that Hel2‐mediated ribosome ubiquitination is required both for canonical NGD (NGD
RQC
+
) and RQC coupled to the disome and that RQC‐uncoupled NGD outside the disome (NGD
RQC
−
) can occur in a Not4‐dependent manner.
Synopsis
Ribosome stalling triggers both ribosome‐associated quality control (RQC) of nascent polypeptides and no‐go decay (NGD) of mRNA. Structural and biochemical data show that collided ribosomes form a unique structural unit allowing the Hel2 ubiquitin ligase to operate in both pathways.
Hel2‐mediated uS10 ubiquitination and Slh1/Rqt2 are crucial for RQC and NGD induction within a di‐ribosome (disome) unit.
Cryo‐EM reveals a unique composite interface between the small subunits of the stalled leading and the following colliding ribosome, which can serve as stalling‐recognition pattern for Hel2.
Hel2 preferentially ubiquitinates colliding ribosomes, where Hel2 ubiquitination targets on the respective small subunits congregate in close vicinity.
Two distinct NGD branches act differentially on or near a disome unit, one coupled to and one uncoupled from RQC.
RQC‐uncoupled NGD is characterized by Not4‐mediated mono‐ubiquitination followed by Hel2‐mediated polyubiquitination of ribosomal protein eS7, resulting in mRNA cleavage upstream of the disome unit.
Graphical Abstract
Yeast Hel2 ubiquitin ligase functions in both ribosome‐associated protein quality control and canonical mRNA no‐go decay pathways coupled to disome units. |
|---|---|
| AbstractList | Ribosome stalling triggers quality control pathways targeting the mRNA (NGD: no-go decay) and the nascent polypeptide (RQC: ribosome-associated quality control). RQC requires Hel2-dependent uS10 ubiquitination and the RQT complex in yeast. Here, we report that Hel2-dependent uS10 ubiquitination and Slh1/Rqt2 are crucial for RQC and NGD induction within a di-ribosome (disome) unit, which consists of the leading stalled ribosome and the following colliding ribosome. Hel2 preferentially ubiquitinated a disome over a monosome on a quality control inducing reporter mRNA in an in vitro translation reaction. Cryo-EM analysis of the disome unit revealed a distinct structural arrangement suitable for recognition and modification by Hel2. The absence of the RQT complex or uS10 ubiquitination resulted in the elimination of NGD within the disome unit. Instead, we observed Hel2-mediated cleavages upstream of the disome, governed by initial Not4-mediated monoubiquitination of eS7 and followed by Hel2-mediated K63-linked polyubiquitination. We propose that Hel2-mediated ribosome ubiquitination is required both for canonical NGD (NGDRQC+) and RQC coupled to the disome and that RQC-uncoupled NGD outside the disome (NGDRQC-) can occur in a Not4-dependent manner.Ribosome stalling triggers quality control pathways targeting the mRNA (NGD: no-go decay) and the nascent polypeptide (RQC: ribosome-associated quality control). RQC requires Hel2-dependent uS10 ubiquitination and the RQT complex in yeast. Here, we report that Hel2-dependent uS10 ubiquitination and Slh1/Rqt2 are crucial for RQC and NGD induction within a di-ribosome (disome) unit, which consists of the leading stalled ribosome and the following colliding ribosome. Hel2 preferentially ubiquitinated a disome over a monosome on a quality control inducing reporter mRNA in an in vitro translation reaction. Cryo-EM analysis of the disome unit revealed a distinct structural arrangement suitable for recognition and modification by Hel2. The absence of the RQT complex or uS10 ubiquitination resulted in the elimination of NGD within the disome unit. Instead, we observed Hel2-mediated cleavages upstream of the disome, governed by initial Not4-mediated monoubiquitination of eS7 and followed by Hel2-mediated K63-linked polyubiquitination. We propose that Hel2-mediated ribosome ubiquitination is required both for canonical NGD (NGDRQC+) and RQC coupled to the disome and that RQC-uncoupled NGD outside the disome (NGDRQC-) can occur in a Not4-dependent manner. Ribosome stalling triggers quality control pathways targeting the mRNA (NGD: no-go decay) and the nascent polypeptide (RQC: ribosome-associated quality control). RQC requires Hel2-dependent uS10 ubiquitination and the RQT complex in yeast. Here, we report that Hel2-dependent uS10 ubiquitination and Slh1/Rqt2 are crucial for RQC and NGD induction within a di-ribosome (disome) unit, which consists of the leading stalled ribosome and the following colliding ribosome. Hel2 preferentially ubiquitinated a disome over a monosome on a quality control inducing reporter mRNA in an translation reaction. Cryo-EM analysis of the disome unit revealed a distinct structural arrangement suitable for recognition and modification by Hel2. The absence of the RQT complex or uS10 ubiquitination resulted in the elimination of NGD within the disome unit. Instead, we observed Hel2-mediated cleavages upstream of the disome, governed by initial Not4-mediated monoubiquitination of eS7 and followed by Hel2-mediated K63-linked polyubiquitination. We propose that Hel2-mediated ribosome ubiquitination is required both for canonical NGD (NGD ) and RQC coupled to the disome and that RQC-uncoupled NGD outside the disome (NGD ) can occur in a Not4-dependent manner. Ribosome stalling triggers quality control pathways targeting the mRNA (NGD: no‐go decay) and the nascent polypeptide (RQC: ribosome‐associated quality control). RQC requires Hel2‐dependent uS10 ubiquitination and the RQT complex in yeast. Here, we report that Hel2‐dependent uS10 ubiquitination and Slh1/Rqt2 are crucial for RQC and NGD induction within a di‐ribosome (disome) unit, which consists of the leading stalled ribosome and the following colliding ribosome. Hel2 preferentially ubiquitinated a disome over a monosome on a quality control inducing reporter mRNA in an in vitro translation reaction. Cryo‐EM analysis of the disome unit revealed a distinct structural arrangement suitable