Parameterized approximation of dominating set problems

A problem open for many years is whether there is an FPT algorithm that given a graph G and parameter k, either: (1) determines that G has no k- Dominating Set, or (2) produces a dominating set of size at most g ( k ) , where g ( k ) is some fixed function of k. Such an outcome is termed an FPT appr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Information processing letters Ročník 109; číslo 1; s. 68 - 70
Hlavní autoři: Downey, Rodney G., Fellows, Michael R., McCartin, Catherine, Rosamond, Frances
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 16.12.2008
Elsevier
Elsevier Sequoia S.A
Témata:
ISSN:0020-0190, 1872-6119
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A problem open for many years is whether there is an FPT algorithm that given a graph G and parameter k, either: (1) determines that G has no k- Dominating Set, or (2) produces a dominating set of size at most g ( k ) , where g ( k ) is some fixed function of k. Such an outcome is termed an FPT approximation algorithm. We describe some results that begin to provide some answers. We show that there is no such FPT algorithm for g ( k ) of the form k + c (where c is a fixed constant, termed an additive FPT approximation), unless FPT = W [ 2 ] . We answer the analogous problem completely for the related Independent Dominating Set (IDS) problem, showing that IDS does not admit an FPT approximation algorithm, for any g ( k ) , unless FPT = W [ 2 ] .
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0020-0190
1872-6119
DOI:10.1016/j.ipl.2008.09.017