for recognition and modification by Hel2. The absence of the RQT complex or uS10 ubiquitination resulted in the elimination of NGD within the disome unit. Instead, we observed Hel2‐mediated cleavages upstream of the disome, governed by initial Not4‐mediated monoubiquitination of eS7 and followed by Hel2‐mediated K63‐linked polyubiquitination. We propose that Hel2‐mediated ribosome ubiquitination is required both for canonical NGD (NGDRQC +) and RQC coupled to the disome and that RQC‐uncoupled NGD outside the disome (NGDRQC −) can occur in a Not4‐dependent manner. Ribosome stalling triggers quality control pathways targeting the mRNA (NGD: no‐go decay) and the nascent polypeptide (RQC: ribosome‐associated quality control). RQC requires Hel2‐dependent uS10 ubiquitination and the RQT complex in yeast. Here, we report that Hel2‐dependent uS10 ubiquitination and Slh1/Rqt2 are crucial for RQC and NGD induction within a di‐ribosome (disome) unit, which consists of the leading stalled ribosome and the following colliding ribosome. Hel2 preferentially ubiquitinated a disome over a monosome on a quality control inducing reporter mRNA in an in vitro translation reaction. Cryo‐EM analysis of the disome unit revealed a distinct structural arrangement suitable for recognition and modification by Hel2. The absence of the RQT complex or uS10 ubiquitination resulted in the elimination of NGD within the disome unit. Instead, we observed Hel2‐mediated cleavages upstream of the disome, governed by initial Not4‐mediated monoubiquitination of eS7 and followed by Hel2‐mediated K63‐linked polyubiquitination. We propose that Hel2‐mediated ribosome ubiquitination is required both for canonical NGD (NGD RQC + ) and RQC coupled to the disome and that RQC‐uncoupled NGD outside the disome (NGD RQC − ) can occur in a Not4‐dependent manner. Synopsis Ribosome stalling triggers both ribosome‐associated quality control (RQC) of nascent polypeptides and no‐go decay (NGD) of mRNA. Structural and biochemical data show that collided ribosomes form a unique structural unit allowing the Hel2 ubiquitin ligase to operate in both pathways. Hel2‐mediated uS10 ubiquitination and Slh1/Rqt2 are crucial for RQC and NGD induction within a di‐ribosome (disome) unit. Cryo‐EM reveals a unique composite interface between the small subunits of the stalled leading and the following colliding ribosome, which can serve as stalling‐recognition pattern for Hel2. Hel2 preferentially ubiquitinates colliding ribosomes, where Hel2 ubiquitination targets on the respective small subunits congregate in close vicinity. Two distinct NGD branches act differentially on or near a disome unit, one coupled to and one uncoupled from RQC. RQC‐uncoupled NGD is characterized by Not4‐mediated mono‐ubiquitination followed by Hel2‐mediated polyubiquitination of ribosomal protein eS7, resulting in mRNA cleavage upstream of the disome unit. Graphical Abstract Yeast Hel2 ubiquitin ligase functions in both ribosome‐associated protein quality control and canonical mRNA no‐go decay pathways coupled to disome units. Ribosome stalling triggers quality control pathways targeting the mRNA (NGD: no‐go decay) and the nascent polypeptide (RQC: ribosome‐associated quality control). RQC requires Hel2‐dependent uS10 ubiquitination and the RQT complex in yeast. Here, we report that Hel2‐dependent uS10 ubiquitination and Slh1/Rqt2 are crucial for RQC and NGD induction within a di‐ribosome (disome) unit, which consists of the leading stalled ribosome and the following colliding ribosome. Hel2 preferentially ubiquitinated a disome over a monosome on a quality control inducing reporter mRNA in an in vitro translation reaction. Cryo‐EM analysis of the disome unit revealed a distinct structural arrangement suitable for recognition and modification by Hel2. The absence of the RQT complex or uS10 ubiquitination resulted in the elimination of NGD within the disome unit. Instead, we observed Hel2‐mediated cleavages upstream of the disome, governed by initial Not4‐mediated monoubiquitination of eS7 and followed by Hel2‐mediated K63‐linked polyubiquitination. We propose that Hel2‐mediated ribosome ubiquitination is required both for canonical NGD (NGDRQC+) and RQC coupled to the disome and that RQC‐uncoupled NGD outside the disome (NGDRQC−) can occur in a Not4‐dependent manner. Ribosome stalling triggers quality control pathways targeting the mRNA (NGD: no‐go decay) and the nascent polypeptide (RQC: ribosome‐associated quality control). RQC requires Hel2‐dependent uS10 ubiquitination and the RQT complex in yeast. Here, we report that Hel2‐dependent uS10 ubiquitination and Slh1/Rqt2 are crucial for RQC and NGD induction within a di‐ribosome (disome) unit, which consists of the leading stalled ribosome and the following colliding ribosome. Hel2 preferentially ubiquitinated a disome over a monosome on a quality control inducing reporter mRNA in an in vitro translation reaction. Cryo‐EM analysis of the disome unit revealed a distinct structural arrangement suitable for recognition and modification by Hel2. The absence of the RQT complex or uS10 ubiquitination resulted in the elimination of NGD within the disome unit. Instead, we observed Hel2‐mediated cleavages upstream of the disome, governed by initial Not4‐mediated monoubiquitination of eS7 and followed by Hel2‐mediated K63‐linked polyubiquitination. We propose that Hel2‐mediated ribosome ubiquitination is required both for canonical NGD (NGDRQC+) and RQC coupled to the disome and that RQC‐uncoupled NGD outside the disome (NGDRQC−) can occur in a Not4‐dependent manner. Synopsis Ribosome stalling triggers both ribosome‐associated quality control (RQC) of nascent polypeptides and no‐go decay (NGD) of mRNA. Structural and biochemical data show that collided ribosomes form a unique structural unit allowing the Hel2 ubiquitin ligase to operate in both pathways. Hel2‐mediated uS10 ubiquitination and Slh1/Rqt2 are crucial for RQC and NGD induction within a di‐ribosome (disome) unit. Cryo‐EM reveals a unique composite interface between the small subunits of the stalled leading and the following colliding ribosome, which can serve as stalling‐recognition pattern for Hel2. Hel2 preferentially ubiquitinates colliding ribosomes, where Hel2 ubiquitination targets on the respective small subunits congregate in close vicinity. Two distinct NGD branches act differentially on or near a disome unit, one coupled to and one uncoupled from RQC. RQC‐uncoupled NGD is characterized by Not4‐mediated mono‐ubiquitination followed by Hel2‐mediated polyubiquitination of ribosomal protein eS7, resulting in mRNA cleavage upstream of the disome unit. Yeast Hel2 ubiquitin ligase functions in both ribosome‐associated protein quality control and canonical mRNA no‐go decay pathways coupled to disome units. |
| Author | Inada, Toshifumi Tanaka, Keiji Beckmann, Roland Ikeuchi, Ken Cheng, Jingdong Sugiyama, Takato Becker, Thomas Tesina, Petr Saeki, Yasushi Matsuo, Yoshitaka |
| AuthorAffiliation | 1 Graduate School of Pharmaceutical Sciences Tohoku University Sendai Japan 2 Department of Biochemistry Gene Center and Center for Integrated Protein Science Munich University of Munich Munich Germany 3 Laboratory of Protein Metabolism Tokyo Metropolitan Institute of Medical Science Setagaya‐ku, Tokyo Japan |
| AuthorAffiliation_xml | – name: 1 Graduate School of Pharmaceutical Sciences Tohoku University Sendai Japan – name: 3 Laboratory of Protein Metabolism Tokyo Metropolitan Institute of Medical Science Setagaya‐ku, Tokyo Japan – name: 2 Department of Biochemistry Gene Center and Center for Integrated Protein Science Munich University of Munich Munich Germany |
| Author_xml | – sequence: 1 givenname: Ken orcidid: 0000-0002-9578-7920 surname: Ikeuchi fullname: Ikeuchi, Ken organization: Graduate School of Pharmaceutical Sciences, Tohoku University – sequence: 2 givenname: Petr orcidid: 0000-0002-5227-1799 surname: Tesina fullname: Tesina, Petr organization: Department of Biochemistry, Gene Center and Center for Integrated Protein Science Munich, University of Munich – sequence: 3 givenname: Yoshitaka surname: Matsuo fullname: Matsuo, Yoshitaka organization: Graduate School of Pharmaceutical Sciences, Tohoku University – sequence: 4 givenname: Takato orcidid: 0000-0001-8364-7050 surname: Sugiyama fullname: Sugiyama, Takato organization: Graduate School of Pharmaceutical Sciences, Tohoku University – sequence: 5 givenname: Jingdong surname: Cheng fullname: Cheng, Jingdong organization: Department of Biochemistry, Gene Center and Center for Integrated Protein Science Munich, University of Munich – sequence: 6 givenname: Yasushi orcidid: 0000-0002-9202-5453 surname: Saeki fullname: Saeki, Yasushi organization: Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science – sequence: 7 givenname: Keiji surname: Tanaka fullname: Tanaka, Keiji organization: Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science – sequence: 8 givenname: Thomas orcidid: 0000-0001-8458-2738 surname: Becker fullname: Becker, Thomas organization: Department of Biochemistry, Gene Center and Center for Integrated Protein Science Munich, University of Munich – sequence: 9 givenname: Roland orcidid: 0000-0003-4291-3898 surname: Beckmann fullname: Beckmann, Roland email: beckmann@genzentrum.lmu.de organization: Department of Biochemistry, Gene Center and Center for Integrated Protein Science Munich, University of Munich – sequence: 10 givenname: Toshifumi orcidid: 0000-0002-2695-588X surname: Inada fullname: Inada, Toshifumi email: tinada@m.tohoku.ac.jp organization: Graduate School of Pharmaceutical Sciences, Tohoku University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30609991$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkcFuFCEYx4mpsdvq3ZOZxIuXqR8sA0xiTHRTrabGi54JA8yWDTNsgWmzNx-hj9Bn8VF8EqlbW9tEPQHh9_v4Pv57aGcMo0XoKYYD3JCGvLRDtzoggAUGIJw9QDNMGdQEeLODZkAYrikW7S7aS2kFAI3g-BHanQODtm3xDC0XwXtnrKmi60IKg01VH-JQqWoa3elkq5TjpPMUla_cmG3slbZVDuVgprI7sp78-HZhojuzY3U6Ke_yptJhzDH475drlU_O1SY9Rg975ZN9cr3uo6_vDr8sjurjz-8_LN4c15o2gtUMVNtTwF1njABDe8YtBeAwp7q1tCdUGUMN6xjvudKMC0ZA9EQD562yYr6PXm_rrqdusEbb0ofych3doOJGBuXk3ZvRnchlOJNs3jLcNKXAi-sCMZTxU5aDS9p6r0YbpiQJZhQDpYQV9Pk9dBWmOJbxCiVYy0ThCvXsz45uWvmdQQFgC-gYUoq2v0EwyF8xy6uY5W3MRWH3FO2yyu7q15Xz_xJfbcVz5-3mvw_Jw09vP97R8VZPxRyXNt5O_NcnfwKXGdFG |
| CitedBy_id | crossref_primary_10_1016_j_celrep_2023_113359 crossref_primary_10_1073_pnas_2026362118 crossref_primary_10_1080_10409238_2021_1938507 crossref_primary_10_1111_nph_19520 crossref_primary_10_1038_s41598_020_60241_w crossref_primary_10_7554_eLife_54023 crossref_primary_10_1007_s11103_021_01145_9 crossref_primary_10_1093_nar_gkz1201 crossref_primary_10_1126_science_aay6912 crossref_primary_10_1515_hsz_2019_0279 crossref_primary_10_7554_eLife_49117 crossref_primary_10_1016_j_tcb_2022_07_007 crossref_primary_10_1261_rna_079663_123 crossref_primary_10_1016_j_molcel_2023_10_012 crossref_primary_10_1038_s41586_019_1307_z crossref_primary_10_1016_j_molcel_2024_10_011 crossref_primary_10_1016_j_tibs_2025_06_009 crossref_primary_10_1016_j_celrep_2025_115371 crossref_primary_10_1534_genetics_119_301807 crossref_primary_10_1016_j_bbrc_2020_04_104 crossref_primary_10_1038_s41467_023_38161_w crossref_primary_10_3389_fgene_2018_00743 crossref_primary_10_1038_s41564_023_01443_6 crossref_primary_10_1002_bies_202000124 crossref_primary_10_1002_1873_3468_13885 crossref_primary_10_3389_fcell_2020_610689 crossref_primary_10_1038_s41586_021_04295_4 crossref_primary_10_1093_nar_gkaa1049 crossref_primary_10_15252_embj_2022112869 crossref_primary_10_1016_j_molcel_2021_02_022 crossref_primary_10_1016_j_semcdb_2023_03_009 crossref_primary_10_1038_s41598_021_92931_4 crossref_primary_10_1007_s12035_021_02564_x crossref_primary_10_1038_s41586_022_04487_6 crossref_primary_10_1371_journal_pbio_3001767 crossref_primary_10_15252_embj_2019101633 crossref_primary_10_3390_cells8111384 crossref_primary_10_7554_eLife_61984 crossref_primary_10_1016_j_jmb_2025_169355 crossref_primary_10_1371_journal_pbio_3000396 crossref_primary_10_1016_j_jbc_2024_107290 crossref_primary_10_1038_s41467_025_56346_3 crossref_primary_10_1111_febs_17217 crossref_primary_10_1242_jcs_260388 crossref_primary_10_1016_j_molcel_2024_10_029 crossref_primary_10_1038_s41594_019_0202_5 crossref_primary_10_1042_BCJ20200303 crossref_primary_10_1088_1751_8121_aceec8 crossref_primary_10_1038_s41467_019_13991_9 crossref_primary_10_1016_j_molcel_2021_04_018 crossref_primary_10_1038_s44318_025_00523_z crossref_primary_10_1093_nar_gkab834 crossref_primary_10_1016_j_jgg_2025_04_010 crossref_primary_10_1016_j_molcel_2020_11_033 crossref_primary_10_1016_j_jmb_2024_168496 crossref_primary_10_1038_s41467_022_31127_4 crossref_primary_10_1002_1873_3468_14638 crossref_primary_10_1126_science_adq8587 crossref_primary_10_1038_s41467_025_57360_1 crossref_primary_10_1093_nar_gkad338 crossref_primary_10_1038_s41594_019_0331_x crossref_primary_10_1016_j_tibs_2021_03_008 crossref_primary_10_1111_nyas_14745 crossref_primary_10_1002_bies_202100269 crossref_primary_10_7554_eLife_66904 crossref_primary_10_1016_j_cell_2025_01_005 crossref_primary_10_1371_journal_pbio_3002887 crossref_primary_10_15252_embj_2019103365 crossref_primary_10_15252_embj_2021109256 crossref_primary_10_1016_j_molcel_2022_03_038 crossref_primary_10_15252_embj_2020106449 crossref_primary_10_1016_j_molcel_2021_01_029 crossref_primary_10_1186_s13059_023_02871_7 crossref_primary_10_1016_j_molcel_2020_06_010 crossref_primary_10_1007_s12268_023_1929_4 crossref_primary_10_1261_rna_080399_125 crossref_primary_10_1002_cbic_202300264 crossref_primary_10_3390_biomedicines11030659 crossref_primary_10_1038_s44318_025_00568_0 crossref_primary_10_1093_nar_gkae399 crossref_primary_10_1038_s41467_022_34097_9 crossref_primary_10_1042_BST20253024 crossref_primary_10_1016_j_semcdb_2021_12_009 crossref_primary_10_1038_s44318_023_00010_3 crossref_primary_10_1093_nar_gkaa757 crossref_primary_10_1093_nar_gkaa758 crossref_primary_10_1038_s41467_022_35684_6 crossref_primary_10_1080_10409238_2021_2006599 crossref_primary_10_1186_s12967_021_02948_6 crossref_primary_10_1016_j_bbrc_2023_02_012 crossref_primary_10_1073_pnas_2005301117 crossref_primary_10_1242_jcs_251983 crossref_primary_10_1093_nargab_lqaf045 crossref_primary_10_15252_embj_2023114378 crossref_primary_10_1038_s41467_022_35608_4 crossref_primary_10_1038_s41586_022_04416_7 crossref_primary_10_1146_annurev_biochem_013118_110729 crossref_primary_10_1038_s41598_023_50811_z crossref_primary_10_1042_BST20253034 crossref_primary_10_1038_s41594_020_0393_9 crossref_primary_10_1002_1873_3468_13792 crossref_primary_10_1007_s00294_020_01111_w crossref_primary_10_1016_j_str_2023_12_015 crossref_primary_10_1016_j_molcel_2020_06_006 crossref_primary_10_1073_pnas_2022756118 crossref_primary_10_7554_eLife_52611 crossref_primary_10_1038_s41594_023_01196_0 crossref_primary_10_26508_lsa_202302300 crossref_primary_10_1002_wrna_1809 crossref_primary_10_1007_s00018_020_03685_7 crossref_primary_10_1074_jbc_REV119_006513 crossref_primary_10_1016_j_molcel_2022_01_009 crossref_primary_10_1261_rna_078964_121 crossref_primary_10_1016_j_molcel_2020_01_007 crossref_primary_10_1038_s41467_024_45525_3 crossref_primary_10_3390_ijms23116174 crossref_primary_10_1126_science_adh1411 crossref_primary_10_1016_j_celrep_2024_115050 crossref_primary_10_3390_cells14131032 crossref_primary_10_1371_journal_pgen_1009813 crossref_primary_10_1093_nar_gkae137 crossref_primary_10_1038_s41467_024_49796_8 crossref_primary_10_7554_eLife_58828 crossref_primary_10_3389_fmolb_2022_1089825 crossref_primary_10_1038_s41467_024_54411_x crossref_primary_10_1038_s41586_024_07508_8 crossref_primary_10_3390_ijms21031151 crossref_primary_10_1038_s42003_025_07569_z crossref_primary_10_1038_s41477_021_00867_4 crossref_primary_10_1016_j_molcel_2022_01_019 crossref_primary_10_1002_wrna_1658 crossref_primary_10_1016_j_cell_2022_12_025 crossref_primary_10_1016_j_cub_2019_12_060 crossref_primary_10_1016_j_molcel_2021_05_018 crossref_primary_10_1016_j_molcel_2024_01_015 crossref_primary_10_1038_s41467_019_13579_3 crossref_primary_10_1016_j_celrep_2024_114098 crossref_primary_10_1016_j_molcel_2020_01_011 crossref_primary_10_1073_pnas_2415807122 crossref_primary_10_1038_s41467_023_38173_6 crossref_primary_10_1093_nar_gkad299 crossref_primary_10_3233_HAB_240001 crossref_primary_10_1016_j_sbi_2020_06_011 crossref_primary_10_1038_s41586_019_1561_0 crossref_primary_10_1016_j_molcel_2022_08_018 crossref_primary_10_3390_ijms222111653 crossref_primary_10_1261_rna_079633_123 crossref_primary_10_1371_journal_pone_0272058 crossref_primary_10_7554_eLife_76038 crossref_primary_10_1186_s13059_020_02256_0 crossref_primary_10_3390_biom13020317 crossref_primary_10_1038_s41580_021_00417_y crossref_primary_10_1038_s41598_020_76239_3 crossref_primary_10_1002_wrna_1827 crossref_primary_10_1128_jvi_01093_22 crossref_primary_10_1042_BST20253066 crossref_primary_10_1016_j_molcel_2023_01_020 crossref_primary_10_1038_s41589_023_01513_0 crossref_primary_10_1016_j_tcb_2020_01_008 crossref_primary_10_1038_s41594_019_0230_1 crossref_primary_10_1038_s41467_023_43946_0 crossref_primary_10_1093_nar_gkab121 crossref_primary_10_1261_rna_079683_123 crossref_primary_10_7554_eLife_59974 crossref_primary_10_1093_nar_gkaf049 crossref_primary_10_1038_s41594_020_0482_9 crossref_primary_10_1016_j_molcel_2024_05_018 crossref_primary_10_1016_j_cell_2024_03_024 crossref_primary_10_1093_nar_gkac1172 crossref_primary_10_3390_ijms222413204 crossref_primary_10_1038_s41467_023_36230_8 crossref_primary_10_1093_nar_gkab005 crossref_primary_10_3389_fcell_2023_1153624 crossref_primary_10_1016_j_cell_2024_05_018 crossref_primary_10_1126_science_aax2957 crossref_primary_10_7554_eLife_60038 crossref_primary_10_1042_BST20220584 crossref_primary_10_1016_j_tibs_2021_09_001 crossref_primary_10_1038_s41589_023_01521_0 crossref_primary_10_1016_j_jbc_2021_100586 crossref_primary_10_1093_nar_gkad272 crossref_primary_10_1083_jcb_202001108 crossref_primary_10_1093_nar_gkz763 crossref_primary_10_1016_j_molcel_2020_07_007 crossref_primary_10_1371_journal_pgen_1010577 crossref_primary_10_1038_s41467_024_51284_y crossref_primary_10_1371_journal_pone_0227841 crossref_primary_10_1038_s41594_019_0222_1 crossref_primary_10_1093_nar_gkae365 crossref_primary_10_1093_nar_gkae087 crossref_primary_10_1111_febs_16781 |
| Cites_doi | 10.1038/nature10829 10.1038/nature04530 10.1073/pnas.1009598107 10.1371/journal.pgen.1005197 10.1016/j.cell.2012.10.044 10.1126/science.1194294 10.1038/embor.2010.169 10.1126/science.aaf7520 10.1002/yea.1142 10.1016/j.molcel.2016.12.026 10.1126/science.1259724 10.1016/j.molcel.2016.11.039 10.1038/ncb3358 10.1016/j.jsb.2015.11.003 10.1017/S1355838202026018 10.1016/j.cell.2006.02.038 10.7554/eLife.09684 10.1038/s41467-017-00188-1 10.1083/jcb.102.5.1543 10.1038/nsmb.1922 10.1073/pnas.1109088108 10.1016/j.molcel.2018.08.037 10.1016/j.molcel.2014.07.006 10.1016/j.molcel.2017.08.019 10.1073/pnas.1221724110 10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U 10.1016/S0092-8674(01)00541-4 10.1038/ncomms16056 10.1126/science.1067272 10.1002/pro.3235 10.1261/rna.049080.114 10.1107/S1399004714021683 10.1016/j.gene.2011.09.033 10.1038/nature09371 10.1038/nsmb.1963 10.1261/rna.060897.117 10.1038/s41594-018-0042-8 10.1038/srep28234 10.1038/embor.2009.200 10.1016/j.cell.2016.05.070 10.1016/j.molcel.2012.03.013 10.1016/j.str.2014.06.003 10.1038/nmeth.4193 10.1038/nsmb1148 10.1042/BJ20061138 10.1111/j.1365-2958.2011.07957.x 10.1016/j.molcel.2015.01.029 10.7554/eLife.18722 10.1016/j.molcel.2010.10.009 10.1002/jcc.20084 10.1038/nsmb.2301 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2019 2019 The Authors 2019 The Authors. 2019 EMBO |
| Copyright_xml | – notice: The Author(s) 2019 – notice: 2019 The Authors – notice: 2019 The Authors. – notice: 2019 EMBO |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 5PM |
| DOI | 10.15252/embj.2018100276 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Virology and AIDS Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry Biology |
| DocumentTitleAlternate | Ken Ikeuchi et al |
| EISSN | 1460-2075 |
| EndPage | n/a |
| ExternalDocumentID | PMC6396155 30609991 10_15252_embj_2018100276 EMBJ2018100276 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Takeda Foundation – fundername: German Research Council grantid: FOR1805; BE1814/15‐1 – fundername: Graduate School of Quantitative Biosciences Munich (QBM) – fundername: MEXT|Japan Society for the Promotion of Science grantid: 26116003 funderid: 10.13039/501100001691 – fundername: Center for Integrated Protein Science Munich (CiPS‐M) – fundername: MEXT|Japan Society for the Promotion of Science funderid: 26116003 – fundername: German Research Council funderid: FOR1805; BE1814/15‐1 – fundername: MEXT|Japan Society for the Promotion of Science grantid: 26116003 |
| GroupedDBID | --- -DZ -Q- -~X 0R~ 123 1OC 29G 2WC 33P 36B 39C 53G 5VS 70F 8R4 8R5 A8Z AAESR AAEVG AAHBH AAIHA AAJSJ AAMMB AANLZ AAONW AASGY AASML AAXRX AAYCA AAZKR ABCUV ABLJU ABZEH ACAHQ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AENEX AEUYR AFBPY AFFNX AFGKR AFRAH AFWVQ AFZJQ AGXDD AHMBA AIAGR AIDQK AIDYY AIURR AJAOE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOIJS AUFTA AZBYB AZFZN AZVAB BAWUL BDRZF BENPR BFHJK BMNLL BMXJE BRXPI BTFSW C6C CS3 DCZOG DIK DPXWK DRFUL DRSTM DU5 E3Z EBD EBLON EBS EJD EMB EMOBN F5P G-S GROUPED_DOAJ GX1 HH5 HK~ HYE KQ8 LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM MY~ NAO O8X O9- OK1 P2P P2W Q2X R.K RHI RNS ROL RPM SV3 TN5 TR2 WBKPD WH7 WIH WIK WIN WOHZO WXSBR YSK ZCA ZZTAW ~KM 24P AAHHS ABJNI ACCFJ AEEZP AEQDE AFPWT AIWBW AJBDE ALIPV RHF WYJ .55 3O- 4.4 7X7 88E 8AO 8C1 8CJ 8FE 8FH 8FI 8FJ 8G5 AANHP AAYXX ABUWG ACBWZ ACKIV ACRPL ACYXJ ADNMO AEUYN AFFHD AFKRA AGQPQ AI. ASPBG AVWKF AZQEC BBNVY BHPHI BKSAR BPHCQ BVXVI C1A CAG CCPQU CITATION COF D1J DWQXO FA8 FEDTE FYUFA GNUQQ GODZA GUQSH H13 HCIFZ HMCUK HVGLF H~9 LH4 LK8 LW6 M1P M2O M7P PCBAR PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RNI RZO UKHRP VH1 WOQ X7M XSW Y6R YYP ZGI ZXP CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 8FD C1K ESTFP FR3 H94 K9. M7N P64 RC3 7X8 5PM |
| ID | FETCH-LOGICAL-c4586-60a9f401bbdd80d4f67e4007034c9e4f24add4d6b67f7ac6786208f2c0779ae83 |
| IEDL.DBID | WIN |
| ISSN | 0261-4189 1460-2075 |
| IngestDate | Tue Sep 30 16:37:26 EDT 2025 Sun Sep 28 00:34:40 EDT 2025 Mon Oct 06 17:21:29 EDT 2025 Thu Apr 03 07:10:06 EDT 2025 Tue Nov 18 21:49:16 EST 2025 Sat Nov 29 03:03:06 EST 2025 Wed Jan 22 16:46:39 EST 2025 Sat Nov 29 01:24:56 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | no‐go mRNA decay ribosome quality control RQT complex ubiquitination ribosome collision |
| Language | English |
| License | 2019 The Authors. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4586-60a9f401bbdd80d4f67e4007034c9e4f24add4d6b67f7ac6786208f2c0779ae83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 See also: LL Yan & HS Zaher (March 2019) These authors contributed equally to this work |
| ORCID | 0000-0002-9202-5453 0000-0003-4291-3898 0000-0002-2695-588X 0000-0002-5227-1799 0000-0001-8458-2738 0000-0001-8364-7050 0000-0002-9578-7920 |
| PMID | 30609991 |
| PQID | 2186968044 |
| PQPubID | 35985 |
| PageCount | 21 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6396155 proquest_miscellaneous_2164104426 proquest_journals_2186968044 pubmed_primary_30609991 crossref_primary_10_15252_embj_2018100276 crossref_citationtrail_10_15252_embj_2018100276 wiley_primary_10_15252_embj_2018100276_EMBJ2018100276 springer_journals_10_15252_embj_2018100276 |
| PublicationCentury | 2000 |
| PublicationDate | 1 March 2019 |
| PublicationDateYYYYMMDD | 2019-03-01 |
| PublicationDate_xml | – month: 03 year: 2019 text: 1 March 2019 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England – name: New York – name: Hoboken |
| PublicationTitle | The EMBO journal |
| PublicationTitleAbbrev | EMBO J |
| PublicationTitleAlternate | EMBO J |
| PublicationYear | 2019 |
| Publisher | Nature Publishing Group UK Springer Nature B.V John Wiley and Sons Inc |
| Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V – name: John Wiley and Sons Inc |
| References | 2015; 57 2004; 21 2012; 83 2010; 11 2012; 482 2017; 8 2015; 4 2015; 71 2010; 107 2015; 347 2006; 13 2010; 17 2002; 295 2004; 25 2010; 467 2017; 65 2015; 11 2017; 68 2002; 8 2017; 23 2016; 166 2012; 19 2016; 18 2001; 107 2018; 27 2010; 40 2014; 22 2018; 25 2006; 399 2012; 151 2012; 492 2016; 5 2016; 6 2011; 108 1986; 102 2009; 10 2017; 14 2015; 21 2010; 330 2016; 354 2006; 440 2013; 110 2018; 72 2016; 193 2012; 46 2014; 55 1998; 14 2006; 124 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 30770343 - EMBO J. 2019 Mar 1;38(5) |
| References_xml | – volume: 65 start-page: 743 year: 2017 end-page: 750 article-title: Initiation of quality control during poly(A) translation requires site‐specific ribosome ubiquitination publication-title: Mol Cell – volume: 110 start-page: 5046 year: 2013 end-page: 5051 article-title: Cdc48‐associated complex bound to 60S particles is required for the clearance of aberrant translation products publication-title: Proc Natl Acad Sci USA – volume: 68 start-page: 361 year: 2017 end-page: 373 article-title: Ribosome collision is critical for quality control during no‐go decay publication-title: Mol Cell – volume: 295 start-page: 2262 year: 2002 end-page: 2264 article-title: Exosome‐mediated recognition and degradation of mRNAs lacking a termination codon publication-title: Science – volume: 25 start-page: 1605 year: 2004 end-page: 1612 article-title: UCSF Chimera–a visualization system for exploratory research and analysis publication-title: J Comput Chem – volume: 330 start-page: 1203 year: 2010 end-page: 1209 article-title: Crystal structure of the eukaryotic ribosome publication-title: Science – volume: 8 start-page: 948 year: 2002 end-page: 958 article-title: One‐step affinity purification of the yeast ribosome and its associated proteins and mRNAs publication-title: RNA – volume: 6 start-page: 28234 year: 2016 article-title: Ribosome‐associated Asc1/RACK1 is required for endonucleolytic cleavage induced by stalled ribosome at the 3′ end of nonstop mRNA publication-title: Sci Rep – volume: 107 start-page: 361 year: 2001 end-page: 372 article-title: Architecture of the protein‐conducting channel associated with the translating 80S ribosome publication-title: Cell – volume: 8 start-page: 159 year: 2017 article-title: Ubiquitination of stalled ribosome triggers ribosome‐associated quality control publication-title: Nature Commun – volume: 46 start-page: 518 year: 2012 end-page: 529 article-title: Dom34:hbs1 plays a general role in quality‐control systems by dissociation of a stalled ribosome at the 3′ end of aberrant mRNA publication-title: Mol Cell – volume: 65 start-page: 751 year: 2017 end-page: 760 article-title: ZNF598 and RACK1 regulate mammalian ribosome‐associated quality control function by mediating regulatory 40S ribosomal ubiquitylation publication-title: Mol Cell – volume: 4 start-page: e09684 year: 2015 article-title: Mechanisms of ribosome stalling by SecM at multiple elongation steps publication-title: Elife – volume: 21 start-page: 947 year: 2004 end-page: 962 article-title: A versatile toolbox for PCR‐based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes publication-title: Yeast – volume: 8 start-page: 16056 year: 2017 article-title: The E3 ubiquitin ligase and RNA‐binding protein ZNF598 orchestrates ribosome quality control of premature polyadenylated mRNAs publication-title: Nat Commun – volume: 19 start-page: 594 year: 2012 end-page: 601 article-title: Translation drives mRNA quality control publication-title: Nat Struct Mol Biol – volume: 40 start-page: 548 year: 2010 end-page: 557 article-title: Ubiquitin binding to A20 ZnF4 is required for modulation of NF‐kappaB signaling publication-title: Mol Cell – volume: 440 start-page: 561 year: 2006 end-page: 564 article-title: Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation publication-title: Nature – volume: 467 start-page: 470 year: 2010 end-page: 473 article-title: Role of a ribosome‐associated E3 ubiquitin ligase in protein quality control publication-title: Nature – volume: 5 start-page: e18722 year: 2016 article-title: Accelerated cryo‐EM structure determination with parallelisation using GPUs in RELION‐2 publication-title: Elife – volume: 13 start-page: 915 year: 2006 end-page: 920 article-title: Mms2‐Ubc13 covalently bound to ubiquitin reveals the structural basis of linkage‐specific polyubiquitin chain formation publication-title: Nat Struct Mol Biol – volume: 14 start-page: 953 year: 1998 end-page: 961 article-title: Additional modules for versatile and economical PCR‐based gene deletion and modification in Saccharomyces cerevisiae publication-title: Yeast – volume: 14 start-page: 331 year: 2017 end-page: 332 article-title: MotionCor2: anisotropic correction of beam‐induced motion for improved cryo‐electron microscopy publication-title: Nat Methods – volume: 71 start-page: 136 year: 2015 end-page: 153 article-title: Tools for macromolecular model building and refinement into electron cryo‐microscopy reconstructions publication-title: Acta Crystallogr D Biol Crystallogr – volume: 17 start-page: 1446 year: 2010 end-page: 1452 article-title: Dissection of Dom34‐Hbs1 reveals independent functions in two RNA quality control pathways publication-title: Nat Struct Mol Biol – volume: 11 start-page: 956 year: 2010 end-page: 961 article-title: Receptor for activated C kinase 1 stimulates nascent polypeptide‐dependent translation arrest publication-title: EMBO Rep – volume: 22 start-page: 1210 year: 2014 end-page: 1218 article-title: Structures of yeast 80S ribosome‐tRNA complexes in the rotated and nonrotated conformations publication-title: Structure – volume: 108 start-page: 20520 year: 2011 end-page: 20525 article-title: Specific recognition of linear ubiquitin chains by the Npl4 zinc finger (NZF) domain of the HOIL‐1L subunit of the linear ubiquitin chain assembly complex publication-title: Proc Natl Acad Sci USA – volume: 55 start-page: 880 year: 2014 end-page: 890 article-title: Reconstitution of a minimal ribosome‐associated ubiquitination pathway with purified factors publication-title: Mol Cell – volume: 492 start-page: 42 year: 2012 end-page: 53 article-title: The Ccr4–not complex publication-title: Gene – volume: 166 start-page: 679 year: 2016 end-page: 690 article-title: Adjacent codons act in concert to modulate translation efficiency in yeast publication-title: Cell – volume: 27 start-page: 14 year: 2018 end-page: 25 article-title: UCSF ChimeraX: meeting modern challenges in visualization and analysis publication-title: Protein Sci – volume: 17 start-page: 1233 year: 2010 end-page: 1240 article-title: Structure of the Dom34‐Hbs1 complex and implications for no‐go decay publication-title: Nat Struct Mol Biol – volume: 347 start-page: 75 year: 2015 end-page: 78 article-title: Protein synthesis. Rqc2p and 60S ribosomal subunits mediate mRNA‐independent elongation of nascent chains publication-title: Science – volume: 102 start-page: 1543 year: 1986 end-page: 1550 article-title: Secretory protein translocation in a yeast cell‐free system can occur posttranslationally and requires ATP hydrolysis publication-title: J Cell Biol – volume: 11 start-page: e1005197 year: 2015 article-title: Inhibiting K63 polyubiquitination abolishes no‐go type stalled translation surveillance in publication-title: PLoS Genet – volume: 193 start-page: 1 year: 2016 end-page: 12 article-title: Gctf: real‐time CTF determination and correction publication-title: J Struct Biol – volume: 83 start-page: 640 year: 2012 end-page: 653 article-title: Presence of Not5 and ubiquitinated Rps7A in polysome fractions depends upon the Not4 E3 ligase publication-title: Mol Microbiol – volume: 151 start-page: 1042 year: 2012 end-page: 1054 article-title: A ribosome‐bound quality control complex triggers degradation of nascent peptides and signals translation stress publication-title: Cell – volume: 354 start-page: 1431 year: 2016 end-page: 1433 article-title: The cryo‐EM structure of a ribosome‐Ski2‐Ski3‐Ski8 helicase complex publication-title: Science – volume: 21 start-page: 935 year: 2015 end-page: 945 article-title: Asc1, homolog of human RACK1, prevents frameshifting in yeast by ribosomes stalled at CGA codon repeats publication-title: RNA – volume: 57 start-page: 389 year: 2015 end-page: 390 article-title: Ribosome rescue and protein quality control in concert publication-title: Mol Cell – volume: 399 start-page: 361 year: 2006 end-page: 372 article-title: Ubiquitin‐binding domains publication-title: Biochem J – volume: 18 start-page: 579 year: 2016 end-page: 586 article-title: The increasing complexity of the ubiquitin code publication-title: Nat Cell Biol – volume: 23 start-page: 798 year: 2017 end-page: 810 article-title: Asc1, Hel2, and Slh1 couple translation arrest to nascent chain degradation publication-title: RNA – volume: 482 start-page: 501 year: 2012 end-page: 506 article-title: Structural basis of highly conserved ribosome recycling in eukaryotes and archaea publication-title: Nature – volume: 107 start-page: 17575 year: 2010 end-page: 17579 article-title: Structural basis for mRNA surveillance by archaeal Pelota and GTP‐bound EF1alpha complex publication-title: Proc Natl Acad Sci USA – volume: 10 start-page: 1265 year: 2009 end-page: 1271 article-title: Upf1 stimulates degradation of the product derived from aberrant messenger RNA containing a specific nonsense mutation by the proteasome publication-title: EMBO Rep – volume: 124 start-page: 1197 year: 2006 end-page: 1208 article-title: The ubiquitin binding domain ZnF UBP recognizes the C‐terminal diglycine motif of unanchored ubiquitin publication-title: Cell – volume: 25 start-page: 302 year: 2018 end-page: 310 article-title: Ribothrypsis, a novel process of canonical mRNA decay, mediates ribosome‐phased mRNA endonucleolysis publication-title: Nat Struct Mol Biol – volume: 72 start-page: 469 year: 2018 end-page: 481 article-title: ZNF598 is a quality control sensor of collided ribosomes publication-title: Mol Cell – ident: e_1_2_9_2_1 doi: 10.1038/nature10829 – ident: e_1_2_9_12_1 doi: 10.1038/nature04530 – ident: e_1_2_9_28_1 doi: 10.1073/pnas.1009598107 – ident: e_1_2_9_36_1 doi: 10.1371/journal.pgen.1005197 – ident: e_1_2_9_7_1 doi: 10.1016/j.cell.2012.10.044 – ident: e_1_2_9_5_1 doi: 10.1126/science.1194294 – ident: e_1_2_9_30_1 doi: 10.1038/embor.2010.169 – ident: e_1_2_9_38_1 doi: 10.1126/science.aaf7520 – ident: e_1_2_9_24_1 doi: 10.1002/yea.1142 – ident: e_1_2_9_44_1 doi: 10.1016/j.molcel.2016.12.026 – ident: e_1_2_9_40_1 doi: 10.1126/science.1259724 – ident: e_1_2_9_25_1 doi: 10.1016/j.molcel.2016.11.039 – ident: e_1_2_9_49_1 doi: 10.1038/ncb3358 – ident: e_1_2_9_51_1 doi: 10.1016/j.jsb.2015.11.003 – ident: e_1_2_9_21_1 doi: 10.1017/S1355838202026018 – ident: e_1_2_9_35_1 doi: 10.1016/j.cell.2006.02.038 – ident: e_1_2_9_50_1 doi: 10.7554/eLife.09684 – ident: e_1_2_9_32_1 doi: 10.1038/s41467-017-00188-1 – ident: e_1_2_9_47_1 doi: 10.1083/jcb.102.5.1543 – ident: e_1_2_9_9_1 doi: 10.1038/nsmb.1922 – ident: e_1_2_9_37_1 doi: 10.1073/pnas.1109088108 – ident: e_1_2_9_26_1 doi: 10.1016/j.molcel.2018.08.037 – ident: e_1_2_9_39_1 doi: 10.1016/j.molcel.2014.07.006 – ident: e_1_2_9_42_1 doi: 10.1016/j.molcel.2017.08.019 – ident: e_1_2_9_11_1 doi: 10.1073/pnas.1221724110 – ident: e_1_2_9_31_1 doi: 10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U – ident: e_1_2_9_3_1 doi: 10.1016/S0092-8674(01)00541-4 – ident: e_1_2_9_16_1 doi: 10.1038/ncomms16056 – ident: e_1_2_9_19_1 doi: 10.1126/science.1067272 – ident: e_1_2_9_17_1 doi: 10.1002/pro.3235 – ident: e_1_2_9_48_1 doi: 10.1261/rna.049080.114 – ident: e_1_2_9_8_1 doi: 10.1107/S1399004714021683 – ident: e_1_2_9_10_1 doi: 10.1016/j.gene.2011.09.033 – ident: e_1_2_9_4_1 doi: 10.1038/nature09371 – ident: e_1_2_9_14_1 doi: 10.1038/nsmb.1963 – ident: e_1_2_9_43_1 doi: 10.1261/rna.060897.117 – ident: e_1_2_9_22_1 doi: 10.1038/s41594-018-0042-8 – ident: e_1_2_9_23_1 doi: 10.1038/srep28234 – ident: e_1_2_9_29_1 doi: 10.1038/embor.2009.200 – ident: e_1_2_9_15_1 doi: 10.1016/j.cell.2016.05.070 – ident: e_1_2_9_46_1 doi: 10.1016/j.molcel.2012.03.013 – ident: e_1_2_9_45_1 doi: 10.1016/j.str.2014.06.003 – ident: e_1_2_9_52_1 doi: 10.1038/nmeth.4193 – ident: e_1_2_9_13_1 doi: 10.1038/nsmb1148 – ident: e_1_2_9_20_1 doi: 10.1042/BJ20061138 – ident: e_1_2_9_33_1 doi: 10.1111/j.1365-2958.2011.07957.x – ident: e_1_2_9_18_1 doi: 10.1016/j.molcel.2015.01.029 – ident: e_1_2_9_27_1 doi: 10.7554/eLife.18722 – ident: e_1_2_9_6_1 doi: 10.1016/j.molcel.2010.10.009 – ident: e_1_2_9_34_1 doi: 10.1002/jcc.20084 – ident: e_1_2_9_41_1 doi: 10.1038/nsmb.2301 – reference: 30770343 - EMBO J. 2019 Mar 1;38(5): |
| SSID | ssj0005871 |
| Score | 2.6577163 |
| Snippet | Ribosome stalling triggers quality control pathways targeting the mRNA (NGD: no‐go decay) and the nascent polypeptide (RQC: ribosome‐associated quality... Ribosome stalling triggers quality control pathways targeting the mRNA (NGD: no-go decay) and the nascent polypeptide (RQC: ribosome-associated quality... |
| SourceID | pubmedcentral proquest pubmed crossref wiley springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| SubjectTerms | Cryoelectron Microscopy Decay EMBO31 EMBO32 EMBO40 mRNA mRNA turnover no‐go mRNA decay Pattern recognition Polypeptides Protein Biosynthesis Proteins Quality control Ribosomal Proteins - genetics Ribosomal Proteins - metabolism ribosome collision ribosome quality control Ribosomes Ribosomes - metabolism Ribosomes - ultrastructure RNA Stability RNA, Messenger - genetics RNA, Messenger - metabolism RQT complex Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Stalling Ubiquitin Ubiquitin - metabolism Ubiquitin-protein ligase Ubiquitin-Protein Ligases - genetics Ubiquitin-Protein Ligases - metabolism Ubiquitination Upstream Yeast |
| Title | Collided ribosomes form a unique structural interface to induce Hel2‐driven quality control pathways |
| URI | https://link.springer.com/article/10.15252/embj.2018100276 https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.2018100276 https://www.ncbi.nlm.nih.gov/pubmed/30609991 https://www.proquest.com/docview/2186968044 https://www.proquest.com/docview/2164104426 https://pubmed.ncbi.nlm.nih.gov/PMC6396155 |
| Volume | 38 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1460-2075 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0005871 issn: 0261-4189 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1460-2075 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005871 issn: 0261-4189 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFL2CAiobHoVCoIyMxAakqEnGsZ0llI4AlVkgCrOL_IRBNEGTFjQ7PoFP4Fv4FL4EX-cxDBUgIZaWH4md6_uwb84BuOdVnnJOyLiwhY29_-9ipVUWF0rmY228QQr0ba8O-HQqZrPi539hWnyI4cANd0bQ17jBpWp6xh5EDbVH6h3mZglEEeWIup3SFEkMXj-drrI8RIi5wjELTUXR3VTiELu_DLBumU65m6ezJoer03XHNlimyeX_MacrcKnzS8nDVpCuwhlbbcGFlqlyuQWbez0x3DV4g4cNc2MNWcxV3dRHtiHo-hJJTgIcLGlBaRHQgyAcxcJJbclx7QvGSxLxpi77_vmLWaCmJe1vnUvSJc1_-4okyZ_ksrkOh5P9l3tP4o6vIdY0FyxmiSycj9eUMkYkhjrGLdKuJ2OqC0tdRr0ypYYpxh2X2ptJliXCZTrhvJBWjLdho6orexMINZZ5NaxcmkqaWy5zHydpYTOmONNjGcFu_61K3YGZI6fG-xKDGlzMEpeyXC1lBPeHHh9aII8_tN3pP3_ZbemmDORdTCSURnB3qPZLjzcssrL1CbZh1Me33uuJ4EYrLcPDfGwWvPEI-JocDQ0Q6Hu9ppq_DYDf3ovE6-MIHvQSt3qt388hD5L218mW-88fPVsVb_1jv9tw0ReKNj1vBza8oNk7cF5_PJ43ixGc5TMxgnOPX0wOD0Zhi_4Am9A7HQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB6VAioXfgqFlAJG4gJS1GzWsZ0jrFq1sF1xKNBb5F-6iCZo04L2xiPwCH0WHoUnweP8rJYKkBDHyE527YxnvrEn3wfwxLs85ZyQcW5zG3v872KlVRrnSmZDbXxACvJtb8d8MhFHR_nrFRh138I0_BD9hhuujOCvcYHjhnQn2YO0ofZEfcDiLIE0opxdgsvU4w3Ub3i3P1nUeYiQdYWNFjoQeXtWic_Y_uUJy7HpAuC8WDfZH54uQ9sQm3Zv_JdR3YTrLTQlzxtbugUrtlyHq41Y5Xwd1kadNtxteI_7DVNjDZlNVVVXJ7YmiH6JJGeBEZY0vLTI6UGQkWLmpLbktPIXxhsT8dEu_fH1m5mhsyXNl51z0tbNfz9HneQvcl7fgTe7O4ejvbiVbIg1zQSLWSJz51M2pYwRiaGOcYvK68mQ6txSl1LvT6lhinHHpfaRkqWJcKlOOM-lFcMNWC2r0t4DQo1l3hMrNxhImlkuM58qaWFTpjjTQxnBdveyCt3ymaOsxscC8xqczAKnslhMZQRP-zs-NVwef-i71b3_ol3VdRH0u5hIKI3gcd_spx4PWWRpqzPsw6hPcT3wieBuYy79j_n0LADyCPiSIfUdkOt7uaWcHgfObw8k8QQ5gmedyS3-1u_HkAVT--tgi52DFy8Xl5v_eN8jWNs7PBgX4_3Jq_twzTfkTbXeFqx6o7MP4Ir-fDqtZw_DCv0J57k8sw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3ZbtQwFL0qUyi8sJQtUMBIvIAUNZNxbOcRph2xDKMKUdS3yCsdRJNqpgXNG5_AJ_AtfApfgq-zjIYKkBCPiR0ndq7vYl-fA_DIqzzlnJBxbnMbe__fxUqrNM6VzAbaeIMU6NvejflkIg4O8r01GLZnYWp8iG7BDWdG0Nc4we2xcS1lD8KG2iP1AZOzBMKIcnYO1ilyyfRgfefNaH-8zPQQIe4KSy20L_JmtxJb2f6ljVXrdMblPJs52W2frjq3wTqNrvyXfl2Fy41zSp7W0nQN1my5CRdqusrFJlwctuxw1-E9rjhMjTVkNlXVvDqyc4L-L5HkNGDCkhqZFlE9CGJSzJzUlpxU_sJ4cSLe3qU_vnw1M1S3pD7buSBN5vz3b8iU_Fku5jdgf7T7dvg8bkgbYk0zwWKWyNz5oE0pY0RiqGPcIvd6MqA6t9Sl1GtUaphi3HGpva1kaSJcqhPOc2nF4Cb0yqq0t4FQY5nXxcr1-5JmlsvMB0ta2JQpzvRARrDd_qxCN4jmSKzxscDIBgezwKEslkMZwePuieMazeMPdbfa_18083peBAYvJhJKI3jYFfuhx20WWdrqFOsw6oNc7_pEcKsWl-5lPkALLnkEfEWQugqI9r1aUk4PA-q3dyVxDzmCJ63ILT_r933Igqj9tbPF7utnL5eXd_7xuQewsbczKsYvJq_uwiV_P6_T9bag52XO3oPz-tPJdD6730zRnxmRPVw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Collided+ribosomes+form+a+unique+structural+interface+to+induce+Hel2%E2%80%90driven+quality+control%C2%A0pathways&rft.jtitle=The+EMBO+journal&rft.au=Ikeuchi%2C+Ken&rft.au=Tesina%2C+Petr&rft.au=Matsuo%2C+Yoshitaka&rft.au=Sugiyama%2C+Takato&rft.date=2019-03-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=0261-4189&rft.eissn=1460-2075&rft.volume=38&rft.issue=5&rft_id=info:doi/10.15252%2Fembj.2018100276&rft_id=info%3Apmid%2F30609991&rft.externalDocID=PMC6396155 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon |